Christian Schilling

Jan-Georg Smaus
email: smaus@irit.fr

Fabian Wenzelmann

A Pretty Complete Combinatorial Algorithm for the Threshold Synthesis Problem

Introduction

A linear pseudo-Boolean constraint (LPB) [START_REF] Chai | A fast pseudo-Boolean constraint solver[END_REF][START_REF] Crama | Boolean Functions: Theory, Algorithms, and Applications[END_REF][START_REF] Dixon | Combining satisfiability techniques from AI and OR[END_REF] is an expression of the form a 1 ℓ 1 + . . . + a m ℓ m ≥ d. Here each ℓ i is a literal of the form x i or 1x i . An LPB can be used to represent a Boolean function; e.g. 2x 1 + x 2 + x 3 ≥ 2 represents the same function as the propositional formula x 1 ∨ (x 2 ∧ x 3).

Functions that can be represented by a single LPB are called threshold functions. The problem of finding the LPB for a threshold function given as disjunctive normal form (DNF) is called threshold synthesis problem. The reference on Boolean functions [START_REF] Crama | Boolean Functions: Theory, Algorithms, and Applications[END_REF] formulates the research challenge of recognising threshold functions through an entirely combinatorial procedure. In fact, such a procedure had been proposed in [START_REF] Coates | Linearly-separable switching functions[END_REF][START_REF] Coates | A simplified procedure for the realization of linearly-separable switching functions[END_REF] and was later reinvented by us [START_REF] Smaus | On boolean functions encodable as a single linear pseudo-Boolean constraint[END_REF]. In this paper, we report on an implementation of this procedure for which we have run experiments for up to m = 22. It can solve the biggest problems in a couple of seconds.

There is another procedure solving this problem using linear programming [START_REF] Crama | Boolean Functions: Theory, Algorithms, and Applications[END_REF], which we also implemented and compared to the combinatorial one.

Preliminaries

An m-dimensional Boolean function f is a function Bool m → Bool . A linear pseudo-Boolean constraint (LPB) is an inequality of the form

a 1 ℓ 1 + . . . + a m ℓ m ≥ d a i ∈ N, d ∈ Z, ℓ i ∈ {x i , 1 -x i }. (1)
We call the a i coefficients and d the threshold. A DNF is a formula of the form c 1 ∨ . . . ∨ c n where each clause c j is a conjunction of literals.

It is easy to see that an LPB can only represent monotone functions, i.e., functions represented by a DNF where each variable occurs in only one polarity. Without loss of generality, we assume that this polarity is positive.

The Combinatorial Algorithm

For space reasons, we do not give a general definition of our algorithm but rather illustrate it using a running example:

φ ≡ (x 1 ∧ x 2) ∨ (x 1 ∧ x 3) ∨ (x 1 ∧ x 4) ∨ (x 1 ∧ x 5) ∨ (x 2 ∧ x 3) ∨ (x 2 ∧ x 4) ∨ (x 3 ∧ x 4 ∧ x 5). false false x 3 ∧ x 4 ∧ x 5 false false false (x 2 ∧ x 3)∨ x 4 ∧ x 5 x 5 false (x 2 ∧ x 4)∨ true (x 1 ∧ x 2) ∨ (x 1 ∧ x 3) (x 3 ∧ x 4 ∧ x 5) x 4 false ∨(x 1 ∧ x 4) ∨ (x 1 ∧ x 5) x 3 ∨ x 4 true true ∨(x 2 ∧ x 3) ∨ (x 2 ∧ x 4) true ∨(x 3 ∧ x 4 ∧ x 5)
x 5 false x 4 ∨ x 5 true true x 2 ∨ x 3 ∨ x 4 ∨ x 5

x 3 ∨ x 4 ∨ x 5 true true true true true true true true Before we start, it should be noted that the basic procedure we describe here is not complete. The issue of completeness is very complicated, and [START_REF] Coates | Linearly-separable switching functions[END_REF] devote 23 pages to it! In our implementation, we have realised an extension of the basic procedure that implements some of the ideas described by [START_REF] Coates | Linearly-separable switching functions[END_REF] but still does not achieve full completeness. As it stands, for up to m = 7, our procedure always succeeds; up to m = 14, it fails on less than 1% of the threshold functions, while this rate rises up to 18.3% for m = 22.

For some DNFs, it is possible to establish a complete order on the variables which has the following meaning: x i x j iff starting from any given input tuple X * ∈ Bool m , setting x * i to true is more likely to make the DNF true than setting x * j to true. There is a lemma stating that must be respected by any LPB (if there is one!) representing the DNF, i.e., x i x j implies a i ≥ a j . For φ, it is the case that x 1 . . . x 5 and so if we find a solution, then a 1 ≥ . . . ≥ a 5 . Now there is a theorem stating that the problem can be tackled using a special kind of recursion. In φ, we can distinguish the clauses that contain x 1 and the ones that do not. This is illustrated in Figure 1. In the leftmost column (column 0), we have φ. In column 1, we have two smaller DNFs: on top the clauses of φ that do not contain x 1 , and on bottom the clauses of φ that contain x 1 , but with those occurrences of x 1 removed. We say that we split away x 1 from φ, and we call the two formulae we obtain the upper and lower successor of φ. We thus have two smaller subproblems, and the theorem says that we must find solutions to these subproblems that agree on the coefficients a 2 , . . . , a 5 (but differ on the threshold, of course).

Similarly, we can split away x 2 from each DNF in column 1, giving the four formulae of column 2. Observe that the only clause in x 2 ∨x 3 ∨x 4 ∨x 5 containing x 2 is x 2 , and if we remove x 2 from it, we are left with the empty conjunction which is true; hence we have true as lowermost formula in column 2.

We continue by splitting away x 3 from the DNFs in column 2. From now on, it is no more the case that the number of DNFs doubles in each step. In fact, thanks to the symmetry of the variables in x 2 ∨ x 3 ∨ x 4 ∨ x 5 , it happens that the lower successor of x 3 ∨ x 4 ∨ x 5 coincides with the upper successor of true, namely true. Due to this fact, Figure 1 is not quite a tree, as some nodes are shared.

Reducing the size of the datastructure by exploiting symmetries within the DNF is obviously good for the space complexity of our procedure, and is an advantage of [START_REF] Smaus | On boolean functions encodable as a single linear pseudo-Boolean constraint[END_REF] compared to [START_REF] Coates | Linearly-separable switching functions[END_REF][START_REF] Coates | A simplified procedure for the realization of linearly-separable switching functions[END_REF]. In fact, [START_REF] Coates | A simplified procedure for the realization of linearly-separable switching functions[END_REF] does consider symmetries but only at the global level: in φ, the variables x 3 and x 4 are symmetric, but in the subproblems, there are more symmetries.

Observe also that x 3 ∧ x 4 ∧ x 5 has no clause not containing x 3 , and thus we get the empty DNF (= false) as upper successor.

This process is continued until we finally obtain the "tree" in Figure 1. As leaves, it has 12 (rather than 2 5 = 32 as a construction not exploiting any symmetries would give) occurrences of true or false.

We now generalise LPBs by recording to what extent thresholds can be shifted without changing the meaning. Now that we have constructed the "tree" containing trivial subproblems as leaves, we must work back from the right to the left: we first find LPBs for the formulae in the rightmost column, which have 0 variables and hence we must determine 0 coefficients. Next to the left, we have formulae that contain (at most) x 5 , and we determine LPBs representing these, where we use the same a 5 for all formulae! Then we determine a 4 , and so forth.

Instead of giving the according theorem, we stick to our example: Figure 2 is arranged in correspondence to Figure 1 and shows LPBs for all subproblems. In the top line we give the l.h.s. of the LPBs, which is the same for each LPB in a column. In the actual "tree", we list the minimum and maximum threshold of each formula. We show how to construct this "tree".

Observe first that 5 i=6 a i x i ≥ (-∞, 0] and 5 i=6 a i x i ≥ (0, ∞] are LPB representations (with empty sum as l.h.s.) for true and false, respectively. This explains the entries in column 5.

Next observe that column 5 has three blocks separated by horizontal lines, two of which are non-empty. Consider the uppermost block consisting of four intervals, and within it, the northwest-southeast diagonals, as illustrated by the dashed shapes in the figure to the right. Each diagonal joins two numbers, and we compute the difference between the upper left and the lower right number for each diagonal, i.e., 0 -∞, 0 -∞, and 0 -0, which give -∞, -∞, and 0, respectively. Our theorem

(0, ∞] (0, ∞] (0, ∞] (-∞, 0] Fig. 3. A block 4x 1 + 3x 2 + 3x 2 + 2x 3 + 2x 4 + 2x 3 + 2x 4 + 2x 3 + 2x 4 + 2x 4 + 5 i=6 a i x i x 5 ≥ . . . x 5 ≥ . . . x 5 ≥ . . . x 5 ≥ . . . x 5 ≥ . . . ≥ . . . (1, ∞] (0, ∞] (3, ∞] (1, ∞] (0, ∞] (4, 5] (2, 3] (0, 1] (0, ∞] (4, 5] (-∞, 0] (1, 2] (1, ∞] (1, 2] (-∞, 0] (-∞, 0] (4, 5] (-∞, 0] (0, 1] (0, ∞] (0, 1] (-∞, 0] (-∞, 0] (0, 1] (0, 1] (-∞, 0] (-∞, 0] (-∞, 0] (-∞, 0] (-∞, 0] (-∞, 0] (-∞, 0] (-∞, 0]
Fig. 2. LPBs for φ and its subproblems states that a 5 must be chosen greater than any of those numbers, and thus in particular greater than 0. The theorem also states that a 5 must be chosen less than any of the differences obtained by taking the northeast-southwest diagonals, i.e. ∞ -0, ∞ -0, ∞ --∞, which however only says that a 5 < ∞. In the same way, constraints on a 5 can be collected from the lowermost block, in any case just stating that a 5 > 0. We simply choose a 5 = 1. Now, each node in column 4 with upper successor (s u , b u] and lower successor (s l , b l], is filled by the thresholds (max{s u , s l + a 5 }, min{b u , b l + a 5 }]. E.g., the topmost (1, ∞] is (max{0, 0 + a 5 }, min{∞, ∞ + a 5 }].

In the next step, we have to choose a 4 so that

max{1 -∞, 1 -1, 1 -0, -∞ -0, 0 -0, -∞ -0, -∞ -0} < a 4 < min{∞ -1, ∞ -0, ∞ --∞, 0 --∞, 1 --∞, 0 --∞, 0 --∞}.
Choosing a 4 = 2 will do. Note that the bound 1 -0 < a 4 comes from the middle block of column 4 and thus ultimately from x 3 ∨ x 4 . Our algorithm enforces that a 4 > a 5 , which must hold for an LPB representing x 3 ∨ x 4 .

In the next step, a 3 can also be chosen to be any number > 1 so we choose 2 again. In the next step, 2 < a 2 < 4 must hold so we choose a 2 = 3. Finally, 3 < a 1 < 5 must hold so we choose a 1 = 4. As result we obtain the LPB 4x 1 + 3x 2 + 2x 3 + 2x 4 + x 5 ≥ (4, 5].

Experiments

Both algorithms were implemented in C++ based on a previous implementation in Java [START_REF] Schilling | Solving the Threshold Synthesis Problem of Boolean Functions by Translation to Linear Programming[END_REF][START_REF] Wenzelmann | Solving the Threshold Synthesis Problem of Boolean Functions by a Combinatorial Algorithm[END_REF]. For evaluation we used more than 300,000 randomly generated DNFs known to be threshold functions, for m ≤ 22.

Figure 4 shows the runtime per problem for both algorithms in ms, as well as the problem size. The x-axis shows m. The y-axis is in logarithmic scale. We observe that the combinatorial algorithm could solve problems up to m = 22 in a couple of seconds, while the LP algorithm appears to scale worse and needs around 30 seconds for the biggest problems. Second, the runtime seems to be exponential in m. Let us now discuss the problem size. Note that the input to our procedure is a DNF. The combinatorics wants it that the size of the DNFs grows exponentially in m. The size, around 243,000 for m = 22, is shown in the figure. The fact that the curve is almost a perfect straight line and appears to be parallel to the curve for the runtime of the combinatorial algorithm shows that the input size increases at the same rate as that runtime, which means that the algorithm appears to run in time linear to the input, whereas the LP algorithm performs worse.

Fig. 1 .

 1 Fig. 1. The recursive subproblems for φ

Definition 1 .

 1 Given an LPB I ≡ m i=1 a i x i ≥ d, we call s the minimum threshold of I if s is the smallest number (possibly -∞) such that for any s ′ ∈ (s, d], the LPB m i=1 a i x i ≥ s ′ represents the same function as I. We call b the maximum threshold if b is the biggest number (possibly ∞) such that m i=1 a i x i ≥ b represents the same function as I. We denote by m i=1 a i x i ≥ (s, b] any LPB with minimum threshold s and maximum threshold b.

 Fig. 4. Runtime