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Abstract

We prove curvature-free versions of the celebrated Margulis Lemma. We are interested by
both the algebraic aspects and the geometric ones, with however an emphasis on the second
and we aim at giving quantitative (computable) estimates of some important invariants.
Our goal is to get rid of the pointwise curvature assumptions in order to extend the results
to more general spaces such as certain metric spaces. Essentially the upper bound on the
curvature is replaced by the assumption that the space is hyperbolic in the sense of Gromov
and the lower bound of the curvature by an upper bound on the entropy of which we recall
the definition.
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1 Introduction

The celebrated Margulis Lemma is the keystone of a beautiful theory of the structure of complete
Riemannian manifolds with bounded sectional curvature. It has two main aspects: the first one is
algebraic and concerns the fundamental group of the manifold, the second one is more geometric
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and yields a thin-thick decomposition of the manifold. To be more precise let us state a weak
version of this lemma pertaining to the first aspect (see [Mar75], [BGS85], [BZ88] Section 37.3).

Theorem 1.1. There exist constants ε(n) > 0 and C(n) > 0 such that, for every complete
Riemannian manifold M whose sectional curvature satisfies −1 ≤ Sect(M) ≤ 0, every point
p ∈M and every ε ≤ ε(n), the subgroup Γε(p) of π1(M) generated by the loops at p of length less
than ε is virtually nilpotent. Furthermore, the index of the nilpotent subgroup is bounded above
by C(n).

This statement is a weak version, indeed in the strong one the upper bound on the sectional cur-
vature could be positive, with extra assumption though. A version of this theorem for manifolds
of strictly negative curvature was simultaneously proved by E. Heintze in his habilitationsschrift
of 1976 (see [Hei02]).

The history of this result goes back to Bieberbach Theorem ([Bie11]) which describes the discrete
subgroups of the isometry group of the Euclidean spaces and consequently gives a structure
theorem for the flat manifolds and orbifolds. Later, this result was extended to the study of
discrete subgroups of Lie groups by H. Zassenhaus ([Zas38]) and to locally symmetric spaces
by D. Kazhdan and G. Margulis ([KM69], using Zassenhaus’ Lemma). Recently there has been
progresses on the question of extending this result to different spaces or curvature conditions:
for example, after a short sketch of proof by J. Cheeger and T. Colding (see [CC96]) under the
hypothesis “Ricci curvature bounded from below” and a first complete proof of V. Kapovitch, A.
Petrunin and W. Tuschmann ([KPT10]) under the hypothesis “sectional curvature bounded from
below”, V. Kapovitch and B. Wilking ([KW11]) recently established a Margulis-like Lemma under
the hypothesis “Ricci curvature bounded from below by −(n−1)” instead of “−1 ≤ Sect(M) ≤ 0”
(see also [Cou15] for references and a detailed exposition).

This paper is the first of a series of articles devoted to this theme. Here we are interested by both
aspects, algebraic and geometric, with however an emphasis on the second and we aim at giving
quantitative (computable) estimates of some important invariants. Our goal is to get rid of the
pointwise curvature assumptions, as mentioned in the title, in order to extend the results to more
general spaces such as certain metric spaces. Essentially the upper bound on the curvature is
replaced by the assumption that the space is δ-hyperbolic (in the sense of Gromov, see [Gro87]
and Section 8.1 of Appendix 8 for precise definitions) and the lower bound by an upper bound
on the entropy which we define below. Notice that δ behaves like a distance and it is rather δ−2

which is curvature-like.
The starting point of the ideas developed in this paper is the prepublication [BCG03], which
initially concerned the isometric actions of a more limited class of groups on less general types
of spaces, namely fundamental groups of manifolds with sectional curvature σ ≤ −1 and with
injectivity radius ≥ i0 > 0 (and groups such that any non abelian subgroup with two generators
admits an injective homomorphism into such a fundamental group). Several developments of
the ideas contained in [BCG03] were established by G. Reviron ([Rev08]), F. Zuddas ([Zud11],
[Zud09]), F. Cerocchi ([Cer14]), F. Cerocchi and A. Sambusetti ([CS19], [CS17] and [CS16], this
last paper being devoted to prove Margulis’ properties in the abelian setting) .

Let (X, d) be a (non-elementary) metric space which we assume to be proper, i.e the closed
metric balls are compact. We only consider metric spaces which are geodesic. More precisely, a
geodesic segment is the image of an interval of I ⊂ R by an isometric map from I into X. The
space (X, d) is said to be geodesic if any two points of X are joined by at least one geodesic
segment. Let µ be a positive (non identically zero) Borel measure. We call (X, d, µ) a measured
metric space.

Definition 1.2. Let (X, d, µ) be a metric measured space we define its entropy by

Ent(X, d, µ) = lim inf
R→+∞

1

R
ln
(
µ(BX(x,R))

)
where BX(x,R) is the open ball of radius R around x ∈ X. Furthermore, the entropy is inde-
pendent of x.
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In the sequel we will consider a group Γ acting by isometries on (X, d) properly and, often,
co-compactly. We recall that the action is said to be proper if for x ∈ X and for all R > 0,
the number of γ ∈ Γ satisfying d(x, γx) ≤ R is finite; this does not depend on x. In that case,
for any measure µ invariant by Γ the above definition yields the same number which we call
the entropy of (X, d) and denote by Ent(X, d). If (X, d) is a δ-hyperbolic geodesic metric space
and γ a torsion-free isometry, we define the asymptotic displacement of γ (sometimes also called
“stable displacement”) by

`(γ) = lim
k→+∞

1

k
d(x, γkx),

this definition does not depend on the choice of x ∈ X. One of our results is the following (see
Proposition 5.10).

Proposition 1.3. For every non-elementary δ-hyperbolic metric space (X, d) and every group
Γ acting properly by isometries on (X, d), if diam(Γ\X) ≤ D < +∞, then

Ent(X, d) ≥ ln 2

L+ 17δ + 2D
≥ ln 2

27δ + 10D
,

where L = inf
{
`(γ) : γ hyperbolic element of Γ \ {e}

}
.

Note that in the proof we show that, in the above situation, there always exists an hyperbolic
element γ ∈ Γ \ {e} which satisfies `(γ) ≤ 8D + 10δ.

Now, let Γ be a group which is non-elementary (i.e. whose boundary has at least three points)
and Σ be a finite generating set for Γ. The Cayley graph of Γ defined by Σ is a metric space
when endowed with the distance such that the edges have length 1. We say that (Γ,Σ) is a
δ-hyperbolic group if this metric space is δ-hyperbolic. The group Γ acts by isometries on this
metric space and the quotient is compact and has diameter 1. The entropy of this metric space
is denoted by Ent(Γ,Σ) and is called the algebraic entropy of Γ with respect to Σ. We also define
the algebraic entropy of Γ by

Ent(Γ) = inf
Σ
{Ent(Γ,Σ)},

the infimum being taken among all finite generating sets Σ.

The study of the algebraic entropy of groups with exponential growth has recently made pro-
gresses. When the group acts on a Hadamard manifold the three first authors have proved a
quantitative version of the Tits alternative, see [BCG11] and the references herein.

A corollary of the above Proposition is the following statement (see 5.13),

Corollary 1.4. Let Γ be a non-elementary group and Σ a finite generating set such that (Γ,Σ)
is δ-hyperbolic, then

Ent(Γ,Σ) ≥ ln 2

27δ + 10
..

Remarks 1.5. Once the first version of this article was completed E. Breuillard mentioned to us
his joint work with K. Fujiwara (see, [BF18]) which contains an improvement of [BCG03] and
[BCG11]; Corollary 1.4 is then similar to their result.

These two estimates do not provide any lower bound of the algebraic entropy of the group Γ.
Indeed, when the generating system varies in order to minimize the Entropy, its hyperbolic-
ity constant may go to infinity. We obtain such a lower bound of the algebraic entropy as a
consequence of our Bishop-Gromov inequality (see Theorems 1.9 and 5.1), namely:

Corollary 1.6. Let Γ be a non virtually cyclic Gromov-hyperbolic group then, for every positive
constant M , if there exists a finite system S0 of generators of Γ such that (Γ, S0) is δ0-hyperbolic
and Ent(Γ, S0) (δ0 + 1) ≤ M , then the algebraic entropy of Γ and of any finitely generated and

non virtually cyclic subgroup Γ′ of Γ is bounded from below by
ln 2

42N ([312 e490M ] + 1) + 2
, where

N(·) is the function which appears in Theorem 5.19.

4



This study starts with the simple remark that if two elements, a and b, of a discrete subgroup Γ of
the isometry group of a Hadamard manifold X generate a free group and if their displacements
at x ∈ X, that is d(x, ax) and d(x, bx), are small, then the entropy of X is big. Hence an
upper bound on the entropy prevents the subgroup of Γ generated by the elements with small
displacement at x to be algebraically ”big”. Nevertheless, even in the case of controlled entropy,
free-subgroups or free-semigroups do exist but their generators must have large displacements.
Conversely, if the asymptotic displacements of two independent elements a and b of Γ are bounded
from below, then there exist bounded powers of a and b which generate a free semi-group (see
Proposition 4.9). This underlines the importance of computing a universal lower bound of the
asymptotic displacements of all the torsion-free elements of the group (see Theorems 1.12 and
5.26).

This can be made effective and the next theorem is in this spirit.

A metric space (X, d) is said to be geodesically complete if all geodesic segments can be defined
on R. It is called a Busemann space (see [Pap14], p. 187) if the distance d is convex, that is
if the function d(c(t), c′(t)) is a convex function of t ∈ [0, 1] for two geodesic segments c and c′,
affinely reparametrized. We have (see 4.22),

Theorem 1.7. Let (X, d) be a connected, geodesically complete, non-elementary δ-hyperbolic
Busemann metric space. Let Γ be a torsion-free discrete subgroup of the isometry group of
(X, d). We assume that diam(Γ\X) ≤ D < +∞ and Ent(X, d) ≤ H. For all pairs of elements
a, b of Γ, if the subgroup generated by a and b is not cyclic, then, for all integers p, q ≥ S(δ,H,D)
one of the two semi-groups generated by {ap, bq} or by {ap, b−q} is free.

Here S(δ,H,D) is a function of δ, H and D which we describe precisely.

In the same spirit we can minimise the normalised volume entropy on certain closed manifolds.
Let us recall that, for a closed Riemannian manifold (M, g), by abuse of language, we denote

by Ent(M, g) the entropy of the metric space (M̃, dg̃, dvg̃) where g̃ is the pulled back metric on

the universal cover M̃ of M . We then prove the following theorem (see Subsection 7.1 for the
necessary definitions and Theorem 7.10).

Theorem 1.8. Let M be a n-dimensional essential closed manifold, n ≥ 2. Assume that the
fundamental group Γ of M is non elementary, torsion free and admits a generating set S such
that Γ is δ-hyperbolic with respect to S and satisfies Ent(Γ, S) ≤ H then, for every Riemannian
metric g on M ,

Ent(M, g)nVol(M, g) ≥ C(n, δ,H) > 0.

We extend this result to polyhedrons in Theorem 7.18 of Subsection 7.2 (see the begining of
Subsection 7.2 for the notion of Riemannian polyhedrons). This opens the applications to a
wide range of metric spaces some of which are described right after Theorem 7.18, including
CAT(0)-square complexes with hyperbolic fundamental groups as well as higher dimensional
constructions related to cube complexes.

One of the key tools used in proving the main results of this article is a Bishop-Gromov-like
theorem which yields an explicit link between the algebraic and geometric aspects. The next
theorem proves such a Bishop-Gromov inequality in the case of Gromov-hyperbolic metric spaces,
where the hypothesis “Ricci curvature bounded from below” is replaced by the much weaker
(see subsection 3.3) hypothesis “Entropy bounded from above”. The following statement is a
simplification of Theorem 5.1 for the purpose of this introduction.

Theorem 1.9. Let (X, d) be a δ-hyperbolic metric space, for every proper action by isometries
of a group Γ on (X, d) such that the diameter of Γ\X and the entropy of (X, d) are respectively
bounded by D and H, then, for every x ∈ X

(i) for every Γ-invariant measure µ on X, for every R ≥ r ≥ 5
2 (7D + 4δ) one has,

µ
(
BX
(
x,R

))
µ
(
BX(x, r)

) ≤ 3eHD
(
R

r

)25/4(
R

r

)6HD

e6H(R− 4
5 r) ,
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(ii) for every R ≥ r ≥ 10 (D+ δ), the counting measure µΓ
x =

∑
γ∈Γ δγx of the orbit Γx verifies

the inequalities:

µΓ
x

(
BX
(
x,R

))
µΓ
x

(
BX(x, r)

) < 3

(
R

r

)25/4

e6H(R− 4
5 r) .

It is possible to reinterpret these Bishop-Gromov-like inequalities (i) and (ii) in terms of the
doubling properties in the sense of Definitions 3.7 (see the comments following the statement
of Theorem 5.1). The second inequality is interesting since the counting measure concerns the
algebraic properties of the group and its geometric action. It thus make the link between the two
aspects of our study and it is somehow a good surprise that, despite the fact that the counting
measure is the most primitive one in this context, strong results could be obtained.

We also remind the reader that the classical Bishop-Gromov inequality for manifolds has been
a revolutionary tool which, in particular, led to compactness as well as finiteness results. In a
forthcoming paper ([BCGS20]), we shall prove finiteness and compactness results for compact
quotients of metric measure spaces satisfying a weak Bishop-Gromov inequality similar to the
above theorem 1.9, these results will be applied in particular to compact quotients of δ-hyperbolic
metric spaces with bounded entropy (see the chapter 3 of [BG20] for a report presenting these
results).

Finally, we mention a result related to the thick-thin decomposition. Let us first give the defini-
tion of an interesting family of groups (see 6.4).

Definition 1.10. Given parameters δ0 ≥ 0 and ε′0 > 0, we denote by Hypthick(δ0, ε
′
0) the set of

non virtually cyclic groups Γ which admit a proper, possibly non co-compact, action by isometries
on some δ0-hyperbolic metric space (X0, d0) such that every torsion-free γ ∈ Γ \ {e} verifies
`(γ) ≥ ε′0.

Notice that the space (X0, d0) may depend on Γ and that non trivial examples of such groups
are given in the present article. For the sake of simplicity we shall assume, in this introduction,
that Γ is torsion-free.

In subsection 6.1.2, we compare the class of groups Hypthick(δ0, ε
′
0) with the class of acylindri-

cally hyperbolic groups (with some normalization), proving that this last class is included in
Hypthick(δ0, ε

′
0).

Now, if Γ acts on a metric space (X, d) by isometries, we define the pointwise and global systoles
by,

sysΓ(x) = inf
γ∈Γ\{e}

{d(x, γx)}, SysΓ(X) = inf
x∈X
{sysΓ(x)}.

The next theorem is a curvature-free version of the celebrated “collar lemma” for metric spaces.
It shows that, under the hypotheses, if one has a small loop at some point any other independent
loop at this point is long. More precisely (see Theorem 6.26),

Theorem 1.11. Let δ0 ≥ 0, and ε′0, H > 0, there exists an integer n′0 depending on δ0 and
ε′0 only such that, for any (torsion-free) element Γ of Hypthick(δ0, ε

′
0), for any proper action, by

isometries preserving the measure, of Γ on a connected metric measured space (Y, d, µ) whose
entropy is bounded from above by H we have,

(i) (Collar Lemma) if y ∈ Y and σ ∈ Γ∗ verify d(y, σy) = sysΓ(y) ≤ 1
2n′0H

, then every γ ∈ Γ

which does not commute with σ satisfies d(y, γy) ≥ 1
2H ln

(
1

n′0H sysΓ(y)

)
− 1

2n
′
0 sysΓ(y) ,

(ii) if moreover (Y, d) is path-connected, then

SysΓ(Y ) ≥ 1

2n′0H
e−4H diam(Γ\Y ) .

Notice that if the quotient of Y by Γ is non compact then Inequality (ii) is trivial. Theorem 1.11
is stated in a weak form for the sake of simplicity and the reader is referred to Theorem 6.26 for
a more general statement.
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Let us summarize this result by the following sentence: a thin tube is long and has simple
topology. More precise statements on the topology and the structure of thin tubes will be given
in Subsection 6.5. Notice that in the inequality i) the right hand side goes to +∞ logarithmically
when sysΓ(y) goes to 0, exactly like in the standard collar theorem. Furthermore, in Theorem
1.11, the metric space (Y, d) is not assumed to be δ-hyperbolic. A striking case is when Y is
a manifold which carries a Riemannian metric g0 of sectional curvature less than −1, Theorem
1.11 then applies to any other Riemannian metric on Y whose entropy is less than H.

In order to make Theorem 1.11 effective we have to provide a lower bound of ε′0 in terms of the
data. Such lower estimates are given in this article in various situations. One particular case is
when we consider a proper co-compact action by isometries on a δ-hyperbolic space for which ε′0
can be taken to be the global systole of the action. The next theorem gives such a bound (see
5.26).

Theorem 1.12. Let (X, d) be a δ-hyperbolic, non elementary, geodesically complete, Busemann
space whose entropy satisfies Ent(X, d) ≤ H. Let Γ acting properly, co-compactly by isometries
on this space such that diam(Γ\X) ≤ D. Then, for any torsion-free element γ of Γ \ {e} we
have,

`(γ) > s0(δ,H,D),

for s0(δ,H,D) a function of δ, H and D which we describe. If furthermore we assume that Γ is
torsion-free, we get,

SysΓ(X) > s0(δ,H,D).

This last result is the main step in the proof of Theorem 1.7 and, together with Theorem 1.7,
they are the key tools which lead to effectiveness in Theorem 1.11.

Let us finish this introduction by stating a finiteness/compactness result for Riemannian mani-
folds whose Ricci curvature is bounded from below (Theorems 7.30 and 7.32).

Theorem 1.13. Given n ≥ 2, D,K, i0 > 0 and δ0, ε
′
0 > 0, let us consider the set of Riemannian

n-dimensional manifolds (M, g) which verify the following hypotheses:

(i) the fundamental group ΓM of M is torsion-free and belongs to Hypthick(δ0, ε
′
0),

(ii) Ricg ≥ −(n− 1)K2 · g and diam(M, g) ≤ D,

(iii) the injectivity radius of its Riemannian universal cover (M̃, g̃) is bounded from below by i0.

Then, this set contains only finitely many differentiable structures and is a finite union of com-
pacts for the C0,s-topology (see Definition 7.31 and Theorem 7.32 for clarifications).

Applications of this last result are finiteness, and rigidity results for Einstein manifolds and
existence of upper bounds for the possible values of their scalar curvature (see Section 7.3.3).

We now describe the plan of this article. Section 2 contains the basic notations. Section 3 con-
tains the definition of the various entropies and several versions of the doubling property which
are compared according to their generality. Section 4 is devoted to describing the techniques
used to produce discrete free groups and free semi-groups of isometries of a δ-hyperbolic space,
in particular an adapted version of the Ping-Pong method and the precise study of two kinds
of Margulis constants which (when bounded from below by 16δ) guarantee the existence of free
subgroups or free semigroups generated by elements with bounded displacements. Section 5
begins with one of the main tools running all over the paper: a Bishop-Gromov and doubling
property for any δ-hyperbolic space which admits a co-compact action of a group of isometries,
see Subsection 5.1. This tool allows to prove lower bounds of the exponential growth of spaces
and groups and several Margulis properties, which yield a lower bound of the asymptotic dis-
placements of all the torsion-free elements of the group. In Section 6 we develop the idea which
we call transplantation of Margulis properties. Grosso modo, the underlying philosophy is that,
if a discrete group acts properly by isometries on a Gromov-hyperbolic space, then it inherits,
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from this action, algebraic properties which in turn translate into Margulis type properties when
it acts on another metric measured space whose entropy is bounded. This is the section in which
the interplay between algebraic and topological properties is the most enlightening. Section 7 is
devoted to applications. We first show in Theorem 7.10 that closed manifolds which are essential
and whose fundamental groups are hyperbolic (see the precise statement) have a minimal en-
tropy, for a given volume, bounded away from zero by an explicit constant. We extend this result
to polyhedrons in Subsection 7.2. The end of this section concerns Einstein metrics on manifolds
for which we prove compactness and finiteness results in our context. Finally, in Section 8, we
recall the basic facts about Gromov-hyperbolic spaces and their isometries.

Acknowledgements

The authors thanks Misha Gromov for enlightening comments. We also wish to thank Marc
Bourdon, Frédéric Haglund, Damian Osajda, and Stéphane Sabourau for detailed discussions
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2 Basic definitions and notations

Definitions 2.1. Let (X, d) be a metric space and Γ be a group acting by isometries on (X, d),

(i) the space (X, d), is said to be “proper” if every closed ball is compact.

(ii) the action of Γ is said to be “proper” if, for at least one x ∈ X (and then ∀x ∈ X), and
∀R > 0, the set of γ ∈ Γ such that d(x, γx) ≤ R is finite.

(iii) the action is said to be “discrete” if it is faithful and if the image of Γ (by this action) in
the isometry group of (X, d) is a discrete subgroup (for the topology of uniform convergence
on compact sets).

Remark 2.2. On a proper space (X, d), every faithful action is proper if and only if it is discrete.

The proof of Remark 2.2 will be given in Proposition 8.12.

Except for the results described in Section 3, the metric spaces and the actions that we study
will be assumed to be proper.

Classically, one defines the systole of a Riemannian manifold (Y, h) to be the infimum of the
length of non-homotopically trivial loops. If (Y, h) is viewed as the quotient of its universal

cover (Ỹ , h̃) by the action of its fundamental group G, the systole coincides with the invariant

infx∈Ỹ
(
minγ∈G\{e} d(x, γx)

)
of the action of G on (Ỹ , h̃).

We generalize this notion in the following definitions:

Definition 2.3. Let (X, d) be a metric space, let Γ be a group acting by isometries (X, d),

• ∀x ∈ X, the pointwise systole of this action is defined by sysΓ(x) := infg∈Γ\{e} d(x, gx),

• the global systole of this action is defined by SysΓ(X) := infx∈X sysΓ(x),

• the diastole of this action is defined by DiasΓ(X) := supx∈X sysΓ(x).

The systole, in the classical sense, of a Riemannian manifold (Y, h) is then the global systole of

the action of its fundamental group on the universal cover (Ỹ , h̃) of (Y, h), endowed with the
Riemannian distance associated to the pulled-back Riemannian metric h̃.
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Notice that in our situation, contrarily to the Riemannian case, the pointwise systole and hence
the global systole of the action of a group Γ on a metric space (X, d) could vanish. One of our
goals will be to find large classes of metric spaces and group actions such that the pointwise and
global systoles of these spaces and actions are bounded by the same positive constant.

In the sequel, except in section 6, for any δ > 0, we shall consider metric spaces which are
δ-hyperbolic in the sense of Gromov. A definition will be given at the beginning of Subsection
8.1. Notice that this definition implies that the space is automatically geodesic and proper. On
such a space we shall also consider any proper action by isometries of a group Γ (see Definitions
2.1) which is assumed to be non-virtually cyclic.

Definition 2.4. We note Γ∗ the set Γ \ {e}. We also note Σr(x) (resp. Σ̂r(x)) the set (which
is finite when the action is proper) of γ ∈ Γ∗ such that d(x, γ x) ≤ r (resp. d(x, γ x) < r), and

we note Γr(y) (resp. Γ̂r(x)) the subgroup of Γ generated by Σr(x) (resp. by Σ̂r(x)).

In the sequel we work in the general frame of metric measured spaces (X, d, µ). We denote by
BX(x, r) (resp. BX(x, r)) the open (resp. closed) ball with centre x and radius r > 0 of the
space (X, d).

A metric space (X, d) is said to be a length space if, ∀(x, y) ∈ X ×X, there exists a continuous
rectifiable path from x to y and if d(x, y) is the infimum of the length the paths joining x and y.

In a length space, we call geodesic the image of an interval I ⊂ R by an isometric embedding c
(i. e. satisfying d(c(t), c(s)) = |t − s|,∀t, s ∈ I). A geodesic is then, by definition, minimizing.
When we restrict I to be [a, b], or [a,+∞[, or ]−∞,+∞[, this geodesic will be respectively called
a geodesic segment, a geodesic ray, or a geodesic line.

We call local geodesic a map c from an interval I ⊂ R in X which is locally minimizing1, that is
∀t ∈ I, there exists an ε > 0 such that c is a geodesic on the interval ]t− ε, t+ ε[∩I.

We will often consider geodesic spaces. A metric space is said to be geodesic if any two points
can be joined by at least one geodesic segment. Several geodesic segments may join two distinct
points x, y: by abuse of notation we will denote by [x, y] anyone of these geodesic segments.

A geodesic metric space (X, d) is said to have the property of geodesic extension if, for all local
geodesic c : [a, b] → X (a 6= b), there exists ε > 0 and a local geodesic c′ : [a, b + ε] → X which
extends c (i.e. c′|[a,b] = c). This space will be said to be geodesically complete if every local

geodesic c : [a, b]→ X (a 6= b) can be extended in a local geodesic c̄ :]−∞,+∞[→ X. It is worth
recalling that a complete metric space (X, d), which furthermore is geodesic, has the geodesic
extension property if and only if it is geodesically complete (cf. [BH99] Lemme II.5.8 (1) p. 208).

On these metric spaces a group Γ will act. We will only consider proper actions by isometries
(see the definitions 2.1), which implies, in particular, that Γ acts via a representation % : Γ →
Isom(X, d) whose kernel is a finite and normal subgroup of Γ and whose image %(Γ) is a discrete
subgroup of the group Isom(X, d) of isometries of (X, d) (see Lemma 5.8, whose results (i) and
(ii) are valid on general metric spaces); this also implies that the stabiliser StabΓ(x) in Γ of any
point x is finite. Finally, the quotient space Γ\X will be endowed with the quotient distance d̄
(see definition in Lemma 8.13 (i)).

For such an action of a group Γ on a metric space X, a certain number of results that we prove
will be called “Margulis properties”. This means that for each of the problems Mi (i = 1, 2, 3, 4)
stated below, we will try to compute explicitly universal constants (i. e. valid on the largest set
Mi of metric spaces X, of groups Γ and of actions of Γ).

• Problem M1: Find a setM1 and a constant ε1 > 0 such that, ∀X ∈M1, ∀x ∈ X, Γε1(x)
is virtually nilpotent.

• Problem M2: Find a setM2 and a constant ε2 > 0 such that, ∀X ∈M2, DiasΓ(X) ≥ ε2.

• Problem M3: Find a set M3 and a constant ε3 > 0 such that ∀X ∈M3, SysΓ(X) ≥ ε3.

1In the case of Riemannian manifolds the Riemannian geodesics are local ones.
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• Problem M4: Find a set M4 and constants ε4, C0, C1 > 0 satisfying the following prop-

erty: ∀ε ∈ ]0, ε4], if R(ε) = C1 ln

(
C0

ε

)
, then ∀X ∈ M4, ∀x ∈ X, if there exists a torsion-

free element σ ∈ Γ∗ such that d(x, σx) ≤ ε, then ΓR(ε)(y) is a virtually cyclic subgroup
containing σ (notice that R(ε)→ +∞ when ε→ 0).

Among the group actions to which this work apply, we will consider the action of a discrete group
Γ, generated by a finite set Σ, on its Cayley graph GΣ(Γ). We denote by |γ|Σ the word metric
related to Σ and dΣ the associated algebraic distance on Γ (i. e. dΣ(γ, g) := | γ−1 g|Σ) as well
as the length distance on the graph GΣ(Γ). By abuse of language we use the same notation for
these two distances.

The measures µ considered in this article are Borel, non-negative and non identically vanishing.
The main examples are the following:

• the counting measure #, for discrete sets,

• the orbital counting measure µΓ
x =

∑
γ∈Γ δγx on the orbit Γ · x of a point x, associated to

a proper action of a group Γ on a space X, where δy denotes the Dirac measure at y,

• the 1-dimensional measure induced on the Cayley graph GΣ(Γ), given by the length of the
edges.

• the Riemannian measure dvg on a Riemannian manifold (X, g).

The metric spaces which are our main concern are (except in section 6) the δ-hyperbolic spaces in
Gromov sense. We recall their definition and basic properties in the Appendix (section 8). We
only consider δ-hyperbolic spaces which are geodesic and proper without necessarily recalling it.
A group Γ with a finite generating set Σ is said to be a δ-hyperbolic group if its Cayley graph
GΣ(Γ) endowed with the distance dΣ is δ-hyperbolic in Gromov sense.

For a δ-hyperbolic space (in Gromov sense) (X, d), we use the symbols ∂X to denote its ideal
boundary and LΓ to denote the limit set of a discrete group Γ acting by isometries on X (i. e.
the set of accumulation points in ∂X of any orbit Γ · x). Finally an hyperbolic space or group is
called elementary if its ideal boundary has at most two points; similarly, any action of a group
Γ on an hyperbolic space (X, d) whose limit set has at most two points is called elementary; see
subsection 8.7 for more informations about elementary groups or actions.

In Section 6, we leave the realm of δ-hyperbolic spaces to study general metric spaces and focus on
the type of groups whose actions on metric measured spaces still satisfy the Margulis properties
which were proved (in sections 4 and 5) to be valid on δ-hyperbolic spaces. On all these spaces the
key invariant, which is a guideline all along this article and replaces the curvature, is the entropy
of a metric measured space. It will be defined, discussed and compared to other invariants in the
next section.

3 Entropy, Doubling and Packing Properties

3.1 Entropies

Definition 3.1. Let Γ be a group acting on (X, d), we call covering domain a subset K ⊂ X
such that

⋃
γ∈Γ γ K = X and fundamental domain a covering domain such that γ Ko ∩Ko = ∅

for all γ ∈ Γ∗ (where Ko denote the interior of K). The action of Γ is said to be co-compact if
there exists a compact covering domain.

Definition 3.2. The entropy of a metric measured space (X, d, µ) (denoted by Ent(X, d, µ)) is

the lower limit (when R→ +∞) of
1

R
ln
(
µ
(
BX(x,R)

))
. It does not depend of the choice of x.
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This invariant, possibly infinite, gives an asymptotic hence weak information on the geometry
of the metric space (see subsection 3.3), nevertheless it becomes interesting when there exists a
group Γ acting properly by isometries on (X, d) (and possibly co-compactly) and when we restrict
ourselves to Borel measures µ which are invariant by this action. A particular role will be played
by the counting measure µΓ

x on the orbit Γ · x of a point x . Notice that in the co-compact case
the entropy does not depend on the chosen Γ-invariant measure, has shown in the

Proposition 3.3. Let (X, d) be a non compact metric space and Γ be a group acting properly
and co-compactly on (X, d) by isometries. For every non trivial measure µ on X which is
invariant by this action, if there exists some compact covering domain of finite µ-measure, then
Ent(X, d, µ) = Ent(X, d, µΓ

x) for every x ∈ X.
If, furthermore, (X, d) is a length space, then Ent(X, d, µ) is the limit (when R → +∞) of
1

R
ln
(
µ
(
BX(x,R)

))
.

Following this proposition we shall use the notation Ent(X, d) instead of Ent(X, d, µ) for this
type of measures.
The proof of Proposition 3.3 relies on the two following lemmas.

Lemma 3.4. Let Γ acting properly on a metric space (X, d), if the quotient Γ\X is compact,
then the space (X, d) is proper and every closed ball of radius at least equal to the diameter of
Γ\X is a compact covering domain for this action.

Proof. If Γ\X is compact of diameter D, for all R ≥ D, for all x ∈ X and for all sequence
(yn)n∈N of points in the closed ball BX(x,R), there exists a subsequence (denoted by (yn)n∈N)
whose image by π converges in (Γ\X, d̄). By definition of the quotient distance d̄ (see Lemma
8.13 (i)) and since BX(x,R) is a covering domain, there exists a point y∞ ∈ BX(x,R) and a
sequence (γn)n∈N of elements of Γ such that d(yn, γn y∞) → 0 when n → +∞. Consequently
there exists N ∈ N such that, for all n ≥ N , we have

d(x, γn x) ≤ d(x, yn) + d(yn, γn y∞) + d(γn y∞, γn x) ≤ 2R+ 1.

The action being proper, this implies that the sequence (γn)n≥N take finitely many values, and
hence admits a constant subsequence equal to γ ∈ Γ. There thus exists a subsequence of (yn)n∈N
which converges towards γ y∞. This shows that the closed ball of radius R ≥ D are compact
covering domains, and hence that every closed ball is compact.

Lemma 3.5. Let (X, d) be a non compact metric space and Γ be a group acting properly and co-
compactly on (X, d) by isometries. Let µ be a Γ-invariant measure and K be a compact covering
domain, then, ∀x ∈ X, ∀R,R′ such that 0 < R′ < R, we have

µ
(
BX(x,R′)

)
µΓ
x

(
BX(x,R′ + diam(K))

) ·µΓ
x

(
BX(x,R−R′)

)
≤ µ

(
BX(x,R)

)
≤ µ(K)·µΓ

x

(
BX(x,R+diam(K))

)
Proof. The proof which follows is a variation on Proposition 2.3 of [Rev08]. By the definition
of a covering domain, there exists g ∈ Γ such that x ∈ g · K. For the sake of simplicity let
K ′ := g ·K, denoting by Σ̂r(x) the set of γ ∈ Γ such that d(x, γ x) < r and D := diam(K) the
diameter of K, the triangle inequality gives:

µ(BX(x,R) ≤ µ
(
∪γ∈Σ̂R+D(x) γ K

′
)
≤

∑
γ∈Σ̂R+D(x)

µ(γ K ′) = µ(K) · µΓ
x

(
BX(x,R+D)

)
.

To prove the first inequality of Lemma 3.5, recall that, if µ1 and µ2 are two Borel measures on
X, for all Borel set U ⊂ X, we have∫

U

µ2

(
BX(x, r)

)
dµ1(x) =

∫
X

µ1

(
BX(x, r) ∩ U

)
dµ2(x) , (1)

11



indeed, the two members of this inequality are equal to
∫
X

∫
X

1[0,r[

(
d(x, y)

)
1U (x) dµ2(y) dµ1(x).

Replacing µ1 by µΓ
x and µ2 by µ, equality (1), and the fact that µ

(
BX(γ x,R′)

)
= µ

(
BX(x,R′)

)
(thanks to the Γ-invariance of d and µ) yields

µΓ
x

(
BX(x,R−R′)

)
· µ
(
BX(x,R′)

)
=

∫
BX(x,R−R′)

µ
(
BX(z,R′)

)
dµΓ

x(z) =

∫
BX(x,R)

µΓ
x

(
BX(y,R′) ∩BX(x,R−R′)

)
dµ(y) ≤ µΓ

x

(
BX(x,R′ +D)

)
· µ
(
BX(x,R)

)
,

where the last equality follows from the fact that, by definition of a covering domain, for all
y ∈ X, there exists g ∈ Γ such that BX(y,R′) ⊂ BX(gx,R′ +D).

End of the proof of Proposition 3.3: Let us chose a compact covering domainK such that µ(K) <
+∞ and a point x ∈ X, there exists a point x′ ∈ K and an isometry g ∈ Γ such that
x = gx′; we set D := diam(K) and chose R′ = D + 1, so that K ⊂ BX(x′, R′). The fact
that µΓ

x′

(
BX(x′, R + D)

)
< +∞ for all R > 0 (since the action is proper), input in the second

inequality of Lemma 3.5, has two consequences: on the one hand µ
(
BX(x′, R)

)
< +∞ for all

R > 0, on the other hand, if µ(K) vanishes, we would have µ
(
BX(x′, R)

)
= 0 for all R > 0 and,

as increasing union of BX(x′, R), µ(X) would vanish too, which would imply that µ is trivial, this
contradicts the hypothesis. We then have µ(K) > 0, which implies that µ(BX(x′, R′)) > 0. In-
puting these two positivity results and the finiteness of µ(K) and of µ

(
BX(x′, R′)

)
in the inequal-

ities of Lemma 3.5, we obtain that the lower limits (when R → +∞) of
1

R
ln
(
µ
(
BX(x′, R)

))
,

of
1

R
ln
(
µΓ
x′

(
BX(x′, R)

))
and of

1

R
ln
(
µΓ
x

(
BX(x,R)

))
coincide. The last coincidence is a con-

sequence of the fact that µΓ
gx′ = µΓ

x′ and that µΓ
x′

(
BX(gx′, R)

)
= µΓ

x′

(
BX(x′, R)

)
. This proves

that Ent(X, d, µ) = Ent(X, d, µΓ
x).

Let us now assume that (X, d) is a length space, then the above properties and Lemma 3.5 imply

that, if
1

R
ln
(
µΓ
x

(
BX(x,R)

))
has a limit when R→ +∞, it is the same for

1

R
ln
(
µ
(
BX(x,R)

))
.

The existence of such a limit is deduced from the fact that the function R 7→ ln
(
µΓ
x

(
BX(x,R+

2D)
))

is non decreasing and sub-additive, see Property 2.5 of [Rev08] for a complete proof.

Two classical examples:

– The classical notion of Volume entropy of a closed Riemannian manifold (M, g), is defined,

following Definition 3.2, as Ent(M̃, dg̃, dvg̃), where (M̃, g̃) is the Riemannian universal cover
of (M, g), dg̃ its Riemannian distance and dvg̃ its Riemannian measure. In this case Γ is the

fundamental group of M acting by isometric deck transformations on (M̃, g̃). By Proposition
3.3, one can replace, in this definition, dvg̃ by the counting measure µΓ

x on any orbit, or by any
other Γ-invariant measure µ.

– The notion of algebraic entropy of a finitely generated group Γ with a finite generating set Σ . In
this case, the algebraic entropy of Γ related to Σ (also called rate of exponential growth or critical
exponent of Γ related to Σ) is denoted by Ent(Γ,Σ)) and can be defined in two different ways as
follows : either as the entropy of the metric measured space (Γ, dΣ,#), where dΣ is the algebraic
distance defined in Section 2, or as the entropy of the metric measured space (GΣ(Γ), dΣ, µ),
where GΣ(Γ) is the Cayley graph of Γ associated to Σ, and dΣ and µ are respectively the length
distance and the 1-dimensional measure induced on the graph (see Section 2).

A link between these two notions is given by the following classical result. Denote by dx the
geometric pseudo-distance defined on Γ by dx(γ, γ′) := d(γ x, γ′ x), the balls of dx are well defined
on Γ, one can then define the entropy of the pseudo-metric measured space (Γ, dx,#) as the lower
limit, as R→ +∞, of 1

R ln (#{γ : dx(e, γ) < R}). Denoting by StabΓ(x) the stabilizer of x in Γ,
the pseudo-distance induces a distance on Γ/StabΓ(x) and the entropy of the metric measured
space (Γ/StabΓ(x), dx,#) coincides with the entropy of (Γ, dx,#) when StabΓ(x) is finite.
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Lemma 3.6. – Let Γ be any group which admits a finite generating set Σ and which acts
properly (by isometries) on a metric space (X, d). For all Γ-invariant measure µ on X, for all
x ∈ X, we have

Ent(X, d, µ) ≥ Ent(X, d, µΓ
x) = Ent(Γ, dx,#) ≥ 1

Maxσ∈Σ d(x, σx)
Ent(Γ,Σ).

Proof. The definitions of µΓ
x and of the pseudo-distance dx implying that µΓ

x

(
BX(x,R)

)
=

# {γ : dx(e, γ) < R}, the equality Ent(Γ, dx,#) = Ent(X, d, µΓ
x) follows. The triangle inequality

implies that d(x, γ x) ≤M · dΣ(e, γ), where M := Maxσ∈Σ d(x, σx), hence that

1

R
ln
(
µΓ
x

(
BX(x,R)

))
≥ 1

R
ln

(
#

{
γ : dΣ(e, γ) <

R

M

})
,

which, by taking the lower limit when R→ +∞, proves the last inequality of Lemma 3.6 (notice
that this result is still valid when Ent(X, d, µΓ

x) = +∞).

The total measure of X being strictly positive, there exists R′ > 0 such that µ
(
B(x,R′)

)
> 0.

If there exists R such that µ
(
B(x,R)

)
= +∞, then Ent(X, d, µ) = +∞ and the inequality

Ent(X, d, µ) ≥ Ent(X, d, µΓ
x) is trivially verified, hence we shall suppose that ∀R, µ

(
B(x,R)

)
<

+∞. Formula (1) (where µ1 is replaced by µΓ
x and µ2 by µ) then yields, for all R > 0,

µΓ
x

(
BX(x,R)

)
· µ
(
BX(x,R′)

)
=

∫
BX(x,R)

µ
(
BX(z,R′)

)
dµΓ

x(z)

=

∫
BX(x,R+R′)

µΓ
x

(
BX(y,R′) ∩BX(x,R)

)
dµ(y) ≤

∫
BX(x,R+R′)

µΓ
x

(
BX(y,R′)

)
dµ(y), (2)

If d(y,Γx) ≥ R′, then B(y,R′) ∩ Γx = ∅ and µΓ
x

(
BX(y,R′)

)
= 0; if d(y,Γx) < R′, there exists

g ∈ Γ such that d(y, gx) < R′ and the triangle inequality ensures that BX(y,R′) ⊂ BX(gx, 2R′),
and hence that

µΓ
x

(
BX(y,R′)

)
≤ µΓ

x

(
BX(gx, 2R′)

)
= µΓ

x

(
BX(x, 2R′)

)
.

The last equality follows from the Γ− invariance of the measure µΓ
x and the fact thatBX(gx, 2R′) =

g
(
BX(x, 2R′)

)
. Plugging these two estimates in Inequality (2), we obtain

µΓ
x

(
BX(x,R)

)
· µ
(
BX(x,R′)

)
≤ µΓ

x

(
BX(x, 2R′)

)
· µ
(
BX(x,R+R′)

)
.

Taking the logarithm of both sides, dividing by R +R′ and taking the lower limit of both sides
when R→ +∞, we deduce that Ent(X, d, µ) ≥ Ent(X, d, µΓ

x), which ends the proof.

3.2 Doubling and Packing Properties

Definitions 3.7. Let C0 > 1 and I ⊂]0,+∞[ be an interval. We consider a metric measured
space (X, d, µ) and a point x ∈ X.

(i) (X, d, µ) is said to satisfy the C0-doubling for all balls centred at x and of radius r ∈ I if

∀r ∈ I, 0 < µ
(
BX(x, r)

)
< +∞ and

µ
(
BX(x, 2r)

)
µ
(
BX(x, r)

) ≤ C0. (3)

(ii) (X, d, µ) is said to satisfy the weak C0-doubling around x at the scale r0 if it satisfies the
C0-doubling for all balls centred at x and of radius r ∈

[
r0
2 , 2r0

]
.

(iii) (X, d, µ) is said to satisfy the strong C0-doubling around x at the scale r0 if it satisfies the
C0-doubling for all balls centred at x and of radius r ∈ ]0, 2r0].
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If Condition (3) is satisfied for all x ∈ X, we say, in case i), that (X, d, µ) satisfies the C0-
doubling for all balls of radius r ∈ I, in case ii), that it satisfies the weak C0-doubling at scale
r0 and, in case iii), that it satisfies the strong C0-doubling at scale r0.

In all cases C0 is called the (doubling) amplitude and r0 the (doubling) scale2.

Given a proper action (by isometries) of a group Γ on (X, d), the application of these definitions
to the counting measure µΓ

x of the orbit of x (introduced after Definition 3.2) will be important
in the sequel. In Lemma 3.15 we shall show that, if there exists some Γ-invariant measure
which satisfies a doubling condition, then µΓ

x satisfies the same doubling condition (thus this last
condition is weaker). One difficulty though comes from the fact that, for all y ∈ X such that
d(y,Γ · x) ≥ r0, µΓ

x

(
BX(y, r0)

)
= 0. Consequently, the doubling condition (3) does not make

sense for balls centred at y and of radius r < r0; consequently the weak C0-doubling at a scale
r1 ≤ r0 around y does not make sense. For this reason, in the sequel, doubling conditions for
the measure µΓ

x will only concern balls centred at x (or at any point of its orbit).

Let us remark that it is not necessary to assume that the action of Γ is fixed point-free. Indeed, if
the stabilizer or any point of the orbit of x is not trivial, it is finite by the properness assumption
on the action. We could think of the counting measure as defined by µ′x(A) = #

(
A ∩ Γx

)
for

any A ⊂ X; we then have µΓ
x = #

(
StabΓ(x)

)
· µ′x; this implies that µΓ

x satisfies the C0-doubling
condition for all balls of radius r ∈ I centred at x if and only if µ′x does.

For this reason, in the sequel, when we shall consider doubling properties satisfied by the counting
measure this will indifferently refer to µ′x or to µΓ

x.

Finally, related to doubling conditions, the packing condition can be stated as follows,

Definition 3.8. For all N0 ∈ N∗ and r0 > 0, a metric space (X, d) is said to satisfy the packing
condition with bound N0 at scale r0 if, for all x ∈ X, the maximal number of disjoint balls of
radius r0/2 included in the ball BX(x, 9r0) is not greater than N0.

3.3 Comparison between the various possible hypotheses : bound on
the entropy, doubling and packing conditions, Ricci curvature

Let us start by a general comment. An upper bound on the entropy as well as the weak doubling
condition for the counting measure on an orbit of the action of a group Γ makes sense on general
metric spaces. On the other hand, a lower bound on the Ricci curvature concerns, in our context,
mainly Riemannian manifolds. However, even if we restrict ourselves to Riemannian manifolds,
where Γ is the fundamental group of a compact manifold acting by deck transformations on its
universal cover, the comparison between all these conditions is roughly summarized as follows :

Comparison 3.9. An upper bound on the entropy is a condition that is strictly weaker than the
weak doubling (around x) of the counting measure of an orbit Γx (cf. Lemma 3.10 (ii)), which is
itself strictly weaker than a packing condition at a similar scale (cf. Lemma 3.12), itself weaker
than the weak doubling condition on the Riemannian measure (cf. Lemma 3.14), itself strictly
weaker than the strong doubling at the same scale (cf. Lemma 3.17 and its Corollary 3.18), itself
strictly weaker than a lower bound on the Ricci curvature (cf. Lemma 3.16).
If we furthermore restrict ourselves to comparing the various weak doubling conditions, the
smaller the scale, the stronger the condition (cf. Lemma 3.10 (i)).

It is worth noticing that, in the co-compact case, on a Riemannian manifold (X, g), for any scale
r0, there always exists a constant C := C(r0, X, g) such that the Riemannian measure satisfies
the weak C-doubling at the scale r0 := r0(X, g). Similarly, there always trivially exists a constant
H := H(X, g) which bounds from above the entropy of (X, g). However, the idea in this article
is to compute these constants C, r0 and H in such a way that they are simultaneously valid on all
the elements (X, d) of a family of metric measured spaces (i. e. independently of (X, d)); a first

2Notice that for λ > 0, neither the scale nor the amplitude are changed when the measure is multiplied by λ.
When the distance is multiplied by λ the amplitude remains unchanged but the scale is multiplied by λ.
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condition will be said to be strictly weaker than a second one if the family of spaces satisfying the
second one is strictly included in the family satisfying the first one and if the constants appearing
in the definition of the first condition can be (explicitly) computed in terms of those appearing
in the definition of the second condition. The next lemmas makes this philosophy precise.

Lemma 3.10 (Entropy bounded from above versus weak doubling of the counting measure).
For every proper action (by isometries) of a group Γ on a length space (X, d) such that Γ\X is
compact with diameter ≤ D, if there exists x0 ∈ X such that the counting measure µΓ

x0
of its

orbit satisfies the weak C0-doubling around x0 for at least one scale R0 > D, then

(i) µΓ
x0

satisfies the weak C
3(1+

[
2R1
R0

]
)

0 -doubling around x0 at every scale R1 ≥ R0,

(ii) the entropy of (X, d) is bounded from above by
3

R0
lnC0.

In (ii) the condition “entropy bounded from above” is strictly weaker than the weak doubling
one, as can be seen when considering any lattice Γ acting on Rn. Indeed, Rn has zero entropy
however the C0-doubling at scale R0 is not any more satisfied when n is large enough.

Proof. Let us recall that Σ̂r(x0) denotes the set of γ ∈ Γ such that d(x0, γ x0) < r and let
R ≥ R0. From equality (1) (applied for two measures equal to µΓ

x0
), we deduce that∫

BX(x0,R)

µΓ
x0

(
BX(x, 4R0)

)
dµΓ

x0
(x) =

∫
X

µΓ
x0

(
BX(x, 4R0) ∩BX(x0, R)

)
dµΓ

x0
(x);

this and the fact that x 7→ µΓ
x0

(
BX(x, 4R0)

)
is constant on the support of µΓ

x0
yields

µΓ
x0

(
BX(x0, R)

)
· µΓ

x0

(
BX(x0, 4R0)

)
≥

∑
γ∈Σ̂R+R0

(x0)

µΓ
x0

(
BX(γ x0, 4R0) ∩BX(x0, R)

)
. (4)

• If d(x0, γ x0) ≤ |R − 4R0|, then BX(γ x0, 4R0) ∩ BX(x0, R) contains one of the balls
BX(x0, R) or BX(γ x0, 4R0), thus µΓ

x0

(
BX(γ x0, 4R0) ∩BX(x0, R)

)
≥ µΓ

x0

(
BX(x0, R0)

)
.

• If |R − 4R0| < d(x0, γ x0) ≤ R + R0, since we are on a length space, for all ε such that
0 < ε < R0−D, there exists a point y(γ) ∈ X (chosen for example on an almost minimizing
path from x0 to γ x0, whose length is less than d(x0, γ x0) + ε) such that,

d
(
x0, y(γ)

)
=

1

2
[d(x0, γ x0) +R− 4R0] and d

(
γ x0, y(γ)

)
<

1

2
[d(x0, γ x0)−R+ 4R0 + 2 ε] .

We easily check thatBX
(
y(γ), 3R0

2 − ε
)

is included inBX
(
y(γ), 1

2 [R+ 4R0 − d(x0, γ x0)]− ε
)
,

itself included inBX(γ x0, 4R0)∩BX(x0, R). Since there exists g ∈ Γ such that d
(
gx0, y(γ)

)
≤

D < R0 − ε, the intersection BX(γ x0, 4R0) ∩BX(x0, R) contains the ball BX(gx0,
R0

2 ).

For all γ ∈ Σ̂R+R0
(x0), we thus have µΓ

x0

(
BX(γ x0, 4R0) ∩ BX(x0, R)

)
≥ µΓ

x0

(
BX(x0,

R0

2 )
)
;

plugging this inequality in (4) yields

µΓ
x0

(
BX(x0, R)

)
· µΓ

x0

(
BX(x0, 4R0)

)
≥ µΓ

x0

(
BX(x0, R+R0)

)
· µΓ

x0

(
BX(x0, R0/2)

)
and thus

µΓ
x0

(
BX(x0, R+R0)

)
µΓ
x0

(
BX(x0, R)

) ≤
µΓ
x0

(
BX(x0, 4R0)

)
µΓ
x0

[
B
(
x0,

1
2R0

)] ≤ C3
0 , and consequently, for all k ∈

N∗,
µΓ
x0

(
BX(x0, R+ kR0)

)
µΓ
x0

(
BX(x0, R)

) ≤ C3k
0 , which implies on the one hand that

µΓ
x0

(
BX(x0, 2R)

)
µΓ
x0

(
BX(x0, R)

) ≤
C

3(1+
[
R
R0

]
)

0 and ends the proof of (i), and on the other hand that the entropy is bounded above

by
3

R0
ln(C0), which ends the proof of (ii) (recall that the entropy does not depend on the choice

of the measure by Proposition 3.3).
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The lemma that follows describes the basic tools to compare doubling and packing.

Lemma 3.11. For every proper action (by isometries) of a group Γ on a metric space (X, d),
for every x ∈ X, every integer k ≥ 5 and every r > 0, we denote by NΓ

k (r) the maximal number
of disjoint balls of radius r

2 , centred on points of the orbit Γ · x that can be included in the ball
BX(x, k r2 ). Then, for every Γ-invariant measure µ, we have

µΓ
x

(
BX
(
x, (k − 1) r2

))
µΓ
x

(
BX(x, r)

) ≤ NΓ
k (r) ≤

µ
(
BX
(
x, k r2

))
µ
(
BX
(
x, r2

)) .

Proof. For sake of simplicity we set N := NΓ
k (r); denote by γ1x, . . . , γNx the centres of a maximal

packing of the ball BX(x, k r2 ) by disjoint balls of radius r
2 centred on points of Γ · x. By Γ-

invariance of µ and of the distance, µ
(
BX(γi x,

r
2 )
)

= µ
(
BX(x, r2 )

)
for all i, and consequently

N · µ
(
BX(x, r2 )

)
≤ µ

(
BX(x, k r2 )

)
; this proves the right inequality of Lemma 3.11.

If there exists γ ∈ Γ such that γx ∈ BX
(
x, (k − 1) r2

)
∩ Γ · x and that γ x /∈ ∪Ni=1BX (γix, r),

then the balls of radius r
2 , centred on γ1x, . . . , γN (x), γx are disjoint and included in BX(x, k r2 ).

This contradicts the maximality of the packing by the balls
(
BX(γi x,

r
2 )
)

1≤i≤N ; it follows that

BX

(
x, (k − 1)

r

2

)
∩ Γ · x ⊂ ∪Ni=1

(
BX (γix, r) ∩ Γ · x

)
,

and thus that #
(
BX

(
x, (k − 1) r2

)
∩ Γ · x

)
≤ N # (BX (x, r) ∩ Γ · x). This gives

µΓ
x

(
BX

(
x, (k − 1) r2

))
µΓ
x (BX(x, r))

=
#
(
BX

(
x, (k − 1) r2

)
∩ Γ · x

)
# (BX (x, r) ∩ Γ · x)

≤ N ,

and this ends the proof.

Lemma 3.12 (Weak doubling of the counting measure versus packing). Let (X, d) be a metric
space satisfying the packing condition with bound N0 at scale r0 and Γ a group acting on (X, d)
properly and by isometries. For all x ∈ X, the counting measure µΓ

x on the orbit Γ · x satisfies
the weak N0-doubling at scale 2r0 around x.

Proof. Recalling that NΓ
18(r0) is the maximal number of disjoints balls of radius r0

2 (centred
at points of Γ · x) included in BX(x, 9r0), Definition 3.8 gives NΓ

18(r0) ≤ N0. Then the first
inequality of Lemma 3.11 (with k = 18) implies that, for all r ∈ [r0, 4r0],

µΓ
x [BX (x, 2r)]

µΓ
x [BX (x, r)]

≤
µΓ
x

[
BX

(
x, 17

2 r0

)]
µΓ
x [BX (x, r0)]

≤ NΓ
18(r0) ≤ N0.

The series of examples that follow shows that these various conditions are strictly different.

Examples 3.13. We choose a scale r0 > 0. In each of the following examples we construct a sequence
of Riemannian manifolds (Xk, gk) and of groups Γk acting properly and isometrically on them, such that
the maximal number Nk(r0) of disjoint balls of radius r0/2 which are included in a ball of (Xk, gk) of
radius 9r0 goes to infinity with k. This shows that, for a given N0 and for k sufficiently large, (Xk, gk)
does not satisfy the packing condition with bound N0 at scale r0. On the other hand we show that, for
every k, the counting measure µ

Γk
xk of the orbit of this action satisfies the weak C0-doubling at scale 2r0

(where C0 and r0 are independent of k).

(1) Let Γk := 1
k
· Z × k · Zk−1 be a lattice acting on (Rk, can.) and x ∈ Rk, then the measure µ

Γk
x

satisfies the weak 2-doubling condition at scale 2r0 (for any r0 > 0) around x as soon as k > 8r0.
On the other hand, Nk(r0) goes to infinity with the dimension k.

(2) This example generalizes to the case where each (Xk, gk) is the universal Riemannian cover of a
closed Riemannian manifold (Xk, ḡk) whose sectional curvature is between −1 and −K2 and Γk is
its fundamental group. A variation on Margulis Lemma shows the existence of ε0 > 0 (independent
of k) such that, in each connected component of the set of points where the injectivity radius is
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< ε0, there exists a periodic geodesic c̄k of length less than 2 ε0 and whose homotopy class generates
Γ̂2 ε0(xk), where xk is the lift of a point x̄k ∈ c̄k. Since Γ̂2 ε0(xk) acts by translation on the lift

ck of c̄k passing through xk and d(xk, γ xk) ≥ 2 ε0 for every γ ∈ Γk \ Γ̂2 ε0(xk), the measure µ
Γk
xk

satisfies the weak 2-doubling condition at scale r0 for each r0 ≤ ε0 /2. On the contrary, choosing
any xk ∈ Xk, when k → +∞, if dim(Xk)→ +∞, then the packing parameter Nk(r0) goes to +∞.

(3) In this example, the sequence (Xk, gk)k∈N∗ is constructed so that the dimension of Xk is fixed
equal to n and that the topology of Xk becomes more and more complicated when k → +∞; this
complexity can be estimated (for example) by the Euler characteristic; we fix the scale r0 to be
any positive number (independent of k).
Let (X, ḡ) be a Riemannian manifold, (X, g) its Riemannian universal cover and Γ its fundamental
group. For ε > 0 small enough, let N(ε) be the maximal number of disjoint balls of radius
ε that can be included in (X, ḡ) and let x̄1, . . . x̄N(ε) be the centres of these balls, then these

centers are a 2 ε-lattice in X: indeed, if there exists x̄ ∈ X such that x̄ /∈ ∪N(ε)
i=1 BX (x̄i, 2 ε),

then BX (x̄, ε) ∩ BX (x̄i, ε) = ∅ for every i, in contradiction with the maximality of the packing

(BX (x̄i, ε))
N(ε)
i=1 , thus X ⊂ ∪N(ε)

i=1 BX (x̄i, 2 ε). We modify the metric ḡ on each ball BX(x̄i, 2 ε
2) so

that the new metric, still denoted by ḡ, is flat on BX(x̄i, ε
2). The lattice Rε lifts as a 2 ε-lattice

Rε = {xi}i∈I of (X, g), globally Γ-invariant.

Let (Y, h) be any closed Riemannian manifold, whose diameter is equal to 2r0 and two points
y, y′ such that dY (y, y′) = 2r0. We modify the metric, as above, so that it becomes flat in a
neighbourhood of y; the ball BY (y, ε3) is then isometric to each ball BX(xi, ε

3), which ensures
that the boundaries of the balls BX(xi, ε

3) are BY (y, ε3) are both isometric to the Euclidean
sphere Sn−1

(
ε3
)

of radius ε3. We denote by (Y ′, h′) the Riemannian manifold with boundary
obtained3 by gluing a cylinder Cε := [0, ε2] × Sn−1

(
ε3
)

to Y \ BY (y, ε3), identifying ∂BY (y, ε3)
with {ε2} × Sn−1

(
ε3
)
. Let us consider a family (Y ′i )i∈I of copies of (Y ′, h′) and let us glue each

Y ′i to X \
(⋃

i∈I BX(xi, ε
3)
)

identifying ∂Y ′i = {0} × Sn−1
(
ε3
)

with the connected component
∂BX(xi, ε

3) of the boundary of X \
(⋃

i∈I BX(xi, ε
3)
)
. If we choose ε = εk → 0 we then obtain

Riemannian manifolds called (Xk, gk).

We now consider maps fk : Xk → X, which send Y ′i onto the ball BX(xi, ε
3
k), contracting Y ⊂ Y ′i

on xi, sending the generatrices of the cylinder Cεk ⊂ Y ′i onto the rays of the ball and such that
fk restricted to X \

(⋃
i∈I BX(xi, ε

3
k)
)

is the identity. The map fk : (Xk, gk) → (X, g) is then
contracting and, furthermore, there exists a sequence ηk going to zero with k such that

∀x, z ∈ X \
(
∪i∈IBX(xi, ε

3
k)
)
, dX(fk(x), fk(z)) = dX(x, z) ≥ (1 + ηk)−1dXk (x, z)− ηk . (5)

Let x ∈ X \
(⋃

i∈I BX(xi, ε
3
k)
)

and J := {i ∈ I : xi ∈ BX(x, 6r0)}. The number of elements of J ,

denoted by Ñεk (r0), is the number of elements of 2 εk-lattice in a fixed ball, thus it goes to infinity
when εk → 0, hence when k → +∞.
For every i ∈ J , we have Y ′i ⊂ BXk (x, 9r0): indeed, for any z ∈ Y ′i , there exists z′ ∈ ∂BX(xi, ε

3)
such that dXk (z, z′) ≤ 2r0+ε2

k and Inequality (5) implies that dXk (x, z′) ≤ (1+ηk)
(
dX(x, z′)+ηk

)
,

which yields

dXk (x, z′) ≤ (1 + ηk)(dX(x, xi) + ε3
k +ηk) ≤ (1 + ηk)(6r0 + ε3

k +ηk) <
13

2
r0 .

From the three last inequalities and the triangle inequality, we deduce that dXk (x, z) < 13
2
r0 +

2r0 + ε2
k < 9r0, hence that Y ′i ⊂ BXk (x, 9r0). As each Y ′i contains a ball of radius r0, and as

Y ′i ∩Y ′j = ∅ when i 6= j, the maximal number of disjoint balls of radius r0 included in BXk (x, 9r0)

is at least equal to Ñεk (r0)), hence it goes to infinity when k → +∞. Hence, for any choice of the
constants N0 and r0, for k sufficiently large, (Xk, gk) does not satisfy the packing condition with
bound N0 at scale r0.

On the other hand, the above construction being Γ-invariant, Γ also acts by isometries on (Xk, gk)
and we have fk(γ x) = γ fk(x) for all γ ∈ Γ and x ∈ Xk; the application fk being contracting, we
deduce that {γ : γ x ∈ BXk (x, r)} ⊂ {γ : γ fk(x) ∈ BX(fk(x), r)}. The manifold (X, g) (and the
action of Γ on it) being fixed, there exists C0 > 1 such that the counting measure µΓ

fk(x) on the orbit

of fk(x) under the action of Γ satisfies µΓ
fk(x) (BX(fk(x), 8r0)) ≤ C0. The previous inclusion shows

that the counting measure µΓ
x of the orbit of x ∈ Xk for the action satisfies µΓ

x (BXk (x, 8r0)) ≤ C0,
which gives, for all r ∈ [r0, 4r0],

µΓ
x (BXk (x, 2r))

µΓ
x (BXk (x, r))

≤ µΓ
x (BXk (x, 2r)) ≤ C0.

3The Riemannian metric h′ is only piecewise C1 but it could easily be smoothed out.
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Lemma 3.14 (Packing versus weak doubling). Let (X, d) be a metric space, if there exists a
measure µ which satisfies the weak C0-doubling for every ball of radius r ∈

[
r0
2 , 9r0

]
centred at

every point4 x ∈ X, then (X, d) satisfies the packing condition with bound C6
0 at scale r0.

Proof. Let x ∈ X and consider a packing of BX(x, 9r0) by N disjoint balls BX
(
xi,

r0
2

)
. Amongst

these balls, let us denote by BX
(
xi0 ,

r0
2

)
one which has minimal measure, we then have

N · µ
(
BX

(
xi0 ,

r0

2

))
≤ µ

(
BX(x, 9r0)

)
≤ µ

(
BX (xi0 , 18r0)

)
.

We thus get N ≤
µ
(
BX (xi0 , 18r0)

)
µ
(
BX

(
xi0 ,

r0
2

) ) ≤ C6
0 .

Lemmas 3.12 and 3.14 asserts that a weak doubling condition on the counting measure of the
orbit of a point is weaker than the weak doubling condition for any other measure around every
point. It is however interesting to give a pointwise and precise result, this is the

Lemma 3.15 (Counting measure vs any measure). For any proper action (by isometries) of a
group Γ on a proper metric space (X, d), for any x ∈ X, if there exists a Γ-invariant measure
which satisfies the C0-doubling for all balls centred at x, of radius r ∈

[
1
2r0, r1

]
(where r1 ≥ 5

4r0),

then the counting measure µΓ
x of Γ · x satisfies

µΓ
x(BX(x, 2r))

µΓ
x(BX(x, r))

≤ C3
0 for every r ∈

[
r0,

4
5r1

]
.

Proof. Lemma 3.11, where we choose k = 5, ensures that, for all r ∈
[
r0,

4
5r1

]
, we have

µΓ
x [BX (x, 2r)]

µΓ
x [BX (x, r)]

≤
µ(BX(x, 5

2r))

µ(BX(x, r2 ))
≤ µ(BX(x, r))

µ(BX(x, r2 ))
·
µ(BX(x, 5

4r))

µ(BX(x, r))
·
µ(BX(x, 5

2r))

µ(BX(x, 5
4r))

≤ C3
0 ,

since r
2 , r and 5

4r belong to the interval
[

1
2r0, r1

]
.

Lemma 3.16 (Strong doubling versus Ricci curvature bounded below). For all K ≥ 0 and

r0 > 0, we set C0 = 2n
(

cosh(Kr0)
)n−1

. Let (X, g) be a complete Riemannian manifold such
that its Ricci curvature satisfies, Ricg ≥ −(n − 1)K2 · g, then (X, g) satisfies the C0-doubling
condition for all balls of radius r ∈ ]0, r0] (independently of their centre).

Proof. Bishop-Gromov’s comparison theorem implies that, for all x ∈ X and all r ≤ r0,

Volg BX(x, 2r)

Volg BX(x, r)
≤
∫ 2r

0

(
1
K sinh(Kt)

)n−1
dt∫ r

0

(
1
K sinh(Kt)

)n−1
dt

= 2 ·
∫Kr

0
(sinh(2t))

n−1
dt∫Kr

0
(sinh(t))

n−1
dt
≤ 2n(coshKr)n−1.

It is easy to find examples of sequences
(
X, gk

)
k∈N of Riemannian manifolds which all satisfy the

strong C0-doubling condition at scale r0 (where C0 and r0 do not depend on k) and, nevertheless,
such that the minimum of their Ricci curvature goes to −∞ when k goes to +∞. One example
can be obtained by gluing two copies of Rn \ Bn on their boundary Sn−1 by constructing, on
the resulting space, a sequence of smooth Riemannian metrics converging towards the singular
metric obtained by endowing each copy with its Euclidean metric.

It is clear (from Definitions 3.7 (ii) and (iii)) that the strong C0-doubling condition is stronger
than the weak one (at the same scale, around the same point, with the same amplitude). In fact,
it is strictly stronger by the following results:

4The fact that the measure must satisfy the C0-doubling condition for all balls of radius r ∈
[ r0

2
, 9r0

]
, imposes

that for all x ∈ X, the ball BX(x, r0
2

) has positive measure. This, in particular, excludes the counting measure
of an orbit of a group Γ acting properly by isometries when the diameter of Γ\X is greater than r0.
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Lemma 3.17 (Weak vs strong doubling). Let (X, g) be a complete Riemannian manifold, of
dimension n ≥ 2, whose Ricci curvature satisfies Ricg ≥ −(n− 1)K2 · g; fix any r0 > 0 and set

C0 = 1+22n
(

cosh(Kr0)
)2n−2

. Let (Yk, hk) be any sequence of closed n-dimensional Riemannian
manifolds, whose diameters and volumes go to zero when k → +∞. Let Xk = X#Yk be the
connected sum of X with Yk, then, the metric gk on each Xk being obtained by gluing g and hk,
the corresponding Riemannian measure on (Xk, gk) satisfies the weak C0-doubling condition at
scale r0 (for k large enough).

Furthermore, for any r0 > 0 and C0 ≥ 1 + 22n
(

cosh(Kr0)
)2n−2

, there exists a choice of the
sequence (Yk, hk) such that all the (Xk, gk) satisfy the weak C0-doubling condition at scale r0 and
none of them satisfies the strong C0-doubling condition at the same scale.

Corollary 3.18. For any C0 ≥ 22n + 1 and r0 > 0, the weak C0-doubling condition at scale r0

does not imply any restriction to the topology and the geometry of the balls of radius less than or
equal to r0

20 . Hence it does not imply any restriction to the local topology and geometry.

Proof of Lemma 3.17. As the Ricci curvature of (X, g) is ≥ −(n − 1)K2 · g, it follows from
Lemma 3.16 that, for every r0 > 0, the Riemannian measure of (X, g) satisfies the C ′0-doubling

condition for all balls of radius r ∈ ]0, 2r0], where C ′0 = 2n
(

cosh(2Kr0)
)n−1

.
Let us make the construction of (Xk, gk) = X#Yk more precise: we cut out balls Bk :=
BX(x0, rk) ⊂ X and B′k := BYk(yk, rk) ⊂ Yk, of radius rk <

1
100 Min

(
inj(X, g); inj(Yk, hk)

)
.

We then glue, as in Example 3.13 (3), X \ Bk and Yk \ B′k at the two ends of a cylinder

Ck := [0, r
3/4
k ] × Sn−1 (rk) of radius rk. Again, similarly to Example 3.13 (3), we construct a

contracting map fk : Xk → X such that there exists a sequence (ηk)k∈N, going to zero when k
goes to +∞, such that dX(fk(x), fk(y)) ≥ dXk(x, y) − ηk. Since fk is contracting and onto, we
have

Volgk
(
BXk(x, r)

)
≥ Volg

(
fk
(
BXk(x, r)

))
≥ Volg

(
BX
(
fk(x), r − ηk

))
. (6)

Now, from the definition of fk, there exists a sequence (Vk)k∈N, going to zero when k goes to
+∞, such that, for all domain A ⊂ Xk,

Volg (fk (A)) ≥ Volgk (A ∩ (X \Bk)) ≥ Volgk (A)−Volgk (Yk \B′k)−Volgk (Ck) ≥ Volgk (A)−Vk.

From this and the fact that fk is contracting (which implies that fk (BXk(x, 2r)) ⊂ BX (fk(x), 2r))
we deduce that

Volgk (BXk(x, 2r)) ≤ Volg (fk (BXk(x, 2r))) + Vk ≤ Volg (BX(fk(x), 2r)) + Vk.

As r
2 and r belong to ]0, 2r0] for every r ∈

[
r0
2 , 2r0

]
, this last inequality and (6) imply that there

exists N0 ∈ N such that, for all k ≥ N0, for all x ∈ X and for all r ∈
[
r0
2 , 2r0

]
, one has

Volgk BXk(x, 2r)

Volgk BXk(x, r)
≤ Volg (BX(fk(x), 2r)) + Vk

Volg
(
BX
(
fk(x), r − ηk

)) ≤ Volg (BX(fk(x), 2r))

Volg
(
BX
(
fk(x), r/2

)) + 1 ≤
(
C ′0
)2

+ 1 = C0 .

Hence, for all k ≥ N0, the Riemannian measure of (Xk, gk) satisfies the weak C0-doubling
condition at scale r0 around every point x ∈ Xk. This shows the first part of the lemma.

Consider any sequence of n-manifolds (Yk)k∈N∗ such that each Yk admits5 a Riemannian metric
h′k whose sectional curvature is ≤ −k2 and whose injectivity radius is ≥ 4r0. Choosing a real
sequence (εk)k∈N, going to zero when k goes to +∞ and verifying ∀k, εk ≤ diam(Yk, h

′
k)−2,

we define the metric hk on Yk by hk := ε2
k · h′k. Constructing (Xk, gk) as a connected sum of

(X, g, x0) and (Yk, hk, yk) as above, we choose a point xk ∈ Yk at h′k-distance of yk at least 5r0.
For all r ≤ 2r0, we have B(Yk,hk)(xk, 4 εk r0) = B(Yk,h′k)(xk, 4r0) ⊂ Y \B′k, hence BXk(xk, εkr

′) =
B(Yk,h′k)(xk, r

′) for every r′ ≤ 4r0; this yields

Volgk BXk(xk, 2εkr)

Volgk BXk(xk, εkr)
=

Volh′k B(Yk,h′k)(xk, 2r)

Volh′k B(Yk,h′k)(xk, r)
≥
∫ 2r

0
sinhn−1(kt)dt∫ r

0
sinhn−1(kt)dt

≥ e(n−1)kr.

5Up to taking a subsequence, one can verify that the existence of such a sequence of metrics h′k is equivalent
to the existence of a sequence of metrics h′′k whose sectional curvature is ≤ −1 and whose injectivity radius goes
to +∞.
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The doubling amplitude (for balls whose radius is close to zero) then goes to +∞ with k. Hence,
for all C0 > 1 and r0 > 0, and for all k large enough, none of the manifolds (Xk, gk) satisfy the
strong C0-doubling as scale r0 around xk.

Proof of Corollary 3.18. Let (X, g) be a n-dimensional flat torus. As in the proof of Lemma
3.17, we construct (Xk, gk) as a connected sum of (X, g, x0) and (Yk, hk, yk), where the diameters
and the volumes of the (Yk, hk)’s go to zero when k → +∞. Since there is no restriction on the
topology of Yk and on the geometry (modulo homotheties) of hk and as the gluing is made within
a ball of radius much smaller than r0

20 , there is no restriction on the topology and on the geometry
of the balls of Xk of radius less than r0

20 , centred around a point xk ∈ Yk \ B′k. Nevertheless
Lemma 3.17 (where we make K = 0) shows that, for any r0 > 0 and every C0 ≥ 22n + 1, there
exists N0 ∈ N such that (for every k ≥ N0) the Riemannian measure of (Xk, gk) satisfies the
weak C0-doubling condition at scale r0.

3.4 Doubling property induced on subgroups

An important feature of the counting measure on a group, that we will extensively use in the
sequel, is that the doubling condition transfers to subgroups. The next proposition makes this
more precise.

Proposition 3.19. Let Γ be a group acting properly by isometries on a metric space (X, d). Let
Γ′ ⊂ Γ be a subgroup and x0 ∈ X a point. We then have,

(i) If the counting measure µΓ
x0

satisfies the C-doubling condition for all balls of radius r ∈[
1
2r0,

5
4r1

]
centred around x0 (where 0 < r0 ≤ r1) the measure µΓ′

x0
satisfies:

∀r ∈ [r0, r1] ,
µΓ′

x0

(
BX(x0, 2r)

)
µΓ′
x0

(
BX(x0, r)

) ≤ C3.

(ii) If the counting measure µΓ
x0

satisfies
µΓ
x0

(
BX(x0, 2r)

)
µΓ
x0

(
BX(x0, r)

) ≤ Ceαr for all r ∈ [ 1
2r0,+∞[, then

the measure µΓ′

x0
satisfies

∀r ∈ [r0,+∞[ ,
µΓ′

x0

(
BX(x0, 2r)

)
µΓ′
x0

(
BX(x0, r)

) ≤ C3e
19
8 αr.

Proof. Let us recall that, for all r > 0, we have denoted by NΓ
5 (r) (resp. NΓ′

5 (r)) the maximal
number of disjoint balls of radius r

2 contained in the ball BX(x0,
5
2r), and centred around points

of the orbit Γ · x0 (resp. of the orbit Γ′ · x0). Being in Γ′ · x0 is more restrictive than being in
Γ ·x0, hence we have NΓ′

5 (r) ≤ NΓ
5 (r). Lemma 3.11 applied twice, firstly to the counting measure

µΓ′

x0
on the orbit Γ′ · x0, and secondly to the counting measure µΓ

x0
on the orbit Γ · x0, yields

µΓ′

x0

(
BX
(
x0, 2r

))
µΓ′
x0

(
BX(x0, r)

) ≤ NΓ′

5 (r) ≤ NΓ
5 (r) ≤

µΓ
x0

(
BX
(
x0,

5
2r
))

µΓ
x0

(
BX
(
x0,

r
2

))
≤
µΓ
x0

(
BX(x0,

5
2r)
)

µΓ
x0

(
BX(x0,

5
4r)
) · µΓ

x0

(
BX(x0,

5
4r)
)

µΓ
x0

(
BX(x0,

5
8r)
) · µΓ

x0

(
BX(x0, r)

)
µΓ
x0

(
BX(x0,

1
2r)
) . (7)

• For all r ∈ [r0, r1], since 1
2r,

5
8r and 5

4r belong to
[

1
2r0,

5
4r1

]
, the doubling condition, assumed

in (i), satisfied by µΓ
x0

allows to bound from above by C each term in the last inequality of (7),

which proves that
µΓ′

x0

[
BX(x0, 2r)

]
µΓ′
x0

[BX(x0, r)]
≤ C3 and ends the proof of (i).

• For all r ∈ [r0,+∞[, the hypothesis assumed in (ii) allows to bound from above each term in

the last inequality of (7) by, respectively, Ce
5
4αr, Ce

5
8αr and Ce

1
2αr. This proves (ii).
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4 Free Subgroups

In this section, we only consider torsion-free isometries of a δ-hyperbolic space (X, d) (hence geodesic
and proper by Definition 8.2). To each isometry γ of (X, d), we associate its minimal displacement

s(γ) = infγ∈Γ∗ d(x, γ x) and its asymptotic displacement `(γ) = limn→+∞
d(x,γn x)

n
(see Definitions 8.18).

If γ is hyperbolic, G(γ) is the set of oriented geodesics joining its fixed points γ− and γ+, and M(γ) is
the union of these geodesic lines (see Definitions 8.25). For the basic properties concerning projections
in hyperbolic spaces the reader is referred to Section 8.2.

The following remark will be useful in all this paper:

Remark 4.1. Let (X, d) be a δ-hyperbolic space and γ an isometry, then the three conditions
“γ is non elliptic”, “γ is torsion-free and the action of the group 〈γ〉 generated by γ is proper”
and “γ is torsion-free and the action of the group 〈γ〉 is discrete” are equivalent; in the sequel,
we shall thus indifferently use one or the others of these three equivalent hypothesis.

Proof. The fact that the assumptions “proper” and “discrete” (concerning the action of 〈γ〉) are
equivalent is due to Lemma 8.12. If γ is torsion-free and if the group 〈γ〉 acts properly on (X, d),
then γ is non elliptic by Remark 8.16 (i).
Conversely, if γ is supposed non elliptic, then it is hyperbolic or parabolic by Theorem 8.15 and
(by the definition of these notions given before Theorem 8.15) it is torsion-free and, for every
x ∈ X, d(x, γk x) goes to +∞ when k → ±∞; hence the action of 〈γ〉 on (X, d) is proper.

4.1 Ping-pong Lemma

Let (X, d) be a δ-hyperbolic space and γ a non elliptic isometry. For all x ∈ X we denote by
Dγ(x) and D′γ(x) the Dirichlet domains (respectively open and closed) of the point x for the
action of 〈γ〉, i. e. the subsets defined by6:

Dγ(x) = {y : Mink∈Z∗ d(y, γkx) > d(y, x)} , D′γ(x) = {y : Mink∈Z d(y, γkx) = d(y, x)}. (8)

Let us remark that D′γ−1(x) = D′γ(x), and that (for all k ∈ Z) D′γ(γkx) = γk
(
D′γ(x)

)
and let us

define the attraction (resp. repulsion) domains U+
γ (x) (resp. U−γ (x)) of γ associated to x by:

U+
γ (x) := ∪k∈N∗ D′γ(γkx) = ∪k∈N∗ γk

(
D′γ(x)

)
, U−γ (x) := U+

γ−1(x) . (9)

Let us remark that, by Definition (9), U−γ (x) ∪U+
γ (x) = ∪p∈Z∗ D′γ(γpx) and, by taking comple-

ments, one has:

X \
(
U−γ (x) ∪ U+

γ (x)
)

= {y : ∀p ∈ Z∗ Mink∈Z d(y, γk x) < d(y, γp x)}

= {y : Mink∈Z d(y, γk x) < Minp∈Z∗ d(y, γp x)} = {y : d(y, x) < Minp∈Z∗ d(y, γp x)} .

A consequence of this equality and of Definition (9) are the properties:

X \
(
U−γ (x) ∪ U+

γ (x)
)

= Dγ(x) , ∀k ∈ Z∗ γk(D′γ(x)) ⊂ U−γ (x) ∪ U+
γ (x) . (10)

Remark also that, as γ is a parabolic or hyperbolic isometry by Theorem 8.15, then ∀k ∈
Z∗, γk x 6= x and x ∈ Dγ(x).

Definitions 4.2. Let us consider two non elliptic isometries a and b of (X, d) and a point x ∈ X,

(i) a and b are said to be in Schottky position with respect to x if the subsets U−a (x) ∪ U+
a (x)

and U−b (x) ∪ U+
b (x) are disjoints.

(ii) a and b are said to be in half-Schottky position with respect to x ∈ X if U+
a (x) ⊂ X \(

U−b (x) ∪ U+
b (x)

)
and U+

b (x) ⊂ X \
(
U−a (x) ∪ U+

a (x)
)
.

6The minima in question in the sequel are achieved since the torsion-free and discreteness hypotheses ensure
(by Remark 8.16 (i)) that γ is hyperbolic or parabolic, and hence that gkx goes to infinity when k → ±∞.
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Proposition 4.3. Let Σ be a finite set of non elliptic isometries of the Gromov-hyperbolic space
(X, d). If every pair of elements of Σ is in Schottky position with respect to the same point
x ∈ X, then Σ generates a free subgroup of the group of isometries of (X, d).

Proof. Every non-trivial relation involving elements of Σ is written as sp11 · s
p2
2 . . . spmm = e, where

s1, s2, . . . , sm are elements of Σ such that si 6= si+1 for all i ∈ {1, . . . ,m − 1}, and where
p1, p2, . . . , pm are elements of Z∗.
Let us prove by induction that, for all i ∈ {1, . . . ,m}, spii ·s

pi+1

i+1 . . . spmm (x) ∈ U−si (x)∪U+
si (x). This

is true for i = m, since x ∈ Dsm(x), and hence spmm (x) ∈ spmm (Dsm(x)) ⊂ U−sm(x) ∪ U+
sm(x); this

last inclusion is a consequence of (10). We now assume that spii ·s
pi+1

i+1 . . . spmm (x) ∈ U−si (x)∪U+
si (x);

since si and si−1 are distinct elements of Σ, they are in Schottky position with respect to x,

we then have U−si (x) ∪ U+
si (x) ⊂ X \

(
U−si−1

(x) ∪ U+
si−1

(x)
)

= Dsi−1
(x), where this last equality

follows from (10). From this and from (10), we deduce that

s
pi−1

i−1 · s
pi
i . . . s

pm
m (x) ∈ spi−1

i−1

(
U−si (x) ∪ U+

si (x)
)
⊂ spi−1

i−1

(
Dsi−1

(x)
)
⊂ U−si−1

(x) ∪ U+
si−1

(x) ,

which proves the induction. It then follows that x = sp11 · s
p2
2 . . . spmm (x) is an element of

U−s1(x)∪U+
s1(x), which contradicts the fact that x ∈ Ds1(x) (see above) since, by (10), Ds1(x)∩(

U−s1(x) ∪ U+
s1(x)

)
= ∅. Consequently, there is no non-trivial relation between elements of Σ.

Proposition 4.4. Let {a, b} be a pair of non elliptic isometries of (X, d), if a and b are in
half-Schottky position with respect to some point x ∈ X, then {a, b} generates a free semi-group.

Before proving Proposition 4.4, we establish the following lemma.

Lemma 4.5. Let {a, b} be a pair of non elliptic isometries of (X, d), if a and b are in half-
Schottky position with respect to some point x ∈ X, then any product R(a, b) of positive powers
of a and b satisfies R(a, b)x ∈ U+

a (x) (resp. R(a, b)x ∈ U+
b (x)) if the first factor of the product

R(a, b) is a power of a (resp. of b).

Proof. It is sufficient to give the proof when the first factor of R(a, b) is a power of a. Let us
then assume that

R(a, b) = ap0bq0 . . . apkbqk or R(a, b) = ap0bq0 . . . apkbqkapk+1 ,

where all pi’s and qi’s belong to N∗.
We note that bqk(x) ∈ bqk

(
Db(x)

)
⊂ U+

b (x), where the inclusion follows for the first equality in
(9). Similarly we show that apk+1(x) ∈ U+

a (x). As a and b are in half-Schottky position with
respect to x, we also have

api
(
U+
b (x)

)
⊂ api

(
X \

(
U−a (x) ∪ U+

a (x)
))

= api
(
Da(x)

)
⊂ U+

a (x)

where the equality and the last inclusion follows from the properties (10) and (9). Similarly we
show that bqi

(
U+
a (x)

)
⊂ U+

b (x). Iterating and alternating these two properties, we deduce that
ap0bq0 . . . apkbqk(x) and ap0bq0 . . . apkbqkapk+1(x) belong to U+

a (x) and this ends the proof.

End of the proof of Proposition 4.4. We show that, if the semi-group generated by a and b is not
free, one of the two following alternatives is satisfied:

Case 1 : There exists a relation involving a and b which has, after suitable simplifications, the
form R(a, b) = e = idX , where R(a, b) is a product of strictly positive powers of a and b.

Case 2 : There exists a relation involving a and b which has, after suitable simplifications, the form
R1(a, b) = R2(a, b), where R1(a, b) and R2(a, b) are products of strictly positive powers of
a and b. We leave to the reader to check that we may furthermore assume that the first
letter appearing in R1(a, b) is different from the first letter appearing in R2(a, b).
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Lemma 4.5 implies that every product R(a, b) of strictly positive powers of a and b satisfies
R(a, b)x ∈ U+

a (x) ∪ U+
b (x). On the other hand the first equality of (10) (and the fact that x ∈

Dγ(x) when γ is non elliptic) gives x ∈ Da(x)∩Db(x) = X \
(
U−a (x) ∪ U+

a (x) ∪ U−b (x) ∪ U+
b (x)

)
,

it is not possible to have R(a, b)x = x, hence the relation R(a, b) = e. This takes care of Case 1.
If now R1(a, b) and R2(a, b) are non-trivial products of strictly positive powers of a and b with
the first letter in R1(a, b) different from the first letter in R2(a, b), Lemma 4.5 implies that either
R1(a, b)x ∈ U+

a (x) and R2(a, b)x ∈ U+
b (x), if the first letter of R1(a, b) is a, or R1(a, b)x ∈ U+

b (x)
and R2(a, b)x ∈ U+

a (x), if the first letter of R1(a, b) is b. This shows that we cannot have
R1(a, b)x = R2(a, b)x. This takes care of Case 2 and ends the proof of Proposition 4.4.

The next proposition generalizes, in the context of isometric actions on a δ-hyperbolic metric
space, a result proved by Th. Delzant for hyperbolic groups (see [Del91], Lemma 1.2, p. 179).

Proposition 4.6. Let (X, d) be a δ-hyperbolic space and a and b two isometries of (X, d).

(i) If there exists a point x ∈ X such that d(apx, bqx) > Max [d(x, apx), d(x, bqx)] + 2δ for all
(p, q) ∈ Z∗ × Z∗, then a and b are in Schottky position with respect to x and the group
generated by a and b is free.

(ii) If there exists a point x ∈ X such that d(apx, bqx) > Max [d(x, apx), d(x, bqx)] + 2δ for all
(p, q) ∈ (Z∗ × Z∗) \ (Z− × Z−), then a and b are in half-Schottky position with respect to
x ∈ X and the semi-group generated by a and b is free.

Remark 4.7. Any of the hypotheses made in points (i) or (ii) of Proposition 4.6 automatically
implies that a and b are non elliptic and that the point x appearing in these two points is never
fixed by any element of 〈a〉 \ {idX} and by any element of 〈b〉 \ {idX}.

Proof of Remark 4.7. Any of the hypotheses made in 4.6 (i) or (ii) implies that, for all (p, q) ∈
(Z∗ × N∗) and all (p, q) ∈ (N∗ × Z∗, we have

Max [d(x, apx), d(x, bqx)] + Min [d(x, apx), d(x, bqx)] = d(x, apx) + d(x, bqx) ≥ d(apx, bqx)

> Max [d(x, apx), d(x, bqx)] + 2δ .

We deduce that Min [d(x, apx), d(x, bqx)] > 2δ for all (p, q) ∈ N∗×N∗, hence for all (p, q) ∈ Z∗×Z∗
and thus apx 6= x and bqx 6= x: this proves the second part of the remark. We also deduce that,
for all (k, p) ∈ Z×Z such that p 6= k, we have d(akx, apx) > 2δ and d(bkx, bpx) > 2δ; this shows
that the sequence

(
akx

)
k∈N does not admit any Cauchy subsequence, and is thus unbounded (by

the properness of (X, d)); hence a is non elliptic. We similarly show that b is non elliptic.

Proof of Proposition 4.6. Remark 4.7 ensures that a and b are non elliptic, we can then use the
definitions and results of Section 4.1.
Proof of (i): Let y ∈ U−b (x) ∪ U+

b (x), Definitions (9) shows that there exists k ∈ Z∗ such that
y ∈ D′b(bkx), which implies that d(y, bkx) ≤ d(y, x). Let us choose this number k. For all p ∈ Z∗,
the Quadrangle Lemma 8.3 (ii), applied to the points y, apx, x and bkx, yields

d(y, x) + d(apx, bkx) ≤ Max
[
d(y, bkx) + d(x, apx) ; d(y, apx) + d(x, bkx)

]
+ 2δ .

The hypothesis allows then to deduce d(y, x) < Max
[
d(y, bkx) ; d(y, apx)

]
, hence that d(y, x) <

d(y, apx) for all p ∈ Z∗, which in turn implies y ∈ Da(x) = X \
(
U−a (x) ∪ U+

a (x)
)

for all

y ∈ U−b (x)∪U+
b (x), hence that U−b (x)∪U+

b (x) ⊂ X \
(
U−a (x)∪U+

a (x)
)
. Definition 4.2 (i), then

shows that a and b are in Schottky position with respect to x. Proposition 4.3 then ensures that
the subgroup of the isometry group of (X, d) generated by a and b is free.
Proof of (ii): The proof that U+

b (x) ⊂ X \
(
U−a (x)∪U+

a (x)
)

is identical to the proof of (i), except

that we need to choose a random point y ∈ U+
b (x), and consequently assume that k ∈ N∗. The

proof that U+
a (x) ⊂ X \

(
U−b (x)∪U+

b (x)
)

is done along the same lines, exchanging the roles of a
and b. From Definition 4.2 (ii),it follows that a and b are in half-Schottky position with respect
to x. Proposition 4.4 then shows that the semi-group generated by a and b is free.
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Corollary 4.8. Let (X, d) be a δ- hyperbolic space and Γ a group acting on (X, d), for ev-
ery pair a, b of elements of Γ, if there exists some point x ∈ X such that d(apx, bqx) >
Max [d(x, apx), d(x, bqx)] + 2δ for all (p, q) ∈ (Z∗ × Z∗) \ (Z− × Z−), then the semi-group gener-
ated by a and b is free.

Proof. Let % be the representation from Γ to Isom(X, d) associated to the action under consider-
ation; as (by definition of %) γ x := %(γ)x for every γ ∈ Γ, the above hypothesis may be rewritten
as d

(
%(a)px, %(b)qx

)
> Max [d(x, %(a)px), d(x, %(b)qx)]+2δ for all (p, q) ∈ (Z∗ × Z∗)\ (Z− × Z−).

Applying Proposition 4.6, %(a) and %(b) generate a free semi-group. If a and b do not generate
a free semi-group then any non trivial relation between positive powers of a and b maps to a
similar non trivial relation between positive powers of %(a) and %(b), in contradiction with the
fact that %(a) and %(b) generate a free semi-group. Hence a and b generate a free semi-group.

4.2 When the asymptotic displacement is bounded below

Proposition 4.9. Let (X, d) be a δ-hyperbolic space and a and b two isometries such that the
group generated by a and b is a discrete non virtually cyclic subgroup of the isometry group, then

(i) if s(a), s(b) > 13δ, one of the two semi-groups generated by {a, b} or by {a, b−1} is free,

(ii) if `(a), `(b) > 0 then, for every integers p, q >
13δ

Min(`(a), `(b))
, one of the two semi-groups

generated by {ap, bq} or by {ap, b−q} is free.

Corollary 4.10. For any proper action (by isometries) of a group Γ on a δ-hyperbolic space
(X, d), for every hyperbolic elements a and b of Γ which generate a non virtually cyclic subgroup

of Γ, for every integers p, q >
13δ

Min(`(a), `(b))
, one of the two semi-groups generated by {ap, bq}

or by {ap, b−q} is free.

Before proving Proposition 4.9 and Corollary 4.10, we state and prove the following lemma.

Lemma 4.11. Let γ be an hyperbolic isometry acting on a δ-hyperbolic space (X, d) and verifying
s(γ) > 11

2 δ, let c ∈ G(γ) be any oriented geodesic from γ− to γ+, and let x ∈ M(γ), we then
have

(i) d(x, γ x) ≤ `(γ) + 4δ,

(ii) if c(tk) denotes a projection of γkx on c, then the sequence (tk)k∈Z is strictly increasing.

Proof of (ii). By contradiction, assume that the sequence (tk)k∈Z is not strictly increasing. As

tk → ±∞ when k → ±∞, there exists p ∈ Z such that tp ≤ Min
(
tp−1, tp+1

)
. Let us set

δk = d
(
γk x, c(tk)

)
, Proposition 8.10 (i) implies that δk ≤ 2δ for all k ∈ Z (since c and γk ◦c are

two geodesics of G(γ)). We then have the following.

• If tp ≤ tp−1 ≤ tp+1, then the triangle inequality, Lemma 8.23 (ii), and the hypothesis made
on s(γ) imply that:

tp+1 − tp + 2δp−1 + δp+1 + δp ≥ d(γp x, γp−1 x) + d(γp−1 x, γp+1 x)

≥ d(x, γ x) + d(x, γ2 x) ≥ 2d(x, γ x) + s(γ)− δ ≥ 3 s(γ)− δ > 25

2
δ . (11)

As δk ≤ 2δ for all k ∈ Z, we deduce from this inequality that d
(
c(tp), c(tp+1)

)
> 3δ and we

can apply Lemma 8.9 to get:

d(x, γ x) + 6δ = d(γp x, γp+1 x) + 6δ ≥ tp+1− tp+ δp+1 + δp ≥ 2d(x, γ x) + s(γ)− δ− 2δp−1 ,

where the last inequality comes from (11); we deduce that 2s(γ) ≤ d(x, γ x) + s(γ) ≤
7δ + 2δp−1 ≤ 11δ, which contradicts the hypothesis on s(γ).
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• If tp ≤ tp+1 ≤ tp−1, exchanging the roles of p− 1 and p+ 1 and using arguments similar to
the previous case we get: 2s(γ) ≤ d(x, γ x) + s(γ) ≤ 7δ + 2δp+1 ≤ 11δ, in contradiction to
the hypothesis on s(γ).

This shows that the sequence (tk)k∈Z is strictly increasing.

Proof of (i). As we saw before, for all k ∈ N∗, δ0, δk ≤ 2δ, the triangle inequality gives:

d(x, γk x)− 4δ ≤ d(x, γk x)− δ0 − δk ≤ |tk − t0| ≤ d(x, γk x) + δ0 + δk ≤ d(x, γk x) + 4δ .

From (ii) we know that the sequence (ti)i∈N is increasing, we deduce that

lim
k→+∞

(
1

k

k−1∑
i=0

|ti+1 − ti|
))

= lim
k→+∞

(
1

k
|tk − t0|

))
= lim
k→+∞

(
1

k
d
(
x, γk x

))
= `(γ) ,

which implies that infi∈N |ti+1 − ti| ≤ `(γ). We deduce that

d(x, γ x) = inf
i∈N

d(γi x, γi+1 x) ≤ inf
i∈N

(|ti+1 − ti|+ δi + δi+1) ≤ `(γ) + 4δ .

Proof of Proposition 4.9. Notice that, in the assertion (i) as in the assertion (ii) of Proposition
4.9, the hypotheses imply that a and b are hyperbolic (by Lemma 8.19) because `(a), `(b) > 0 in
both cases (in the case of assertion (i), this is deduced from the inequality `(γ) ≥ s(γ)− δ > 12δ
proved in Lemma 8.23 (i)). To simplify, let us denote by N1 the smallest integer strictly greater

than
13δ

Min(`(a), `(b))
. We first show that (i) =⇒ (ii). Indeed, for every p, q ≥ N1, the group

〈ap, bq〉 is not virtually cyclic (by the proposition 8.42 (vi)), and s(ap) ≥ `(ap) ≥ N1`(a) > 13δ,
while s(bq) ≥ `(bq) ≥ N1`(b) > 13δ. Property (i) then implies that one of the two semi-group
generated by {ap, bq} or by {ap, b−q} is free.

Proof of (i) : Under the hypotheses of (i), the lemma 8.23 (i) proves that `(a) ≥ s(a)− δ > 12δ
and that `(b) ≥ s(b)− δ > 12δ; a consequence is that

∀k ∈ Z∗ , s(ak) > max
(
13, 12|k|

)
· δ and s(bk) > max

(
13, 12|k|

)
· δ ; (12)

indeed, this property is satisfied (by hypothesis) when k = ±1. When |k| ≥ 2, we have s(ak) ≥
`(ak) = |k|`(a) > |k| · 12δ ≥ 24δ and we show in the same way that s(bk) > |k| · 12δ ≥ 24δ.

a− and a+ (resp. b− and b+) being the fixed points of a (resp. of b), we denote by ca (resp. cb)
one of the oriented geodesics from a− to a+ (resp. from b− to b+). If the limit sets {a+, a−}
and {b+, b−} have a common point, they are identical by Proposition 8.42 (i) and are the fixed
points of all the elements of 〈a, b〉, which in turn implies, from Proposition 8.42 (ii), that 〈a, b〉
is virtually cyclic which is excluded. Hence {a+, a−} and {b+, b−} have no common point.
Proposition 8.11 (ii) then shows that there exist points x0 = ca(s0) and x′0 = ca(s′0) on the
geodesic line ca such that, for every sequence (tn)n∈N going to +∞, there exists a sequence
(εn)n∈N of strictly positive real numbers, going to zero when n→ +∞, such that, for all t ∈ R,

d (ca(t), cb(tn)) ≥ d (cb(tn), x0) + d (x0, ca(t))− 5δ − εn . (13)

d (ca(t), cb(−tn)) ≥ d (cb(−tn), x′0) + d (x′0, ca(t))− 5δ − εn . (14)

By eventually changing b in b−1 (which changes the orientation of cb) hence exchanging x0 and
x′0, we may assume in the sequel that s′0 ≤ s0.

Let us note y0 = cb(r0) a projection of x0 on the geodesic cb. Denote by ca(sk) a projection of
akx0 on ca and by cb(rq) a projection of bqy0 on cb. Proposition 8.10 (i), applied to the geodesics
ca and ak ◦ ca (resp. to the geodesics cb and bq ◦ cb), gives:

∀k, q ∈ Z , d
(
akx0, ca(sk)

)
≤ 2δ and resp. d

(
bqy0, cb(rq)

)
≤ 2δ . (15)
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For all q ∈ N∗ and all k ∈ Z∗, we consider a sequence (tn)n∈N which goes to +∞. By hypothesis
s(b) > 13δ, we can then apply Lemma 4.11, which shows that the sequence n → rn is strictly
increasing. In particular, we have r0 < rq and hence, when n is large enough, d

(
y0, cb(tn)

)
=

d
(
y0, cb(rq)

)
+ d
(
cb(rq), cb(tn)

)
. Applying Lemma 8.8 and the triangle inequality, gives, when n

is large enough,

d
(
x0, cb(tn)

)
+ 2δ ≥ d

(
x0, y0

)
+ d
(
y0, cb(tn)

)
= d
(
bqx0, b

qy0

)
+ d
(
y0, cb(rq)

)
+ d
(
cb(rq), cb(tn)

)
≥ d
(
bqx0, cb(rq)

)
− 2d

(
cb(rq), b

qy0

)
+ d
(
y0, b

qy0

)
+ d
(
cb(rq), cb(tn)

)
.

From the second inequality (15) we deduce:

d
(
x0, cb(tn)

)
≥ d
(
bqx0, cb(tn)

)
− 6δ + d

(
y0, b

qy0

)
. (16)

Applying inequality (13) and the quadrangle inequality (Lemma 8.3 (ii)), we get, when εn is
small enough,

d
(
x0, b

qx0

)
+ d
(
x0, ca(sk)

)
+ d
(
x0, cb(tn)

)
− 7δ − εn ≤ d

(
x0, b

qx0

)
+ d
(
ca(sk), cb(tn)

)
− 2δ

≤ Max
[
d
(
x0, ca(sk)

)
+ d
(
bqx0, cb(tn)

)
; d
(
bqx0, ca(sk)

)
+ d
(
x0, cb(tn)

)]
≤ d
(
bqx0, ca(sk)

)
+ d
(
x0, cb(tn)

)
; (17)

where the last inequality follows from Inequality (16) and from the fact that d
(
x0, b

qx0

)
+

d
(
y0, b

qy0

)
≥ 2s(bq) > 26δ by Property (12). When n is large enough, for all q ∈ N∗ and all

k ∈ Z∗, applying the inequality Min
[
d
(
x0, b

qx0

)
, d
(
x0, a

kx0

)]
≥ Min(s(ak) , s(bp)) > 13δ + εn

(which follows from Property (12) and from the fact that n is large), applying Inequalities (17),
(15) and finally the triangle inequality, we deduce that

Max
[
d
(
x0, b

qx0

)
, d
(
x0, a

kx0

)]
+ 2δ < d

(
x0, b

qx0

)
+ d
(
x0, a

kx0

)
− 11δ − εn

≤ d
(
x0, b

qx0

)
+ d
(
x0, ca(sk)

)
− 9δ − εn ≤ d

(
bqx0, ca(sk)

)
− 2δ ≤ d

(
bqx0, a

kx0

)
. (18)

Let us now consider the case where k ∈ N∗ and q ∈ −N∗ and where (tn)n∈N is a real valued
sequence which goes to +∞. Lemma 4.11 and the hypothesis on s(a) ensure that the sequence
k 7→ sk is strictly increasing. We have s′0 ≤ s0 < sk and then d

(
x′0, ca(sk)

)
= d

(
x′0, x0

)
+

d
(
x0, ca(sk)

)
. Inequality (14) and the triangle inequality yields, when n is large enough,

d (ca(sk), cb(−tn)) + 5δ + εn ≥ d (cb(−tn), x′0) + d (x′0, ca(sk))

≥ d (cb(−tn), x′0) + d (x′0, x0) + d(x0, ca(sk)) ≥ d (cb(−tn), x0) + d (x0, ca(sk)) .

From this and from the Quadrangle Lemma 8.3 (ii), when n ∈ N∗ is large enough, we get

d(x0, b
qx0) + d (cb(−tn), x0) + d (x0, ca(sk))− 7δ − εn ≤ d(x0, b

qx0) + d (ca(sk), cb(−tn))− 2δ

≤ Max [d(x0, ca(sk)) + d(bqx0, cb(−tn)); d(bqx0, ca(sk)) + d(x0, cb(−tn)] . (19)

As Lemma 4.11 and the hypothesis on s(b) ensures that n 7→ rn is strictly increasing, we
have −tn < rq < r0 (when n is large), which implies that d

(
y0, cb(−tn)

)
= d

(
y0, cb(rq)

)
+

d
(
cb(rq), cb(−tn)

)
. With this equality, Lemma 8.8 and the triangle inequality, we get

d(x0, cb(−tn)) + 2δ ≥ d(x0, y0) + d(y0, cb(−tn)) = d(x0, y0) + d(y0, cb(rq)) + d(cb(rq), cb(−tn))

≥ d(x0, y0) + d(y0, b
qy0)− 2δ + d(cb(rq), cb(−tn)) ,

where the last inequality follows from (15). From this last inequality, using the triangle inequality,
the fact that d(y0, b

qy0) > 13δ and (15), we deduce

d(bqx0, cb(−tn)) < d(bqx0, b
qy0) + d(bqy0, cb(rq)) + d(cb(rq), cb(−tn)) + d(y0, b

qy0)− 13δ

≤ d(x0, y0) + d(cb(rq), cb(−tn)) + d(y0, b
qy0)− 11δ ≤ d(x0, cb(−tn))− 7δ ,
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which implies

d(x0, ca(sk)) + d(bqx0, cb(−tn)) < d(x0, ca(sk)) + d(x0, cb(−tn))− 7δ

< d(x0, b
qx0) + d (cb(−tn), x0) + d (x0, ca(sk))− 7δ − εn .

Plugging this last inequality in (19), we deduce that

d(x0, b
qx0) + d (x0, ca(sk))− 7δ − εn ≤ d(bqx0, ca(sk))

which yields, using the triangle inequality and estimates (15),

d(x0, b
qx0) + d

(
x0, a

kx0

)
− 9δ − εn ≤ d(bqx0, a

kx0) + 2δ .

Now, applying the inequality Min
[
d
(
x0, b

qx0

)
, d
(
x0, a

kx0

)]
≥ Min(s(ak), s(bp)) > 13δ + εn

(which follows from property (12) and is valid when εn is small enough), we deduce that

∀k, p ∈ N∗ , Max
[
d(x0, b

qx0), d(x0, a
kx0

]
+ 2δ < d(bqx0, a

kx0) .

This last inequality and (18) show that, for all (p, q) ∈ (Z∗ × Z∗) \ (Z− × Z−), we have

d(bqx0, a
kx0) > Max

[
d(x0, b

qx0), d(x0, a
kx0

]
+ 2δ . (20)

Proposition 4.6 (ii) then shows that the semi-group generated by a and b is free. This ends the
proof of (i) and hence of Proposition 4.9.

Proof of Corollary 4.10. If % is the representation Γ→ Isom(X, d) associated to the action of Γ
on (X, d), Lemma 5.8 (v) and (vi) proves that %(a) and %(b) are hyperbolic isometries of (X, d)
satisfying `(%(a)) = `(a) > 0 and `(%(b)) = `(b) > 0. As 〈a, b〉 is non virtually cyclic and as
the action is proper, Lemma 5.8 (ii) and (vii) guarantees that %(a) and %(b) generate a non

virtually cyclic discrete subgroup of isometries of (X, d). For every p, q >
13δ

Min(`(a), `(b))
=

13δ

Min
(
`(%(a)), `(%(b))

) , Proposition 4.9 (ii) (applied to %(a) and %(b)) implies that %(ap) and

%(bq) (or %(ap) and %(b−q)) generate a free semi-group; eventually changing b in b−1, suppose
that %(ap) and %(bq) generate a free semi-group. If ap and bq do not generate a free semi-group
then any non trivial relation between positive powers of ap and bq maps to a similar non trivial
relation between positive powers of %(ap) and %(bq), in contradiction with the fact that %(ap)
and %(bq) generate a free semi-group. Hence ap and bq generate a free semi-group.

4.3 When some Margulis constant is bounded below:

For every group G and every A,B, S ⊂ G, we denote by A·B the image of A×B by the map (γ, g) 7→ γ ·g
and define (by induction) Sk as Sk−1 · S.
The aim of this subsection is to prove that, for any finite set S of isometries of any δ-hyperbolic space
(X, d),which generates a non virtually cyclic group 〈S〉 of isometries, if the Margulis constant of S (see
Definitions 4.12) is ≥ C δ, then S16 contains two elements which generate a free semi-group. In the case
where #S = 2, modifying a little the definition of the Margulis constant, we get a sufficient condition
for the group 〈S〉 to be free. These two “Margulis constants” are defined as follows:

Definitions 4.12. For any metric space (X, d), denote by Isom(X, d) the group of the isometries
of (X, d) and define

(i) the Margulis constant L(a, b) of a pair {a, b} ⊂ Isom(X, d) as the infimum of the function
(x, p, q) 7→ Max [ d(x, apx) ; d(x, bqx) ] for all the (x, p, q) ∈ X × Z∗ × Z∗,

(ii) the Margulis constant L∗(S) of a finite set S ⊂ Isom(X, d) as the infimum of the function
x 7→ Maxγ∈S d(x, γ x) for all the x ∈ X.

Remark that, as L(a, b) ≤ L∗({a, b}), assuming a lower bound for L∗({a, b}) is a weaker hypoth-
esis than assuming a lower bound for L(a, b).
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4.3.1 When the Margulis constant L∗ is bounded below:

a) When L∗ is applied to a pair of isometries

Theorem 4.13. On any δ-hyperbolic space (X, d), for every pair {a, b} ⊂ Isom(X, d) such that
L∗({a, b}) ≥ 23

2 δ and which generates a discrete and non virtually nilpotent subgroup, one has

(i) either Max[`(a), `(b)] ≥ δ and one of the semi-groups generated by {a14, ba14b−1} or by
{a14, ba−14b−1} is free,

(ii) or all the elements γ ∈ {ab, ab−1, ba, ba−1, a−1b, a−1b−1, b−1a, b−1a−1} verifies `(γ) ≥ 2 δ
and one of the semi-groups generated by {(ab)7, (ba)7} or by {(ab)7, (ba)−7} is free,

Before proving this Theorem, let us first establish the two following preliminary Lemmas:

Lemma 4.14. Let (X, d) be a δ-hyperbolic space, for any pair {a, b} ⊂ Isom(X, d) such that
L∗({a, b}) > 3 δ + Max

(
`(a), `(b)

)
, for every x ∈ X, the middle points ma (resp. mb) of

any geodesic segment from x to ax (resp. from x to bx) satisfy d(ma,mb) ≥ L∗({a, b}) −(
1
2

(
`(a) + `(b)

)
+ 3 δ

)
Proof. For sake of simplicity, we set L∗ := L∗({a, b}) and D := d(ma,mb); consider any geodesic
c : [0, D]→ X from ma to mb. By Lemma 8.21, we have

d(ma, ama) ≤ 3 δ + `(a) ; d(mb, bmb) ≤ 3 δ + `(b)

From this and from the triangle inequality, it follows that d
(
c(t), a ◦ c(t)

)
≤ 2 t+ 3 δ + `(a) and

d
(
c(t), b ◦ c(t)

)
≤ 2(D − t) + 3 δ + `(b); by the definition of L∗({a, b}), this gives, ∀t ∈ [0, D]:

L∗ ≤ Max
[
d
(
c(t), a ◦ c(t)

)
, d
(
c(t), b ◦ c(t)

) ]
≤ Max

[
2 t+ `(a) , 2(D − t) + `(b)

]
+ 3 δ . (21)

Applying this inequality for t = 0 and t = D (and the hypothesis `(a), `(b) < L∗ − 3δ) yields

`(b) < L∗ − 3 δ ≤ 2D + `(a) and `(a) < L∗ − 3 δ ≤ 2D + `(b) ;

these inequalities imply that |`(b) − `(a)| < 2D, thus that t0 := 1
4

(
2D + `(b) − `(a)

)
verifies

0 < t0 < D; we may then apply the inequality (21) to t = t0 and obtain:

L∗ − 3 δ ≤ Max
[
2 t0 + `(a) , 2(D − t0) + `(b)

]
= d(ma,mb) +

1

2

(
`(a) + `(b)

)
,

which concludes.

Lemma 4.15. Let (X, d) be a δ-hyperbolic space, for any finite set S ⊂ Isom(X, d) such that
L∗(S) > 4 δ, for any positive value ε < L∗(S)−4 δ and any point x such that Maxγ∈S d(x, γ x) <
L∗(S) + ε, if a ∈ S verifies d(x, a x) = Maxγ∈S d(x, γ x), then either `(a) > δ or there exists
b ∈ S \ {a, a−1} such that d(x, b x) ≥ L∗(S)− δ − ε.

Proof. If `(a) > δ, the lemma is proved, we shall therefore suppose that `(a) ≤ δ.
Let us fix geodesic segments [x, a x], [x, a2x] and [a x, a2x] := a([x, a x]), and a geodesic triangle
∆ = [x, a x, a2x], whose sides are these geodesic segments. Let us consider its approximation by a
tripod f∆ : (∆, d)→ (T∆, dT ) (the construction of this approximation is described before Lemma
8.1); let c be the branching point of this tripod and let us denote by α, β, γ the respective lengths
of the branches [c, f∆(a x)], [c, f∆(a2x)], [c, f∆(x)] of this tripod. By Lemma 8.1, d(x, a x),
d(x, a2x) and d(a x, a2x) are respectively equal to dT (f∆(x), f∆(a x)), dT

(
f∆(x), f∆(a2x)

)
and

dT
(
f∆(a x), f∆(a2x)

)
and we deduce that α+ γ = d(x, a x) = d(a x, a2x) = α+ β (which means

that β = γ), and that d(x, a2x) = γ+β = 2β. A consequence of this and of Lemma 8.20 (i) is
that 2β ≤ α+ β + `(a) + 2δ and so that

α ≥ 1

2

(
d(x, a x)− `(a)

)
− δ ≥ 1

2

(
L∗(S)− 3δ

)
>

1

2
(δ + ε) .
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Let y be the point of [x, a x] such that d(x, y) = 1
2 (δ + ε), then a y is the point of [a x, a2x] such

that d(a x, a y) = 1
2 (δ + ε); it follows from Lemma 8.1 that dT (f∆(a x), f∆(a y)) = 1

2 (δ + ε) < α
and that the point f∆(a y) is on the branch [c, f∆(a x)] of the tripod. It comes from this (and from
the fact that dT (f∆(x), f∆(a x)) ≥ L∗(S) > 4 δ + ε > dT (f∆(a x), f∆(a y)) + dT (f∆(x), f∆(y)))
that

dT (f∆(y), f∆(a y)) = dT (f∆(x), f∆(a x))− dT (f∆(a x), f∆(a y))− dT (f∆(x), f∆(y))

< L∗(S) + ε−δ − ε .

It follows from Lemma 8.3 (i) that d(y, a y) = d(y, a−1y) ≤ dT (f∆(y), f∆(a y)) + δ < L∗(S),
there therefore exists some b ∈ S such that d(y, b y) ≥ L∗(S), and we automatically get that
b /∈ {a, a−1}, the triangle inequality concludes that d(x, b x) ≥ L∗(S)− δ − ε.

Proof of Theorem 4.13. We may assume that Max[`(a), `(b)] < δ (if not, the Theorem 4.13
is automatically verified); hence we have to prove that, under this assumption, every γ ∈
{ab, ab−1, ba, a−1b} verifies `(γ) ≥ 2 δ. As L∗({a, b}) = L∗({a, b−1}) = L∗({b, a}) = L∗({a−1, b})
(because d(x, γ x) is always equal to d(x, γ−1 x)), if the pair {a, b} satisfies the assumptions of
Theorem 4.13, then these assumptions are also satisfied by the pairs {a, b−1}, {b, a} and {a−1, b};
it is thus sufficient to prove that, under the assumptions of Theorem 4.13, if Max[`(a), `(b)] < δ,
then `(ab) ≥ 2 δ. By contradiction, let us suppose that `(ab) < 2 δ.
For any ε > 0 such that ε < δ −Max[`(a), `(b)], let us fix some point x such that

L∗({a, b}) ≤ Max [ d(x, a x) ; d(x, b x) ] < L∗({a, b}) + ε .

The above assumptions and the lemma 8.24 then give:

d(a x, b x) ≤ Max [d(x, a x) ; d(x, bx)] + 6 δ . (22)

On the other hand, as the hypothesis and the choice of ε imply that L∗({a, b}) ≥ 23
2 δ > 4 δ+2 ε,

the aforementioned choice of x and the lemma 4.15 prove that

|d(x, a x)− d(x, b x)| = Max [d(x, a x) ; d(x, b x)]−Min [d(x, a x) ; d(x, b x)] < δ + 2 ε . (23)

For the sake of simplicity, let us denote by L∗ the Margulis constant L∗({a, b}) and by ma (resp.
by mb) the middle point of some geodesic segment from x to ax (resp. from x to bx). From the
assumptions, it comes that L∗ > 4 δ > 3 δ + Max

(
`(a), `(b)

)
and, applying Lemma 4.14, that

d(ma,mb) ≥ L∗ −
1

2

(
`(a) + `(b)

)
− 3 δ >

1

2

(
L∗ +

9

2
δ −Min[`(a), `(b)]

)
, (24)

where the last inequality follows from the assumption L∗({a, b}) ≥ 23
2 δ > 21

2 δ + Max[`(a), `(b)].

Let us now consider any geodesic triangle ∆ = [x, a x, b x] (with vertices x, a x, b x) and its
approximation by a tripod f∆ : (∆, d) → (T∆, dT ) (the construction of this approximation is
described in the beginning of the subsection 8.1); let c be the branching point of this tripod and
let us denote by α, β, γ the respective lengths of the branches [c, f∆(a x)], [c, f∆(b x)], [c, f∆(x)],
of this tripod. A consequence of Lemma 8.1 is that f∆(ma) and f∆(mb) are the middle points of
the sides [f∆(x), f∆(a x)] and [f∆(x), f∆(b x)] of this tripod; from this, from Lemma 8.3 (i) and
from (24) we deduce that

dT (f∆(ma), f∆(mb)) ≥ d(ma,mb)− δ >
1

2

(
L∗ +

5

2
δ −Min[`(a), `(b)]

)
. (25)

A consequence of Lemma 8.1 and of (23) and (25) is that

|dT (f∆(x), f∆(ma))− dT (f∆(x), f∆(mb)) | = |d(x,ma)− d(x,mb)| =
1

2
|d(x, a x)− d(x, b x)|

<
δ

2
+ ε < dT (f∆(ma), f∆(mb)) ;
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it follows that the side [f∆(x), f∆(a x)] := [f∆(x), c]∪ [c, f∆(a x)] of the tripod contains f∆(ma),
but not f∆(mb) and that the side [f∆(x), f∆(b x)] := [f∆(x), c]∪ [c, f∆(b x)] of the tripod contains
f∆(mb), but not f∆(ma), which proves that f∆(ma) (resp. f∆(mb)) belongs to the branch
]c, f∆(a x)] (resp. to the branch ]c, f∆(b x)]). From this we deduce that

dT (c, f∆(ma)) = dT (f∆(x), f∆(ma))− dT (c, f∆(x)) =
α− γ

2
; dT (c, f∆(mb)) =

β − γ
2

(where the proof of the second equality is similar to the proof of the first one), proving by the
way that γ ≤ Min(β, α). A consequence of these last equalities, of the fact that f∆(ma) (resp.
f∆(mb)) belongs to two different branches of the tripod, and of the first inequalities of (25) and
(24) is that

α− γ
2

+
β − γ

2
= dT (f∆(ma), f∆(mb)) ≥ d(ma,mb)− δ ≥ L∗ −

1

2

(
`(a) + `(b)

)
− 4 δ . (26)

As, by Lemma 8.1, d(x, a x), d(x, b x) and d(a x, b x) coincide respectively with dT (f∆(x), f∆(a x)),
dT (f∆(x), f∆(b x)) and dT (f∆(a x), f∆(b x)), and then with γ+α, γ+β and α + β respec-
tively, we deduce from (22) and (23) that Min(α, β) − 6 δ ≤ γ ≤ Min(α, β) and Min(α, β) >
Max(α, β)−δ−2 ε; plugging these two estimates in (26), and recalling that Max[`(a), `(b)] < δ−ε
by the choice of ε, we get

δ

2
+ε >

1

2

(
Max(α, β)−Min(α, β)

)
=
α+ β

2
−Min(α, β) ≥ α+ β

2
−γ−6 δ =

α− γ
2

+
β − γ

2
−6 δ

≥ L∗ − 1

2

(
`(a) + `(b)

)
− 10 δ > L∗ − 11 δ + ε ,

in contradiction with the assumption L∗ ≥ 23
2 δ. Hence the assumption `(ab) < 2 δ is false, and

this proves the first part of Theorem 4.13.

Proof of the second part of Theorem 4.13: if the subgroup 〈a, b〉 generated by a and b is discrete
and not virtually cyclic, then firstly 〈a, bab−1〉 is not virtually cyclic by Proposition 8.42 (v) and
secondly, as 〈a, b〉 = 〈ab, b〉 is not virtually cyclic, 〈ab, ba〉 = 〈ab, b(ab)b−1〉 is not virtually cyclic
too by Proposition 8.42 (v). From the first part of Theorem 4.13, we know that

• either `(bab−1) = `(a) ≥ δ, and the proposition 4.9 (ii) then implies that one of the two
semi-group generated by {a14, ba14b−1} or by {a14, ba−14b−1} is free,

• either `(b) ≥ δ, and the proposition 4.9 (ii) then implies that one of the two semi-group
generated by {b14, ab14a−1} or by {b14, ab−14a−1} is free,

• or `(ba) = `(ab) ≥ 2 δ, and the proposition 4.9 (ii) then implies that one of the two semi-group
generated by {(ab)7, (ba)7} or by {(ab)7, (ba)−7} is free.

Lemma 4.16. Let (X, d) be a δ-hyperbolic space, for any pair {a, b} of isometries of (X, d), and
for any point x ∈ X such that d(x, a x) ≥ d(x, b x), if `(a), `(b), `(ab), `(b−1a) and `(b−2a) are
(strictly) bounded above by δ, then the middle point m of any geodesic segment from x to ax
satisfies Max[d(m, am) ; d(m, bm)] < 31

2 δ.

Though it looks similar to Theorem 4.13 (assuming however stronger hypotheses), this Lemma
is original for the point m only depends on a and not on b. This point will be important in
the proof of Theorem 4.17, which extends Theorem 4.13 to the case where the pair of isometries
{a, b} is replaced by any finite set S of isometries.

Proof. Lemma 8.21 and the assumptions prove that

d(m, am) ≤ 3 δ + `(a) < 4 δ (27)

It is thus sufficient to prove that d(m, bm) < 31
2 δ. As `(a), `(b), `(ab) < δ, Lemma 8.24 yields

d(ax, bx) ≤ Max [d(x, ax) ; d(x, bx)] +
11

2
δ = d(x, ax) +

11

2
δ . (28)
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Similarly, as `(b−1), `(b−1a), `(b−2a) < δ, Lemma 8.24 also gives

d(b−1x, b−1ax) ≤ Max [d(x, b−1x) ; d(x, b−1ax)] +
11

2
δ ,

hence

d(x, ax) ≤ Max [d(x, bx) ; d(ax, bx)] +
11

2
δ . (29)

Let us fix geodesic segments [x, a x], [x, b x] and [a x, b x], and a geodesic triangle ∆ = [x, a x, b x],
whose sides are these geodesic segments. Let us consider its approximation by a tripod f∆ :
(∆, d) → (T∆, dT ) (the construction of this approximation is described in the beginning of the
subsection 8.1); let c be the branching point of this tripod and let us denote by α, β, γ the respec-
tive lengths of the branches [c, f∆(a x)], [c, f∆(b x)], [c, f∆(x)], of this tripod. By Lemma 8.1
d(x, a x), d(x, b x) and d(a x, b x) are respectively equal to dT (f∆(x), f∆(a x)), dT (f∆(x), f∆(b x))
and dT (f∆(a x), f∆(b x)) and we get:

d(x, a x) = γ+α , d(x, b x) = γ+β , d(a x, b x) = α+ β . (30)

The assumption d(x, b x) ≤ d(x, a x) means that β ≤ α. A consequence of (30) and (28) is that
β ≤ γ + 11

2 δ, while (30) and (29) imply that Min(γ, α) ≤ β + 11
2 δ. We summarize all these

estimates in the inequalities:

min(γ, α)− 11

2
δ ≤ β ≤ min

(
γ+

11

2
δ , α

)
(31)

• First case: if α ≤ γ: Let us denote by m1 the middle point of [x, b x], as β ≤ α, one

has 0 <
γ+β

2
≤ γ+α

2
≤ γ, which means that f∆(m) and f∆(m1) both belong to the branch

[c, f∆(x)] of the tripod T and satisfy

dT (f∆(m) , f∆(m1)) =
γ+α

2
− γ+β

2
≤ 11

4
δ ,

where the last of these inequalities is derived from (31). A consequence of this and of the Lemma
8.3 (i) is that d(m,m1) ≤ 15

4 δ. On the other hand, applying the assumption and Lemma 8.21, it
comes: d(m1, bm1) ≤ 3 δ + `(b) < 4 δ. These two last estimates and the triangle inequality give:

d(m, bm) ≤ d(m1, bm1) + 2 d(m,m1) <
23

2
δ .

• Second case: if α > γ: Let us denote now by m2 the middle point of [a x, b x]; as
γ+α

2

and
α+ β

2
are both smaller than α, the points f∆(m) and f∆(m2) both belong to the branch

[c, f∆(a x)] of the tripod T and satisfy

dT (f∆(m) , f∆(m2)) =

∣∣∣∣γ+α

2
− α+ β

2

∣∣∣∣ ≤ 11

4
δ ,

because |β − γ | ≤ 11
2 δ by (31). This inequality and Lemma 8.3 (i) yields d(m,m2) ≤ 15

4 δ.
The image by a−1 of [a x, b x] being denoted by [x, a−1bx], whose middle point is m′2 := a−1m2,
Lemma 8.21 and the fact that `(a−1b) = `(b−1a) < δ by hypothesis imply that

d(m2, ba
−1m2) = d(m′2, a

−1bm′2) ≤ 3 δ + `(a−1b) < 4 δ .

Using this last inequality and the aforementioned inequality d(m,m2) ≤ 15
4 δ, we get:

d(m, ba−1m) ≤ d(m2, ba
−1m2) + 2 d(m,m2) <

23

2
δ ,

This last estimate, together with (27) and with the triangle inequality gives:

d(m, bm) ≤ d(m, ba−1m) + d(ba−1m, bm) <
23

2
δ + d(m, am) <

31

2
δ .

This upper bound of d(m, bm), together with (27), ends the proof.
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b) When L∗ is applied to any finite set of isometries

For any finite set Σ of elements of a given group G, we denote by Σ−1 the set {γ : γ−1 ∈ Σ}; Σ
is said to be “symmetric” if Σ−1 = Σ. To any such finite set Σ, one associates its ”symmetrized
set” S := Σ∪Σ−1; notice that the groups generated by Σ and by S = Σ∪Σ−1 coincide, that their
Cayley graphs verify GS = GΣ, and thus that their algebraic word distances dS and dΣ (associated
respectively to the sets of generators S and Σ, see their definition in section 2) coincide.

Theorem 4.17. Let (X, d) be a δ-hyperbolic space, for any finite symmetric set S of isometries,
if L∗(S) ≥ 31

2 δ, then

(i) there exists γ0 ∈ S3 such that `(γ0) ≥ δ

(ii) moreover, if the subgroup generated by S is discrete and not virtually cyclic, there ex-
ists σ ∈ S such that one of the two semi-groups generated by {γ14

0 , σ γ14
0 σ−1} or by

{γ14
0 , σ γ−14

0 σ−1} is free.

Proof. Arguing by contradiction, let us suppose that `(γ) < δ for every γ ∈ S3, let us fix any
point x ∈ X and denote by a an element of S such that d(x, a x) = Maxg∈S d(x, gx). For any
g ∈ S, we have d(x, a x) ≥ d(x, gx), and (by assumption) `(a), `(g), `(ag), `(g−1a) and `(g−2a)
are (strictly) bounded above by δ, Lemma 4.16 then proves that the middle point m of any
geodesic segment from x to ax satisfies d(m, gm) < 31

2 δ; as this inequality is valid for every
g ∈ S, we deduce that L∗(S) < 31

2 δ, a contradiction with the hypothesis which proves (i).
From (i), there exists γ0 ∈ S3 such that `(γ0) ≥ δ, on the other hand, there exists σ ∈ S such
that the subgroup generated by {γ0, σ} is not virtually cyclic, otherwise (by the Proposition
8.42 (vii)) the subgroup generated by S would be virtually cyclic. By the proposition 8.42 (v),
we deduce that {γ0 , σ γ0 σ

−1} generates a non virtually cyclic discrete subgroup. Hence we
may apply the proposition 4.9 (ii) to the pair {γ0 , σ γ0 σ

−1}, which proves that one of the two
semi-groups generated by {γ14

0 , σ γ14
0 σ−1 or by {γ14

0 , σ γ−14
0 σ−1} is free.

4.3.2 When the Margulis constant L is bounded below:

Let us now assume that a and b are hyperbolic isometries, we then have

Lemma 4.18. If the group 〈a, b〉 generated by a and b is a non virtually cyclic discrete subgroup
of the isometry group of (X, d), then, for all R > 0 such that MR(a) and MR(b) are non empty,
there exists points x0 ∈ MR(a) and y0 ∈ MR(b) such that d(x0, y0) is the minimum of d(x, y)
among (x, y) ∈MR(a)×MR(b).

Proof. Let us denote by a+ and a− (resp. b+ and b−) the points in the limit set of a (resp. of b).
Let us assume that there exists a sequence (xn, yn) of elements of MR(a)×MR(b) which goes to
infinity and such that d(xn, yn) is bounded. In the following we assume that xn goes to infinity,
the argument would be the same with yn. In this case, Lemma 8.34 (ii) shows the existence of
a subsequence xnk which converges to a+ or a− and, as d(xnk , ynk) is bounded, it follows that
the sequence ynk converges towards a+ or a−. Lemma 8.34 (ii) shows that the limit of ynk can
only be b+ or b−, hence we have {a−, a+}∩{b−, b+} 6= ∅, which implies (by Proposition 8.42 (i))
that {a−, a+} = {b−, b+} and consequently that all elements of the group 〈a, b〉 have {a−, a+}
as fixed points set. Then, from Proposition 8.42 (ii) we deduce that 〈a, b〉 is virtually cyclic.
This contradicts the hypothesis, then d(x, y) goes to +∞ when (x, y) does. This ensures the
existence of a point (x0, y0) ∈ MR(a) ×MR(b) where the function (x, y) 7→ d(x, y) achieves its
minimum.

Clearly, Lemma 4.18 is trivial when MR(a) ∩MR(b) 6= ∅ since then (x0, x0) with x0 ∈ MR(a) ∩
MR(b) is a solution. It is thus important to have a criterion characterizing those values of R
such that MR(a) ∩MR(b) = ∅. This is the goal of the next result.

Lemma 4.19. Let R > 0 be such that MR(a) and MR(b) are non-empty. If L(a, b) > R, the
Margulis domains MR(a) and MR(b) are disjoints. Conversely, if the Margulis domains MR(a)
and MR(b) are disjoints, then L(a, b) ≥ R.
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Proof. If there exists x ∈MR(a) ∩MR(b), there exists (p, q) ∈ Z∗ × Z∗ such that d(x, apx) ≤ R
and d(x, bqx) ≤ R. From the definition de L(a, b), this implies that L(a, b) ≤ R.

Conversely, if the Margulis domains MR(a) and MR(b) are disjoints, then every point x ∈ X
satisfies x ∈ X \MR(a) or x ∈ X \MR(b), which implies that, for all p, q ∈ Z∗, d(x, apx) > R or
d(x, bqx) > R. Taking the infimum, we deduce that L(a, b) ≥ R.

Theorem 4.20. Let (X, d) be a δ-hyperbolic space. Let a and b be two hyperbolic isometries
acting on (X, d) such that the subgroup 〈a, b〉 is discrete and non-virtually cyclic. If the Margulis
constant satisfies L(a, b) > 23δ, we then have the following alternatives:

(i) if `(a), `(b) ≤ 13δ, the subgroup generated by {a, b} is free,

(ii) if `(a), `(b) > 13δ, one of the two semi-groups generated by {a, b} or by {a, b−1} is free,

(iii) if `(a) ≤ 13δ and `(b) > 13δ, one of the two semi-groups generated by {b, aba−1} or by
{b, ab−1a−1} is free,

(iv) if `(a) > 13δ and `(b) ≤ 13δ, one of the two semi-groups generated by {a, bab−1} or by
{a, ba−1b−1} is free.

The proof relies of the following proposition:

Proposition 4.21. Let (X, d) be a δ-hyperbolic space. Let a and b be two hyperbolic isometries
acting on (X, d) such that the subgroup 〈a, b〉 is discrete and non-virtually cyclic. If 7 the Margulis
constant L(a, b) satisfies L(a, b) −Max[`(a), `(b)] > 10δ, then a and b generate a free subgroup
of the isometry group of (X, d).

Proof of Proposition 4.21. For the sake of simplicity let `0 = Max[`(a), `(b)]. The hypothesis
L(a, b) > 10δ + `0 allows to choose R0 such that 10δ + `0 < R0 < L(a, b). Let us denote by ε
any real number such that 0 < ε < R0 − (10δ+ `0) and define ε′ > 0 by R0 = 10δ+ `0 + ε+2 ε′.
We also set r0 := `0 + δ + ε, Lemmas 8.32 (ii) and 4.19 implies that Mr0(a) and Mr0(b) are
closed disjoints and non empty sets. Furthermore, from Lemma 4.18, we can choose two points
x0 ∈ Mr0(a) and y0 ∈ Mr0(b) such that d(x0, y0) is the minimum of d(x, y) when (x, y) runs
through Mr0(a)×Mr0(b). We then fix a geodesic [x0, y0] between these two points. Let us first
prove the following property:

∃x ∈ [x0, y0] such that ∀(p, q) ∈ Z∗ × Z∗, d(x, apx) > R0 and d(x, bqx) > R0 . (32)

Indeed, one has L(a, b) > R0, Lemma 4.19 then implies that MR0(a) and MR0(b) are closed
disjoints sets containing respectively x0 and y0. Their intersections with [x0, y0] are then closed
disjoints and non empty whose union cannot be equal to [x0, y0]. Consequently, there exists a
point x ∈ [x0, y0] which is not in MR0

(a) ∪MR0
(b) and hence satisfies Property (32).

Let us now fix such a point x ∈ [x0, y0] (given by Property (32)). The fact that x /∈ MR0
(a),

that x0 is a projection of x on Mr0(a), that apx0 ∈Mr0(a), and Lemma 8.33 imply that

∀p ∈ Z∗ d(x, apx0) ≥ d(x, x0) >
1

2
(R0 − r0) =

9

2
δ + ε′ . (33)

We choose p and q in Z∗. We denote by [x, x0] the segment of the geodesic [x0, y0] between x
and x0 and we call [apx, apx0] the image of this geodesic by ap. Let us choose arbitrary geodesics
[x, apx], [x0, a

px0] and [x, apx0]. Inequalities (32) and (33), show that there exist points u, u′

and u′′, respectively on the geodesics [x, apx], [x, apx0] and [x, x0], such that d(x, u) = d(x, u′) =
d(x, u′′) = 5

2δ + ε′.

7In this Proposition, the hypothesis L(a, b) − Max[`(a), `(b)] > 10δ, can be replaced by: there does not
exist points x ∈ X and integers p, q ∈ N∗ which satisfies simultaneously d(x, apx) ≤ 10δ + Max[`(a), `(b)] and
d(x, bqx) ≤ 10δ+ Max[`(a), `(b)]. The equivalence between this new statement and Proposition 4.21 follows from
Lemma 4.19 and the beginning of the proof of Proposition 4.21.
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We now consider the triangles ∆ = [x, apx, apx0] and ∆′ = [x, apx0, x0] defined by the above
geodesics and their approximations by the associated tripods f∆ : (∆, d) → (T∆, dT ) and f∆′ :
(∆′, d)→ (T∆′ , dT ′) (see Sub-section 8.1); the branching points of these tripods are respectively
denoted by c and c′. The length of the sides of the tripod (T∆, dT ) (resp. (T∆′ , dT ′)) whose ends
are f∆(x), f∆(apx) and f∆(apx0) (resp. f∆′(x), f∆′(a

px0) and f∆′(x0)) are denoted by α, β and
γ (resp. α′, β′ and γ′). Finally we denote by c′2 the inverse image in [x0, a

p(x0)] by f∆′ of the
branching point c′ of the tripod T∆′ . Lemma 8.35 (iii) ensures that c′2 ∈ Mr0+2δ(a) and, as x
belongs to the closure of X \MR0

(a), one has (from Lemma 8.33)

α′ = dT ′
(
f∆′(x), c′

)
≥ d(x, c′2)− δ ≥ d

(
x,Mr0+2δ(a)

)
− δ ≥ 1

2
(R0 − r0 − 2δ)− δ =

5

2
δ + ε′,

where the last equality follows from the choice of R0 and r0. It then follows that the points
f∆′(u

′) and f∆′(u
′′) both belong to the side [c′, f∆′(x)] of the tripod (T∆′ , dT ′) and hence that

f∆′(u
′) = f∆′(u

′′). The approximation lemma 8.3 (i) then yields d(u′, u′′) ≤ δ.
On the other hand, the map f∆ being an isometry in restriction to each side of ∆ (cf. Lemma
8.1), one has

α+ γ = d(x, apx0) ≥ d(x, x0) = d(apx, apx0) = β + γ,

which ensures that α ≥ β; since we also have α + β = d(x, apx) > R0, Inequality (32) implies
that

α >
R0

2
> 5δ + ε′ > d(x, u) = d(x, u′) = dT (f∆(x), f∆(u)) = dT (f∆(x), f∆(u′)) .

This shows that the points f∆(u) and f∆(u′) are on the side [c, f∆(x)] of the tripod T∆ and
satisfy f∆(u) = f∆(u′); from Lemma 8.3 (i) we get that d(u, u′) ≤ δ. This last inequality
together with d(u′, u′′) ≤ δ previously proved show that d(u, u′′) ≤ 2δ, by the triangle inequality.
We denote by [x, y0] the segment of the geodesic [x0, y0] between x and y0. Replacing a by b and
p by q in the previous argument, we construct geodesics [x, bqx] and [x, bqy0] and points v, v′

and v′′, respectively on the geodesics [x, bqx], [x, bqy0] and [x, y0], such that d(x, v) = d(x, v′) =
d(x, v′′) = 5

2δ + ε′. As before we prove that d(v, v′′) ≤ 2δ.

This last estimate, the inequality d(u, u′′) ≤ 2δ, the triangle inequality and the fact that u′′, x
and v′′ belong to the same minimizing geodesic [x0, y0] yield

d(u, v) ≥ d(u′′, x) + d(x, v′′)− d(u, u′′)− d(v, v′′) ≥ 5δ + 2ε′ − 4δ = δ + 2ε′ . (34)

Let us now consider the triangle ∆ = [x, apx, bqx] and the associated tripod f∆ : (∆, d) →
(T∆, dT ), whose sides with ends f∆(apx), f∆(bqx) and f∆(x) have length denoted by α, β and
γ respectively, and we denote by c the branching point of the tripod T∆. From Inequality (34)
and Lemma 8.3 (i), we deduce that

dT (f∆(u), f∆(v)) ≥ 2ε′ > 0 . (35)

The application f∆ restricted to each side of ∆ is an isometry (cf. Lemma 8.1), we then obtain:

dT (f∆(x), f∆(u)) = d(x, u) =
5

2
δ + ε′ = d(x, v) = dT (f∆(x), f∆(v)) .

• If γ ≥ 5
2δ + ε′, then f∆(u) and f∆(v) both belong to the same side [c, f∆(x)] of the tripod

T∆, and hence satisfy f∆(u) = f∆(v), which contradicts Inequality (35).

• If 5
2δ < γ < 5

2δ+ ε′, then f∆(u) and f∆(v) respectively belong to the sides [c, f∆(apx)] and
[c, f∆(bqx)] of the tripod T∆, and then

dT (c, f∆(v)) = dT (c, f∆(u)) = dT (f∆(x), f∆(u))− dT (f∆(x), c) =
5

2
δ + ε′ − γ < ε′ ,

which implies that dT (f∆(u), f∆(v)) < 2ε′, in contradiction with Inequality (35).
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The only possibility is then that

γ ≤ 5

2
δ . (36)

On the other hand we have Min(α, β) = Min [d(x, apx); d(x, bqx)]− γ > R0 − γ, which yields

d(apx, bqx) = α+ β = Max(α, β) + Min(α, β) > Max(α+ γ, β + γ) +R0 − 2γ ,

which, using the definition of R0 and Inequality (36), shows

d(apx, bqx)−Max [d(x, apx); d(x, bqx)] > R0 − 2γ ≥ 10δ + ε+ 2ε′ − 5δ > 5δ .

This last inequality being valid for all (p, q) ∈ Z∗ ×Z∗, we conclude by applying Proposition 4.6
(i).

End of the proof of Theorem 4.20. We now have the following alternatives:

• If `(a), `(b) ≤ 13δ, as L(a, b) > 23δ, we have L(a, b)−Max[`(a), `(b)] > 10δ and Proposition
4.21 implies that the subgroup generated by {a, b} is free.

• If `(a), `(b) > 13δ, Lemma 8.23 (i) ensures that s(a), s(b) > 13δ and Proposition 4.9 (i)
then implies that one of the two semi-groups generated by {a, b} or by {a, b−1} is free.

• If `(a) ≤ 13δ and `(b) > 13δ, then `(aba−1) = `(b) > 13δ and Lemma 8.23 (i) ensures
that s(b), s(aba−1) > 13δ. Proposition 4.9 (i) then implies that one of the two semi-groups
generated by {b, aba−1} or by {b, ab−1a−1} is free.

• If `(a) > 13δ and `(b) ≤ 13δ, exchanging the roles of a and b, the same proof shows that
one of the two semi-groups generated by {a, bab−1} or by {a, ba−1b−1} is free.

4.4 Free semi-groups for convex distances

In this subsection we fix δ > 0, H > 0 and D > 0 and we study the δ-hyperbolic spaces (X, d)
which are Busemann spaces (i. e. the distance d is convex in the sense of Definition 8.36)
endowed with a proper action by isometries of a group Γ. We assume that the entropy of (X, d)
and the diameter of Γ\X are bounded above by H and D respectively. To these parameters δ,
H and D, we associate a function s0(δ,H,D) > 0 defined by Equality (60).

Contrarily to Subsection 4.3, the goal of the present subsection is to state a result which apply
to every pairs of elements of Γ without any restriction on `(a), `(b) or on the Margulis constants
L(a, b) or L∗(a, b). The price to pay is a slightly stronger hypothesis on the geometry of the
metric space under consideration.

Theorem 4.22. Let (X, d) be any connected, geodesically complete, Busemann, non elementary
δ-hyperbolic space. Let Γ be any group acting properly by isometries on (X, d) such that the
diameter of Γ\X and the entropy of (X, d) are respectively bounded above by D and H. For
every pair a, b of torsion-free elements of Γ which generates a non virtually cyclic subgroup, for

every integers p, q ≥ 13δ

s0(δ,H,D)
one of the two semi-groups generated by {ap, bq} or by {ap, b−q}

is free.

The proof of this theorem follows from a uniform lower bound of the asymptotic displacement,
whose proof will be given in Theorem 5.26, that we assume here:

Proof. For sake of simplicity, define s0 := s0(δ,H,D). Theorem 5.26 (i) shows that every pair

of torsion-free elements a, b ∈ Γ∗ verifies `(a), `(b) > s0; for every p, q ≥ 13δ

s0
, Corollary 4.10

then allows to deduce that one of the two semi-groups generated by {ap, bq} or by {ap, b−q} is
free.
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5 Co-compact actions on Gromov-hyperbolic spaces

In this section, for any fixed positive constants δ, H and D, we are concerned by all the δ-hyperbolic
spaces (X, d) (which are geodesic and proper spaces by Definition 8.2) and by every proper action (by
isometries) of a group Γ on (X, d) such that the entropy of (X, d) and the diameter of Γ\X are respectively
bounded above by H and D. Let us recall that Γ\X is then compact (by Lemma 8.13 (ii)) and that, if Γ
is torsion-free, its action on X is faithful and fixed point free (by Lemma 8.13 (iv)).
Let us recall that Σr(x) := {γ ∈ Γ∗ : d(x, γ x) ≤ r} and that Γr(x) is the subgroup generated by Σr(x)
(see Definitions 2.4). When the action of Γ on (X, d) is co-compact, we recall that the entropy of (X, d)
can be computed for any Borel Γ-invariant measure and is independent of this measure.

5.1 A Bishop-Gromov inequality for Gromov-hyperbolic spaces

By Definitions 3.7, a doubling property concerns balls whose radius lies in a given interval and
whose doubling amplitude C0 is constant. On a general n-dimensional Riemannian manifold, the
classical Bishop-Gromov inequality is a doubling property (for balls whose radius lies in ]0,+∞[)
whose doubling amplitude depends on the radius of the balls and on a lower bound Ricmin of
the Ricci curvature: if one is not aiming for a sharp inequality, when the Ricci curvature is not
supposed to be nonnegative, it can be rewritten:

Vol B(x, 2R)

Vol B(x,R)
≤ 2n exp

(√
(n− 1)|Ricmin|R

)
.

For this reason, in the sequel, for any nonnegative measure µ, a doubling property of the kind
µ
(
B(x, 2R)

)
µ
(
B(x,R)

) ≤ C1 e
C2H R, where H is a parameter which replaces the lower bound of the curva-

ture, will be called a (generalized) “Bishop-Gromov inequality” (instead of “doubling property”).
The following Theorem proves such a Bishop-Gromov inequality in the case of Gromov-hyperbolic
metric spaces, where the hypothesis “Ricci curvature bounded from below” is replaced by the
much weaker (see subsection 3.3) hypothesis “Entropy bounded from above”.

Theorem 5.1. Let (X, d) be any δ-hyperbolic metric space, for every proper action (by isome-
tries) of a group Γ on (X, d) such that the diameter of Γ\X and the entropy of (X, d) are
respectively bounded by D and H, then, for every x ∈ X

(i) for every Γ-invariant measure µ on X, for every r ≥ 5
2 (7D + 4δ),

µ
(
BX(x, 6

5 r)
)

µ
(
BX(x, r)

) ≤ 1 + 2 eHD e
6
5 Hr and

µ
(
BX(x, 2 r)

)
µ
(
BX(x, r)

) ≤ 34 e4HD e
13
2 Hr

and ∀R ≥ r
µ
(
BX
(
x,R

))
µ
(
BX(x, r)

) ≤ 3eHD
(
R

r

)25/4(
R

r

)6HD

e6H(R− 4
5 r) .

(ii) for every r ≥ 10 (D + δ), the counting measure µΓ
x =

∑
γ∈Γ δγx of the orbit Γx verifies the

inequalities :

µΓ
x

(
BX(x, 6

5 r)
)

µΓ
x

(
BX(x, r)

) ≤ 1 + 2e
6
5 H r ,

#
(
BX(x, 2r) ∩ Γx

)
#
(
BX(x, r) ∩ Γx

) =
µΓ
x

(
BX(x, 2 r)

)
µΓ
x

(
BX(x, r)

) ≤ 34e
13
2 Hr .

and ∀R ≥ r
µΓ
x

(
BX
(
x,R

))
µΓ
x

(
BX(x, r)

) < 3

(
R

r

)25/4

e6H(R− 4
5 r) .

If one wants to revisit this Bishop-Gromov-like inequality (i) (resp. (ii)) in terms of doubling
(see Definitions 3.7), the second inequality of (i) (resp. of (ii)) says that the measure µ (resp.
the counting measure of any orbit of the action of Γ) satisfies the CR-doubling property, where

CR := 34 e4HD e
13
2 HR (resp. where CR := 34e

13
2 HR) for all the balls of radius r ∈

[
5
2 (7D + 8δ), R

]
(resp. of radius r ∈ [10 (D + δ), R]).

The first step of the proof of Theorem 5.1 is the following
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Lemma 5.2. On any δ-hyperbolic space (X, d), for every R, R′ ∈ ]0,+∞[, and for any pair of
points x, y such that d(x, y) < R+R′, there exists a point y′ ∈ X such that

BX(x,R) ∩BX(y,R′) ⊂ BX(y′, r) , where r = Min
(
R , R′ ,

1

2

(
R+R′ − d(x, y)

)
+ δ
)
.

Proof. As BX(x,R) ∩BX(y,R′) = ∅ when d(x, y) ≥ R+R′, we shall only study the case where
d(x, y) < R + R′. Even if this means exchanging the names of the points and of the radii, we
may suppose that R′ ≤ R.

– If d(x, y) ≤ R − R′ + 2 δ, the lemma is trivially verified when choosing y′ = y, because

r = Min
(
R , R′ , 1

2

(
R + R′ − d(x, y)

)
+ δ
)

is then equal to R′ and BX(x,R) ∩ BX(y,R′) ⊂
BX(y,R′) = BX(y′, r).

– If R −R′ + 2δ ≤ d(x, y) < R +R′, let us denote by c = [x, y] any geodesic such that c(0) = x
and c(d(x, y)) = y. Let y′ := c

(
1
2 (R − R′ + d(x, y))

)
. For any point z ∈ BX(x,R) ∩ BX(y,R′),

Lemma 8.4 gives

d(y′, z) + d(x, y) ≤ Max [d(x, z) + d(y, y′) , d(y, z) + d(x, y′)] + δ

< Max

[
R+ d(x, y)− 1

2

(
R−R′ + d(x, y)

)
, R′ +

1

2

(
R−R′ + d(x, y)

)]
+ δ ;

this implies that d(y′, z) < 1
2

(
R+R′−d(x, y)

)
+ δ = Min

(
R , R′ , 1

2

(
R+R′−d(x, y)

)
+ δ
)

.

The second step of the proof of Theorem 5.1 is the

Lemma 5.3. Under the hypotheses of Theorem 5.1, for every Γ-invariant measure µ on X, for
every R′, R such that 4δ ≤ R′ ≤ R, we have∫

BX(x,R)\BX(x,R− 1
2R
′)
µ
(
BX(y,R′)

)
dµ(y)

µ
(
BX
(
x , 3

4 R
′ + δ +D

)) ≤ µ
(
BX(x,R+R′) \BX(x,R− 1

2
R′)
)

Proof. In this proof we shall write B(x, r) instead of BX(x, r) for sake of simplicity. Equation
(1) gives∫
B(x,R)

µ
(
B(y,R′)

)
dµ(y) =

∫
X

µ
(
B(y,R′)∩B(x,R)

)
dµ(y) ≤

∫
B(x,R− 1

2R
′)

µ
(
B(y,R′)

)
dµ(y)+

+

∫
B(x,R+R′)\B(x,R− 1

2R
′)

µ
(
B(y,R′) ∩B(x,R)

)
dµ(y) . (37)

For every y ∈ B(x,R + R′) \ B(x,R − 1
2R
′), we have R − R′ + 2δ ≤ d(x, y) < R + R′ and

Min
(
R , R′ , 1

2

(
R + R′ − d(x, y)

)
+ δ
)

= 1
2

(
R + R′ − d(x, y)

)
+ δ ≤ 3

4 R
′ + δ; then, applying

Lemma 5.2, there exists a point y′ such that

B(y,R′) ∩B(x,R) ⊂ B
(
y′ ,

1

2

(
R+R′ − d(x, y)

)
+ δ
)
⊂ B

(
y′,

3

4
R′ + δ

)
;

as there exists γ′ ∈ Γ such that d(y′, γ′x) ≤ D, the triangle inequality gives:

µ
(
B(y,R′) ∩B(x,R)

)
≤ µ

(
B
(
y′ ,

3

4
R′ + δ

))
≤ µ

(
B
(
γ′ x ,

3

4
R′ + δ +D

))
= µ

(
B
(
x ,

3

4
R′ + δ +D

))
where the last equality follows from the invariance of the measure and of the distance under the
action of Γ. Plugging this estimate in (37), we obtain∫

B(x,R)\B(x,R− 1
2R
′)

µ
(
B(y,R′)

)
dµ(y) ≤ µ

(
B
(
x,

3

4
R′ + δ +D

)) ∫
B(x,R+R′)\B(x,R− 1

2R
′)

dµ(y)

and this ends the proof.
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The third step of the proof of Theorem 5.1 is the

Lemma 5.4. Under the hypotheses of Theorem 5.1, for every x ∈ X, one has:

(i) for every R′, R such that 12(D + δ) ≤ R′ ≤ R, we have

µΓ
x

(
BX(x,R′)

)
µΓ
x

(
BX
(
x , 5

6 R
′
)) ≤ µΓ

x

(
BX(x,R+R′)

)
− µΓ

x

(
BX(x,R− R′

2 )
)

µΓ
x

(
BX(x,R)

)
− µΓ

x

(
BX(x,R− R′

2 )
)

(ii) for every R′, R such that 3(7D + 4δ) ≤ R′ ≤ R−D, we have

µ
(
BX(x,R′)

)
µ
(
BX
(
x , 5

6 R
′
)) ≤ µ

(
BX(x,R+R′ +D)

)
− µ

(
BX(x,R− R′+D

2 )
)

µ
(
BX(x,R)

)
− µ

(
BX(x,R− R′+D

2 )
)

Proof. In this proof we shall write B(x, r) instead of BX(x, r) for sake of simplicity.
The measure µΓ

x and the distance being Γ-invariant, we have µΓ
x

(
B(y,R′)

)
= µΓ

x

(
B(x,R′)

)
for

every y ∈ Γx; from this and from the fact that the support of µΓ
x is Γx, we deduce that

µΓ
x

(
B(x,R′)

)
· µΓ

x

(
B(x,R) \B(x,R− 1

2
R′)
)

=

∫
B(x,R)\B(x,R− 1

2R
′)

µΓ
x

(
B(x,R′)

)
dµΓ

x(y)

=

∫
B(x,R)\B(x,R− 1

2R
′)

µΓ
x

(
B(y,R′)

)
dµΓ

x(y) ≤ µΓ
x

(
B(x,R+R′) \B(x,R− 1

2
R′)
)
·

µΓ
x

(
B
(
x ,

3

4
R′ + δ +D

))
≤ µΓ

x

(
B(x,R+R′) \B(x,R− 1

2
R′)
)
· µΓ

x

(
B
(
x,

5

6
R′
))
,

and this proves (i).

Let R′′ := R′ +D and let y be any point of BX(x,R) \BX(x,R− 1
2R
′′); as d(y,Γx) ≤ D, there

exists some γ ∈ Γ such that γ
(
B(x,R′′ −D)

)
= B(γ x,R′′ −D) ⊂ B(y′, R′′), and thus (as the

measure µ is Γ-invariant), it yields µ
[
B(x,R′)

]
= µ

[
B(x,R′′ − D)

]
= µ

(
γ
(
B(x,R′′ − D)

))
≤

µ
(
B(y,R′′)

)
. From this and from Lemma 5.3, we get:

µ
(
B(x,R′)

)
· µ
(
B(x,R) \B(x,R− 1

2
R′′)

)
≤
∫
B(x,R)\B(x,R− 1

2R
′′)

µ
(
BX(y,R′′)

)
dµ(y)

≤ µ
(
B(x,R+R′′) \B(x,R− 1

2
R′′)

)
· µ
(
B
(
x ,

3

4
R′′ + δ +D

))
;

as 3
4 R
′′ + δ +D = 3

4 R
′ + δ + 7

4D ≤
5
6 R
′ (because 1

12 R
′ ≥ 7

4D + δ), it comes:

µ
(
B(x,R′)

)
·µ
(
B(x,R)\B(x,R− 1

2
R′′)

)
≤ µ

(
B(x,R+R′′)\B(x,R− 1

2
R′′)

)
·µ
(
B
(
x,

5

6
R′
))
,

and this proves (ii).

End of the proof of Theorem 5.1. In this proof we shall write B(x, r) instead of BX(x, r) for sake
of simplicity; when µ is any Γ-invariant measure (resp. when µ = µΓ

x), for every R′ ≥ 3(7D+ 4δ)
(resp. for every R′ ≥ 12(D + δ)), we shall define R′′ as R′ +D (resp. R′′ as R′). In both cases,
the result of Lemma 5.4 then writes:

µ
(
B(x,R′)

)
µ
(
B
(
x , 5

6 R
′
)) ≤ µ

(
B(x,R+R′′)

)
− µ

(
B(x,R− R′′

2 )
)

µ
(
B(x,R)

)
− µ

(
B(x,R− R′′

2 )
) (38)

Let us put C :=
µ
(
B(x,R′)

)
µ
(
B
(
x , 5

6 R
′
)) − 1 and ak = µ

(
B(x, k R′′

2 )
)
, a consequence of (38) (where we

replace R by k R′′

2 ) is that, for every k ≥ 2, one has ak+2− ak−1 ≥ (C+ 1) (ak − ak−1), and thus
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ak+2 − ak ≥ C (ak − ak−1). Making the sum of this last inequality for all the integers k ∈ [2, n],
we obtain

2 (an+2 − a1) ≥ an+2 − a3 + an+1 − a2 ≥ C (an − a1) ,

from which comes that a2n ≥
(
C
2

)n−1
(a2 − a1) + a1 and, as a2 − a1 > 0 (for the annulus

B(x, k R′′)\B(x, k R′′

2 ) contains a ball B(z,D) of radius D and µ
(
B(z,D)

)
cannot vanish because

the measure of X = ∪γ∈Γ γ
(
B(z,D)

)
is not trivial), a consequence of this is

H ≥ Ent(X, d) = lim
n→+∞

(
1

nR′′
ln
(
µ
(
B(x, nR′′)

)))
= lim
n→+∞

(
1

nR′′
ln (a2n)

)
≥ 1

R′′
ln

(
C

2

)
.

For every R′ ≥ 3(7D + 4δ) (resp. for every R′ ≥ 12(D + δ)), this yields
µ
(
B(x,R′)

)
µ
(
B
(
x , 5

6 R
′
)) ≤ 1 +

2 eHR
′′
; making r := 5

6 R
′, it follows that

µ
(
B(x, 6

5 r)
)

µ
(
B
(
x, r
)) ≤ 1+2 eHR

′′
for every r ≥ 3 · 5

6
(7D+4δ)

(resp. for every R′ ≥ 12 · 5

6
(D + δ)).

In the case of the measure µΓ
x , as R′′ = R′ = 6

5 r, we get:

∀r ≥ 10(D + δ)
µΓ
x

(
B(x, 6

5 r)
)

µΓ
x

(
B
(
x, r
)) ≤ 1 + 2 e

6
5 Hr ≤ 3 e

6
5 Hr .

In the case of any other Γ-invariant measure µ, as R′′ = R′ +D = 6
5 r +D, we obtain:

∀r ≥ 5

2
(7D + 4δ)

µ
(
B(x, 6

5 r)
)

µ
(
B
(
x, r
)) ≤ 1 + 2 eHD e

6
5 Hr ≤ 3 eHD e

6
5 Hr .

This proves the first inequalities in (i) and (ii).

By iteration, replacing in succession r by r , 6
5 r , . . . ,

(
6
5

)3
r in these two last inequalities we

finish by proving that the measure µΓ
x verifies

∀r ≥ 10(D + δ)
µΓ
x

(
B(x, 2r)

)
µΓ
x

(
B(x, r)

) ≤ 34 e

(
6
5 +...+( 6

5 )
4
)
Hr ≤ 34 e

13
2 Hr

and that any other Γ-invariant measure µ satisfies:

∀r ≥ 5

2
(7D + 4δ)

µ
(
B(x, 2r)

)
µ
(
B(x, r)

) ≤ 34 e4HD e

(
6
5 +...+( 6

5 )
4
)
Hr ≤ 34 e4HD e

13
2 Hr .

This proves the second inequalities in (i) and (ii).

Let us now prove the third inequality of (ii): given r,R such that 10 (D+δ) ≤ r ≤ R, choose p ∈ N
such that

(
6
5

)p ≤ R
r <

(
6
5

)p+1
; if p = 0, then the third inequality of (ii) is a trivial consequence

of the first inequality of (i) and of the fact that, in this case, BX
(
x,R

)
⊂ BX

(
x, 6

5r
)
, let us now

suppose that p ≥ 1 and choose ε > 0 sufficiently small in order that R+ε
r <

(
6
5

)p+1
, applying the

first of the inequalities (ii) to each term of the following product, we get:

µΓ
x

(
BX
(
x,R

))
µΓ
x

(
BX(x, r)

) ≤ µΓ
x

(
BX
(
x,R+ ε

))
µΓ
x

(
BX(x, r)

) =

p−1∏
i=0

µΓ
x

(
BX
(
x,
(

5
6

)i
(R+ ε)

))
µΓ
x

(
BX
(
x,
(

5
6

)i+1
(R+ ε)

)) ·µΓ
x

(
BX
(
x,
(

5
6

)p
(R+ ε)

))
µΓ
x

(
BX
(
x, r
))

< 3 exp

(
6

5
Hr

)
·
p−1∏
i=0

3 exp

((
5

6

)i
H(R+ ε)

)
< 3 · 3p exp

(
6H(R+ ε)

(
1−

(
5

6

)p)
+

6

5
Hr

)
.
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< 3 ·
(

6

5

)p ln 3
ln(6/5)

exp

(
6H(R+ ε)

(
1− r

(R+ ε)

)
+

6

5
Hr

)
< 3

(
R

r

)25/4

e6H(R+ε− 4
5 r) .

Now, making ε→ 0, we get

µΓ
x

(
BX
(
x,R

))
µΓ
x

(
BX(x, r)

) ≤ 3

(
R

r

)25/4

e6H(R− 4
5 r) .

Let us now prove the third inequality of (i): given r,R such that 5
2 (7D + 4δ) ≤ r ≤ R, choose

p ∈ N such that
(

6
5

)p ≤ R
r <

(
6
5

)p+1
; if p = 0, then (ii) is a trivial consequence of the first

inequality of (i) and of the fact that, in this case, BX
(
x,R

)
⊂ BX

(
x, 6

5r
)
, let us now suppose

that p ≥ 1 and choose ε > 0 sufficiently small in order that R+ε
r <

(
6
5

)p+1
, applying the first of

the inequalities (i) to each term of the following product, we get:

µ
(
BX
(
x,R

))
µ
(
BX(x, r)

) ≤ µ
(
BX
(
x,R+ ε

))
µ
(
BX(x, r)

) =

p−1∏
i=0

µ
(
BX
(
x,
(

5
6

)i
(R+ ε)

))
µ
(
BX
(
x,
(

5
6

)i+1
(R+ ε)

)) · µ (BX(x, ( 5
6

)p
(R+ ε)

))
µ
(
BX
(
x, r
))

< 3eHDe
6
5Hr·

p−1∏
i=0

3eHD exp

((
5

6

)i
H(R+ ε)

)
< 3·3pe(p+1)HD exp

(
6H(R+ ε)

(
1−

(
5

6

)p)
+

6

5
Hr

)
.

< 3eHD
(

6

5

)p ln 3
ln(6/5)

(
6

5

)p HD
ln(6/5)

exp

(
6H(R+ ε)

(
1− r

(R+ ε)

)
+

6

5
Hr

)
< 3eHD

(
R

r

)25/4(
R

r

)6HD

e6H(R+ε− 4
5 r) .

Now, making ε→ 0, we get

µ
(
BX
(
x,R

))
µ
(
BX(x, r)

) ≤ 3eHD
(
R

r

)25/4(
R

r

)6HD

e6H(R− 4
5 r) .

Considering any given co-compact action of a group Γ on a δ-hyperbolic space (X, d) and any
cyclic subgroup Γ′ of Γ, a consequence of revisiting Theorem 5.1 (ii) as a doubling property (see
the few lines after Theorem 5.1) is a universal upper bound N(R) for the number of points of the
orbit Γ′ x which are contained in the ball BX(x,R) (see Lemma 5.5). The fact that the bound
N(R) grows exponentially with R may look strange for cyclic groups, but the Lemma 8.20 (iii)
proves that, for intermediate values of R, N(R) must depend exponentially on R, and this will
be a fundamental tool in the proofs of the quantitative Tits’ alternative (Theorem 5.6) and of
the lower bound of the systole given by Theorem 5.26.
Let us recall that, to each hyperbolic isometry γ and to each point x of a δ-hyperbolic space
(X, d), one associates its “displacement radius at x”, i. e. Rγ(x) := Mink∈N∗ d(x, γk x) (see
Definition 8.26).

Lemma 5.5. Let (X, d) be any δ-hyperbolic (non elementary) space, for any proper action (by
isometries) of a group Γ on (X, d) such that the diameter of Γ\X is bounded above by D, for
every torsion-free element γ ∈ Γ∗ and for every x0 ∈ X such that Rγ(x0) ≥ 20(D + δ), then

(i) for every p ∈ N∗

#
{
k ∈ Z : d

(
x0, γ

k x0

)
< 2pRγ(x0)

}
≤ 312p e16 Ent(X,d)(2p−1)Rγ(x0) .

(ii) at any point x ∈ X and for every R ≥ Rγ(x)

#{k ∈ Z : d
(
x, γk x

)
< R} ≤ 312

(
R+ 2 d(x0, x)

Rγ(x0)

)12 ln 3
ln 2

e
65
2 Ent(X,d) (R+2 d(x0,x)) .
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Proof. First notice that, by Lemma 5.8 (i), γ being torsion-free, the action of 〈γ〉 on X is faithful.
Let R0 := 20(D + δ). For sake of simplicity, let us write H instead of Ent(X, d). Theorem 5.1

(ii) proves that, for every R ≥ 1
2 R0,

µΓ
x0

(
BX(x0, 2R)

)
µΓ
x0

(
BX(x0, R)

) ≤ 34 e
13
2 H R ≤ C eαR , where C = 34

and α = 13
2 H.

Proof of (i). As the inequality (i) is trivially verified when p = 0, we shall suppose that p ≥ 1.
For every i ∈ N, one has 2iRγ(x0) ≥ R0, we may thus apply the proposition 3.19 (ii) in the case
where Γ′ is the cyclic subgroup generated by γ, which implies that, for every i ∈ N,

#{k ∈ Z : d
(
x0, γ

k x0

)
< 2i+1Rγ(x0)}

#{k ∈ Z : d (x0, γk x0) < 2iRγ(x0)}
≤ C3 e

19
8 α 2iRγ(x0) .

Making the product for all the integers i ∈ [0, p− 1], we infer that

#
{
k ∈ Z : d

(
x0, γ

k x0

)
< 2pRγ(x0)

}
≤

#{k ∈ Z : d
(
x0, γ

k x0

)
< 2pRγ(x0)}

#{k ∈ Z : d (x0, γk x0) < Rγ(x0)}

≤ C3p e
19
8 α(2p−1)Rγ(x0) = 312p e

247
16 H(2p−1)Rγ(x0) , (39)

where the first inequality is deduced from the fact that
{
k ∈ Z : d

(
x0, γ

k x0

)
< Rγ(x0)

}
= {0}.

Proof of (ii). For every k ∈ Z∗, the triangle inequality and the invariance by γ of the distance give
d
(
x0, γ

k x0

)
≤ d

(
x, γk x

)
+ 2 d(x0, x), this has two consequences: the first one is the inequality

R+2 d(x0, x) ≥ Rγ(x)+2 d(x0, x) ≥ Rγ(x0), the second one is the fact that {k ∈ Z : d
(
x, γk x

)
<

R} is included in {k ∈ Z : d
(
x0, γ

k x0

)
< R + 2 d(x0, x)}; let p be the integer such that

2p−1Rγ(x0) < R+ 2 d(x0, x) ≤ 2pRγ(x0), from what precede and from (39), we deduce:

#
{
k ∈ Z : d

(
x, γk x

)
< R

}
≤ #

{
k ∈ Z : d

(
x0, γ

k x0

)
< 2pRγ(x0)

}
≤ (2p)

12 ln 3
ln 2 e

247
16 H(2p−1)Rγ(x0).

The inequality (ii) then comes from this and from the choice of p which implies that 2p <

2
R+ 2 d(x0, x)

Rγ(x0)
.

5.2 A Tits alternative and lower bounds for the entropies

To each isometry γ and to each point x of a δ-hyperbolic space (X, d), one associates its displacement
radius at x, i. e. Rγ(x) := Mink∈N∗ d(x, γk x) (see Definition 8.26), its minimal displacement s(γ) :=
infx∈X d(x, γ x) and its asymptotic displacement `(γ) := limn→+∞ d(x, γn x)/n (see Definitions 8.18).
Let us also recall that the Margulis domain MR(γ) is the set {x ∈ X : Rγ(x) ≤ R} (see Definition 8.29
and Remark 8.30), that γ− and γ+ denote the fixed points of γ, that G(γ) is the set of the geodesics
c such that c(−∞) = γ− and c(+∞) = γ+, that M(γ) is the union of the images of these geodesics,
and that Mmin(γ) is the set of the points where the function x 7→ d(x, γ x) attains its minimum (see
Definitions 8.25).

5.2.1 The alternative: entropy vs asymptotic displacement

Theorem 5.6. For any proper action (by isometries) of any group Γ on any (non elementary)
δ-hyperbolic space (X, d), if the diameter of the quotient Γ\X is bounded above by D, let K :=

Min

(
1

δ
, 1

)
, then

(i) either Ent(X, d) >
K

750
,

(ii) or Ent(X, d) ≤ K

750
, and then `(γ) > 3−34R0 e

− 4
29 KR0 for every torsion-free γ ∈ Γ∗ (where

R0 := Max [20 (D + δ) , 720 δ]).
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Example 5.7. Let X be the Cayley graph of the free group Γ with 2 generators a, b, endowed
with the following length-structure : any path in the Cayley graph being a concatenation of edges
of types [g, ga±1] or [g, gb±1], its length is computed by deciding that the length of the edges
[g, ga±1] is α and that the length of the edges [g, gb±1] is β. Let us suppose that 0 < α ≤ β.
The corresponding length-distance dα,β(x, y) between x and y is the minimal length of the paths
joining x to y. As the Cayley graph is a tree, it is clear that (X, dα,β) is 0-hyperbolic.
The action of Γ on the Cayley graph X is the canonical one, by left-translations. The quotient
(Γ\X, d̄α,β) being a union of two circles, of respective lengths α and β, its diameter is D =
1
2 (α+ β).
When α goes to 0 and β is fixed, then Ent(X, dα,β) goes to +∞ and we are in the case (i) of
Theorem 5.6.

When α goes to 0 and β =
1

α
, then Ent(X, dα,β) goes to 0 and we are in the case (ii) of Theorem

5.6. Moreover, as `(a) = α goes to 0, it is coherent that the lower bound given by (ii) should go

to zero when 2D = α+
1

α
goes to infinity. This proves that any lower bound of the `(γ)’s must

depend on a geometric invariant such as the diameter of the quotient.

The following Lemma, though trivial, is often used in the sequel, it is thus necessary for the
sake of clarity and to avoid repetitions. The aim is to prove that, when a group acts properly
on a Gromov-hyperbolic space, most of the properties of this action deduce from the analogous
properties of its image by the representation into the isometry group of (X, d).

Lemma 5.8. On every Gromov-hyperbolic space (X, d), every proper action of a group Γ is via
a representation % : Γ→ Isom(X, d) which enjoys the following properties:

(i) Ker % is a finite normal subgroup of Γ, consequently all its elements have torsion,

(ii) %(Γ) is a discrete subgroup of Isom(X, d),

(iii) if the diameter of Γ\X is bounded, as %(Γ)\X = Γ\X, for the quotient metric, %(Γ)\X is
compact with the same diameter as Γ\X,

(iv) when Γ\X is compact, a measure µ on X is %(Γ)-invariant if and only if it is Γ-invariant;
as a consequence, its entropy is unmoved when the action of Γ via % is replaced by the
canonical action of %(Γ),

(v) for every γ ∈ Γ∗, %(γ) is torsion-free if and only if γ is torsion-free; γ is hyperbolic if and
only if %(γ) is an hyperbolic isometry,

(vi) for every γ ∈ Γ∗, `
(
%(γ)

)
= `
(
γ
)
.

(vii) for every subgroup G of Γ, if %(G) is virtually cyclic, then G is virtually cyclic.

Proof. (i) is an immediate consequence of the definition 2.1 (ii) of a proper action, which implies
that {γ ∈ Γ : d(x, γ x) = 0} is a finite set. (ii) is directly deduced from Lemma 8.12 and from
the fact that the canonical action of %(Γ) is faithful and proper.
If Γ\X has bounded diameter, it is compact by Lemma 8.13 (ii), properties (iii) and (iv) then
follow immediately. (vi) is derived from the fact that every γ ∈ Γ acts as the isometry %(γ). If
γn = e then %(γ)n = idX ; conversely %(γ)n = idX if and only if γn ∈ Ker %, consequently γn

(and thus γ) has torsion by (i). As `
(
%(γ)

)
> 0 iff `(γ) > 0 by (vi), γ is hyperbolic if and only if

%(γ) is an hyperbolic isometry by Lemma 8.19; this proves (v).
Proof of (vii): If %(G) is finite, as Ker % is a finite normal subgroup of G by (i), then G is
finite and (vii) is proved in this case. If %(G) is infinite virtually cyclic, there exists an infinite
cyclic subgroup Z with finite index in %(G) (i. e. %(G)/Z is finite); then the subgroup %−1(Z)
is a subgroup of finite index in G (because % induces a one to one map between the quotients
G/%−1(Z) and %(G)/Z). By restriction % : %−1(Z)→ Z is a homomorphism whose kernel is the
finite normal subgroup %−1(Z)∩Ker % = Ker %, in other words, %−1(Z) is a finite-by-cyclic group,
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and it is a classical result that “finite-by-cyclic” implies “cyclic-by-finite”, i. e. that %−1(Z) is
virtually cyclic8. As G/%−1(Z) is finite, it follows that G is virtually cyclic.

Lemma 5.9. Under the assumptions and notations of Theorem 5.6, for every torsion-free γ ∈
Γ∗, for every x0 ∈ X such that Rγ(x0) ≥ R0,

(i) there exists a positive integer k0 such that Rγ(x0) = d(x0, γ
k0 x0) and then

Ent(X, d) ≤ 1

750 δ
=⇒ k0 `(γ) ≥ 3−12Rγ(x0) e−16 Ent(X,d) Rγ(x0) ,

(ii) for every z ∈ X, if Ent(X, d) ≤ 1

750 δ
, then

`(γ)

Rγ(x0)
>

3−12

2

(
5 d(x0, z) + 3 d(z, γ z)

Rγ(x0)

)−20

e−
65
2 Ent(X,d) [5 d(x0,z)+3 d(z,γ z)] .

Proof. Let % be the representation from Γ to Isom(X, d) associated to the action under con-
sideration, Lemma 5.8 proves that the action of %(Γ) on (X, d) also verifies the assumptions
of Theorem 5.6, in particular %(γ) is torsion-free when γ is torsion-free, `

(
%(γ)

)
= `

(
γ
)

and
R%(γ)(x) = Rγ(x) for every x ∈ X; therefore, if the conclusions of Lemma 5.9 are satisfied when
the group is %(Γ), they are also satisfied when the group is Γ. To prove Lemma 5.9, it is thus
sufficient to prove it when Γ is a subgroup of Isom(X, d); this is what we shall suppose in the
sequel of this proof.
From Lemma 8.13 (ii), Γ\X is then compact and γ cannot be a parabolic isometry by the propo-
sition 8.44 (ii); as γ is torsion-free, it is not elliptic (by Remark 8.16 (i)) and therefore is an
hyperbolic isometry by Theorem 8.15.
By Lemma 8.31, there exists points x ∈ X such that Rγ(x) ≥ R0. As the action is proper, there
exists an integer k0 > 0 such that d(x0, γ

k0 x0) = Rγ(x0); as the lemma 8.20 (iii) gives, for any
n ∈ N∗,

d(x0, γ
k0n x0) ≤ Rγ(x0) + (n− 1) `(γk0) + 4 δ

ln(n)

ln(2)
, (40)

we get

#{n ∈ N∗ : d(x0, γ
k0n x0) < 2Rγ(x0)} ≥ #

{
n ∈ N∗ : (n− 1) k0 `(γ) ≤ Rγ(x0)

2
and 4 δ

ln(n)

ln(2)
<
Rγ(x0)

2

}

≥ Min

1 +

[
Rγ(x0)

2 k0 `(γ)

]
; e

Rγ(x0) ln 2

8 δ − 1

 > Min

 Rγ(x0)

2 k0 `(γ)
; e

Rγ(x0)

12 δ

 , (41)

where the last inequality follows from the fact that, as Rγ(x0) ≥ R0 ≥ 720 δ, one has

eRγ(x0) ln 2/(8 δ)−eRγ(x0)/(12 δ) = eRγ(x0)/(12 δ)
(
e
Rγ (x0)

δ ( ln 2
8 −

1
12 )−1

)
≥ e60

(
e720 ( ln 2

8 −
1
12 ) − 1

)
> 1 .

On the other hand, property (i) of Lemma 5.5 gives

#
{
k ∈ Z : d

(
x0, γ

k x0

)
< 2Rγ(x0)

}
≤ 312 e16 Ent(X,d)Rγ(x0) .

Frow this last inequality and from (41) follows:

Min

(
Rγ(x0)

k0 `(γ)
; 2 exp

(
Rγ(x0)

12 δ

))
+ 1 < 312 e16 Ent(X,d)Rγ(x0) , (42)

8The proof of the fact that %−1(Z) is virtually cyclic is direct: indeed, there exists a splitting, i. e. a map
σ : Z → %−1(Z) such that % ◦ σ = idZ (you just have to map the unique generator τ of Z on any τ ′ ∈ %−1({τ}).
For every g ∈ %−1(Z), as

(
g.Ker %

)
∩ σ(Z) = {σ

(
%(g)

)
}, then g ∈ σ

(
%(g)

)
.Ker % and %−1(Z) = σ(Z).Ker % =

Ker %.σ(Z), thus the quotient %−1(Z)/σ(Z)is finite, for it is in one to one correspondence with the finite set Ker %,
consequently %−1(Z) is virtually cyclic.
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Proof of (i) : If Ent(X, d) ≤ 1

750 δ
, recalling the existence of a point x0 ∈ X such that Rγ(x0) ≥

R0 and that the inequalities
Rγ(x0)

24 δ ≥ R0

24 δ ≥ 30 > 12 ln 3 are valid in this case, the inequality
(42) gives:

Min

Rγ(x0)

k0 `(γ)
; 2 e

Rγ(x0)

12 δ

+ 1 < 312 e16 Ent(X,d)Rγ(x0) < 312 e

2Rγ(x0)

93 δ < e

Rγ(x0)

12 δ .

This proves that
Rγ(x0)

k0 `(γ)
< 312 e16 Ent(X,d)Rγ(x0) and ends the proof of (i).

Proof of (ii) : For the sake of simplicity, in this proof, we shall set H := Ent(X, d), R′ := d(x0, z),
A := d(z, γ z) and R := 3(R′ +A) = 3

(
d(x0, z) + d(z, γ z)

)
.

By Lemma 8.20 (iii), for every k ∈ N∗, we have:

d(z, γk z) ≤ d(z, γ z)+(k−1) `(γ)+4 δ
ln(k)

ln(2)
≤ A+(k−1) `(γ)+4 δ

ln(k)

ln(2)
, and consequently:

#{k ∈ N∗ : d
(
z, γk z

)
< R} ≥ #

{
k ∈ N : k <

R− 2R′ − 2A

2 `(γ)
+ 1 and

ln(k)

ln(2)
≤ R+ 2R′

8 δ

}
,

it follows that

#{k ∈ Z : d
(
z, γk z

)
< R} > Min

(
R− 2R′ − 2A

`(γ)
, 2 · 2(R+2R′)/8 δ − 1

)
.

By the definition of R, one has R ≥ d(z, γ z) ≥ Rγ(z), and we are authorized to apply the

inequality (ii) of Lemma 5.5 which (related to the previous inequality, noticing that 2
R+2R′

8 δ > 1),
provides:

Min

(
R− 2R′ − 2A

`(γ)
, 2(R+2R′)/8 δ

)
< 312

(
R+ 2R′

Rγ(x0)

)12 ln 3
ln 2

e
65
2 H (R+2R′) . (43)

By the triangle inequality Rγ(x0) ≤ 2R′+A thus, by the definition of R, one has 2(R+ 2R′) ≥

10R′ + 6A > 5Rγ(x0), and consequently
Rγ(x0)

2(R+ 2R′)
ln

(
2(R+ 2R′)

Rγ(x0)

)
<

ln 5

5
. From this

and from the fact that H ≤ 1

750 δ
and Rγ(x0) ≥ R0 ≥ 720δ by assumption, we infer the two

inequalities:

65

128

R+ 2R′

8 δ
ln 2 >

65

2
H (R+ 2R′) ,

32

128

R+ 2R′

8 δ
ln 2 > 12

ln 3

ln 2
ln

(
2(R+ 2R′)

Rγ(x0)

)
,

which imply that

2(R+2R′)/8 δ > 312

(
R+ 2R′

Rγ(x0)

)12 ln 3
ln 2

e
65
2 H (R+2R′)

and, putting this estimate in (43), we get that

R− 2R′ − 2A

`(γ)
< 312

(
R+ 2R′

Rγ(x0)

)12 ln 3
ln 2

e
65
2 H (R+2R′) ;

as we have seen that Rγ(x0) ≤ 2R′ +A, this proves (ii) because it proves that

`(γ)

Rγ(x0)
≥ `(γ)

2(R− 2R′ − 2A)
>

3−12

2

(
R+ 2R′

Rγ(x0)

)−20

e−
65
2 H (R+2R′) .
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Proof of Theorem 5.6. Let % be the representation from Γ to Isom(X, d) associated to the action
under consideration, we have already seen (see the beginning of the proof of Lemma 5.9) that, if
the assumptions of Theorem 5.6 are verified when the group is Γ, they are also verified when the
group is %(Γ) and that, if the conclusions of Theorem 5.6 are valid when the group is %(Γ), they
are also valid when the group is Γ. In order to prove Theorem 5.6, it is thus sufficient to prove
it when Γ is a subgroup of Isom(X, d); this is what we shall suppose in the sequel of this proof.
Γ\X is then compact by Lemma 8.13 (ii). For the sake of simplicity, let H := Ent(X, d).

If H >
1

750
Min

(
1

δ
, 1

)
or if `(γ) > Max

(
δ

2500
, 10−5D

)
>

3−12

5
R0 for every torsion-free

element γ ∈ Γ∗, then the theorem 5.6 is trivially proved, this is the reason why, from now on,

(arguing by contradiction) we shall suppose that H ≤ 1

750
Min

(
1

δ
, 1

)
and that there exist

torsion-free elements γ ∈ Γ∗ such that `(γ) ≤ Max

(
δ

2500
, 10−5D

)
; let us fix any of these

elements, denoted by γ. By Proposition 8.44 (ii), γ cannot be parabolic and, as γ is torsion-free,
it is not elliptic by Remark 8.16 (i), thus γ is an hyperbolic isometry (by Theorem 8.15) satisfying
`(γ) > 0 (by Lemma 8.19).
As R0 := Max [20 (D + δ) , 720 δ], the lemma 8.23 (i) and the upper bound of `(γ) which has
just been assumed give

s(γ) := inf
x∈X

d(x, γ x) ≤ `(γ) + δ ≤ δ + Max

(
δ

2500
, 10−5D

)
<

R0

719
, (44)

Applying Lemmas 8.32 (ii) and 8.31 to the Margulis domain MR0
(γ), we know that MR0

(γ) 6= ∅
and X \MR0

(γ) 6= ∅, a consequence (using the intermediate value Theorem) is the existence of
some point x1 ∈ X and of some k0 ∈ N∗ such that Rγ(x1) := Mink∈N∗ d(x1, γ

k x1) = R0 and
d(x1, γ

k0 x1) = R0; Lemma 5.9 (i) then implies that

k0 `(γ) ≥ ε′0 where ε′0 := 3−12R0 e
−16H R0 . (45)

Let us denote by k1 the smallest integer such that k1k0 `(γ) > 3δ, (45) implies that

1 ≤ k1 ≤
[

3 δ

ε′0

]
+ 1 and (k1 − 1) k0 `(γ) ≤ 3 δ . (46)

Let g := γk1k0 , the inequality (40) guarantees that

d(x1, g x1) ≤ R0 + (k1 − 1) k0 `(γ) + 4 δ
ln(k1)

ln(2)
≤ 9R0

8
+ (k1 − 1) k0 `(γ) + 45 δ , (47)

where the last inequality is deduced from the fact that, by a direct computation using (46) and
the inequalities R0 ≥ 720δ and ln(1 + t) ≤ ln t+ 1/t when t > 0, one has:

ln(k1) ≤ ln

(
1 + 313 δ

R0
e16H R0

)
≤ ln

1 + 313 δ

R0
e

2R0

93 δ



≤ ln

313 δ

R0
e

2R0

93 δ

+ 3−13 R0

δ
≤ 13 ln 3− ln 720 +

R0

δ

(
2

93
+ 3−13

)
≤ ln 2

4δ

(
45δ +

R0

8

)
.

As γ is hyperbolic, the action of γ on X ∪ ∂X has exactly two fixed points γ− , γ+ ∈ ∂X; as
M(g) = M(γ) (because γ− and γ+ are also the fixed points of g), and as `(g) = k1 k0 `(γ) > 3 δ,
Lemmas 8.28 and (47) give:

d(x1,M(γ)) = d(x1,M(g)) ≤ 1

2

(
d(x1, g x1)− `(g)

)
+ 3 δ ≤ 1

2

(
9R0

8
− k0 `(γ)

)
+

51

2
δ . (48)

For any ε > 0, let us fix any geodesic c ∈ G(γ) such that the distance from x1 to the image of
c is smaller than d(x1,M(γ)) + ε, let us denote by c(tk) a projection of gkx1 onto the geodesic
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line c; for every k ∈ Z such that d
(
c(tk) , c(tk+1)

)
> 3 δ, a consequence of the inequality (47), of

the lemma 8.9, and of the fact that g−k ◦ c and g−(k+1) ◦ c are both geodesics of G(γ) is that

9R0

8
+ (k1 − 1) k0 `(γ) + 51 δ ≥ d(x1, g x1) + 6 δ = d

(
gkx1, g

k+1x1

)
+ 6 δ

≥ d
(
gkx1, c(tk)

)
+ d
(
c(tk) , c(tk+1)

)
+ d
(
c(tk+1), gk+1x1

)
≥ 2 d(x1,M(γ)) + d

(
c(tk) , c(tk+1)

)
.

From this, from (48) and from the definition of k1, we infer that, for every k ∈ Z,

d
(
c(tk) , c(tk+1)

)
≤ Max

(
9R0

8
+ (k1 − 1) k0 `(γ) + 51 δ − 2 d(x1,M(γ)) , 3δ

)
=

=
9R0

8
+ (k1 − 1) k0 `(γ) + 51 δ − 2 d(x1,M(γ)) ≤ 9R0

8
+ 54 δ − 2 d(x1,M(γ)) ,

the last inequality being deduced from (46). This implies:

∀t ∈ R ∃k ∈ Z such that d
(
c(t) , c(tk)

)
≤ 9

16
R0 + 27 δ − d(x1,M(γ)) . (49)

Let us denote by c(t′k) a projection of gk◦c(t0) onto the geodesic line c, as the geodesics c and gk◦ c
both admit γ− and γ+ as endpoints, the proposition 8.10 (i) implies that d

(
gk ◦c(t0), c(t′k)

)
≤ 2 δ

and thus that

∀k ∈ Z d(gkx1, c(tk)
)
≤ d(gkx1, c(t

′
k)
)
≤ d(gkx1, g

k ◦ c(t0)
)

+ d
(
gk ◦ c(t0), c(t′k)

)
≤ d(x1, c(t0)

)
+ 2 δ ≤ d(x1,M(γ)) + 2 δ + ε .

From this and from (49), we deduce that, for every t ∈ R,

min
k∈Z

d
(
c(t) , gkx1

)
≤ min

k∈Z
d
(
c(t), c(tk)

)
+ max

k∈Z
d
(
c(tk) , gkx1

)
≤ 9

16
R0 + 29 δ + ε <

8

13
R0 + ε .

(50)
Let us now notice that, as γ is hyperbolic, Mmin(γ) is closed and non empty set by Lemma 8.34
(iv). Let us fix any point y ∈ Mmin(γ) and projections c(t) and c(t′) of y and γ y (respectively)
onto the geodesic line c; applying (50), let us fix k2 ∈ Z such that d

(
c(t) , gk2 x1

)
≤ 9

16 R0+29 δ+ε;
we have only two possible cases:

• Case 1 : If d(c(t), c(t′)) > 3 δ, the triangle inequality and the lemma 8.9 give:

d(y, c(t))+3δ+d(y, c(t′))−d(y, γ y) < d(y, c(t))+d(c(t), c(t′))+d(γ y, c(t′)) ≤ d(y, γ y)+6 δ ;

noticing that d(y, c(t′)) ≥ d(y, c(t))+d(c(t), c(t′))−2 δ > d(y, c(t))+δ (by Lemma 8.8) and
that d(y, γ y) = s(γ) < R0

719 (by (44)) and plugging these two estimates into the previous

inequality, we obtain that d(y, c(t)) < s(γ) + δ < R0

719 + δ. From this, from the definition of

k2 and from the fact that 29 δ + δ ≤ R0

24 (by definition), we deduce, when ε is sufficiently
small, that

d(x1, g
−k2 y) = d(gk2 x1, y) ≤ d(gk2 x1, c(t)) + d(c(t), y) <

25

41
R0 .

As Mmin(γ) is invariant by γk for any k ∈ Z, it is invariant by g−k2 and thus g−k2 y ∈
Mmin(γ); a consequence of the last inequality is that d

(
x1,Mmin(γ)

)
<

25

41
R0 and thus

∃x ∈Mmin(γ) such that d(x1, x) <
25

41
R0 (51)

Let us fix such a point x ∈ Mmin(γ) and let us define R := 5 d(x1, x) + 3 d(x, γ x); the
estimates (51) and (44) lead to

R = 5 d(x1, x) + 3 d(x, γ x) = 5 d(x1, x) + 3 s(γ) ≤
(

125

41
+

3

719

)
R0 <

77

25
R0 .
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Noticing that Rγ(x1) = R0 and that (by assumption) H := Ent(X, d) ≤ 1

750 δ
, we may

apply Lemma 5.9 (ii) to the points x1 and x, which gives:

`(γ)

R0
>

3−12

2

(
R

R0

)−20

e−
65
2 H R >

3−12

2

(
25

77

)20

e−101HR0 . (52)

• Case 2: If d(c(t), c(t′)) ≤ 3 δ, let us denote by c (t”) a projection of γ ◦ c (t) onto the
geodesic line c, the triangle inequality then gives:

d
(
c(t), γ ◦ c (t)

)
≤ |t− t′|+ |t′ − t”|+ d

(
c(t”), γ ◦ c (t)

)
(53)

– If |t′ − t”| ≤ 3 δ, as the geodesics c and γ ◦ c both admit γ− and γ+ as endpoints, the
proposition 8.10 (i) implies that d

(
γ ◦ c (t), c(t”)

)
≤ 2 δ; from this, from (53), and from

the assumptions on d(c(t), c(t′)) and on |t′ − t”|, we get that d
(
c(t), γ ◦ c (t)

)
≤ 8 δ.

– If |t′ − t”| > 3 δ, the lemma 8.9 gives:

d
(
y , c (t)

)
+ 6 δ = d

(
γ y , γ ◦ c (t)

)
+ 6 δ ≥ d

(
γ y , c (t′)

)
+ |t′ − t”|+ d

(
c(t”), γ ◦ c (t)

)
≥ d
(
y , c (t′)

)
− d(y, γ y) + |t′ − t”|+ d

(
c(t”), γ ◦ c (t)

)
≥ d
(
y , c (t)

)
+ |t− t′| − 2δ − s(γ) + |t′ − t”|+ d

(
c(t”), γ ◦ c (t)

)
,

the last inequality being a consequence of Lemma 8.8. Transferring this last estimate

in (53), we obtain d
(
c(t), γ ◦ c (t)

)
≤ 8 δ + s(γ) <

R0

719
+ 8 δ.

In case 2, we therefore always have

d
(
c(t), γ ◦ c (t)

)
<

R0

719
+ 8 δ <

R0

79
. (54)

Let us now redefine R := 5 d(gk2x1, c(t)) + 3 d(c(t), γ ◦ c(t)); from the definition of k2

(justified by (50)) and from (54), if ε is sufficiently small, we infer the estimate:

R := 5 d(gk2x1, c(t)) + 3 d(c(t), γ ◦ c(t)) < 40

13
R0 +

3

79
R0 <

78

25
R0 . (55)

As g := γk1k0 , for every p ∈ Z∗ we have d
(
γp(gk2 x1) , gk2 x1

)
= d

(
γp x1, x1

)
, and conse-

quently Rγ(gk2 x1) = Rγ(x1) = R0; as moreover H = Ent(X, d) ≤ 1

750 δ
by assumption,

we may apply Lemma 5.9 (ii) to the points gk2 x1 and c(t) and get:

`(γ)

R0
>

3−12

2

(
R

R0

)−20

e−
65
2 H R >

3−12

2

(
78

25

)−20

e−102HR0 > 3−34 e−102HR0 , (56)

where the second inequality comes from (55) and (as R depends on ε) is valid because ε
has been chosen sufficiently small.

We can now summarize all the cases that we have considered in the whole of this proof : if

H ≤ 1

750
Min

(
1

δ
, 1

)
, either `(γ) > Max

(
δ

2500
, 10−5D

)
>

3−12

5
R0 or

`(γ)

R0
> 3−34 e−102HR0 ≥ 3−34 exp

(
− 4

29
·min

(
1

δ
, 1

)
·R0

)
,

this last inequality being a consequence of the union of (56) and (52). This ends the proof.
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5.2.2 Explicit universal lower bounds for the exponential growth

In the case where the quotient space Γ\X has bounded diameter, we have the:

Proposition 5.10. For every non elementary δ-hyperbolic metric space (X, d), for every proper
action (by isometries) of a group Γ on (X, d), if the quotient Γ\X has diameter bounded above
by D, then

Ent(X, d) ≥ ln 2

27δ + 10D
,

On Riemannian manifolds, we noticed (in the subsection 3.3) that the assumption Ricci curvature
bounded from below is much stronger than the assumption entropy bounded from above; hence
Proposition 5.10, being an obstruction to the smallness of the entropy, can be viewed as a
generalised version of the classical obstructions for the Ricci curvature to be almost nonnegative.

Example 5.7 proves that, in Proposition 5.10, the assumption on the diameter is necessary : in
fact let us consider the free group Γ with 2 generators a, b and its Cayley graph X endowed
with the length distance dα,β defined (in Example 5.7) by deciding that the length of the edges
[g, ga±1] (resp. [g, gb±1]) is α (resp.β). If β goes to +∞ and if α is fixed, we have seen in Example
5.7 that Ent(X, dα,β) goes to 0 and that diam(Γ\X) goes to +∞, while (X, dα,β) is 0-hyperbolic.

The following lower bound of the Entropy is valid in the case where Γ\X is non compact and in
the case where it is compact with unbounded diameter. However, Example 5.7 proves that one
needs to replace the bound on the diameter by the bound on another geometric invariant, as can
be seen in the next proposition.

Proposition 5.11. For every δ-hyperbolic, non elementary, metric space (X, d), for every proper
action (by isometries) of a group Γ on (X, d), if there exists L,C > 0 and two hyperbolic elements
a, b ∈ Γ∗ such that

• 〈a, b〉 is not virtually cyclic,

• `(a), `(b) ≤ L,

• d
(
M(a),M(b)

)
≤ C,

then, for any Γ- invariant Borel measure µ on X, Ent(X, d, µ) ≥ ln 2

17δ + L+ C
.

Corollary 5.12. For every δ-hyperbolic, non elementary, metric space (X, d), for every proper
action (by isometries) of a group Γ on (X, d), if there exists L,R > 0 and an hyperbolic element
a ∈ Γ∗ such that

• `(a) ≤ L,

• there exists x ∈M(a) such that ΓR(x) is not virtually cyclic,

then, for any Γ- invariant Borel measure µ on X, Ent(X, d, µ) ≥ ln 2

17δ + L+R
.

Theorem 6.35 (ii) allows to re-interpret the parameter R which appears in the assumptions of
Corollary 5.12 as an upper bound of the length of a thin tubular neighbourhood (in Γ\X) of the
image of M(a) by the quotient map X → Γ\X. Thus the geometric meaning of the assumptions
of Corollary 5.12 is that there exists at least one of these thin tubes whose length is bounded
from above.

The lower bound of Ent(X, d) given by Corollary 5.12 must depend on the infimum R of the r’s
such that Γr(x) is not virtually cyclic and must go to 0 when R→ +∞.

In fact, revisiting the example 5.7, let us consider the free group Γ with 2 generators a, b and
its Cayley graph X endowed with the length distance dα,β defined (in the example 5.7) by
deciding that the length of the edges [g, g a±1] (resp. [g, g b±1]) is α (resp.β). Let us recall that
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(X, dα,β) is 0-hyperbolic, and moreover CAT(K) for any K ≤ 0; the a-invariant geodesic ca is the
concatenation of the edges . . .∪ [a−k−1, a−k]∪ [a−k, a−k+1] . . .∪ [ak−1, ak]∪ [ak, ak+1]∪ . . . (and
the same for the b-invariant geodesic cb), and these two invariant geodesics ca and cb both contain
the identity element e. We consequently have `(a) = α, `(b) = β. Notice that e ∈ M(a) = ca
and let us fix x0 = e. If β → +∞ and if α is fixed then, on (X, dα,β), the infimum R of the r’s
such that Γr(x0) is not virtually cyclic is equal to β: in fact Γβ(x0) is equal to Γ and is thus not
virtually cyclic and Γr(x0) = 〈a〉 is cyclic for every r ∈ [α, β[. It follows that, for this value of
R = β, all the assumptions of Corollary 5.12 are fulfilled on (X, dα,β) (except the fact that R
is bounded), in spite of this the entropy is not bounded from below because Ent(X, dα,β) → 0
when R := β → +∞.

The entropy of a group with respect to a given system of generators being defined in Subsection
3.1, we obtain the

Corollary 5.13. For every non elementary group Γ, endowed with a finite generator system Σ
with respect to which Γ is δ-hyperbolic, we have

Ent(Γ,Σ) ≥ ln 2

27δ + 10
.

Previous estimates in the case of groups acting on Cartan-Hadamard spaces were given in
[BCG03] and [BCG11]. In [BF18], E. Breuillard and K. Fujiwara independently obtained, under

the same assumptions and when δ ≥ 1, the inequality Ent(Γ,Σ) ≥ ln 2

400150000 δ
(see [BF18],

Corollary 13.2). However, this estimate and our Corollary 5.13 do not provide any lower bound
of the algebraic entropy of the group Γ. Indeed, if (Σi)i∈N is an entropy-minimizing sequence of
generating systems, the corresponding sequence of hyperbolicity constants of (Γ,Σi) may go to
infinity. See Corollary 5.17 and Theorem 5.16 (iii) for lower bounds of the algebraic entropy.

Proof of Proposition 5.11. As `(a), `(b) > 0, let N,N ′ be the smallest integers such that

(N − 1)`(a) ≤ 13δ < N`(a), (N ′ − 1)`(b) ≤ 13δ < N ′`(b),

we have:

13δ < `(aN ) ≤ 13δ + `(a) ≤ 13δ + L , 13δ < `(bN
′
) ≤ 13δ + `(b) ≤ 13δ + L . (57)

Let us denote by F the subgroup generated by {aN , bN ′}, it is not virtually cyclic by the propo-
sition 8.42 (vi); applying the corollary 4.10, we get that one of the two semi-groups generated
by {aN , bN ′} or by {aN , b−N ′} is a free one, and thus that the entropy of F with respect to the
complete system of generators S := {aN , a−N , bN ′ , b−N ′} is at least ln 2.
For any ε > 0, let x0 ∈ M(a) = M(aN ) and x1 ∈ M(b) = M(bN

′
)
)

be two points which satisfy
d(x0, x1) < C + ε; let us fix some geodesic [x0, x1] connecting x0 and x1 and the middle-point m
of this geodesic. As d(x0, a

Nx0) ≤ `(aN )+4δ ≤ 17δ+L and d(x1, b
N ′x1) ≤ `(bN ′)+4δ ≤ 17δ+L

by Lemma 4.11 (i) and the estimates (57), the triangle inequality gives:

d(m, a−Nm) = d(m, aNm) ≤ d(m,x0) + d(x0, a
Nx0) + d(aNx0, a

Nm) ≤ C + 17δ + L+ ε ;

by a similar proof we get d(m, b−N
′
m) = d(m, bN

′
m) ≤ C + 17δ + L+ ε. Using Lemma 3.6, we

obtain, for any Γ- invariant Borel measure µ on X,

Ent(X, d, µ) · (17δ + L+ C + ε) ≥ Ent(X, d, µ) ·Max
[
d(m, a±Nm); d(m, b±N

′
m)
]

≥ Ent(F, S) ≥ ln 2

and, when ε→ 0, this proves Proposition 5.11.

Proof of Corollary 5.12. Choosing x0 ∈ M(a) such that ΓR(x0) = 〈ΣR(x0)〉 is not virtually
cyclic, Corollary 8.43 (iii) then implies the existence of some b ∈ ΣR(x0) such that 〈a, b〉 is not
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virtually cyclic, and Corollary 8.43 (i) then guarantees that 〈a, bab−1〉 is not virtually cyclic.
Moreover one has d

(
M(a),M(bab−1)

)
= d

(
M(a), b

(
M(a)

))
≤ d(x0, b(x0) ≤ R. Because of this

and of the fact that `(bab−1) = `(a) ≤ L, we may apply Proposition 5.11 (where we replace C
by R) to the two hyperbolic isometries a and bab−1, which concludes.

Before proving Proposition 5.10, let us first prove the

Lemma 5.14. For every Gromov-hyperbolic space (X, d), every infinite, discrete and co-compact
subgroup Γ of the group of isometries of (X, d) contains at least one hyperbolic element γ such
that there exists x ∈ X satisfying d(x, γ x) ≤ 8D+10δ, where D is an upper bound of the diameter
of Γ\X. A consequence is that the ideal boundary of (X, d) contains at least 2 points.

Proof. The action of Γ on (X, d) being proper (by Proposition 8.12), every sequence (γn)n∈N
of distinct elements of Γ verifies d(x, γn x) → +∞ when n → +∞ (for every x ∈ X). This
proves that (X, d) is a unbounded, geodesic and proper space, thus that its ideal boundary ∂X
is non empty. Let x0 be any fixed origin, θ be any point of ∂X, and c a geodesic ray such that
c(0) = x0 and c(+∞) = θ. Let us fix ε such that 3 ε is the infimum of d(x, gx)− (8D+10δ) when
g runs in the set {g : d(x, gx) > 8D + 10δ}; as the action of Γ is proper (by Proposition 8.12),
this infimum is attained and thus ε > 0; moreover, by the choice of ε, every γ ∈ Γ such that
d(x, γ x) ≤ 8D+10δ+2 ε satisfies automatically d(x, γ x) ≤ 8D+10δ. Let us defineR = 3D+5δ+ε
and denote by x and y (respectively) the points c(R) and c(2R) of the geodesic ray c. As
d(y,Γx) and d(x0,Γx) are bounded above by D, there exists g, h ∈ Γ such that d(x0, gx) ≤ D
and d(y, hx) ≤ D. The triangle inequality then implies that R − D ≤ d(x, gx) ≤ R + D,
R−D ≤ d(x, hx) ≤ R+D and 2R− 2D ≤ d(gx, hx) ≤ 2R+ 2D; we then have

d
(
gx, hx

)
≥ 2R− 2D = R+D + 5 δ + ε ≥ Max [d(x, gx) ; d(x, hx)] + 5 δ + ε .

Lemma 8.24 (which is a variation of the lemma 9.2.3 page 98 of [CDP90]) then implies that either
`(g) ≥ 3δ + ε > 0, or `(h) ≥ 3δ + ε > 0, or `(gh) = `(hg) ≥ 2 ε > 0, which implies (by Lemma
8.19) that (at least) one of the three isometries g, h or gh is hyperbolic; hence there exists an
hyperbolic isometry γ (equal to g, h or gh) such that d(x, γ x) ≤ 2R+ 2D = 8D+ 10δ+ 2 ε, and
then we have d(x, γ x) ≤ 8D + 10δ as proved above. A consequence is that the ideal boundary
contains the two fixed point of this hyperbolic isometry and this ends the proof

Proof of Proposition 5.10. Lemma 5.14 guarantees that one can fix an element a ∈ Γ∗ such that
a acts as an hyperbolic isometry and that 0 < `(a) ≤ 8D+10δ. Choose some point x0 ∈M(a). A
result of M. Gromov ([Gro07] Proposition 3.22, whose proof is written for Riemannian manifolds,
but is still valid on path-connected metric spaces9) proves that Σ2D(x0) := {σ ∈ Γ∗ : d(x0, σx0) ≤
2D} is a complete system of generators of Γ, the properness of the action implying the finiteness
of Σ2D(x0). This proves the existence of some b ∈ Σ2D(x0) (possibly elliptic !) such that
〈a, b〉 is not virtually cyclic (otherwise Γ would be virtually cyclic by the corollary 8.43 (iii)
and (X, d) would then be elementary by Propositions 8.44 (iii) and 8.44 (iv)). By Corollary
8.43 (i) 〈a, bab−1)〉 is not virtually cyclic too; as moreover `(bab−1) = `(a) ≤ 8D + 10δ and
d
(
M(a),M(bab−1)

)
= d

(
M(a), b

(
M(a)

))
≤ d(x0, b(x0) ≤ 2D, we may apply the proposition

5.11 (where L and C are replaced by 8D + 10δ and 2D respectively) to the two hyperbolic
isometries a and bab−1, which ends the proof.

Remark 5.15. Proposition 5.10 could also be deduced from Theorem 5.6, but the proof given
above is much more simple. This stresses the fact that Theorem 5.6 is a more powerful result:

in fact, if we suppose that the entropy of (X, d) is smaller than
1

750
Min

(
1

δ
, 1

)
, Proposition

5.10 is a consequence of the fact that there exists a torsion-free γ ∈ Γ∗ such that `(γ) ≤ C(δ,D)
while the Theorem 5.6 implies that every torsion-free γ ∈ Γ∗ verifies `(γ) ≥ C ′(δ,D).

9in fact, the path-connectedness implies that, for every γ ∈ Γ and every ε > 0, there exists a finite set
{y0, y1, . . . , yN} ⊂ X such that y0 = y, yN = γ y and d(yi−1, yi) < ε for every i ∈ {1, . . . , N}. Let us choose
γ0, γ1, . . . , γN ∈ Γ such that γ0 = e, γN = γ and d(yi, γi y) ≤ D, we then get γ = σ1 · . . . · σN , where

σi = γ−1
i−1 · γi ∈ Σ2D+ε(y) and the finiteness of Σ3D(y) proves that Σ2D+ε(y) = Σ2D(y) when ε is sufficiently

small.
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Proof of Corollary 5.13. As seen in the sections 2 and 3.1, the δ-hyperbolicity of the group Γ
(when endowed with the generator system Σ) means that its Cayley graph GΣ(Γ), endowed with
the algebraic distance dΣ (defined in the section 2) is a δ-hyperbolic metric space. The action
(by left-translations) of Γ on GΣ(Γ) is isometric and proper, because the balls of (G, dΣ) are finite
sets. As Σ is finite, (GΣ(Γ), dΣ) is a proper space and the quotient Γ\GΣ(Γ) is a union of a finite
number of circles whose diameter is bounded by D = 1. As Γ is non elementary, its Cayley graph
is non elementary too. We can thus apply the Proposition 5.10, which implies that

Ent(Γ,Σ) := Ent (GΣ(Γ), dΣ) ≥ ln 2

10D + 27δ
=

ln 2

10 + 27δ
.

5.2.3 Implicit universal lower bounds for the exponential growth

The results of this subsection are in some sense stronger than the results of the previous subsection
5.2.2 because they provide lower bounds for the algebraic entropy of any non virtually cyclic (eventually
non cocompact) group acting properly on a δ-hyperbolic space, in particular they bound from below the
algebraic entropy of any non virtually cyclic subgroup of a δ-hyperbolic group (independently of its system
of generators). On the other hand, the results of this subsection are in some sense weaker: in fact, the
lower bounds given in the previous subsection 5.2.2 are explicit while the bounds which will be established
in the present subsection, though universal, cannot be specified, because they all depend on the non explicit
function p 7→ N(p) which appears in the theorem 5.19 of E. Breuillard, B. Green and T. Tao. From this
function, for every values of C0 > 1 and of H,D, δ > 0, we define the two following universal constants:

N1(C0) = 3N
([
C3

0

]
+ 1
)

; N0(δ,H,D) := N
([

312 e490H(D+δ)
]

+ 1
)
. (58)

Let us furthermore recall that, for every A,B ⊂ G, we denote by A · B the image of A × B by the map
(γ, g) 7→ γ ·g and define (by induction) Sk as Sk−1 · S.

Theorem 5.16. Let (X, d) be any δ-hyperbolic (non elementary) metric space, for every proper
action (by isometries) of a group Γ on (X, d) such that the diameter of Γ\X and the entropy of
(X, d) are respectively bounded by D and H, then (denoting by N0 the above universal constant
N0(δ,H,D))

(i) for any finite symmetric subset S of Γ which generates a non virtually cyclic subgroup,
there exists at least one γ0 ∈ S3N0 such that `(γ0) ≥ δ and there exists σ ∈ S such that
one of the two semi-groups generated by {γ14

0 , σ γ14
0 σ−1} or by {γ14

0 , σ γ−14
0 σ−1} is free.

(ii) The algebraic entropy10 of any finitely generated and non virtually cyclic subgroup Γ′ of Γ

is bounded from below by
ln 2

42N0 + 2
.

(iii) The algebraic entropy of Γ is bounded from below by
ln 2

42N0 + 2
.

Given a finitely generated group Γ, let us recall that, to any choice of a finite system S of
generators of Γ corresponds a Cayley graph, which is a metric space when endowed with the
algebraic distance dS . When Γ is Gromov-hyperbolic, this metric space is Gromov-hyperbolic
too and we shall denote by δ(Γ, S) its hyperbolicity constant11. We then have

Corollary 5.17. Let Γ be a non virtually cyclic Gromov-hyperbolic group then, for every positive
constant M , if there exists a finite system S0 of generators of Γ such that Ent(Γ, S0) (δ(Γ, S0) +
1) ≤ M , then the algebraic entropy of Γ and of any finitely generated and non virtually cyclic

subgroup Γ′ of Γ is bounded from below by
ln 2

42N ([312 e490M ] + 1) + 2
where p 7→ N(p) is the

function which appears in Theorem 5.19.

10Recall that, in the absence of additional specification, the algebraic entropy of a group G is the infimum (with
respect to every finite system S of generators of G) of Ent(G,S).

11When Γ is Gromov-hyperbolic, for every finite system S of generators, δ(Γ, S) < +∞.
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Note that E. Breuillard and K. Fujiwara also give a lower bound of the algebraic entropy of an
hyperbolic group and of its non virtually cyclic subgroups, their estimate also depends on the
existence of a generating system S0 of Γ, however they suppose that δ(Γ, S0) and the cardinality
|S0| of this generating system are bounded above. They can then replace our use of the Bishop-

Gromov inequality (Theorem 5.1) by the fact that
#BS0(e,N + 1)

#BS0
(e,N)

≤ 2 #(S0)− 1, which clearly

implies that Ent(Γ, S0) ≤ ln
(
2 #(S0)− 1

)
(see [BF18], Corollary 13.4).

Theorem 5.16 is in fact a corollary of the following proposition, which is also valid in the non
cocompact case:

Proposition 5.18. Let (X, d) be any δ-hyperbolic (non elementary) metric space, for every
proper action (by isometries) of a group Γ on (X, d) if, for every point x ∈ X, the counting
measure µΓ

x of the orbit Γx satisfies the C0-doubling condition for all the balls (centered at x) of
radius r ∈

[
1
2 r0 ,

5
4 r0

]
(where r0 >

31
2 δ and C0 > 1 are arbitrary constants) then (denoting by

N1 the above universal constant N1(C0))

(i) for any finite symmetric subset S of Γ which generates a non virtually nilpotent subgroup,
there exists at least one γ0 ∈ SN1 such that `(γ0) ≥ δ and there exists σ ∈ S such that one
of the two semi-groups generated by {γ14

0 , σ γ14
0 σ−1} or by {γ14

0 , σ γ−14
0 σ−1} is free.

(ii) The algebraic entropy of any finitely generated and non virtually nilpotent subgroup Γ′ of Γ,

with respect to any finite system of generators of Γ′, is bounded from below by
ln 2

14N1 + 2
.

Proof. Let N ′1 = 1
3 N1 = N

([
C3

0

]
+ 1
)
; let us denote by G = 〈S〉 the subgroup generated by S

and by A the set {γ ∈ G : d(x, γ x) ≤ r0}. By the proposition 3.19, the C0-doubling condition
assumed for the counting measure µΓ

x of the orbit Γx implies that the counting measure µGx of
the orbit of G satisfies the condition

#(A ·A)

#A
≤
µGx
(
BX(x, 2r0)

)
µGx
(
BX(x, r0)

) ≤ C3
0 .

As G := 〈S〉 is not virtually nilpotent, the theorem 5.19 then proves that SN
′
1 is not contained

in A; there consequently exists some γ ∈ SN ′1 such that d(x, γ x) > r0 >
31
2 δ.

If % is the representation Γ → Isom(X, d) associated to the action of Γ on (X, d), there exists
%(γ) ∈ %(SN

′
1) = %(S)N

′
1 such that d(x, %(γ)x) > r0 >

31
2 δ. As this is valid for every x ∈ X,

we obtain the estimate: L∗
(
%(S)N

′
1

)
≥ r0 >

31
2 δ, and the theorem 4.17 (where we replace S

by %(S)N
′
1) then implies that there exists g ∈ %(S)3N ′1 = %(SN1) such that `(g) ≥ δ; there thus

exists γ0 ∈ SN1 such that %(γ0) = g and thus (by Lemma 5.8 (vi)) `(γ0) = `(g) ≥ δ.
Now, as 〈S〉 is not virtually cyclic, by Corollary 8.43 (iii), there exists σ ∈ S such that the
subgroup generated by {γ0, σ} is not virtually cyclic and, by Corollary 8.43 (i), {γ0 , σ γ0 σ

−1}
generates a non virtually cyclic subgroup of Γ. Hence we may apply Corollary 4.10 to the pair
{γ0 , σ γ0 σ

−1}, which proves that one of the two semi-groups generated by {γ14
0 , σ γ14

0 σ−1} or
by {γ14

0 , σ γ−14
0 σ−1} is free. This proves (i).

This also implies that the (algebraic) entropy of the subgroupG′ generated by S′ := {γ14
0 , σ γ14

0 σ−1}
(with respect to the generator system S′) is bounded from below by ln 2. Let us consider the
metric space G, endowed with the algebraic distance dS associated to the generator system S,
and the faithful action (by left translations) of G′ on G, as this action is proper and dS-isometric,
we can apply the lemma 3.6, which gives

Ent(G,S) := Ent(G, dS ,#) ≥ Ent(G′, S′)

Max [dS (e, γ14
0 ) ; dS (e, σ γ14

0 σ−1)]
≥ ln 2

14N1 + 2
.

Let us now consider any finitely generated and non virtually cyclic subgroup Γ′ of Γ, and any
finite system of generators Σ of Γ′, let us denote by S the symmetrized of Σ, as Γ′ = 〈S〉, we
can apply the previous inequality (replacing G by Γ′), which ends the proof of the proposition
5.18.
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End of the proof of Theorem 5.16. Theorem 5.1 (ii) proves that, for every point x ∈ X, the

counting measure µΓ
x of the orbit Γx satisfies the C0-doubling condition (with C0 := 34 e

490
3 H(D+δ))

for all the balls (centered at x) of radius r ∈
[

1
2 R0 ,

5
4 R0

]
(where R0 = 20 (D + δ) > 31

2 δ). We
may therefore apply Proposition 5.18, while replacing N1 by 3N0 because

N1 = N1(C0) = 3N
([
C3

0

]
+ 1
)

= 3N
([

312 e490H(D+δ)
]

+ 1
)

= 3N0 .

This proves the properties (i) and (ii) of Theorem 5.16. Moreover, if % is the representation
Γ → Isom(X, d) associated to the action of Γ on (X, d), %(Γ) is not virtually cyclic, otherwise
(X, d) would be elementary by Propositions 8.44 (iii) and (iv); this implies that Γ is not virtually
cyclic and thus that (ii) =⇒ (iii).

End of the proof of Corollary 5.17. We apply Theorem 5.16 to the δ-hyperbolic space (X, d),
where X is the Cayley graph of Γ (associated to the system of generators S0) and where d is the
canonical extension to this Cayley graph of the word-distance dS0

on Γ (hence on the vertices of
the Cayley graph). Notice that, in this case, the diameter of Γ\X is equal to 1, the hyperbolicity
constant of (X, d) is δ(Γ, S0), the entropy of (X, d) is equal to the entropy of (Γ, S0) and is

thus bounded above by
M

1 + δ(Γ, S0)
. As Γ is not virtually cyclic, (X, d) is non elementary by

Proposition 8.44 (iv) and (iii). Let us consider the action (by left translations) of Γ on its Cayley
graph (X, d); as this action is proper, co-compact and d-isometric, we can apply Theorem 5.16 (ii)

and (iii), replacing (in this Theorem) D by 1 and N0(δ,H,D) by N0

(
δ(Γ, S0) ,

M

1 + δ(Γ, S0)
, 1

)
.

The corollary 5.17 then follows.

5.3 Margulis Lemmas for group actions on Gromov-hyperbolic spaces

For every group G and every A,B ⊂ G, we shall still denote by A · B the image of A × B by the map
(γ, g) 7→ γ ·g and define (by induction) Sk as Sk−1 · S.
Let us recall that we consider any proper action (by isometries) of any group Γ on any δ-hyperbolic
(and thus geodesic and proper) space (X, d) such that the Entropy of (X, d) (with respect to at least one
Γ-invariant measure) and the diameter of Γ\X are respectively bounded above by H and D. For any
x ∈ X and any r > 0, let us also recall that the subgroup generated by Σr(x) := {γ ∈ Γ∗ : d(x, γx) ≤ r}
is denoted by Γr(x).In the following subsections, making use of the function N(•) which will be defined
in the following Theorem 5.19, given any δ, H, D > 0, we shall consider the universal constants

R0 := 20(D + δ) , N0 := N
([

312 e490H(D+δ)
]

+ 1
)

, ε0(δ,H,D) :=
R0

N0
, (59)

s0(δ,H,D) := 2 · 3−12R0 e
− 1

2
(N0+10) (13HR0+6) . (60)

5.3.1 A first Margulis Lemma for δ-hyperbolic spaces

Theorem 5.19. (E. Breuillard, B. Green, T. Tao, [BGT12] Corollary 11.2) For every p ∈ N∗,
there exists N = N(p) ∈ N∗ (only depending on p) such that the following property holds for
every group G and any finite symmetric system S of generators of G: if there exists some A ⊂ G
which contains SN(p) and satisfies #(A ·A) ≤ p#(A), then G is virtually nilpotent.

The following corollary settles a first Margulis property under a weak doubling assumption at
some scale; it improves a previous corollary of Breuillard, Green and Tao in [BGT12]: in fact
the “packing” hypothesis of [BGT12] (see Definition 3.8) is replaced here by a weak doubling
condition on the counting measure of an orbit of the action of a given group Γ, this last hypothesis
being weaker than the packing one, as proved in Lemma 3.12, because of the fact that, when
counting the maximal number of disjoint balls BX(xi, r) included in a bigger one, this number is
greater when we put no condition on the centers xi than when we compel the xi’s to be located
on the same orbit of Γ.
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Corollary 5.20. For every data r0 > 0 and C0 > 1, on every proper metric space (X, d), for
every proper action (by isometries) of any group Γ on this space, and for every x0 ∈ X, if the
counting measure µΓ

x0
of the orbit Γ·x0 verifies the C0-doubling condition for all the balls of radius

r ∈
[

1
2r0,

5
4r0

]
centered at the same point x0, then the subgroup Γ%(x0) is virtually nilpotent for

every % ≤ r0

N ([C3
0 ] + 1)

(where N(·) is defined in Theorem 5.19).

In the δ-hyperbolic case, we deduce the following Margulis Lemma

Theorem 5.21. On any δ-hyperbolic space (X, d), for every proper action (by isometries) of any
group Γ on this space such that the diameter of Γ\X and the Entropy of (X, d) are respectively
bounded above by D and H, for every x ∈ X and every r ≤ ε0(δ,H,D), the subgroup Γr(x) is
virtually cyclic.

Notice that the celebrated original Margulis Lemma was settled for Riemannian manifolds whose sectional
curvature and dimension are bounded; a more recent celebrated result was proved by V. Kapovitch and
B. Wilking ([KW11]), in which the above universal constant ε0 of Theorem 5.21 is replaced by another
universal constant depending on a lower bound of Ricci curvature, on an upper bound of the diameter
and on the dimension). With respect to this last result, in Theorem 5.21, we have replaced the bounds on
Ricci curvature and on the dimension by an upper bound of the Entropy (see section 3.3 for a comparison
between all these hypotheses).

In the proof of these two last results, the key role is played first by Theorems 5.1 and 5.19, and
secondly by Proposition 3.19 (i).

Proof of Corollary 5.20. Once admitted Proposition 3.19 (i), the proof follows the one of the
corollary 11.17 of [BGT12]. In fact, let G := Γ%(x0) and S := Σ%(x0), according to Proposition
3.19 (i), the doubling condition assumed on the counting measure of the orbit Γ · x0 of Γ implies
that the counting measure µGx0

of the orbit G · x0 of the subgroup G verifies

µGx0

[
BX(x0, 2 r0)

]
µGx0

[
BX(x0, r0)

] ≤ µGx0

[
BX(x0, 2 r0)

]
µGx0

[BX(x0, r0)]
≤ C3

0 . (61)

We then apply Theorem 5.19, where we put p =
[
C3

0

]
+ 1 and A := {γ ∈ G : d(x0, γx0) ≤ r0};

in fact, taking ε′0 := r0
N(p) , the triangle inequality and the hypothesis % ≤ ε′0 guarantees that

SN(p) ⊂ Σε′0(x0)N(p) ⊂ A; as A ·A ⊂ {γ ∈ G : d(x0, γx0) ≤ 2 r0}, inequality (61) implies

#(A ·A)

#(A)
≤ # ({γ ∈ G : d(x0, γx0) ≤ 2 r0})

# ({γ ∈ G : d(x0, γx0) ≤ r0})
=
µGx0

[
BX(x0, 2 r0)

]
µGx0

[
BX(x0, r0)

] ≤ C3
0 ≤ p ;

Theorem 5.19 then implies that the subgroup G = Γ%(x0) generated by S := Σ%(x0) is virtually
nilpotent.

End of the proof of Theorem 5.21. Γ\X is compact by Lemma 8.13 (ii). Let R0 := 20(D + δ)

and C0 = 34 e
490
3 H (D+δ); under the hypotheses of Theorem 5.21, a consequence of revisiting

Theorem 5.1 (ii) as a doubling property (see comments after this Theorem) is that, for every

x ∈ X and every R ≥ 1
2R0, one has

µΓ
x

(
BX(x, 2R)

)
µΓ
x

(
BX(x,R)

) ≤ 34 e
13
2 H R, hence that the counting

measure µΓ
x of the orbit Γx verifies the C0-doubling condition for all the balls centered at x,

of radius R ∈
[

1
2R0,

5
4R0

]
. As N0 = N

([
C3

0

]
+ 1
)

and ε0(δ,H,D) = R0/N0 by (59), the
corollary 5.20 then implies that, for every r ≤ ε0(δ,H,D), Γr(x) is virtually nilpotent. If % is the
representation Γ → Isom(X, d) associated to the action of Γ on (X, d), it follows that %

(
Γr(x)

)
is virtually nilpotent too, and thus virtually cyclic according to Proposition 8.44 (v); Lemma 5.8
(vii) then guarantees that Γr(x) is virtually cyclic.

This leads to the following lower bound of the Margulis constant L(a, b) (see Definition 4.12):
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Corollary 5.22. On any δ-hyperbolic space (X, d), for every proper action (by isometries) of any
group Γ on this space such that the diameter of Γ\X and the Entropy of (X, d) are respectively
bounded above by D and H, every pair {a, b} of torsion-free elements of Γ∗ which does not
generate a virtually cyclic subgroup verifies L(a, b) ≥ ε0(δ,H,D).

Proof. a and b cannot act as parabolic isometries by the proposition 8.44 (ii); as a and b are
torsion-free, they are not elliptic (by Remark 8.16 (i)), they therefore act as hyperbolic isometries
by Theorem 8.15.
For sake of simplicity, let ε0 := ε0(δ,H,D); if L(a, b) < ε0, there exists x ∈ X and (p, q) ∈ Z∗×Z∗
such that Max[d(x, apx) ; d(x, bqx)] < ε0, hence such that 〈ap, bq〉 ⊂ Γε0(x). As Γε0(x) is virtually
cyclic by Theorem 5.21, 〈ap, bq〉 is virtually cyclic too, and Corollary 8.43 (ii) then implies that
〈a, b〉 is virtually cyclic, in contradiction with the hypothesis.

5.3.2 A lower bound of the diastole

Definitions 5.23. In any metric space (X, d), for every proper action (by isometries) of any
group Γ on this space,

• at any point x ∈ X, sysΓ(x) is the minimum of d(x, γ x) when γ runs through the elements
of Γ∗ (sysΓ(x) > 0 when no element γ ∈ Γ∗ fixes x),

• the r-thin subset12 of X is the open set Xr := {x ∈ X : sysΓ(x) < r},

• at any point x ∈ X, sys�Γ(x) is the minimum of d(x, γ x) when γ runs through the torsion-
free elements of Γ∗,

• the torsion-free r-thin subset of X is the open set X�r := {x ∈ X : sys�Γ(x) < r},

• the r-thick subset of X is the complement of Xr in X.

Proposition 5.24. On any connected non elementary δ-hyperbolic space (X, d), for every proper
action (by isometries) of any group Γ on this space such that the diameter of Γ\X and the Entropy
of (X, d) are respectively bounded above by D and H, for every r ≤ ε0(δ,H,D) (where ε0(δ,H,D)
is defined at (59)), the (torsion-free) r-thin subset X�r of X is either empty or not connected; in
particular there exists a point x ∈ X such that sys�Γ(x) ≥ ε0(δ,H,D).
If moreover Γ is torsion-free, then DiasΓ(X) ≥ ε0(δ,H,D).

This Proposition will be generalized to actions on metric measured spaces by Theorem 6.21.
However the present Proposition is more direct and the lower bound it provides is greater than
the one given in Theorem 6.21. This two results are both based on the same Proposition 6.23,
whose statement and proof are given in section 6.

Remark 5.25. When torsion elements are admitted in Γ, there is no possible universal lower
bound of the diastole (and a fortiori of the pointwise or global systole) under the hypotheses of
Proposition 5.24, as proved by the following example: given any non elementary δ-hyperbolic
space (X0, d0) and any proper action (by isometries) of any group Γ0 on this space such that the
diameter of Γ0\X0 and the Entropy of (X0, d0) are respectively bounded above by D and H, we
construct the metric space (X, d) as the product of (X0, d0) with the circle (T , ε . can) and the

group Γ as the product of Γ0 with the group Rn of the rotations whose angles are
2kπ

n
(where

k ∈ {0, 1, . . . , n − 1}). For sufficiently small values of ε, (X, d) is a non elementary (δ + 2π ε)-
hyperbolic space and the canonical product-action of Γ on (X, d) verifies all the assumptions of
Proposition 5.24. However, we have ∀x sysΓ(x) = 2π ε /n, which goes to zero when ε goes to
zero or when n goes to +∞.

12The use of the word “thin” is justified by the results of the section 6.5.
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Proof of Proposition 5.24. By Lemma 8.13 (ii), as the diameter of Γ\X is finite, the action of Γ
on (X, d0) is co-compact. Under the assumptions of Theorem 5.24, we may apply Theorem 5.21,
which proves that the subgroup Γr(x) is virtually cyclic for every x ∈ X and every r ≤ ε0(δ,H,D).
We may thus apply Proposition 6.23 (ii), where we identify the two spaces (Y, d) and (X, d0) with
(X, d) and the two actions of Γ on these two spaces with the action of Γ on (X, d) considered here;
Proposition 6.23 (ii) then guarantees that X�r is disconnected or empty for every r ≤ ε0(δ,H,D).
Hence X�ε0 is disconnected or empty and X \X�ε0 is not empty, consequently every x ∈ X \X�ε0
verifies sys�Γ(x) ≥ ε0.
If Γ is torsion-free, every x ∈ X \X�ε0 satisfies sysΓ(x) = sys�Γ(x) ≥ ε0, so DiasΓ(X) ≥ ε0.

5.3.3 A lower bound of the global systole for Busemann spaces

Theorem 5.26. On any non elementary, geodesically complete, δ-hyperbolic, Busemann space
(in the sense of Definition 8.36) (X, d), for every proper action (by isometries) of any group Γ
on this space such that the diameter of Γ\X and the Entropy of (X, d) are respectively bounded
above by D and H, one has

(i) `(γ) > s0(δ,H,D) for every torsion-free γ ∈ Γ∗,

(ii) SysΓ(X) > s0(δ,H,D) if Γ is torsion-free,

where s0(δ,H,D) is the universal constant defined at (60).

In this Theorem the hypotheses “torsion-free” are necessary, as proved by Remark 5.25.

The hypothesis “δ-hyperbolic” is also necessary : in fact, let us consider the Riemannian product
of a fixed compact Riemannian manifold (Y, g) of sectional curvature σ ≤ −1 by a circle of length
2π ε, the systole of the action of its fundamental group Γ on its Riemannian universal covering(
Ỹ × R , g̃ ⊕ (dt)2

)
goes to zero with ε, though

(
Ỹ × R , g̃ ⊕ (dt)2

)
verifies all the assumptions

of Theorem 5.26 (except the δ-hyperbolicity) and though Γ is a torsion-free subgroup of the

isometry group of
(
Ỹ × R , g̃ ⊕ (dt)2

)
.

The hypothesis “diam(Γ\X) ≤ D” is also necessary : in fact let (Σ, gn) be a sequence of hyperbolic
surfaces whose diameter goes to +∞ with n, then their injectivity radius goes to zero and
consequently the systole of the action of their fundamental group Γ on their Riemannian cover
(H2, can.) goes to zero, though (H2, can.) verifies all the assumptions of Theorem 5.26 (except
the upper bound of the diameter) and though Γ is torsion-free.

The hypothesis “ Ent(X, d) ≤ H” is also necessary : in fact, let us consider any surface Σ obtained
by connected sum from two compact pointed hyperbolic surfaces (Σ1, g1, x1) and (Σ2, g2, x2)
whose injectivity radii at x1 and x2 are larger than some fixed ε1 > 0: more precisely, for every
positive ε << ε1 we glue Σ1 \ BΣ1

(x1, ε) and Σ2 \ BΣ2
(x2, ε) at the two ends of the cylinder

[−1, 1]×S1, identifying respectively ∂BΣ1
(x1, ε) and ∂BΣ2

(x2, ε) with {−1}×S1 and {1}×S1; we
endow Σ1\BΣ1

(x1, ε) and Σ2\BΣ2
(x2, ε) with their hyperbolic metrics g1 and g2, and [−1, 1]×S1

with the metric hε := (dt)2 + bε(t)
2(dθ)2, where bε(t) :=

sinh ε

coshKε
· cosh(Kε t) and where Kε is

chosen in order that Kε tanhKε =
1

tanh ε
; the metric gε on Σ is obtained by gluing these three

metrics (this gluing is C1 because bε(−1) = bε(1) = sinh ε and −b′ε(−1) = b′ε(1) = cosh ε).
Then the surfaces (Σ, gε) have bounded diameters, sectional curvature σ ≤ −1, and injectivity

radius π bε(0) < π
sinh(ε)

cosh(1/ ε)
13, the systole of the action of their fundamental group Γ on their

Riemannian universal coverings (Σ̃, g̃ε) is equal to π bε(0)) and goes to zero with ε, despite the

facts that Γ is torsion-free, that the diameters of Γ\(Σ̃, g̃ε) = (Σ, gε) are uniformly bounded, that

(Σ̃, g̃ε) is a CAT(−1) space and is therefore a Busemann space and a δ0-hyperbolic space (with

13In fact, as Kε >
1

tanh ε
>

1

ε
, we have bε(0) =

sinh ε

coshKε
<

sinh(ε)

cosh(1/ ε)
, which goes to zero with ε.
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δ0 = ln 3, by Corollary 1.4.2 page 12 of [CDP90]). Hence all the hypotheses of Theorem 5.26 are

verified by the actions of Γ on the spaces (Σ̃, g̃ε), except the “Entropy bounded” one. In fact

Ent(Σ̃, g̃ε)→ +∞ when ε→ 0 by Theorem 6.26 (ii)).

However, deciding if the hypothesis “(X, d) is a Busemann space” is necessary in Theorem 5.26
is an open problem.

Before proving Theorem 5.26, we shall provide (in Lemmas 5.27 and 5.28) lower bounds of the
distance between the boundary of a Margulis domain MR(γ) and every Margulis domain Mε(γ)
such that `(γ) ≤ ε < R. The first Lemma investigate the case where R = R0 := 20 (D + δ), the
second Lemma, using the convexity of the distance, is concerned by the case where ε = `(γ) and
`(γ) < R ≤ R0. These two Lemmas are the keys of the proof of Theorem 5.26: in fact, if ε = `(γ)
and if ε0 is the lower bound of the Margulis constant given by the corollary 5.22, these Lemmas
provide a lower bound of the distance between Mε(γ) and the boundary of Mε0(γ) which goes to
+∞ when ε→ 0 and, as this distance is bounded from above in terms of the diameter, it comes
that ε = `(g) cannot be small.

Lemma 5.27. On any non elementary δ-hyperbolic space (X, d), for every proper action (by
isometries) of any group Γ on this space such that the diameter of Γ\X is bounded above by D,
for every torsion-free γ ∈ Γ∗, for every (x0, x) ∈ X × X such that Rγ(x0) ≥ 20(D + δ) and
Rγ(x) ≤ Rγ(x0), one has

d(x0, x)

Rγ(x0)
≥

ln

(
3−12

(
2

[
Rγ(x0)

Rγ(x)

]
+ 1

))
65 Ent(X, d) ·Rγ(x0) + 14

− 1

2
.

Proof. For the sake of simplicity, let N ′ :=

[
Rγ(x0)

Rγ(x)

]
and H := Ent(X, d). By definition of

Rγ(x), there exists p ∈ N∗ such that d (x, γp x) = Rγ(x) and the triangle inequality then gives
d(x, γkp x) < Rγ(x0) + ε for every k ∈ Z such that |k| ≤ N ′ and for any ε > 0; applying Lemma
5.5 (ii) (which is a corollary of the Bishop-Gromov-like inequality of Theorem 5.1 (ii)) in the case
where R = Rγ(x0) + ε, we obtain

2N ′ + 1 ≤ #
{
k ∈ Z : d(x, γk x) < Rγ(x0) + ε

}
≤ 312

(
1 +

2 d(x0, x) + ε

Rγ(x0)

)12 ln 3
ln 2

· e
65
2
H(Rγ(x0)+2 d(x0,x)+ε) ,

when ε→ 0, noticing that Maxt∈R+

(
tβ e−(β/e) t

)
= 1, we infer the inequalities

2N ′ + 1 ≤ 312

(
1 +

2 d(x0, x)

Rγ(x0)

)12 ln 3
ln 2

e
65
2
H(Rγ(x0)+2 d(x0,x)) ≤ 312 e

( 65
2
HRγ(x0)+ 12 ln 3

e ln 2 )
(

1+2
d(x0,x)
Rγ (x0)

)
,

which implies that
d(x0, x)

Rγ(x0)
≥

ln
(
3−12 (2N ′ + 1)

)
65H Rγ(x0) +

24 ln 3

e ln 2

− 1

2
.

Let us recall that the universal constants ε0(δ,H,D), N0 and R0 are defined in (59) and that
s0(δ,H,D) is defined in (60). For the sake of simplicity, we shall use the notations s0 for
s0(δ,H,D) and ε0 for ε0(δ,H,D) in the sequel. Though the final aim of Theorem 5.26 is to
prove that the hypothesis `(γ) ≤ s0(δ,H,D) of the following Lemma is false, it is interesting to
investigate what would be the consequences of such an hypothesis when arguing by contradiction.

Lemma 5.28. Under the hypotheses of Theorem 5.26, every hyperbolic element γ ∈ Γ∗ such
that `(γ) ≤ s0(δ,H,D) admits a γ-invariant geodesic line cγ on which γ acts by translation of
length `(γ) and, for every r such that ε0 /2 < r ≤ R0 and for every x ∈ X such that Rγ(x) ≥ r,

the distance from x to the geodesic line cγ is bounded from below by R0
r − ε0 /2

R0 − ε0 /2

(
3

2
+
N0

5

)
.
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Proof. Let γ− and γ+ be the two points of the ideal boundary which are fixed by γ. From
Lemma 8.41 follows the existence of a geodesic line cγ joining γ− to γ+ such that, for every
t ∈ R, γ

(
cγ(t)

)
= cγ

(
t + `(γ)

)
. A first consequence is that the Margulis domain Mρ(γ) is non

empty for every ρ ≥ `(γ), a second one is that M`(γ)(γ) coincides with Mmin(γ) and contains cγ .
Let us consider any x such that Rγ(x) ≥ r and denote by x̄ a projection of x on the geodesic
line cγ , the geodesic completeness and the lemma 8.39 then prove that the geodesic segment
[x̄, x] can be extended as a geodesic ray (denoted by c) whose origin is x̄ and which contains x.
Lemma 8.38 asserts that the function f : t 7→ d

(
c(t), cγ

)
is convex; as f(0) = 0 and as there exists

t0 = d(x̄, x) > 0 such that f(t) = t for every t ∈ [0, t0], we have f(t) ≥ t for every t ∈ [t0,+∞[,
therefore d

(
c(t), cγ

)
= t for every t ≥ 0, and thus c(+∞) is a point of the ideal boundary which is

different from γ− = cγ(−∞) and from γ+ = cγ(+∞); it then follows from this and from Lemma
8.34 (ii) that c(t) /∈ MR0

(γ) when t is great enough and, by the Intermediate Value Theorem,
there exists a point x0 on the geodesic ray c such that Rγ(x0) = R0. As Rγ(x0) = R0 and
Rγ(x̄) = `(γ), Lemma 5.27 gives:

d(x0, x̄)

R0
≥

ln

(
3−12

(
2

[
R0

`(γ)

]
+ 1

))
65H R0 + 14

− 1

2
>

3

2
+
N0

5
, (62)

where the last inequality is a corollary of the following inequality, which is a consequence of the
assumption `(γ) ≤ s0, of the definition (60) of s0 and of the following direct computation:

ln

[
3−12

(
2

[
R0

`(γ)

]
+ 1

)]
65H R0 + 14

>
1

2

(N0 + 10)(13H R0 + 28/5)

65H R0 + 14
= 2 +

N0

5
.

When x0 ∈ [x̄, x], the inequality (62) implies that d(x, x̄) ≥ d(x0, x̄) > R0

(
3
2 + N0

5

)
and proves

the lemma in this case.
From now on we shall therefore suppose that x ∈ [x̄, x0].
By the properness of the action and the definition of Rγ(x0), there exists k0 ∈ N∗ such that
d(x0, γ

k0 x0) = Mink∈Z∗ d(x0, γ
k x0) = R0. We shall now prove the inequality:

k0 `(γ) ≤ 1

2
ε0 . (63)

Arguing by contradiction, let us suppose that k0 `(γ) > 1
2 ε0 and let us denote by k1 the smallest

element of N∗ such that k1k0 `(γ) > 3δ, then

1 ≤ k1 ≤
[

6 δ

ε0

]
+ 1 and (k1 − 1) k0 `(γ) ≤ 3 δ , (64)

where the first property comes from the assumption k0 `(γ) > 1
2 ε0 and the second one (which

remains valid when k0 `(γ) > 3δ) from the definition of k1. Let h := γk1k0 , according to (40) we
have

d(x0, h x0) ≤ R0 + (k1 − 1) `(γk0) + 4 δ
ln k1

ln 2
≤ R0 + (k1 − 1) k0 `(γ) +

4 δ

ln 2
ln

(
1 +

6 δ

ε0

)
, (65)

where the last inequality is deduced from (64). As d(x̄, h x̄) = k1 k0 `(γ) > 3δ, Lemma 8.9 gives:

d(x0, h x0) ≥ d(x0, x̄) + d(x̄, h x̄) + d(hx0, h x̄)− 6 δ ≥ 2 d(x0, x̄) + k1 k0 `(γ)− 6 δ ;

joining this last inequality to (65) and (62), it comes

1

2

(
R0 +

4 δ

ln 2
ln

(
1 +

6 δ

ε0

)
+ 6 δ

)
≥ d(x0, x̄) >

(
3

2
+
N0

5

)
R0 .

As δ/R0 ≤ 1/20, as δ/ ε0 = N0 δ/R0 and as R0 ≥ 20 δ, we deduce that

3

20
+

1

10 ln 2
ln

(
1 +

3

10
N0

)
≥ 2

ln 2

δ

R0
ln

(
1 +

6 δ

ε0

)
+ 3

δ

R0
> 1 +

N0

5
;
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this last inequality being false because N0 ≥ 1, the assumption k0 `(γ) > 1
2 ε0 is false and this

proves (63).

The distance between the two geodesic segments [x̄, x0] and [γk0 x̄, γk0 x0] being convex (see
Definition 8.36), as x ∈ [x̄, x0], we get:

r ≤ Rγ(x) ≤ d(x, γk0 x) ≤ d(x̄, x)

d(x̄, x0)
d(x0, γ

k0 x0) +

(
1− d(x̄, x)

d(x̄, x0)

)
d(x̄, γk0 x̄) ,

and, as d(x0, γ
k0 x0) = R0 and d(x̄, γk0 x̄) = k0 `(γ) ≤ 1

2 ε0 by (63), we infer that

d(x̄, x) ≥ r − ε0 /2

R0 − ε0 /2
d(x̄, x0) ≥ R0

(
r − ε0 /2

R0 − ε0 /2

)(
3

2
+
N0

5

)
.

Proof of Theorem 5.26. As (i) evidently implies (ii), we only prove (i). If % is the representation
Γ → Isom(X, d) associated to the action of Γ on (X, d), Lemma 5.8 proves that the canonical
action of %(Γ) on (X, d) also verifies the hypotheses of Theorem 5.26, in particular (see Lemma
5.8 (v) and (vi)) γ is torsion-free if and only if si %(γ) is torsion-free and then `(%(γ)) = `(γ).
Therefore, in order to prove Theorem 5.26, it is sufficient to prove it when Γ is a subgroup of
Isom(X, d) acting properly, this is what we shall suppose in the whole of this proof.
According to Lemma 8.13 (ii), Γ\X is compact and Proposition 8.44 (ii) then implies that every
torsion-free element of Γ is an hyperbolic isometry. Arguing by contradiction, let us suppose that
there exists at least one hyperbolic element γ ∈ Γ∗ such that `(γ) ≤ s0; let us fix this element.
Proposition 8.42 (ii) proves that, if γ− and γ+ are the points of the ideal boundary which are

fixed by γ, the subgroup Γγ :=
{
g ∈ Γ : g({γ−, γ+}) = {γ−, γ+}

}
is the maximal virtually

cyclic subgroup containing γ. By Lemma 5.28, we can fix a γ-invariant geodesic line cγ , which
joins γ− and γ+, on which γ acts by translation of length `(γ).

For every ε ∈ ]0, ε0
1000 [, let us fix any point x such that Rγ(x) = ε0−ε (such a point exists because

`(γ) ≤ s0 < ε0 − ε and thus Mε0−ε(γ) and X \Mε0−ε(γ) are both non empty closed subsets of
the connected space X). Let x̄ be a projection of x onto cγ .

For every g ∈ Γγ , let us denote by x̄g a projection of g x̄ on the geodesic line cγ ; as g x̄ is located
on the geodesic line g ◦ cγ which also joins γ− and γ+, we have d(g x̄ , x̄g) ≤ 2 δ according to
Proposition 8.10 (i), which leads to d(x, g x̄) ≥ d(x, x̄g) − d(g x̄ , x̄g) ≥ d(x, x̄) − 2 δ. Using this
last inequality and the lower bound of d(x, x̄) (in terms of r := ε0− ε) given by Lemma 5.28, we
get

∀g ∈ Γγ d(x, g x̄) ≥ d(x, x̄)− 2 δ ≥ 1

2
(ε0−2 ε)

(
3

2
+
N0

5

)
− 2 δ , (66)

For any g ∈ Γ \ Γγ , Proposition 8.42 (ii) implies that the subgroup generated by γ and g is not
virtually cyclic and Proposition 8.42 (v) asserts that the subgroup generated by γ and g γ g−1

is not virtually cyclic. Corollary 5.22 then implies that L(γ, g γ g−1) > ε0 − ε hence, by Lemma
4.19, the Margulis domains verify Mε0−ε(γ) ∩ Mε0−ε(g γ g

−1) = ∅. As x ∈ Mε0−ε(γ), then
x /∈ Mε0−ε(g γ g

−1) and we thus have Rg γ g−1(x) > ε0− ε. As γ acts by translation of length
`(γ) on the geodesic line cγ , then g γ g−1 acts by translation of length `(γ) = `(g γ g−1) ≤ s0 on
the geodesic line g ◦ cγ , we can thus apply Lemma 5.28 (where we replace r by ε0 − ε) to the
hyperbolic isometry g γ g−1 and we get:

∀g ∈ Γ \ Γγ d(x, g x̄) ≥ d(x, g ◦ cγ) ≥ 1

2
(ε0−2 ε)

(
3

2
+
N0

5

)
, (67)

By definition of the diameter of Γ\X, one has D ≥ ming∈Γ d(x, g x̄); using inequalities (66) and
(67) (when ε→ 0) this gives

D ≥ ε0

2

(
3

2
+
N0

5

)
− 2 δ =

R0

2N0

(
3

2
+
N0

5

)
− 2 δ >

R0

10
− 2 δ = 2D ,

this contradiction proves that the hypothesis `(γ) ≤ s0(δ,H,D) is never verified, which ends the
proof.
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6 Transplantation of Margulis’ Properties

In contrast with the statements of section 5, the results of the present section concern the actions of
groups Γ on measured metric spaces (Y, d, µ) which are no longer supposed to be Gromov-hyperbolic; the
only geometric hypothesis which will be assumed on (Y, d, µ) is the “bounded entropy” one14. The other
hypotheses are algebraic intrinsic conditions on the groups Γ, these conditions being inherited from the
existence of a system of generators which endows Γ with a structure of hyperbolic group or from the
existence of an action of Γ on an hyperbolic metric space admitting some geometric bounds. The aim
of this section is to prove that the actions of such groups on any measured metric space (Y, d, µ) (with
bounded entropy) verify several of the aforementioned Margulis’properties: see Theorems 6.19, 6.21, 6.26,
6.32 and 6.35 for precise statements: roughly speaking the Margulis’properties that we already proved
(in section 5) for the actions of these groups on Gromov-hyperbolic spaces are still valid for the actions
of these groups on any measured metric space. A first version of these ideas was introduced in [BCG03]
but, in [BCG03] the class of groups Γ under consideration was more limited: they were fundamental
groups of manifolds with sectional curvature σ ≤ −1 and with injectivity radius ≥ i0 > 0 and of groups
such that any non abelian subgroup with two generators admits an injective homomorphism into such a
fundamental group.

Notations: Let us denote by Γ� the subset of Γ∗ = Γ \ {e} whose elements are the torsion-free
elements of Γ (Γ� is not a group). For any y ∈ Y and any r > 0, recall that Σr(y) := {γ ∈ Γ∗ :
d(y, γy) ≤ r}, (Γr(y) being the subgroup generated by Σr(y)), that sysΓ(y) (resp. sys�Γ(y)) is
the minimum of d(y, γ y) when γ runs through the elements of Γ∗ (resp. through the elements of
Γ�); denote by Yr (resp. by Y �r ) the set of the y’s in Y satisfying sysΓ(y) < r (resp. sys�Γ(y) < r).
recall also that DiasΓ(Y ) (resp. SysΓ(Y )) is the supremum (resp. the infimum) on Y of the
function y 7→ sysΓ(y).
For every subsets A and B of a given group Γ, recall that A · B is the set of the products ab,
where (a, b) ∈ A × B and that An is defined (from A2 = A · A) by iteration of the equality
An = An−1 ·A.

For sake of simplicity, given a co-compact action of a group Γ on a metric space (X, d0), we call
“co-diameter of this action” the diameter of Γ\X for the quotient-metric d̄0 (see definition in
Lemma 8.13).

Given the positive constants δ0, H0, D0, ε
′
0, recalling the definition (58) of the universal constant

N0 := N0(δ0, H0, D0), let us define

M0 = M0(δ0, H0, D0) := 42N0 + 3 ; α0 = α0(δ0, H0, D0) :=
ln 2

M0(δ0, H0, D0)
, (68)

M ′0 = M ′0(δ0, H0) := N0(δ0, H0, 1) ; α′0 = α′0(δ0, H0) := α0(δ0, H0, 1) ; (69)

r0 = r0(δ0, ε
′
0) :=

ε′0 ln 2

13δ0 + 4 ε′0
; n0 = n0(δ0, ε

′
0) :=

[
13δ0 + ε′0

ε′0

]
(70)

6.1 The classes of groups which are considered here

When a metric space (X, d) is endowed with a proper, co-compact action by isometries of a
group Γ, recall that its entropy may be computed with respect to any Γ-invariant measure (see
Proposition 3.3) and is independent of the choice of this measure.

6.1.1 Definitions and first properties

Definition 6.1. Given any real parameters δ0, H0, D0 > 0, we denote by

14This upper bound on the entropy is a way to fix a limit to the scale: indeed, in the absence of such a rescaling,
it would be impossible to bound from below distances, displacements or systole, for these invariants go to zero
when multiplying the distance d by a factor ε going to zero. Among all the hypotheses limiting the scale, the
“bounded entropy one” is the weakest possible, as proved in subsection 3.3 (devoted to comparing the possible
hypotheses).
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• Hyp?action(δ0, H0, D0) the set of groups G which admit a proper action by isometries on some
connected, non elementary, δ0-hyperbolic metric space whose entropy and co-diameter are
bounded from above by H0 and D0 respectively,

• Hypaction(δ0, H0, D0) the set of all non virtually cyclic subgroups Γ of groups G belonging
to the set Hyp?action(δ0, H0, D0).

Notice that a group G ∈ Hyp?action(δ0, H0, D0) acts co-compactly on some δ0-hyperbolic metric
space but that the induced action of a subgroup Γ of G is in general not cocompact.

Definition 6.2. Given any real parameters δ0, H0, D0 > 0, we denote by

• Hyp?convex(δ0, H0, D0) the set of groups G which admit a proper action by isometries on
some connected, non elementary, geodesically complete, Busemann, δ0-hyperbolic metric
space whose entropy and co-diameter are bounded from above by H0 and D0 respectively,

• Hypconvex(δ0, H0, D0) the set of all non virtually cyclic subgroups Γ of groups G belonging
to the set Hyp?convex(δ0, H0, D0).

Definition 6.3. Given any real parameters δ0, H0 > 0, we denote by

• Hyp(δ0, H0) the set of non virtually cyclic groups G which admit a finite system of gen-
erators S0 such that G is δ0-hyperbolic (with respect the associated algebraic distance dS0

)
and such that Ent(G,S0) ≤ H0,

• Hypsub(δ0, H0) the set of all non virtually cyclic subgroups Γ of groups G belonging to the
set Hyp(δ0, H0).

Notice that subgroups of hyperbolic groups are in general not hyperbolic.

Definition 6.4. Given any parameters δ0, ε
′
0 > 0, we denote by Hypthick(δ0, ε

′
0) the set of non

virtually cyclic groups Γ which admit a proper (possibly non co-compact) action by isometries on
some δ0-hyperbolic metric space (X, d0) such that every torsion-free γ ∈ Γ∗ verifies `(γ) ≥ ε′0.

To these definitions, for convenience, we add the following one.

Definition 6.5. We define

Hypthick =
⋃

δ0≥0, ε′0>0

Hypthick(δ0, ε
′
0) .

The idea for this definition is to consider groups Γ which belong to some Hypthick(δ0, ε
′
0) without

specifying the parameters δ0 and ε′0, see, for example, Corollary 6.25, Theorem 7.37 and its
Corollaries 7.38, 7.40, 7.41 and Proposition 7.47.

Let us remark that the set of all non virtually cyclic subgroups Γ of groups G belonging to
Hypthick(δ0, ε

′
0) (resp. to Hypthick) coincides15 with Hypthick(δ0, ε

′
0) (resp. with Hypthick).

Let us now list some properties of the above defined sets of groups:

Lemma 6.6. Given any parameters δ0, ε
′
0 > 0, introduce n0 = n0(δ0, ε

′
0) as in (70). In every

group Γ ∈ Hypthick(δ0, ε
′
0), for every pair of torsion-free elements a, b ∈ Γ which generates a non

virtually cyclic subgroup, for every integers p, q ≥ n0, one of the two semi-groups generated by
{ap, bq} or by {ap, b−q} is free.

Proof. By definition of Hypthick(δ0, ε
′
0), there exists some δ0-hyperbolic metric space (X, d0) and

a proper action (by isometries) of Γ on (X, d0) such that every pair of torsion-free elements
a, b ∈ Γ verifies `(a), `(b) ≥ ε′0. Corollary 4.10 then implies that, for every integers p, q ≥ n0, one
of the two semi-groups generated by {ap, bq} or by {ap, b−q} is free.

15The proof is as follows: let G be any non virtually cyclic group which admits a proper action by isometries
on some δ0-hyperbolic metric space (X, d0) such that every torsion-free g ∈ G∗ verifies `(g) ≥ ε′0 then, for every
(non virtually cyclic) subgroup Γ of G, the induced action of Γ on (X, d0) satisfies the same properties.
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Lemma 6.7. For every δ0, H0 > 0, Hypsub(δ0, H0) is a subset of Hypaction(δ0, H0, 1).

Proof. Let Γ be any non virtually cyclic subgroup of some group G ∈ Hyp(δ0, H0) By definition
of a δ0-hyperbolic group, there exists a finite system S0 of generators of G such that the Cayley
graph GS0

(G) of G (endowed with the canonical extension of the algebraic distance dS0
, see

definitions in Section 2) is a connected δ0-hyperbolic metric space whose entropy is smaller than
H0 (see the examples before Lemma 3.6). As G acts properly (by isometries) by left translations
on this Cayley graph and as the diameter of G\GS0

(G) is smaller than 1, Propositions 8.44 (iii)

and (iv) then imply that
(
GS0

(G), dS0

)
is a non elementary δ0-hyperbolic space. This proves that

G ∈ Hyp?action(δ0, H0, 1) and thus that Γ ∈ Hypaction(δ0, H0, 1).

It is clear that Hyp(δ0, H0) is a subset of Hypsub(δ0, H0), we also get

Lemma 6.8. For every δ0, H0, D0 > 0, every Γ ∈ Hyp?action(δ0, H0, D0) (and consequently ev-
ery Γ ∈ Hyp?convex(δ0, H0, D0)) is a non virtually cyclic group. Hence Hyp?action(δ0, H0, D0) and
Hyp?convex(δ0, H0, D0) are respectively included in Hypaction(δ0, H0, D0) and in Hypconvex(δ0, H0, D0).

Proof. As Γ ∈ Hyp?action(δ0, H0, D0), there exists a proper action (by isometries) on some con-
nected, non elementary, δ0-hyperbolic metric space (X, d0) whose diameter is bounded by D0.
Let %0 : Γ → Isom(X, d0) be the representation associated to this action; as this action is co-
compact (by Lemma 8.13 (ii)) on a non elementary hyperbolic space, %0(Γ) is not virtually cyclic
by Propositions 8.44 (iii) and (iv), and thus Γ is not virtually cyclic.

Lemma 6.9. For every δ0, H0, D0, ε
′
0 > 0, for any Γ ∈ Hyp?action(δ0, H0, D0) ∪ Hyp(δ0, H0) ∪

Hypthick(δ0, ε
′
0), the action of Γ on the δ0-hyperbolic metric space (X, d0) which is mentioned in

the definitions of these three sets of groups satisfies the two following properties:

(i) every element g ∈ Γ acts on (X, d0) as an elliptic or hyperbolic isometry (i. e. none of
these elements acts as a parabolic isometry),

(ii) every torsion-free γ ∈ Γ acts as an hyperbolic isometry (i. e. `(γ) > 0 by Lemma 8.19).

Consequenly these two properties remain valid for every subgroup Γ′ of Γ.

Proof. Let %0 : Γ → Isom(X, d0) be the representation associated to the action of Γ on (X, d0);
for every γ ∈ Γ, %0(γ) is elliptic if and only if γ has torsion (by Lemma 5.8 (v) and Remark
8.16 (i)). Consequently, if Γ ∈ Hypthick(δ0, ε

′
0), for every γ ∈ Γ, %0(γ) is either elliptic or verifies

`
(
%0(γ)

)
= `(γ) > 0 (by Definition 6.4 and Theorem 8.15), thus %0(γ) is either elliptic or hyper-

bolic (by Lemma 8.19) and this proves properties (i) and (ii) in this case.
Let us now suppose that Γ ∈ Hyp?action(δ0, H0, D0) ∪ Hyp(δ0, H0): then, as %0(Γ) acts co-
compactly on (X, d0) (by Lemma 8.13 (ii)), for every γ ∈ Γ, %0(γ) is a non parabolic isometry
by Proposition 8.44 (ii); this implies that, for every torsion-free γ ∈ Γ, %0(γ) is non elliptic and
non parabolic, thus it is an hyperbolic isometry and it satisfies `(γ) > 0 by Lemma 8.19.

Lemma 6.10. For every δ0, H0, D0 > 0, Hypconvex(δ0, H0, D0) is included in Hypthick(δ0, s0),
where s0 := s0(δ0, H0, D0) is the universal constant defined at (60).

Proof. Let Γ be any non virtually cyclic subgroup of any group G ∈ Hyp?convex(δ0, H0, D0), then
G is non virtually cyclic (by Lemma 6.8) and there exists a proper action (by isometries) of G on
some (connected, non elementary) geodesically complete, Busemann, δ0-hyperbolic metric space
(X, d0), whose entropy and co-diameter are bounded from above by H0 and D0 respectively. As
the action ofG on (X, d0) satisfies all the hypotheses of Theorem 5.26, it follows from this theorem
that the action of every torsion-free γ ∈ G∗ on (X, d0) verifies `(γ) > s0 := s0(δ0, H0, D0); hence
G ∈ Hypthick(δ0, s0), and the induced action of Γ on (X, d0) is proper, by isometries and still
verifies `(γ) > s0 for every torsion-free γ ∈ Γ∗. This proves that Γ ∈ Hypthick(δ0, s0).
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6.1.2 Comparison with acylindrical hyperbolicity

The notion of acylindrical action was introduced on trees by Z. Sela and on metric spaces by B.
Bowditch; the following definitions were explicited by D. Osin in [Osi16]:

Definitions 6.11. The action by isometries of a group Γ on a metric space (X, d) is acylindrical
if, for every R > 0, there exist positive numbers A = A(Γ, R) and N = N(Γ, R) such that, for
all x, y ∈ X verifying d(x, y) ≥ A, one has

# {γ ∈ Γ : d(x, γ x) ≤ R and d(y, γ y) ≤ R} ≤ N .

A group Γ is called acylindrically hyperbolic if it admits a non elementary acylindrical action on
some Gromov-hyperbolic space16 .

The hyperbolic spaces involved in Definitions 6.11 are not supposed to be proper, and there
are many qualitative applications in the non proper case. In the following definition, we shall
suppose these hyperbolic spaces to be proper, because we aim at quantitative estimates:

Definitions 6.12. A group Γ is called properly acylindrically hyperbolic if it admits a non
elementary acylindrical action on some proper Gromov-hyperbolic space. The set of properly
acylindrically hyperbolic groups will be denoted Hypacyl in the sequel.

Every properly acylindrically hyperbolic group admits a non elementary, proper, acylindrical
action on some proper Gromov-hyperbolic space by the

Remark 6.13. Every acylindrical action of a group G on a proper metric space (X, d) is proper.

Proof. Let % : G→ Isom(X, d) be the representation associated to the action (i.e. gx := %(g)(x)
for every g ∈ G and every x ∈ X; we define Γ := %(G).
On the space C(X,X) of continuous maps from X to X, the compact-open topology is metris-
able17 because (X, d) is a metric space which is the increasing union (for all n ∈ N∗) of the
compact balls Kn := BX(x0, n), where x0 ∈ X. Hence Isom(X, d) is a metric space for the
induced metric. To prove that Γ is a closed discrete subset of Isom(X, d), endowed with the
compact-open topology, it is thus sufficient to prove that every converging sequence of elements
of Γ is stationary.
Arguing by contradiction, suppose that there exists a converging sequence (γn)n∈N of distinct
elements of Γ. Let us fix a pair of points x, y ∈ X verifying d(x, y) ≥ A(G, 1) and define
Hx,y(1) := {g ∈ G : d(x, gx) ≤ 1 and d(y, gy) ≤ 1}. As (γn)n∈N uniformly converges on {x, y},
there exists n ∈ N such that

∀p ∈ N d(x, γ−1
n γn+p x) = d(γn x, γn+p x) < 1 and d(y, γ−1

n γn+p y) < 1 ,

and Hx,y(1) is thus infinite, in contradiction with the definition of acylindricity, which implies
that Hx,y(1) is finite. We conclude that Γ is a closed discrete subgroup of Isom(X, d) and
Proposition 8.12 then implies that the action of Γ := %(G) on X is proper. Now, as Ker % is
included in Hx,y(1), it is finite and the action of G is also proper. Moreover every element of
Ker % is a torsion one.

Let us first notice that every group Γ which admits a proper co-compact action on some proper
Gromov-hyperbolic space (X, d) is automatically a properly acylindrically hyperbolic group, for
the number of γ ∈ Γ such that d(x, γ x) ≤ R is then bounded above independently of x ∈ X,
this bound depending on R, on the group, on its action and on the diameter of Γ\X. Hence,
being verified by all the groups that we shall consider, i.e. by all the groups which admit
a proper co-compact action on some proper Gromov-hyperbolic space, the condition “Γ is a

16By the corollary 14.4 of [BHS17], the set of acylindrically hyperbolic groups contains the set of hierarchically
hyperbolic groups (the definition of this last set is given, for instance, in [BHS17]).

17Let dn(f, g) := supx∈Kn dX
(
f(x), g(x)

)
, the distance on C(X,X) which induces the compact-open topology

may be defined as d(f, g) :=
∑+∞
n=1 2−n dn(f,g)

1+dn(f,g)
.
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properly acylindrically hyperbolic group” alone is not a discriminating criterion, and it is thus
not conclusive when one aims at quantitative estimates of geometric constants (as Margulis’
ones) which measure the action of such groups on any metric space, especially since we want
these quantitative estimates (as those given by Theorems 6.19, 6.21, 6.26, 6.32 and 6.35) to be
independent of this space and to be uniformly bounded on a whole class of these groups, .
Hence, in order to compute such universal estimates, it is necessary to bound some of the
parameters involved in Definitions 6.11 and 6.12 independently on Γ. In this spirit, there exists
a previous work by K. Fujiwara ([Fuj15], Theorem 14) who established a version of Lemma 6.6,
under stronger hypotheses (see the sequel) and with stronger conclusion, it is the

Theorem 6.14. (K. Fujiwara) Suppose that Γ acts acylindrically on a δ-hyperbolic graph X,
with parameters A = A(Γ, R) and N = N(Γ, R). Then there exists a constant M , depending
only on δ, N(Γ, 20δ), N(Γ, 200δ), A(Γ, 20δ) and A(Γ, 200δ) with the following property: suppose
that a, b ∈ Γ act hyperbolically and assume that, for any p, q ∈ Z \ {0}, [ap, bq] is not trivial then,
for every p, q ≥M , the subgroup generated by ap and bq is free.

In the same spirit, but aiming to make the estimates independent of Γ, we define the following
larger class of groups:

Definitions 6.15. Given a constant δ0 > 0, a function N0 : ] 0,+∞ [ → N∗, and any action by
isometries of a group Γ on a Gromov-hyperbolic space (X, d), this action is said to be (δ0, N0(·))-
properly acylindrically hyperbolic if it is non elementary, if (X, d) is a proper δ0-hyperbolic space
and if, for every R > 0, there exists A ≥ 0 such that, for all x, y ∈ X verifying d(x, y) ≥ A, one
has

# {γ ∈ Γ : d(x, γ x) < R and d(y, γ y) < R} ≤ N0(R) .

A group is said to be (δ0, N0(·))-properly acylindrically hyperbolic if it admits a (δ0, N0(·))-
properly acylindrically hyperbolic action on some proper δ0-hyperbolic space.
We moreover denote by Hypacyl

(
δ0, N0(·)

)
the set of (δ0, N0(·))-properly acylindrically hyperbolic

groups.

The following result proves that the hypothesis “Γ ∈ Hypthick(δ0, ε
′
0)” is weaker than the hy-

pothesis “Γ is (δ0, N0(·))-properly acylindrically hyperbolic”:

Proposition 6.16. For every (δ0, N0(·))-properly acylindrically hyperbolic action of a group Γ on
some proper δ0-hyperbolic space (X, d), every torsion-free element γ ∈ Γ verifies `(γ) ≥ ε′0, where

ε′0 :=
21δ0

N0(20 δ0) + 2
. Consequently Hypacyl

(
δ0, N0(·)

)
⊂ Hypthick(δ0, ε

′
0) and Hypacyl ⊂ Hypthick.

For every choice of the functionN0(·) there exist actions of groups Γ on proper 2-hyperbolic spaces
(X, d) which are not (2, N0(·))-properly acylindrically hyperbolic, though they verify `(γ) ≥ 1
for every torsion-free element γ ∈ Γ: just consider a sequence (Γn)n∈N of groups such that
Γn := F ×Gn, where F is a free group and Gn a finite group such that #Gn ≥ n. Endow each
Γn with the system of generators Σn := S ∪ Gn, where S is the canonical system of generators
of F . As the diameter of Gn, with respect to the associated algebraic distance dGn is equal to 1,
the Cayley graph of (Γn,Σn) is a proper δ0-hyperbolic space, with (δ0 := 2) and, for every pair
x, y of points of this graph, every element γ ∈ {1} ×Gn verifies d(x, g.x) ≤ 1 and d(y, g.y) ≤ 1.
Hence, for every n > N0(1), the action is not (δ0, N0(·))-properly acylindrically hyperbolic. On
the contrary, for every n ∈ N, every torsion-free element γ ∈ Γn is a non trivial element of F×{1}
and thus verifies `(γ) ≥ 1.

Proof of Proposition 6.16. Let Γ be any (δ0, N0(·))-properly acylindrically hyperbolic group,
there then exist a proper δ0-hyperbolic space (X, d) and a non elementary action of Γ on (X, d)
which verifies, for the value A0 := A(Γ, 20δ0) of the parameter and for every x, y such that
d(x, y) ≥ A0,

# {g ∈ Γ : d(x, g.x) ≤ 20 δ0 and d(y, g.y) ≤ 20 δ0} ≤ N0(20δ0) . (71)
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By Proposition 8.42 (iii), Γ is non virtually cyclic; moreover the action of Γ on (X, d) is proper
by Remark 6.13.
We first prove, by contradiction, that none of the elements of Γ acts by parabolic isometry.
Suppose that γ ∈ Γ acts on (X, d) by parabolic isometry, it would then admit only one fixed
point γ∞ on the ideal boundary ∂X; let us fix a geodesic ray c such that c(+∞) = γ∞. For the
sake of simplicity, define N := N0(20δ0) and the constant TN := supn∈{1,...,N} d

(
c(0) , γn c(0)

)
.

For every t, t′ ∈ [TN ,+∞[ such that |t′ − t| ≥ A0, for all n ∈ Z such that |n| ≤ N , Lemma 8.22
(applied to the parabolic isometry γn) guarantees that

d
(
c(t), γn c(t)

)
≤ 7δ0 < 20δ0 and d

(
c(t′), γn c(t′)

)
≤ 7δ0 < 20δ0 .

A consequence of this and of (71) is that

2N+1 = # {γn : n ∈ Z s.t. |n| ≤ N} ≤ #
{
γn : d

(
c(t), γn c(t)

)
< 20δ0 and d

(
c(t′), γn c(t′)

)
< 20δ0

}
≤ #

{
g ∈ Γ : d

(
c(t), g c(t)

)
< 20δ0 and d

(
c(t′), g c(t′)

)
< 20δ0

}
≤ N0(20δ0) = N ,

a contradiction which proves that none of the elements of Γ acts by parabolic isometry.

A consequence of this, of Theorem 8.15 and of Remark 8.16 (i) is that every torsion-free γ ∈
Γ∗ acts on (X, d) by hyperbolic isometry. As `(γ) > 0 by Lemma 8.19, we can define I :={
p ∈ Z :

11 δ0
2 `(γ)

< |p| ≤ 16 δ0
`(γ)

}
. For every p ∈ I, one has s(γp) ≥ `(γp) = |p| `(γ) > 11

2 δ0,

where the minimal displacement s(γ) is introduced in Definitions 8.18, we thus can apply Lemma
4.11 (i), which implies that, for every x ∈M(γ) and every p ∈ I, d(x, γp x) ≤ `(γp)+4 δ0 ≤ 20 δ0.
There exist two points x, y of M(γ) such that d(x, y) ≥ A0 (one can for instance choose them on
the same geodesic c ∈ G(γ)), which thus satisfy the property:

∀p ∈ I d(x, γp x) ≤ 20 δ0 and d(y, γp y) ≤ 20 δ0 .

A consequence is that, for every p ∈ I, γp ∈ {g ∈ Γ : d(x, g.x) ≤ 20 δ0 and d(y, g.y) ≤ 20 δ0}. We
deduce, from this and from (71), that

N0(20δ0) ≥ # {g ∈ Γ : d(x, g.x) ≤ 20 δ0 and d(y, g.y) ≤ 20 δ0} ≥ #(I) ≥ 2

(
21 δ0
2 `(γ)

− 1

)
,

which gives `(γ) ≥ ε′0 and, comparing to Definition 6.4, implies that Γ ∈ Hypthick(δ0, ε
′
0).

Now, as every 0-hyperbolic space is δ-hyperbolic for every δ > 0, it is clear, from Definitions
6.12 that, for every Γ ∈ Hypacyl, there exist δ > 0, a proper δ-hyperbolic space (X, d), and an
isometric action of Γ on (X, d) verifying the following property: for every R > 0, there exists
A = A(Γ, R) and N = N(Γ, R) such that, for all x, y ∈ X such that d(x, y) ≥ A, one has

# {γ ∈ Γ : d(x, γ x) ≤ R and d(y, γ y) ≤ R} ≤ NΓ(R) ,

where NΓ(R) := N(Γ, R). It follows, by Definition 6.15, that Γ ∈ Hypacyl

(
δ,NΓ(·)

)
and we just

proved that Γ ∈ Hypthick(δ, ε′), where ε′ :=
21δ

NΓ(20 δ) + 2
> 0. Hence Γ ∈ Hypthick.

6.2 A first Margulis Property

Definition 6.17. Let Γ be a group acting properly, by isometries, on a metric space (Y, d), the
“Margulis invariant” of this action, denoted by MargΓ(Y, d), is defined by

MargΓ(Y, d) := sup{r |Γr(x) is virtually cyclic for every x ∈ Y} ,

where Γr(x) is the subgroup of Γ generated by all the γ ∈ Γ such that d(x, γ x) ≤ r.

The Margulis invariant is generally defined as sup{r |Γr(x) is virtually nilpotent for every x ∈ Y},
the above definition looks different. In fact, the two definitions are equivalent in the cases that
we are considering, as proved by the following
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Remark 6.18. Let Γ be a group acting properly, by isometries, on a metric space (Y, d), if Γ is
torsion-free, then MargΓ(Y, d) is equal to sup{r |Γr(x) is cyclic for every x ∈ Y}, if Γ is Gromov-
hyperbolic, then MargΓ(Y, d) is equal to sup{r |Γr(x) is virtually nilpotent for every x ∈ Y}.

Proof. If Γ is torsion-free then, by Lemma 8.14, Γr(x) is virtually cyclic if and only if it is cyclic;
this proves the first part of this remark. Now, if there exists a finite system of generators of Γ,
denoted by S, such that the Cayley graph of Γ, endowed with the algebraic accessibility distance
dS associated to S (defined at the last page of section 2), is Gromov-hyperbolic, as the canonical
action of Γ on its Cayley graph is proper, co-compact and by isometries, we can apply Proposition
8.44 (v) which shows that Γr(x) is virtually cyclic if and only if it is virtually nilpotent; this
proves the second part of this remark.

Given any parameters δ0, H0, D0, ε
′
0 > 0, we recall the definitions of α0 = α0(δ0, H0, D0) (in

(68)), of α′0 = α′0(δ0, H0) (in (69)) and of r0 = r0(δ0, ε
′
0) (in (70)). The following results

concern the sets of groups Hypaction(δ0, H0, D0), Hypsub(δ0, H0) and Hypthick(δ0, ε
′
0) introduced

in Definitions 6.1, 6.3 and 6.4 respectively.

Theorem 6.19. Given any parameters δ0, H0, D0, ε
′
0, H > 0, every proper action (by isometries

preserving the measure) of every group Γ on any metric measured space (Y, d, µ) whose entropy
is bounded from above by H has the following properties:

(i) If Γ ∈ Hypaction(δ0, H0, D0), for every y ∈ Y , the subgroup Γα0/H(y) is virtually cyclic; in
other words MargΓ(Y, d) · Ent(Y, d, µ) ≥ α0(δ0, H0, D0) > 0.

(ii) If Γ ∈ Hypsub(δ0, H0), for every y ∈ Y , the subgroup Γα′0/H(y) is virtually cyclic; in other
words MargΓ(Y, d) · Ent(Y, d, µ) ≥ α′0(δ0, H0) > 0.

(iii) If Γ ∈ Hypthick(δ0, ε
′
0), for every y ∈ Y such that Σr0/H(y) contains a torsion-free element

(or is empty), the subgroup Γr0/H(y) is virtually cyclic; in particular, when Γ is torsion-free,
MargΓ(Y, d) · Ent(Y, d, µ) ≥ r0(δ0, ε

′
0) > 0.

Remark 6.20. The fact that we can consider only subgroups Γ of groups G ∈ Hyp(δ0, H0), that
is groups Γ ∈ Hypsub(δ0, H0), will be important in the next section, in Theorems 7.10 and 7.18
and the application of 7.18 concerning the example of CAT(0)-cube complexes.

Proof of (i). As Γ is an element of Hypaction(δ0, H0, D0), it is a non virtually cyclic subgroup of
some group G ∈ Hyp?action(δ0, H0, D0). The difficult point here is that the existence of an action
of Γ on (Y, d, µ) does not imply the existence of an action of G on (Y, d, µ). Considering the action
of Γ on (Y, d, µ), let S be the finite subset of Γ defined by S := Σα0/H(y), it is a finite set for this
action is proper. As (by definition) the subgroup generated by S in Γ is 〈S〉 = Γα0/H(y), and as
S ⊂ Γ ⊂ G, Γα0/H(y) is also the subgroup generated by S in G and, if Γα0/H(y) is not virtually
cyclic, then, as G acts (properly, by isometries) on some connected δ0-hyperbolic metric space
(X, d0), whose entropy and co-diameter are bounded (from above) by H0 and D0 respectively,
we may apply Theorem 5.16 (ii) to this action of G and conclude that Ent(〈S〉, S) > α0.
From this and from Lemma 3.6 one deduces that

H · α0

H
≥ Ent(Y, d, µ) ·Maxσ∈S d(y, σy) ≥ Ent(〈S〉, S) > α0 .

As this is false, Γα0/H(y) is virtually cyclic by contradiction.

Proof of (ii). As Γ ∈ Hypaction(δ0, H0, 1) by Lemma 6.7, (ii) is an immediate corollary of (i).

Proof of (iii). If Σr0/H(y) is empty, then Γr0/H(y) is trivial and the proposition is proved;
let us thus suppose that Σr0/H(y) contains a torsion-free element, denoted by γ0. Introduce
n0 = n0(δ0, ε

′
0) as in (70). By definition of Hypthick(δ0, ε

′
0), there exists some δ0-hyperbolic

metric space (X, d0) and a proper action (by isometries) of Γ on (X, d0) such that `(γ0) ≥ ε′0.
Arguing by contradiction, suppose that Σr0/H(y) generates a non virtually cyclic subgroup of Γ,
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then Corollary 8.43 (iii) guarantees the existence of some σ ∈ Σr0/H(y) such that 〈γ0, σ〉 is non
virtually cyclic and one deduces (by Corollary 8.43 (i)) that 〈γ0, σ γ0 σ

−1〉 is non virtually cyclic;
by Lemma 6.6, one of the two semi-groups generated by {γn0

0 , σ γn0
0 σ−1} or by {γn0

0 , σ γ−n0
0 σ−1}

is free.
Now, applying Lemma 3.6 to the action of Γ on (Y, d, µ) and using the fact that
Max

(
d(y, γn0

0 y) ; d(y, σ γ±n0
0 σ−1y)

)
≤ (n0 + 2) r0H , we get:

ln 2 > (n0 + 2)r0 = H(n0 + 2)
r0

H
≥ Ent(Y, d, µ) Max

(
d(y, γn0

0 y) ; d(y, σ γ±n0
0 σ−1y)

)
≥ Ent

(
〈γn0

0 , σ γ±n0
0 σ−1〉, {γn0

0 , σ γ±n0
0 σ−1}

)
≥ ln 2 ,

a contradiction which can be avoided only if Σr0/H(y) generates a virtually cyclic subgroup of
Γ.

6.3 A lower bound of the diastole

Given any parameters δ0, H0, D0, ε
′
0 > 0, we recall the definitions of α0 = α0(δ0, H0, D0) (in

(68)), of α′0 = α′0(δ0, H0) (in (69)) and of r0 = r0(δ0, ε
′
0) (in (70)). The following Theorem

concerns the sets of groups Hypaction(δ0, H0, D0), Hypsub(δ0, H0) and Hypthick(δ0, ε
′
0) introduced

in Definitions 6.1, 6.3 and 6.4 respectively.

Theorem 6.21. Given any parameters δ0, H0, D0, ε
′
0, H > 0, every proper action (by isometries

preserving the measure) of a group Γ on a connected metric measured space (Y, d, µ) whose
entropy is bounded from above by H has the following properties:

(i) If Γ ∈ Hypaction(δ0, H0, D0), there exists y ∈ Y such that sys�Γ(y) ≥ α0

H ; in addition, for
every r ∈

]
0, α0

H

]
, Y �r is disconnected or empty.

(ii) If Γ ∈ Hypsub(δ0, H0), there exists y ∈ Y such that sys�Γ(y) ≥ α′0
H ; in addition, for every

r ∈
]
0,

α′0
H

]
, Y �r is disconnected or empty.

(iii) If Γ ∈ Hypthick(δ0, ε
′
0), there exists y ∈ Y such that sys�Γ(y) ≥ r0

H ; in addition, for every
r ∈

]
0, r0H

]
, Y �r is disconnected or empty.

If moreover Γ is torsion-free, these three results remain valid if we replace sys�Γ(y) by sysΓ(y)
and the disconnectedness of Y �r by the disconnectedness of Yr.

Though Y �r is disconnected (by this Theorem) for the values of r in the interval mentioned above,

its projection Y
�
r on Γ\Y may sometimes be connected, see however Theorem 6.32.

When torsion elements are admitted in Γ, there is no possible universal lower bound of the
diastole (and a fortiori of the pointwise or global systole) under the hypotheses of Theorem 6.21,
as proved by the example given in Remark 5.25; in the same vein, this example also proves
that, sys�Γ(y) and Y �r cannot be replaced by sysΓ(y) and Yr in the conclusions of this theorem
concerning the case with torsion.

The proof of this Theorem is based on the following Lemma and Proposition:

Lemma 6.22. For every proper action (by isometries) of any group Γ on any Gromov-hyperbolic
metric space (X, d0), every hyperbolic element γ of Γ is contained in a unique maximal virtually
cyclic subgroup.

Proof. Let %0 : Γ → Isom(X, d0) be the representation associated to the action of Γ on (X, d0).
As %0(γ) is a hyperbolic isometry, Proposition 8.42 (ii) implies that %0(γ) is contained in a
unique maximal virtually cyclic subgroup Gγ of %0(Γ) (namely Gγ = {g ∈ Γ : g

(
{γ−, γ+}

)
=

{γ−, γ+}}). A consequence is that %−1
0 (Gγ) is a virtually cyclic subgroup of Γ (by Lemma 5.8

(vii)) which contains γ; moreover any other virtually cyclic subgroup G of Γ which contains γ
verifies %0(G) ⊂ Gγ (because of the maximality of Gγ) and thus G ⊂ %−1

0 (Gγ). We conclude
that %−1

0 (Gγ) is the unique maximal virtually cyclic subgroup of Γ which contains γ.
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Proposition 6.23. Let us consider any proper action (by isometries) of any non virtually cyclic
group Γ on any connected metric space (Y, d) and every r > 0 such that the subgroup Γr(y) is
virtually cyclic at every point y of the “thin” subset Y �r ; if the same group Γ admits another
proper action (by isometries) on some Gromov-hyperbolic metric space (X, d0) such that Γ\X is
compact (or, more generally, such that none of the elements of Γ acts by parabolic isometry of
(X, d0)), then the action on Y has the following properties:

(1) for every y ∈ Y �r , there exists a maximal virtually cyclic subgroup G(y) of Γ which contains
Σr(y); moreover the map y 7→ G(y) is constant on each connected component of Y �r .

(2) the “thin” subset Y �r is empty or disconnected.

Proof. Let %0 : Γ → Isom(X, d0) be the representation associated to the action of Γ on (X, d0);
for every torsion-free γ ∈ Γ, %0(γ) is also torsion-free (by Lemma 5.8 (v)), thus it is an isometry
of (X, d0) which is non elliptic (by Remark 8.16 (i)) and non parabolic (by hypothesis in the non
co-compact case, by Proposition 8.44 (ii) in the co-compact case); hence %0(γ) is an hyperbolic
isometry of (X, d0) by Theorem 8.15; this implies that `(γ) > 0 by Lemma 8.19.

Proof of (1) : For every y ∈ Y �r , as Γr(y) = 〈Σr(y)〉 is (by hypothesis) a virtually cyclic subgroup
of Γ which contains a torsion-free (and thus hyperbolic) element γ, Lemma 6.22 guarantees the
existence of a unique maximal virtually cyclic subgroup G(y) of Γ which contains γ, and thus
contains Σr(y) by the maximality of G(y). By continuity of the distance and properness of the
action18, for every y ∈ Y �r and for every y′ in a sufficiently small neighbourhood of y (thus
contained in the open set Y �r ), one has Σr(y

′) ⊂ Σr(y), and consequently G(y′) = G(y) by the
maximality of G(y′). The map y 7→ G(y), being locally constant, is constant on each connected
component of Y �r .

Proof of (2) : Suppose that Y �r is non empty. For every y ∈ Y �r and every g ∈ Γ, as Σr(gy) =
g · Σr(y) · g−1 and as g · G(y) · g−1 is the unique maximal virtually cyclic subgroup of Γ which
contains g · Σr(y) · g−1, one gets G(gy) = g ·G(y) · g−1.
If Y �r is connected, G(y) is constant on Y �r and equal to a fixed maximal virtually cyclic subgroup
G, which contains all the subgroups Γr(y) for all the y’s in Y �r . For every y ∈ Y �r and every
g ∈ Γ, the equality sys�Γ(gy) = sys�Γ(y) implies that gy also belongs to Y �r , and it follows that
g ·G · g−1 = g ·G(y) · g−1 = G(gy) = G and thus G is a normal virtually cyclic subgroup of Γ.
As G is normal in Γ, and as (for every y ∈ Y �r ) G contains Σr(y), which contains some torsion-free
element γ such that `(γ) > 0 (as proved above) then, for every g ∈ Γ, g γ g−1 ∈ G and 〈γ, g γ g−1〉
is virtually cyclic, thus (using Corollary 8.43 (i)) 〈γ, g〉 is virtually cyclic, and 〈γ, g〉 ⊂ G by the
maximality of G. As this is valid for every g ∈ Γ, it implies that Γ = G, in contradiction with
the fact that Γ is not virtually cyclic by hypothesis. Hence Y �r is disconnected.

Proof of Theorem 6.21 (i). As Γ is an element of Hypaction(δ0, H0, D0), it is a non virtually cyclic
subgroup of some group G ∈ Hyp?action(δ0, H0, D0); as G admits a proper action (by isometries)
on some δ0-hyperbolic metric space (X, d0), and as this action is co-compact by Lemma 8.13 (ii)
because G\X has bounded diameter, Proposition 8.44 (ii) implies that none of the elements of
G (and thus none of the elements of Γ) acts by parabolic isometry of (X, d0). We may apply
Theorem 6.19 (i) which proves that Γr(y) is virtually cyclic for every r ≤ α0

H and every y ∈ Y .
As all its hypotheses are verified, we may thus apply Proposition 6.23 (2), which guarantees that
Y �r is disconnected or empty.
Choosing now r = α0

H , we obtain that Y �α0/H
is disconnected or empty and, as Y is connected, it

comes that Y \ Y �α0/H
6= ∅ and any point y ∈ Y \ Y �α0/H

verifies sys�Γ(y) ≥ α0

H .

In the case where Γ is torsion-free, one has sys�Γ(·) = sysΓ(·) and Y �r = Yr is disconnected or
empty for every r ∈

]
0, α0

H

]
; in particular there exists y ∈ Y such that sysΓ(y) ≥ α0

H .

Proof of Theorem 6.21 (ii). The hypotheses of Theorem 6.21 (ii) imply that one may apply
Lemma 6.7, which proves that Γ ∈ Hypaction(δ0, H0, 1), and we end the proof by applying Theo-
rem 6.21 (i).

18In fact, the properness of the action implies the existence of some β = β(y) > 0 such that
Minγ∈Γ\Σr(y) d(y, γ y) > r + β; it follows that, for every y′ ∈ BY (y, β/2), one has Σr(y′) ⊂ Σr(y).
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Proof of Theorem 6.21 (iii). As Γ ∈ Hypthick(δ0, ε
′
0), it is non virtually cyclic by definition and it

admits a proper action (by isometries) on some δ0-hyperbolic space (X, d0) such that no element
acts as a parabolic isometry (by Lemma 6.9).
Considering now the action of Γ on (Y, d), notice that, for every y ∈ Y �r0/H , one has sys�Γ(y) <

r0/H, and there exists a torsion-free element γ ∈ Σr0/H(y); we may thus apply Theorem 6.19
(iii) which proves that Γr0/H(y) is virtually cyclic for every y ∈ Y �r0/H ; a consequence of this and

of the inclusions Y �r ⊂ Y �r0/H and Γr(y) ⊂ Γr0/H(y) (for every r ≤ r0
H ) is that Γr(y) is virtually

cyclic for every r ≤ r0
H and every y ∈ Y �r . As all its hypotheses are verified, we may thus apply

Proposition 6.23 (2), which guarantees that, for every r ≤ r0
H , Y �r is disconnected or empty and,

as Y is connected, it comes that Y \Y �r0/H 6= ∅ and any point y ∈ Y \Y �r0/H verifies sys�Γ(y) ≥ r0
H .

In the case where Γ is torsion-free, one has sys�Γ(·) = sysΓ(·) and Y �r = Yr is disconnected or
empty for every r ∈

]
0, r0H

]
; in particular there exists y ∈ Y such that sysΓ(y) ≥ r0

H .

An important consequence is the following Corollary 6.25, whose assumption (iii) is valid if one

replaces the class Hypthick by the slightly smaller19 class of groups H̃ypthick, defined as follows:

Definitions 6.24. Given any parameters δ0, ε
′
0 > 0, we denote by H̃ypthick(δ0, ε

′
0) the set of

groups Γ which admit a proper non elementary (possibly non co-compact) action by isometries
on some δ0-hyperbolic metric space (X, d0) such that every torsion-free γ ∈ Γ∗ verifies `(γ) ≥ ε′0.

We then define H̃ypthick as
⋃
δ0≥0, ε′0>0 H̃ypthick(δ0, ε

′
0).

Corollary 6.25. Every metric measured space (Y, d, µ) verifies Ent(Y, d, µ) > 0 if it admits a
proper action (by isometries preserving the measure) of some group Γ which verifies one of the
three following hypotheses:

(i) Γ is finitely generated and belongs to Hypaction(δ0, H0, D0) ∪Hypsub(δ0, H0),

(ii) Γ contains at least one torsion-free element and belongs to Hypaction(δ0, H0, D0), or to
Hypsub(δ0, H0), or to Hypthick,

(iii) Γ ∈ H̃ypthick.

Proof. As Hypsub(δ0, H0) ⊂ Hypaction(δ0, H0, 1) by Lemma 6.7, it is sufficient to make the proof
in the case where Γ ∈ Hypaction(δ0, H0, D0) ∪Hypthick.
If we had Ent(Y, d, µ) = 0, we could apply Theorem 6.21 for H arbitrarily close to 0 and infer
that the supremum (for all y ∈ Y ) of sys�Γ(y) is infinite. This would imply that Γ only has torsion
elements, in contradiction with hypothesis (ii), proving that Ent(Y, d, µ) > 0 in this case.

Hypothesis (iii) is stronger than hypothesis (ii): indeed, if Γ ∈ H̃ypthick, Gromov’s classification
(see the beginning of subsection 8.7) proves that, as the action of Γ on some Gromov-hyperbolic
space (X, d0) is non elementary, then it contains hyperbolic (thus torsion-free) elements. Hence
Ent(Y, d, µ) > 0 under the hypothesis (iii).
Hypothesis (i) is stronger than hypothesis (ii) because, if Γ ∈ Hypaction(δ0, H0, D0) is finitely
generated it is a finitely generated and non virtually cyclic subgroup of a group G which admits
a proper action (by isometries) on some (connected, non elementary) δ0-hyperbolic metric space
(X, d0) whose entropy and co-diameter are bounded (from above) by H0 and D0 respectively.
We can thus apply Theorem 5.16 (i), which proves the existence, in Γ, of a torsion-free element
γ0 ∈ Γ. This proves that Ent(Y, d, µ) > 0 under the hypotheses (i).

6.4 A lower bound of the global systole

For every proper action (by isometries) of every group Γ on any metric space (Y, d), let us define
the “topological radius” Toprad(y) as the supremum of the values r ∈ R+ such that Γ2r(y) is
virtually cyclic.

19Indeed, instead of considering non virtually cyclic groups, in Definitions 6.24, we consider groups whose action
on the ad hoc δ0-hyperbolic space is non elementary. In the case where this action is not co-compact, this new
hypothesis is slightly stronger than the previous one (see Propositions 8.42 (iii) and 8.44 (iv)).
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For any y ∈ Y the “topological radius” is a local version of the “Margulis invariant” of Definition
6.17 and it verifies

inf
y∈Y

Toprad(y) =
1

2
MargΓ(Y, d) .

Using the term “topological radius” for this invariant can be justified by the following obser-
vation: when Y is simply connected and when π : Y → Y = Γ\Y is the quotient map (and
universal covering of Y ), Γ2r(y) coincides with the image (by the homomorphism associated to
the canonical injection) of the fundamental group of the ball BY (π(y), r) of Y in the fundamental
group of Y (see Theorem 6.35 (v)), the topological radius is then the supremum of the r’s such
that the image of the fundamental group of the ball BY (π(y), r) of Y in the fundamental group
of Y is virtually cyclic.

Recall that s0 := s0(δ0, H0, D0) is the universal constant defined at (60) and define the function

N ′ : R∗+ × R∗+ → N∗ by N ′(δ, ε) :=

[
13δ + ε

ε

]
. Given any parameters δ0, H0, D0, ε

′
0 > 0,

The following Theorem concerns the sets of groups Hypconvex(δ0, H0, D0) and Hypthick(δ0, ε
′
0)

introduced in Definitions 6.2 and 6.4 respectively, and may be viewed as a generalization of the
celebrated “Collar Lemma”:

Theorem 6.26. Given any parameters δ0, H0, D0, ε
′
0, H > 0, for every element Γ of

Hypconvex(δ0, H0, D0) (resp. of Hypthick(δ0, ε
′
0)), defining the integer n′0 := N ′(δ0, s0) (resp.

n′0 := N ′(δ0, ε
′
0)), for any proper action (by isometries preserving the measure) of Γ on any

connected metric measured space (Y, d, µ) whose entropy is bounded from above by H, then

(i) for every ε ≤ 1
2n′0H

, at any point y ∈ Y such that sys�Γ(y) ≤ ε, ΓR(y) is virtually cyclic for

every R ≤ 1
2H ln

(
1

n′0H ε

)
− 1

2n
′
0 ε, and Toprad(y) ≥ 1

4H ln

(
1

n′0H ε

)
− 1

4n
′
0 ε.

(ii) if moreover (Y, d) is path-connected, then20

inf
y∈Y

sys�Γ(y) >
1

2n′0H
exp

(
− 4H sup

y∈Y
[Toprad(y)]

)
≥ 1

2n′0H
e−4H diam(Γ\Y ) ,

(iii) (Collar Lemma) if Γ is torsion-free, if y ∈ Y and σ ∈ Γ∗ verify d(y, σy) ≤ ε ≤ 1
2n′0H

, then

every γ ∈ Γ∗ which does not commute with σ satisfies d(y, γy) ≥ 1
2H ln

(
1

n′0H ε

)
− 1

2n
′
0 ε.

Before proving this Theorem, let us establish two preliminary Lemmas

Lemma 6.27. Let L be a free semi-group with 2 generators γ1 and γ2 endowed with any distance
d invariant by left translations (by any γ ∈ L). For every (l1, l2) ∈ ]0,+∞[2 such that l1 ≥ d(e, γ1)
and l2 ≥ d(e, γ2), the entropy of (L, d) (for the counting measure) verifies

Ent(L, d) ≥ sup
a∈]0,+∞[

[
Max

(
1

l1 + al2
,

1

l2 + al1

)
·
(

(1 + a) ln(1 + a)− a ln a
)]

.

Proof. For every R > 0, define LR := {γ ∈ L : d(e, γ) ≤ R}. For every (p1, p2) ∈ (N∗)2 such that
p1l1 + p2l2 ≤ R, denote by Λp1,p2 the set of the elements of L which are products of p1 times
γ1 and p2 times γ2 (in any order). As L is a free semi-group, one has #

(
Λp1,p2

)
= Cp1p1+p2 . The

triangle inequality and the invariance of d by left translations imply that Λp1,p2 ⊂ LR and one
thus gets

#LR ≥ Cp1p1+p2 ≥ e
−(1+ 1

2p1
) (p1 + p2)p1+p2+1/2

(p1)p1+1/2(p2)p2+1/2
,

20In the following inequalities the first one is trivial when Γ is virtually cyclic (because Toprad(y) is then
infinite) and the second one is trivial when Γ\Y is non compact (because the diameter of Γ\Y is then infinite by
Lemma 8.13 (i) and (ii)).
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where the last inequality follows from the property
∫ i+1

i
f(x) dx ≤ 1

2 [f(i+ 1) + f(i)] when

f(x) = ln
(
p+x
x

)
. For every a ∈]0,+∞[, define p1 =

[
R

l1+al2

]
and p2 = [ap1]. From the above, as

the respective limits of p1
R and p2

R (when R→ +∞) are 1
l1+al2

and a
l1+al2

, we infer that

lim inf
R→+∞

[
1

R
ln(#LR)

]
≥ 1

l1 + a`2
[(1 + a) ln(1 + a)− a ln(a)] .

The same inequality holds when exchanging l1 and l2 and this ends the proof.

Lemma 6.28. Let L be a group with 2 generators γ1 and γ2 such that one of the two semi-groups
generated by {γ1, γ2} or by {γ1, γ

−1
2 } is free and let us denote by L+ this free semi-group. For

every proper action of L on any metric space (Y, d) , for any L-invariant measure µ on Y and
for any y ∈ Y , one has:

(i) Ent(Y, d, µ).Max [d(y, γ1 y) , d(y, γ2 y)] ≥ ln 2;

(ii) Min [d(y, γ1 y) , d(y, γ2 y)] >
1

Ent(Y, d, µ)
· e−Ent(Y,d,µ)·Max[d(y,γ1 y) , d(y,γ2 y)] ; .

(iii) for every γ ∈ L+ \ {e}, the set of fixed points of γ is empty.

Proof. Replacing eventually γ2 by γ−1
2 , we may suppose that the semi-group generated by γ1

and γ2 is a free one. For sake of simplicity, we define H := Ent(Y, d, µ).
The action being proper, the stabilizer StabL(y) of any point y is finite and thus it contains only
elements with torsion. As every element γ 6= e of the free semi-group L+ is torsion-free (the
relation γp = e being prohibited), it comes that L+ ∩ StabL(y) = {e} and this proves (iii).
Denote by dΣ the algebraic distance on L associated to the system of generators Σ = {γ1, γ2}
(for a definition of the algebraic distance, see section 3.1). As the number of elements γ ∈ L+

such that d(e, γ) ≤ n is greater than 2n, we deduce that Ent(L,Σ) ≥ ln 2. The lemma 3.6 ends
the proof of (i), for it proves that

Ent(Y, d, µ) ·Max [d(y, γ1 y) , d(y, γ2 y)] ≥ Ent(L,Σ) ≥ ln 2 .

On L, we consider the pseudo-distance dy defined by dy(γ, γ′) = d(γ y, γ′ y); as the elements of
L+ \ {e} do not have any fixed point, dy is actually a distance when restricted to L+.
Let l1 = d(y, γ1 y) = dy(e, γ1) and `2 = d(y, γ2 y) = dy(e, γ2); as the pseudo-distance dy is
invariant by left-translations, we may apply first Lemma 3.6, and afterwards Lemma 6.27, which
give

H ≥ Ent(Y, d, µ) = Ent(Y, d, µLy ) ≥ Ent(L+, dy,#)

≥ sup
a∈]0,+∞[

[
Max

(
1

l1 + al2
,

1

l2 + al1

)
·
(

(1 + a) ln(1 + a)− a ln a
)]

,

where # is the counting measure of L+ and µLy is (as usual) the counting measure of the orbit
of the action of L on Y . Choosing a = H l1 in this last inequality and using the fact that
ln(1 + a) > a

1+a for every a > 0, we obtain: H `2 > − ln (H l1), and thus H l1 > e−H l2 .

By the same proof, choosing a = H `2 in the above inequality, we get H l2 > e−H l1 . It follows

that Min (l1, l2) >
1

H
· e−H Max(l1,l2) and this ends the proof of the part (ii) of the lemma.

End of the proof of Theorem 6.26. For sake of simplicity, for any ε ≤ 1
2n′0H

, we define R′ε :=

1
2H ln

(
1

n′0H ε

)
− 1

2n
′
0 ε.

• In the case where Γ ∈ Hypthick(δ0, ε
′
0): there then exists a proper (eventually non co-

compact) action by isometries on some δ0-hyperbolic metric space (X, d0) such that every
torsion-free g ∈ Γ∗ verifies `(g) ≥ ε′0.
We first prove (i): as sys�Γ(y) ≤ ε, there exists a torsion-free element σ ∈ Σε(y) and the
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action of σ on (X, d0) verifies `(σ) ≥ ε′0 > 0. Coming back to the action of Γ on (Y, d, µ)
and arguing by contradiction, suppose that the subgroup ΓR′ε(y) generated by ΣR′ε(y)
is non virtually cyclic, then (by Corollary 8.43 (iii)) there exists γ ∈ ΣR′ε(y) such that
〈σ, γ〉 is non virtually cyclic and (by Corollary 8.43 (i)) 〈σ, γ σ γ−1〉 is then non virtually
cyclic. Applying Lemma 6.6 to the torsion-free pair {σ, γ σ γ−1}, we deduce that one of the
two semi-groups generated by {σn′0 , γ σn′0 γ−1} or by {σn′0 , γ σ−n′0 γ−1} is free (here n′0 :=

N ′(δ0, ε
′
0) =

[
13δ+ε′0
ε′0

]
). From this and from Lemma 6.28 (ii), as the triangle inequality

guarantees that d(y, σn
′
0y) ≤ n′0 ε and d(y, γ σn

′
0 γ−1 y) ≤ 2R′ε + n′0 ε, we deduce that

Hn′0 ε ≥ Ent(Y, d, µ) Min
[
d(y, σn

′
0y) , d(y, γ σn

′
0 γ−1 y)

]
> exp

(
− Ent(Y, d, µ) Max

[
d(y, σn

′
0y) , d(y, γ σn

′
0 γ−1 y)

] )
≥ e−H(2R′ε+n

′
0 ε) = n′0H ε .

This contradiction proves that ΓR′ε(y) is virtually cyclic, thus that ΓR(y) is virtually cyclic
for every R ≤ R′ε (for ΓR(y) ⊂ ΓR′ε(y)). A consequence of this and of the definition of the
topological radius is that Toprad(y) ≥ 1

2 R
′
ε. This ends the proof of (i).

Let us now prove (ii): if infy∈Y sys�Γ(y) ≥ 1
2n′0H

, the two inequalities of (ii) are trivially

verified, we may thus suppose in the sequel that infy∈Y sys�Γ(y) < 1
2n′0H

and choose ε and

y such that sys�Γ(y) < ε < 1
2n′0H

, the first inequality of (ii) is then a direct consequence of

the last inequality of (i).
For sake of simplicity, define D := diam(Γ\Y ); if D = +∞ the last inequality of (ii) is
trivially verified; in order to prove the last inequality of (ii), it is thus sufficient to prove
that supy∈Y [Toprad(y)] ≤ D when D < +∞. Arguing by contradiction, suppose that
there exists y ∈ Y such that Toprad(y) > D then Γ2D(y) would be virtually cyclic. We
have seen (see the proof of Proposition 5.10) that Proposition 3.22 of [Gro07] applies to
path-connected metric spaces and proves that Σ2D(y) is a (finite) system of generators
of Γ, as a consequence Γ = Γ2D(y) would be virtually cyclic, in contradiction with the
hypothesis. This proves that Toprad(y) ≤ D for every y ∈ Y and ends the proof of (ii).

We now prove (iii): for every γ ∈ Γ∗, if d(y, γ y) ≤ R′ε, then the group generated by σ and
γ is virtually cyclic by (i), thus it is cyclic by Remark 8.14 and then γ commutes with σ.

• In the case where Γ ∈ Hypconvex(δ0, H0, D0): as Hypconvex(δ0, H0, D0) is included in
Hypthick(δ0, s0) by Lemma 6.10, the validity of Theorem 6.26 in the case where Γ ∈
Hypconvex(δ0, H0, D0) is a consequence of its validity for every Γ ∈ Hypthick(δ0, s0).

6.5 Structure of thin subsets in quotients of metric measured spaces

6.5.1 Generic topological Lemma

Let (Y, d) be any metric space and Γ any group acting properly (by isometries) and without fixed
point on (Y, d). Call π : Y → Y = Γ\Y the quotient map. For every connected open subset V
of Y , let j̄ be the inclusion mapping V ↪→ Y . The set of connected components of V := π−1(V )
being

{
V i : i ∈ I

}
, every γ ∈ Γ maps every connected component of π−1(V ) onto some connected

component of π−1(V ); we thus denote by Γ̂iV the subgroup of those γ such that γ(V i) = V i.

This allows to define the quotient spaces Ŷ i := Γ̂iV \Y and V̂ i := Γ̂iV \V i and the quotient

mapping π̂i : Y → Γ̂iV \Y ; the map π then goes down to the quotient and provides the mapping

π̄i : Γ̂iV \Y → Γ\Y which satisfies π = π̄i ◦ π̂i. As the inclusion mapping j : V i ↪→ Y trivially

commutes with the two actions of Γ̂iV on V i and on Y , it gives (going down to the quotients) the

canonical inclusion mapping j′ : Γ̂iV \V i ↪→ Γ̂iV \Y ; we then define pi (resp.p̂i) as the restriction of

π (resp. of π̂i) to V i at the origin and to V (resp. to Γ̂iV \V i) at the aim, equivalently j̄◦pi = π◦j
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(resp. j′◦ p̂i = π̂i◦j). Consider now the map π̄i◦j′ : Γ̂iV \V i → Γ\Y = Y , as its image is included
in the image of π ◦ j, thus in V (because π ◦ j = π̄i ◦ π̂i ◦ j = π̄i ◦ j′ ◦ p̂i and p̂i is surjective), it

gives (by restriction at the aim) a map p̄i : Γ̂iV \V i → V such that π̄i ◦ j′ = j̄ ◦ p̄i. Moreover, one
gets p̄i ◦ p̂i = pi because

j̄ ◦ (p̄i ◦ p̂i) = π̄i ◦ (j′ ◦ p̂i) = π̄i ◦ (π̂i ◦ j) = π ◦ j = j̄ ◦ pi .

All these results are summarized in the following diagram:

Γ y Y
π̂i //

π

))

Ŷ i = Γ̂iV \Y
π̄i // Y = Γ\Y

Γ̂iV y V i
?�

OO

p̂i //

pi

66V̂ i = Γ̂iV \V i p̄i //
?�

OO

V
?�

OO
(72)

At last, we shall denote by d̄ the distance on Y = Γ\Y induced (by quotient) from the distance
d on Y (this distance d̄ is defined at Lemma 8.13 (i)).

The following Lemma is semi-classical and will be used several times in this section:

Lemma 6.29. (generic topological Lemma) With the above notations, for every proper action
(without fixed point and by isometries) of any group Γ on any metric space (Y, d),

(i) for every i ∈ I, π and π̂i are open mappings, which are locally isometric coverings;

(ii) for every i ∈ I, π(V i) = V and pi and p̂i : V i → V̂ i are locally isometric coverings;

(iii) for every pair V i, V j of connected components of π−1(V ), there exists γi,j ∈ Γ such that

γi,j(V
i) = V j and Γ̂jV = γi,j Γ̂iV γ

−1
i,j ;

(iv) for every i ∈ I, p̄i is a locally isometric homeomorphism which preserves the path lengths;

(v) if moreover Y is locally path-connected and simply connected and if, for every connected
component V i of V := π−1(V ) and for every y ∈ V i, we denote by i∗ : π1(V , π(y)) →
π1

(
Y , π(y)

)
the morphism induced by the canonical injection i : V ↪→ Y then the subgroup

Γ̂iV is identified with i∗π1(V , π(y)) via the canonical isomorphism21 Γ→ π1

(
Y , π(y)

)
.

Proof. By Lemma 8.13 (iii), the action of Γ on (Y, d), being proper and without fixed point,
is also faithful and discrete, we may thus consider Γ as a discrete subgroup of the group of
isometries of (Y, d) which satisfies d(y, γ y) > 0 for every y ∈ Y and every γ ∈ Γ∗. This and the
properness of the action imply the existence of some σ ∈ Γ∗ such that sysΓ(y) = d(y, σ y) > 0.

• Proof of (i): Choose any y ∈ Y and any ε ≤ 1
2 sysΓ(y); as, for any (y, z) ∈ Y 2, one

has d̄
(
π(y), π(z)

)
= infγ∈Γ d(γ y, z) then π−1

(
BY (π(y), ε)

)
is the disjoint union of the

balls BY (γ y, ε) (for all the γ’s in Γ). Consequently π is a covering and, for any γ ∈ Γ,
π :

(
BY (γ y, ε /2) , d

)
→
(
BY (π(y), ε /2) , d̄

)
is an isometry. Moreover, for every open

subset U of Y , π−1
(
π(U)

)
= ∪γ∈Γ γ(U) is also an open subset of Y and, by definition of

the quotient-topology, π(U) is an open subset of Y and π is an open map.
The proof of the fact that π̂i is a locally isometric covering and an open map is similar (as

the action of Γ̂iV is the restriction of the action of Γ, notice that sysΓ̂iV
(y) ≥ sysΓ(y) > 0).

21Given any y ∈ Y , the canonical isomorphism Γ→ π1

(
Y , π(y)

)
maps every γ ∈ Γ onto the homotopy class of

π ◦ c, where c is any continuous path with endpoints y and γ y.
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• Proof of (ii): As V i is open, for every y ∈ V i, there exists ε > 0 such that BY (y, ε) ⊂ V i;

from this and from the definition of Γ̂iV , it follows that, for every γ ∈ Γ̂iV , one has
BY (γ y, ε) = γ

(
BY (y, ε)

)
⊂ γ(V i) = V i. Replacing eventually ε by a smaller value (still

called ε), (i) implies that, for every γ ∈ Γ̂iV , π̂i is an isometry from the ball BY (γ y, ε) ⊂ V i

onto the ballBŶi(π̂i(y), ε) ⊂ π̂i(V i) = p̂i(V
i) of Ŷi ; as π̂−1

i

(
BŶi(π̂i(y), ε)

)
= ∪γ∈Γ̂iV

BY (γ y, ε) =

p̂−1
i

(
BŶi(p̂i(y), ε)

)
, this proves that p̂i is still a locally isometric covering.

In order to prove that pi is also a covering, first prove that π(V i) = V : as (by construction)
π−1(V ) is (globally) Γ-invariant, every γ ∈ Γ only exchanges the connected components
of π−1(V ) and, as two of these connected components are either identical or disjoint, for
every pair Vi, Vj of these connected components and every γ, g ∈ Γ, one has

γ(V i) ∩ g(V j) 6= ∅ =⇒ γ(V i) = g(V j) , (73)

which implies that
π(V i) ∩ π(V j) 6= ∅ =⇒ π(V i) = π(V j) : (74)

indeed, if there existed some y ∈ Y such that π(y) ∈ π(V i) ∩ π(V j), there would exist
γ, g ∈ Γ such that y ∈ γ(V i) and y ∈ g(V j) and this, by (73), would imply that γ(V i) =
g(V j), and thus that π(V i) = π(V j).
As V = ∪i∈I π(V i), where (by (i) and (74)) the subsets

(
π(V i)

)
i∈I are open and pairwise

disjoint or identical, the connectedness of V guarantees that all the π(V i)’s coincide, and
we thus conclude that pi(V

i) = π(V i) = V for every i ∈ I. This also proves that pi and p̄i
are surjective maps.
Mimicking the above proof, for every y ∈ V i, there exists ε > 0 (small enough) such that
one has simultaneously ε ≤ 1

4 sysΓ(y) and BY (y, ε) ⊂ V i, this implies that BY (γ y, ε) =
γ
(
BY (y, ε)

)
⊂ γ(V i) for every γ ∈ Γ; from this we deduce that

– if γ ∈ Γ̂iV , then BY (γ y, ε) ⊂ V i = γ(V i),

– if γ /∈ Γ̂iV , then V i 6= γ(V i), thus γ(V i) ∩ V i = ∅ by (73), and BY (γ y, ε) ∩ V i = ∅;
from this, we obtain that

p−1
i

(
BY (π(y), ε)

)
= V i ∩ π−1

(
BY (π(y), ε)

)
=
⋃
γ∈Γ

(
BY (γ y, ε) ∩ V i

)
=
⋃
γ∈Γ̂iV

BY (γ y, ε) ,

where, in this series of equalities, the last union is a disjoint one. This proves that pi is a
covering, and moreover a local isometry because π is an isometry from the ball BY (γ y, ε) ⊂
V i onto the ball BY (π(y), ε) ⊂ V of (Y , d̄).

• Proof of (iii) : A consequence of (ii) is that π(V i) = V = π(V j); this implies that, for
every y ∈ V i, the set π−1

(
{π(y)}

)
∩ V j is not empty, and there thus exists some γi,j ∈ Γ

such that γi,j(y) ∈ V j ; as γi,j(V
i) ∩ V j 6= ∅, using (73), we therefore get γi,j(V

i) = V j .

Another consequence of this is the global invariance of V j (resp. of V i) under the action

of γi,j Γ̂iV γ
−1
i,j (resp. of γ−1

i,j Γ̂jV γi,j); this proves that Γ̂jV = γi,j Γ̂iV γ
−1
i,j .

• Proof of (iv) : The open set V i being globally invariant by Γ̂iV , one has π̂−1
i

(
π̂i(V

i)
)

= V i,

which implies that j′ ◦ p̂i(V i) = π̂i ◦ j(Vi) = π̂i(Vi) is an open subset of Ŷ i. As p̂i and

pi = p̄i ◦ p̂i are surjective, the map p̄i is well defined and bijective from V̂ i onto V because,
for every y, y′ ∈ V i, one has:

p̄i ◦ p̂i(y) = p̄i ◦ p̂i(y′) ⇐⇒ j̄ ◦pi(y) = j̄ ◦pi(y′) ⇐⇒ π◦j(y) = π◦j(y′) ⇐⇒ π(y) = π(y′)

⇐⇒ ∃ γ ∈ Γ such that y′ = γ y ⇐⇒ ∃ γ ∈ Γ̂iV such that y′ = γ y ⇐⇒ p̂i(y) = p̂i(y
′) ,

where the fifth equivalence comes from the fact that, if y and γ y both lie in V i, then
V i ∩ γ(V i) 6= ∅ and, using (73), γ ∈ Γ̂iV . As p̂i and pi are moreover local isometries, then
p̄i, is also a local isometry, and consequently a homeomorphism.
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• Proof of (v) : Notice that, by (i) and the fact that Y is simply connected, π : Y → Ȳ is the
universal covering of Ȳ . Being simultaneously connected and locally path-connected, the
connected components V i of π−1(V ) are path-connected. Consider any of these connected
components, denoted by V i, any point y ∈ V i and the point ȳ = π(y). The canonical

isomorphism ψy : Γ → π1

(
Y , ȳ

)
maps every γ ∈ Γ̂iV , onto the homotopy class [i ◦ π ◦ c] ∈

π1(Y , ȳ) of the loop i◦π ◦c, where c is any continuous path with endpoints y and γ y which
lies in V i (such a path exists for V i is path-connected); as [i◦π◦c] = i∗([π◦c]) ∈ i∗

(
π1(V , ȳ)

)
,

it proves that ψy(Γ̂iV ) ⊂ i∗
(
π1(V , ȳ)

)
.

Conversely, every element β ∈ i∗
(
π1(V , ȳ)

)
can be represented by a loop c̄ lying in V , with

basepoint ȳ; this loop can be lifted as a path c, with origin at y and lying in π−1(V ); the
endpoint of c is thus an element of π−1(ȳ) = Γy which does not depend on the choice of the
loop c̄ in the homotopy class β, because two loops which are homotopic (in Y ) lift as two
paths with the same endpoints in the universal cover Y . Denoting by γ y the endpoint of c,
it follows that γ y (and thus γ, for Γ acts without fixed point) does not depend on the choice
of the loop c̄ in the homotopy class β. Moreover, as c̄ = π ◦ c, then c lies in π−1(V ), thus
its endpoints y and γ y belong to the same connected component V i of π−1(V ), proving
that γ(V i) ∩ V i 6= ∅, thus (by (73)) that γ(V i) = V i and then that γ is an element of

Γ̂iV . Mapping β onto this γ, we obtain a well-defined map φy : i∗
(
π1(V , ȳ)

)
→ Γ̂iV . One

verifies easily that, by construction, for every γ ∈ Γ̂iV and every β ∈ i∗
(
π1(V , ȳ)

)
, one has

φy ◦ ψy(γ) = γ and ψy ◦ φy(β) = β, and this ends the proof.

6.5.2 On the topology of thin subsets

On any metric space (Y, d), for any proper action, by isometries, without fixed point, of any
group Γ on (Y, d), for any given r ∈ ]0,+∞[, we recall that the r-thin subset of Y (resp. of
Y = Γ\Y ) is the open set Yr = {y ∈ Y : sysΓ(y) < r} (resp. its image Y r by the quotient-map
π : Y → Y = Γ\Y ) and that the (torsion-free) r-thin subset of Y (resp. of Y = Γ\Y ) is the open

set Y �r = {y ∈ Y : sys�Γ(y) < r} (resp. its image Y
�
r by the quotient-map π : Y → Y = Γ\Y ).

Recalling the Definitions 2.4, we denote by Σr(x) (resp. by Σ̂r(x)) the finite set of γ ∈ Γ∗

satisfying d(x, γ x) ≤ r (resp. d(x, γ x) < r), and Γr(y) (resp. Γ̂r(x)) the subgroup of Γ generated

by Σr(x) (resp. by Σ̂r(x)).
For the definitions of geodesics and local geodesics, see section 2.

Remark 6.30. The functions y 7→ sysΓ(y) and y 7→ sys�Γ(y) are both invariant by the action of
Γ, there thus exists two functions sysΓ and sys�Γ from Y = Γ\Y to R+ such that sysΓ = sysΓ ◦ π
and sys�Γ = sys�Γ ◦ π. Consequently, for every r > 0, the sets Yr and Y �r are stable under the

action of Γ, which means on the one hand that Yr = π−1(Y r) and Y �r = π−1(Y
�
r), thus that

Y r = Γ\Yr and Y
�
r = Γ\Y �r , and on the other hand that Y r (resp. Y

�
r) coincide with the subset

of ȳ ∈ Y such that sysΓ(ȳ) < r (resp. such that sys�Γ(ȳ) < r)

The proof of this Remark is straightforward, the fact that g(Y �r ) = Y �r (for every g ∈ Γ) coming
from the fact that Γ� = gΓ�g−1 because γ is torsion-free iff g γ g−1 is torsion-free.

Fix arbitrarily some r > 0, denote by
{
Y ir : i ∈ I

}
(resp. by {Y jr : j ∈ J}) the set of connected

components of Y �r = π−1(Y
�
r) (resp. of Y

�
r). The continuous mapping π : Y → Y maps each

connected component Y ir of Y �r into some connected component of Y
�
r , that we shall denote by

Y
k(i)

r ; this defines a map i 7→ k(i) and moreover proves that, for every (i, j) ∈ I × J ,

Y ir ∩ π−1(Y
j

r) 6= ∅ ⇐⇒ π(Y ir ) ∩ Y jr 6= ∅ ⇐⇒ π(Y ir ) ⊂ Y jr ⇐⇒ i ∈ k−1({j}) . (75)

A consequence is that, if i ∈ k−1({j}) (resp. if i /∈ k−1({j})) then Y ir ⊂ π−1(Y
j

r) (resp.
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Y ir ∩ π−1(Y
j

r) = ∅), which implies that

π−1(Y
j

r) = Yr ∩ π−1(Y
j

r) =
⋃
i∈I

Y ir ∩ π−1(Y
j

r) =
⋃

i∈k−1({j})

Y ir ∩ π−1(Y
j

r) =
⋃

i∈k−1({j})

Y ir .

It follows that {Y ir : i ∈ k−1({j})} is the set of connected components of π−1(Y
j

r). Hence, one

may apply the results of section 6.5.1 where we replace V by Y
j

r and V by
⋃
i∈k−1({j}) Y

i
r and

where we denote by Γ̂ir the subgroup of the elements γ ∈ Γ which verifies γ(Y ir ) = Y ir , these

results allow to define the quotient spaces Ŷ i := Γ̂ir\Y and Ŷ ir := Γ̂ir\Y ir and the quotient maps

π̂i : Y → Ŷ i and p̂i : Y ir → Ŷ ir . As in subsection 6.5.1, let ji and j̄i be the respective inclusions

Y ir ↪→ Y and Y
k(i)

r ↪→ Y ; the map ji induces (by quotients) a map j′i : Γ̂ir\Y ir ↪→ Γ̂ir\Y , that
we also consider as an inclusion; then we have (by construction) π̂i ◦ ji = j′i ◦ p̂i and p̂i may be

considered as a restriction (on both sides) of π̂i. As π(Y ir ) ⊂ Y k(i)

r , one may define pi : Y ir → Y
k(i)

r

as the restriction (on both sides) of π (namely π ◦ ji = j̄i ◦ pi). As π is constant on the orbits of

Γ̂ir, the map pi is also constant on the orbits of Γ̂ir, and thus the maps π and pi respectively go

down as maps π̄i : Γ̂ir\Y → Γ\Y and p̄i : Γ̂ir\Y ir → Y
k(i)

r satisfying π̄i ◦ π̂i = π and p̄i ◦ p̂i = pi.
We shall now prove that p̄i may be considered as the restriction (on both sides) of π̄i, in fact

∀y ∈ Y ir j̄i ◦ p̄i
(
p̂i(y)

)
= j̄i ◦ pi(y) = π ◦ ji(y) = π̄i ◦ π̂i ◦ ji(y) = π̄i ◦ j′i ◦ p̂i(y) = π̄i ◦ j′i

(
p̂i(y)

)
,

and (as p̂i is surjective) this proves that j̄i ◦ p̄i = π̄i ◦ j′i.
All these definitions and properties are summarized in the diagram below:

Γ y Y
π̂i //

π

))

Ŷ i = Γ̂ir\Y
π̄i // Y = Γ\Y

Γ̂ir y Y i
r

?�

OO

p̂i //

pi

66
Ŷ i
r = Γ̂ir\Y i

r

p̄i //
?�

OO

Y
k(i)

r

?�

OO
(76)

The following Proposition summarizes and completes the above prologue. Notice that, when
r ≤ infy∈Y sys�Γ(y), then Y �r , Y

�
r and I are empty and the following Proposition is then trivial.

Proposition 6.31. With the above notations, for every proper action (without fixed point and
by isometries) of any group Γ on any metric space (Y, d),

(o) for every connected component Y
j

r of Y
�
r, the set of connected components of π−1(Y

j

r) is{
Y ir : i ∈ k−1

(
{j}
)}

;

(i) for every pair Y ir , Y
i′

r of connected components of Y �r , the indices k(i) and k(i′) are equal

if and only if there exists γ ∈ Γ such that γ(Y ir ) = Y i
′

r , and then Γ̂i
′

r = γ Γ̂ir γ
−1;

(ii) for every i ∈ I, π(Y ir ) = Y
k(i)

r and the maps π, π̂i, pi and p̂i are locally isometric coverings
(and thus they are open mappings);

(iii) for every i ∈ I, the map p̄i is a homeomorphism from Ŷ ir onto Y
k(i)

r , which is a local
isometry (and thus preserves the path-lengths);

(iv) Il (Y, d) is a length space, for every i ∈ I, Γ̂ir contains the group generated by all the

torsion-free elements of the union of all the sets Σ̂r(y) for all the y’s in Y ir ;

(v) If (Y, d) is geodesic, each connected component Y
j

r of Y
�
r (whose closure is compact or which

satisfies lim inf sys�Γ(ȳ) ≥ r when ȳ goes to infinity in Y
j

r) contains a non homotopically

trivial closed local geodesic, whose length (or period) is equal to the minimum (on Y
j

r) of
the function ȳ 7→ sys�Γ(ȳ).
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Proof. The point (o) has been proved in the beginning of the subsection 6.5.2. The property (o)
and the fact that Γ acts properly without fixed point prove that the hypotheses of Lemma 6.29
are verified, where we replace the open subset V of the Lemma 6.29 by any connected component

Y
j

r of Y r and the set of connected components of π−1(V ) by the set
{
Y ir : i ∈ k−1

(
{j}
)}

of the

connected components of π−1
(
Y
j

r

)
; Lemma 6.29 (iii) then implies that

i, i′ ∈ k−1({j}) =⇒ ∃ γ ∈ Γ such that γ(Y ir ) = Y i
′

r and Γ̂i
′

r = γ Γ̂ir γ
−1 ,

as the converse implication is trivially true, this proves the point (i).
The point (ii) is an immediate application of Lemma 6.29 (i) and (ii); a consequence of the lemma
6.29 (ii) is moreover that, for every j ∈ J and every i ∈ k−1({j}), the restrictions pi and p̂i to

Y ir are locally isometric coverings from Y ir onto Y
j

r and Ŷ ir respectively.

The lemma 6.29 (iv) implies that the map p̄i is a homeomorphism from Ŷ ir onto Y
k(i)

r , which is
a local isometry and preserves the path-lengths. This ends the proof of point (iii).
Proof of (iv) : Suppose now that (Y, d) is a length space, for any i ∈ I and any point y of

the corresponding connected component Y ir of Y �r , let us consider any torsion-free γ ∈ Σ̂r(y); it
verifies (by definition) d(y, γ y) < r and as (Y, d) is a length space, for every 0 < η < r−d(y, γ y),
there exists a path c which joins the points y and γ y such that any point u of this path satisfies
d(y, u) + d(u, γ y) < d(y, γ y) + η < r, consequently, we get

d(u, γ u) ≤ d(u, γ y) + d(γ y, γ u) = d(y, u) + d(u, γ y) ≤ length of c < r ;

from this and from the fact that γ is torsion-free, we deduce that sys�Γ(u) < r, and thus that
the image of c is entirely contained in Y �r ; it follows that γ y belongs to the same connected
component of Y �r as y, namely it belongs to Y ir . From this, we infer that γ(Y ir )∩Y ir 6= ∅ and (by

(73)) that γ(Y ir ) = Y ir , hence that every torsion-free γ ∈ Σ̂r(y) belongs to Γ̂r(y) and (iv) is proved.

Proof of (v) : Suppose now that (Y, d) is geodesic: by definition of Y
�
r , for any of its connected

components Y
j

r which satisfies the hypotheses of (v), the function sys�Γ (defined at Remark 6.30)

is strictly smaller than r on Y
j

r, and at least equal to r on the boundary of Y
j

r or at infinity;

thus this function (when restricted to Y
j

r) attains its minimum at some point ȳj ∈ Y
j

r. Fix any
i ∈ k−1({j}); by (ii) there exists some point yi ∈ π−1({ȳj}) ∩ Y ir and the remark 6.30 (together

with the fact that π(Y ir ) = Y
j

r by (ii)) then implies that

sys�Γ(yi) = sys�Γ(ȳj) = inf
ȳ∈Y jr

sys�Γ(ȳ) = inf
y∈Y ir

sys�Γ ◦ π(y) = inf
y∈Y ir

sys�Γ(y) .

From this, from the properness of the action we infer the existence of a torsion-free element
σ ∈ Σ̂r(yi) satisfying d(yi, σ yi) = sys�Γ(yi) = Miny∈Y ir

(
sys�Γ(y)

)
, and property (iv) implies that

σ ∈ Γ̂ir. Denote by [yi, σ yi] any (length-minimizing) geodesic between the points yi and σ yi, as
σ is torsion-free, every point u ∈ [yi, σ yi] verifies

sys�Γ(u) ≤ d(u, σ u) ≤ d(u, σ yi) + d(σ yi, σu) = d(u, yi) + d(u, σ yi) = d(yi, σ yi) = sys�Γ(yi) < r ;

a first consequence is that u ∈ Y ir , thus that sys�Γ(u) ≥ sys�Γ(yi) a second consequence is that
sys�Γ(u) ≤ sys�Γ(yi); hence sysΓ(u) = sysΓ(yi). It follows that all the above inequalities are
equalities and thus the union of the two segments [u, σ yi] and [σ yi, σu] is a (length-minimizing)
geodesic between the points u and σ u. Denoting by [σkyi, σ

k+1yi] the image by σk of [yi, σ yi],
it follows that the union [yi, σ yi] ∪ [σ yi, σ

2yi] is a local geodesic, which is length-minimizing on
any subsegment of length T := sysΓ(yi). In the same way, we prove that

c := . . . ∪ [σ−pyi, σ
−p+1yi] ∪ . . . ∪ [yi, σ yi] ∪ . . . ∪ [σp−1yi, σ

pyi] ∪ [σpyi, σ
p+1yi] ∪ . . .

is a local geodesic entirely contained in Y ir , which is length-minimizing on any subsegment of
length T and verifies c(t+T ) = σ

(
c(t)
)

when parametrized by length. As π is a locally isometric
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covering (by (ii)), the image π◦c of the local geodesic c is a local geodesic of Y , which is T -periodic

(for π ◦ c(t+ T ) = π
(
σ ◦ c(t)

)
= π ◦ c(t)), and which is entirely included in π(Y ir ) = Y

j

r (equality
proved by (ii)). Moreover the period T of this closed geodesic coincides with sys�Γ(yi) = sys�Γ(ȳj),

which is actually the minimal value on Y
j

r of the function ȳ 7→ sys�Γ(ȳ).

Given any parameters δ0, H0, D0, ε
′
0 > 0, we recall the universal constants α0 := α0(δ0, H0, D0),

α′0 := α′0(δ0, H0) and r0 := r0(δ0, ε
′
0) defined at (68), (69) and (70) respectively. We then get the

Theorem 6.32. (Thin subset have simple topology) Given any parameters δ0, H0, D0, ε
′
0, H > 0,

for every element Γ of Hypaction(δ0, H0, D0) (resp. of Hypsub(δ0, H0), resp. of Hypthick(δ0, ε
′
0)),

for every r > 0 such that r ≤ α0

H (resp. such that r ≤ α′0
H , resp. such that r ≤ r0

H ), any proper
action (without fixed point, by isometries preserving the measure) of Γ on a metric measured
space (Y, d, µ) whose entropy is bounded from above by H verifies,

(i) for every i ∈ I, Γ̂ir := {γ ∈ Γ : γ(Y ir ) = Y ir } is a virtually cyclic subgroup of Γ; if moreover

(Y, d) is a length space, then Γ̂ir contains the group generated by the torsion-free elements

of
⋃
y∈Y ir

Σ̂r(y).

(ii) If Y is locally path-connected and simply connected then, for every connected component Y ir

of Y �r and every y ∈ Y ir , if we denote by i∗ : π1

(
Y
k(i)

r , π(y)
)
→ π1

(
Y , π(y)

)
the morphism

induced by the inclusion i : Y
k(i)

r ↪→ Y , the subgroup Γ̂ir is identified with i∗π1

(
Y
k(i)

r , π(y)
)

by the canonical isomorphism Γ→ π1

(
Y , π(y)

)
and i∗π1

(
Y
k(i)

r , π(y)
)

is a virtually cyclic
group.

Proof of (i). As Γ is non virtually cyclic by definition of Hypaction(δ0, H0, D0) (resp. of Hypsub(δ0, H0),
resp. of Hypthick(δ0, ε

′
0)), as it admits a proper action (by isometries) on some δ0-hyperbolic space

(X, d0) such that no element acts as a parabolic isometry (by Lemma 6.9), as Γr(y) is virtually
cyclic at every point of Y �r by the conclusion (i) (resp. (ii), resp. (iii)) of Theorem 6.19, we may
apply Proposition 6.23 (1), which proves the existence of some maximal virtually cyclic group

Gi which contains all the sets Σr(y) for all the y ∈ Y ir . Let us now show that Γ̂ir ⊂ Gi: for

every γ ∈ Γ̂ir and any y ∈ Y ir , y and γ y are located in the same connected component Y ir of
Y �r , thus Gi contains Σr(y) and Σr(γ y) = γ Σr(y) γ−1. Let σ be any torsion-free element of
Σr(y) (such an element exists for sys�Γ(y) < r), then σ and γ σ γ−1 both belong to Gi and the
subgroup 〈σ, γ σ γ−1〉 is thus virtually cyclic; as `(σ) > 0 by Lemma 6.9 (ii), it follows from this
and from Corollary 8.43 (i) that 〈σ, γ〉 is virtually cyclic. From this and from the fact that Gi

is the maximal virtually cyclic subgroup which contains σ, we infer that 〈σ, γ〉 ⊂ Gi, thus that

γ ∈ Gi for every γ ∈ Γ̂ir; this proves that Γ̂ir ⊂ Gi. We conclude that Γ̂ir is virtually cyclic.

If now (Y, d) is a length space, the fact that Γ̂ir contains the group generated by the torsion-free

elements of
⋃
y∈Y ir

Σ̂r(y) is a direct consequence of Proposition 6.31 (iv).

Proof of (ii). We apply Lemma 6.29 (v), where we replace the open set V ⊂ Y of Lemma 6.29 by

any connected component Y
j

r of Y r and the set
{
V i : i ∈ I

}
of connected components of π−1(V )

by the set {Y ir : i ∈ k−1({j})} of connected components of π−1(Y
j

r); for each i ∈ k−1({j}), the

set Γ̂iV of elements of Γ which stabilize Vi is thus replaced by the set Γ̂ir of elements of Γ which
stabilize Y ir . Property (ii) is then a direct consequence of Lemma 6.29 (v).

Now property (i) implies that i∗π1

(
Y
k(i)

r , π(y)
)
' Γ̂ir is virtually cyclic.

6.5.3 Examples and counter-examples

In the following examples we refer to the notations of subsection 6.5.2: given any a, b such that
0 < a < b, and defining δ0 = ln 3

a and H0 = (n − 1)b, every group Γ under consideration in
these examples is an element of the set of groups Hypthick(δ0, ε

′
0) (resp. of Hypaction(δ0, H0, D0))
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introduced in Definition 6.4 (resp. in Definition 6.1), the values of the other parameters ε′0, D0

being specified further. In all the following examples (except the fourth one), the group Γ is
torsion-free, because it is isomorphic to a subgroup of the fundamental group of a complete
n-dimensional Riemannian manifold whose sectional curvature is ≤ −a2 and whose injectivity
radius is ≥ ε′0 /2. (resp. to a subgroup of the fundamental group of a compact n-dimensional
Riemannian manifold whose sectional curvature σ verifies22 −b2 ≤ σ ≤ −a2 and whose diameter
is bounded from above by D0).
We shall consider (in these examples) proper actions (by isometries without fixed point) of the
same group Γ on another simply connected Riemannian manifold (Y, g̃) whose entropy is bounded
from above by some constant H. Except in Example (4), as Γ is torsion-free, the two functions
sys�Γ(·) and sysΓ(·) coincide on the whole of Y ; for this reason, for every positive r ≤ r0

H (resp. r ≤
α0

H ) where r0 := r0(δ0, ε
′
0) is defined at (70) (resp. where α0 := α0(δ0, H0, D0) is defined at (68)),

the r-thin subset Yr and the torsion-free r-thin subset Y �r coincide with {y ∈ Y : sysΓ(y) < r}
and their images by π : (Y, g)→ Y = Γ\Y also coincide, i. e. Y

�
r = Y r = {ȳ ∈ Y : sysΓ(y) < r}.

(1) When (M, g0) is a complete n-dimensional manifold with sectional curvature σ ≡ −1

and with injectivity radius ≥ ε′0
2 > 0, its universal cover (M̃, g̃0) ' (Hn, can.) is ln 3-

hyperbolic by Proposition 1.4.3 page 12 of [CDP90] and the systole of the action (by deck-

transformations) of its fundamental group G on its universal cover (M̃, g̃0) is bounded
from below by ε′0. It follows that G and every non cyclic23 subgroup Γ of G belong to
Hypthick(ln 3, ε′0).

Considering now the induced action of Γ on (Y, d, µ) := (M̃, g̃0, dvg̃0), the following results

are classical in this case (see [BGS85]): each connected component Y ir (resp. Y
k

r ) of the

r-thin subset Y �r = Yr ⊂ Y (resp. of the r-thin subset Y
�
r = Y r ⊂ Y ) is then diffeomorphic

to R × Bn−1 (resp. to S1 × Bn−1), the groups Γ̂ir := {γ ∈ Γ : γ(Y ir ) = Y ir } and π1

(
Y
k

r

)
being isomorphic to Z (compare with Theorem 6.32 and Theorem 6.35 (i) and (v)). More-

over, as proved in Proposition 6.31 (v), each bounded connected component Y
k

r contains
some minimizing closed periodic geodesic c̄k (of length εk) and a tubular neighbourhood

of this geodesic of radius C(n) ln
(
r
εk

)
, and this is consistent with the general estimate of

the radius of this tubular neighbourhood given by Theorem 6.35 (iii).
The generalization of these results to complete Riemannian manifolds whose sectional cur-
vature verifies −b2 ≤ σ ≤ −a2 is also classical (see [BGS85]).

(2) One application of the results of the present section is the following

Corollary 6.33. For any differentiable manifold X which admits a complete Riemannian
metric g0 with sectional curvature σ ≤ −a2 < 0 and injectivity radius ≥ i0 > 0, for
every other complete Riemannian metric g on X with bounded Entropy24, all the Margulis’
properties proved in the present section are still valid for (X, g), viewed as the quotient of

the measured metric space
(
X̃, dg̃, dvg̃

)
by the action of the fundamental group Γ of X.

Proof. Let us first consider the action of Γ on the metric space
(
X̃, dg̃0

)
: as mentioned

above,
(
X̃, dg̃0

)
is δ0-hyperbolic with δ0 := 1

a ln 3 and, the global systole of the action of Γ
on this space being bounded from below by ε′0 := 2i0, every γ ∈ Γ∗ verifies `(γ) ≥ 2i0. This
implies that Γ is a torsion-free element of Hypthick(δ0, ε

′
0). As the Entropy of the measured

metric space
(
X̃, dg̃ , dvg̃

)
is bounded above by a given constant (say H), we may apply all

the results of the present section 6 to the action of Γ on
(
X̃, dg̃ , dvg̃

)
.

22Notice that the assumption −b2 ≤ σ ≤ −a2 and the comparison Theorems prove that the Riemannian
universal covering of this manifold is a δ0-hyperbolic space, with Entropy ≤ H0, where δ0 = ln 3

a
by Proposition

1.4.3 page 12 of [CDP90] and H0 = (n− 1)b by Bishop-Gromov Comparison Theorem.
23As G acts on Hn without fixed point, it is torsion-free by Lemma 8.40, hence every virtually cyclic subgroup

of G is cyclic by Lemma 8.14.
24We recall that the Entropy of (X, g) is the entropy of its universal cover

(
X̃, dg̃ , dvg̃

)
.
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In the general case of subgroups of hyperbolic groups (or of groups which admit an action on
some Gromov-hyperbolic space (X, d0)), considering their actions on any measured metric space
(Y, d, µ), the results of subsections 6.5.2 and 6.5.4 aim to generalize the properties of hyperbolic or
negatively curved manifolds mentioned in the reference-example (1). In comparison, the results
of subsections 6.5.2 and 6.5.4 seem weaker: in fact, the strong version (valid in the negatively
curved case, see Example (1) above) cannot be expected in this general setting, as proved by the
following examples:

(3) Comparing to the reference-example (1), in the general case, the connected components

Y
k

r of the r-thin subset Y
�
r are no longer homeomorphic to à S1 × Bn−1, moreover the

fundamental group of Y
k

r is generally not virtually cyclic: one cannot expect a better result
than the virtual cyclicity (proved in Theorem 6.32) of the image of the fundamental group

of Y
k

r by the homomorphism i∗ between fundamental groups induced by the inclusion i :

Y
k

r ↪→ Y :

Indeed, let Σ be a compact surface with genus ≥ 2; let g1 be a first hyperbolic Riemannian
metric on Σ whose injectivity radius is bounded from below by a constant ε′1 > 0; the
fundamental group Γ of Σ is then a torsion-free element of Hypthick(δ0, ε

′
0), where δ0 = ln 3

and ε′0 = 2 ε′1. Then the corresponding universal constant r0 = r0(H0, ε
′
0) defined in (70)

is equal to
2 ε′1 ln 2

13 ln 3 + 8 ε′1
< 1.

Fix any positive value r ≤ r0. Let g0 be another hyperbolic Riemannian metric on Σ with
big diameter and which admits a small closed geodesic c of length ε << r; the connected
component of the r-thin subset which contains c is then a tubular neighbourhood U of c
with radius L ≥ ln(r/ ε). Denote by %(·) = dg0(·, c) the function distance to this geodesic,
choose points ȳ1, . . . , ȳN ∈ U such that injg0(ȳi) ≤ r/4 and |%(ȳi) − %(ȳj)| ≥ 5ε2 when

i 6= j; define V =
⋃N
i=1Bg0(ȳi, ε

2) and W =
⋃N
i=1Bg0(ȳi, 2ε

2) and construct a C∞ func-
tion f : Σ→ [1,+∞[ such that f = 1/ε3 on V and f = 1 on Σ \W .
Define the new metric g = f2g0 on Σ and the pulled-back metrics g̃ and g̃0 on the universal
covering Y := Σ̃ of Σ; as g ≥ g0, one gets g̃ ≥ g̃0 and thus B(Y,g̃)(y,R) ⊂ B(Y,g̃0)(y,R) for
every y ∈ Y ; this implies that Ent(Y, g̃) ≤ Ent(Y, g̃0) = 1.
Consider now the action (as fundamental group) of Γ on

(
Y , dg̃ , dvg̃

)
(endowed with the

Riemannian distance and measure associated to g̃) and the quotient (Y , d̄) := (Γ\Y, d̄) =
(Σ, dg). Then all the results of the present section 6 applies to the action of Γ on

(
Y , dg̃ , dvg̃

)
;

in particular Theorems 6.32 and 6.35 are valid here. For every i ∈ {1, 2, . . . , N}, every non
homotopically trivial loop of Y = Σ (with base-point ȳi) must go outside Bg0(ȳi, ε

2) (be-
cause Bg0(ȳi, ε

2) is diffeomorphic to Bn), and thus its length (with respect to the new metric

g) is at least 2/ ε. With the notations of Theorem 6.32, let Y
k

r be any connected component

of the r-thin subset Y
�
r = Y r = {ȳ ∈ Y : sysΓ(ȳ) < r}, where the systole is measured with

respect to the new metric g; as sysΓ(ȳi) ≥ 2/ ε > r, then Y
k

r = U \
(⋃N

i=1 Vi

)
, each Vi being

a closed neighbourhood of ȳi contained in Bg0(ȳi, 2ε
2). Hence, though all the hypotheses of

Theorem 6.32 are verified, the fundamental group of Y
k

r is not virtually cyclic (it contains
a free group with N generators); however, as predicted by Theorem 6.32, its image by the

homomorphism i∗ induced by the inclusion i : Y
k

r ↪→ Y is a virtually cyclic subgroup of
the fundamental group of Y .

(4) In Theorem 6.32 (ii), the conclusion “the image by i∗ of the fundamental group of Y
k

r is
virtually cyclic” cannot be replaced by the same conclusion with “cyclic” instead of “virtually
cyclic” :

In fact, let us consider the Riemannian surface (Σ, g0) of the previous example and choose
(Y , g) := (Σ × RPn, g0 × ε2 ·can), the total space of its Riemannian universal covering is

then (Y, g̃) = (Σ̃×Sn, g̃0×ε2 ·can) and its fundamental group is Γ = Γ0×Z/2Z, where Γ0 is
the fundamental group of Σ. With the same parameters (and values of these parameters)
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as in the previous example, (Y, g̃) is (ln 3 + π ε)-hyperbolic, hence, as all the elements
(g, s) ∈ Γ0 × Z/2Z such that g 6= e are torsion-free and verify `(g, s) = `(g) ≥ ε′0, it comes
that Γ ∈ Hypthick(δ0, ε

′
0), where δ0 = ln 3 + π ε and ε′0 = 2 ε′1. As ε << r, it follows from

example (1) that the connected component Y
k

r of the r-thin subset which contains c is in
this case diffeomorphic to U × RPn, where U is a tubular neighbourhood of c with radius
L ≥ ln(r/ ε) in the factor Σ (see example (3)). Thus the image of the fundamental group

of Y
k

r by the homomorphism i∗ induced by the inclusion i : Y
k

r ↪→ Y is a subgroup of the
fundamental group of Y isomorphic to Z× Z/2Z; thus it is virtually cyclic but not cyclic.

(5) Comparing to the reference-example (1), in the general case, each bounded connected com-

ponent Y
k

r of the r-thin subset Y
�
r still contains some minimizing closed periodic geodesic

c̄k (of length εk < r), but it no longer contains a big tubular neighbourhood of this geodesic

of radius C(n) ln
(
r
εk

)
:

In fact, let us consider the hyperbolic surface (Σ, g0) with small injectivity radius of the
example (3), we proved in example (3) that the fundamental group Γ of Σ is a torsion-
free element of Hypthick(δ0, ε

′
0), where δ0 = ln 3 and ε′0 = 2 ε′1. Then the corresponding

universal constant r0 = r0(H0, ε
′
0) defined in (70) is equal to

2 ε′1 ln 2

13 ln 3 + 8 ε′1
< 1.

Fix any positive value r ≤ r0. Let c be a small closed geodesic of (Σ, g0), of length ε
(ε << r), normally parametrized; the connected component of the r-thin subset which
contains c is then a tubular neighbourhood U of c with radius L ≥ ln(r/ ε) (see example
(1)). Still denote by %(·) = dg0(·, c) the function distance to the geodesic c; parametrize
U by sending each point y ∈ U on the couple

(
t, c(s)

)
∈ ]− L,L[×Im(c), where the image

Im(c) of c is isometric to a circle of length ε, where c(s) is the g0-orthogonal projection of
y on the geodesic circle c and where t := %(y). We then have g0 = dt2 + (cosh t)2ds2 at the
point

(
t, c(s)

)
. Define N := [ln(r/ ε)]− 1 and a C∞ function u : [−L,L]→ [1,+∞[ which

verifies {
u = 1 on [−L,−L+ ε2], on [L− ε2, L] and on

⋃k=N
k=−N [k − ε2, k + ε2],

u = 1
ε on

⋃k=N−1
k=−N [k + 2ε2, k + 1− 2ε2]

and consider a new C∞ metric g which coincides with g0 on the outside of U and is equal to
dr2 + (u(t) cosh t)2ds2 on U ; as u ≥ 1, the pulled-back metrics g̃ and g̃0 on the universal

covering Y := Σ̃ of Σ verify g̃ ≥ g̃0 and thus B(Y,g̃)(y,R) ⊂ B(Y,g̃0)(y,R) for every y ∈ Y ;
this implies that Ent(Y, g̃) ≤ Ent(Y, g̃0) = 1.
Consider now the action (as fundamental group) of Γ on

(
Y , dg̃ , dvg̃

)
(endowed with the

Riemannian distance and measure associated to g̃) and the quotient (Y , d̄) := (Γ\Y, d̄) =
(Σ, dg). Then all the results of the present section 6 applies to the action of Γ on

(
Y , dg̃ , dvg̃

)
;

in particular Proposition 6.31 and Theorems 6.32 and 6.35 are valid here. For every
k ∈ {−N, . . . , 0, 1, . . . , N − 1} and every y ∈ %−1({k + 1

2}), every loop with base-point
y either goes out of %−1

(
[k + 2ε2, k + 1 − 2ε2]

)
(and then its length with respect to the

metric g is at least 2( 1
2 − 2ε2) = 1− 4ε2), or it remains inside %−1([k + 2ε2, k + 1− 2ε2]),

and then (if it is not homotopically trivial), its projection on Im(c) is surjective, and this
means that the loop writes (in coordinates) γ : τ 7→

(
t(τ), c(s(τ))

)
where s(τ) varies from

0 to ε (at least). As g(γ̇(τ), γ̇(τ))1/2 ≥ u(t(τ)) cosh(t(τ)) |s′(τ)| ≥ 1
ε |s
′(τ)|, we get that

the g-length of γ is at least 1. One thus obtain that sys�Γ(y) = sysΓ(y) ≥ 1 − 4ε2 > r at
any point y ∈ %−1({k + 1

2}). On the other hand, for every k ∈ {−N, . . . , 0, 1, . . . , N} and
every y ∈ %−1({k}), the non homotopically trivial loop γ : τ 7→ (k, c(τ)) from [0, ε] to U
(with base-point y) verifies g(γ̇(τ), γ̇(τ))1/2 = g0(γ̇(τ), γ̇(τ))1/2 = cosh k, and its g-length
is thus ε cosh k < r. It follows that sys�Γ(y) < r for every y ∈ %−1({k}) and thus that
(with respect to the action of Γ on

(
Y , dg̃ , dvg̃

)
) U contains 2N + 1 different connected

components of Y r, denoted by Y −Nr , . . . , Y 0
r , . . . Y

N
r , where each Y kr is included in the por-

tion Uk = %−1(]k − 1
2 , k + 1

2 [) of the cylinder. Applying Proposition 6.31, each of these
components Y kr contains at least one periodic geodesic. Moreover the length of each of
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these components is smaller than 1, thus (in contrast with Example (1)) it does not go to
+∞ when ε→ 0.

(6) Comparing to the reference-example (1), in the general case, each connected component Y
k

r

of the r-thin subset Y
�
r may contain several minimizing closed periodic geodesics:

Let us revisit the example (5), redefining the function u : [−L,L]→ [0, 2] as the following
one: {

u = 1 on [−L,−L+ ε2], on [L− ε2, L] and on
⋃k=N
k=−N [k − ε2, k + ε2],

u = 2 on
⋃k=N−1
k=−N [k + 2ε2, k + 1− 2ε2],

consider a new C∞ metric g which coincides with g0 on the outside of U and is equal to
dt2 + (u(t) cosh t)2ds2 on U ; as u ≥ 1, the pulled-back metrics g̃ and g̃0 on the universal

covering Y := Σ̃ of Σ verify g̃ ≥ g̃0 and thus B(Y,g̃)(y,R) ⊂ B(Y,g̃0)(y,R) for every y ∈ Y ;
this implies that Ent(Y, g̃) ≤ Ent(Y, g̃0) = 1.
Consider now the action (as fundamental group) of Γ on

(
Y , dg̃ , dvg̃

)
and the quotient

(Y , d̄) := (Γ\Y, d̄) = (Σ, dg) (where dg is the Riemannian distance associated to the new
metric g), then all the results of the present section 6 applies to this action; in particular
Proposition 6.31 and Theorems 6.32 and 6.35 are valid here. As sys�Γ(y) ≤ 2 ε cosh %(y) < r
on the set {y ∈ U : %(y) ≤ ln

(
r

2 ε

)
}, the connected component of Y r which contains

the closed geodesic c also contains the long tubular neighbourhood %−1([−L′, L′]) (where
L′ := ln

(
r

2 ε

)
) of this geodesic. Moreover, on each interval ]k− 1

2 , k+ 1
2 [, the function b(t) :=

u(t) cosh(t) attains a local minimum at a point tk and, as every curve γ : s 7→
(
t(s), c(s)

)
lying in a sufficiently small neighbourhood of the curve ck : s 7→ (tk, c(s)) verifies√

g
(
γ̇(s), γ̇(s)

)
=

√
t′(s)2 + b

(
t(s)

)2 ≥ b(t(s)) ≥ b(tk) ,

one has (by integration) length(γ) ≥ length(ck) and, for every integer k, ck is a (locally)
minimizing closed geodesic. Observe that the ck’s are all homotopic to c and this is con-
sistent with Theorem 6.35 (vi) and (viii).

The example (3) shows that the connected components Y
k

r of the r-thin subset Y
�
r generally have

a topology which is not that simple. Each of these components admits a “soul” which is a closed

geodesic but, when this geodesic is small, the corresponding component Y
k

r generally does not
contain a big tubular neighbourhood of this closed geodesic (see example (5)). These differences
with the negatively curved Riemannian manifolds may be solved by considering tubes around
small closed geodesics instead of r-thin subsets: these tubes have a great radius (see Theorem
6.35 (iii)) and a rather simple topology, because they are metric balls in a quotient of Y (in most
of the applications Y is a simply connected space) by a virtually cyclic group (a cyclic group
when Γ is torsion-free, by Remark 8.14), see Theorem 6.35 (ii). Developing this viewpoint is the
aim of the following subsection.

6.5.4 The topology of Margulis’ tubes is almost trivial

Let Γ be an element of one of the sets of groups described in the beginning of Section 6.1 and (Y, d, µ)
any measured length space whose entropy is bounded from above, then the systole of any proper co-
compact action (by isometries without fixed point preserving the measure) of Γ on (Y, d, µ) is generally
not bounded from below when the diameter of the quotient-space Y := Γ\Y is not bounded (compare
with Theorem 6.26).
What can we say when the diameter of Γ\Y is not bounded ? We shall prove that, in this case, around
each point where the systole is small, there exists a ball with big radius which is similar to a “tube”, i.
e. which is isometric to a ball of big radius in the quotient of Y by a virtually cyclic subgroup of Γ.

Let us first notice that (Y, d), being a length space (whose distance is never infinite), is path-
connected, for (by definition)

∀y, y′ ∈ Y d(y, y′) := inf
c path from y to y′

length of c < +∞ .
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For any y ∈ Y and any R > 1
2 sysΓ(y), we define ÛR :=

⋃
γ∈Γ̂2R(y)BY (γ y,R) and, in order to

apply the results of subsection 6.5.1 in this case, we shall first prove that

ÛR is the connected component of π−1 (BY (ȳ, R)) which contains y , (77)

where ȳ := π(y)). Indeed, denote by UR(y) the connected component of π−1
(
BY (ȳ, R)

)
which

contains y and by Gy the set {γ ∈ Γ : γ(UR(y)) = UR(y)}. In the length space (Y, d), every open
ball is path-connected25; from this and from the fact that γ

(
BY (y,R)

)
= BY (γ y,R), as every

connected subset A of π−1 (BY (ȳ, R)) such that A ∩ UR(y) 6= ∅ is included in UR(y), we deduce
(by a closed chain of implications) that, for every γ ∈ Γ,

γ y ∈ UR(y) ⇐⇒ γ±1
(
UR(y)

)
∩UR(y) 6= ∅ ⇐⇒ γ±1

(
UR(y)

)
⊂ UR(y) ⇐⇒ γ(UR(y)) = UR(y)

⇐⇒ γ ∈ Gy ⇐⇒ BY (γ y,R) ∩ UR(y) 6= ∅ ⇐⇒ BY (γ y,R) ⊂ UR(y) , (78)

where, in the first implication, we have used the fact that y ∈ UR(y) by definition.
As, by definition of the distance d̄ on Γ\Y (see Lemma 8.13 (i)), π−1

(
BY (ȳ, R)

)
=
⋃
γ∈ΓBY (γ y,R),

equivalences (78) imply that

UR(y) =
⋃
γ∈Γ

(
BY (γ y,R) ∩ UR(y)

)
=
⋃
γ∈Gy

BY (γ y,R) . (79)

Let us prove that Γ̂2R(y) ⊂ Gy: in fact, for every σ ∈ Σ̂2R(y), one has d(y, σ y) < 2R; on the
other hand, as (Y, d) is a length space, there exists a “quasi middle point” between points y and
σy, i. e. a point u which satisfies

d(y, u) = d(σy, u) <
1

2

(
d(y, σy) + η

)
< R for every η such that 0 < η < 2R− d(y, σy) ;

it follows that BY (y,R)∩BY (σy,R) 6= ∅, thus (as BY (y,R) ⊂ UR(y) by (78)) that BY (σy,R)∩
UR(y) 6= ∅, and the equivalences (78) imply that σ ∈ Gy. This proves that Σ̂2R(y) ⊂ Gy, hence

that Γ̂2R(y) ⊂ Gy.

We are now going to prove that Gy ⊂ Γ̂2R(y): in fact, as the balls of (Y, d) are path-connected,
UR(y) is both connected and locally path-connected, thus it is path-connected; as a conse-
quence, for every γ ∈ Gy, there exists a continuous path between y and γ y which is contained
in UR(y), and we have d(Γ · y, u) = d̄(ȳ, π(u)) < R for every point u of this path (because
π(u) ∈ BY (ȳ, R)). By the compactness of this path and by continuity of the (strictly positive)
function u 7→ R− d̄

(
ȳ, π(u)

)
, there exists some η > 0 such that d(Γ · y, u) = d̄

(
ȳ, π(u)

)
≤ R− η

in every point u of this path.
Let us now consider a subdivision y = y0, y1, . . . , yn−1, yn = γ y of this path such that
d(yi−1, yi) < η for every i ∈ {1, . . . , n}; as yi is on the path for every i ∈ {0, . . . , n}, there
exists γi ∈ Γ such that d(yi, γi y) ≤ R − η (we make the canonical choices γ0 = e and γn = γ).
For every i ∈ {1, . . . , n}, we define σi = γ−1

i−1 γi and obtain

d(y, σiy) = d(γi−1 y, γi y) ≤ d(yi−1, γi−1 y) + d(yi−1, yi) + d(yi, γi y) < 2R− η ;

this proves that, for every i ∈ {1, . . . , n}, σi ∈ Σ̂2R(y); as γ = σ1 · σ2 · . . . · σn, it implies that

γ ∈ Γ̂2R(y). We conclude that Gy ⊂ Γ̂2R(y) and thus that Gy = Γ̂2R(y). Using this last equality,

the writing (79) of UR(y) and the definition of ÛR, we get the equality ÛR = UR(y), which ends
the proof of the property announced in (77) and thus proves that

Γ̂2R(y) = Gy = {γ ∈ Γ : γ(UR(y)) := UR(y)} =
{
γ ∈ Γ : γ(ÛR) = ÛR

}
(80)

As a consequence, we can apply the results of subsection 6.5.1, where we replace V by BY (ȳ, R),
which is open and connected because (Y, d) is a length space; we also replace V by π−1 (BY (ȳ, R)) =

25In fact, in a length space, for every open ball BY (x, r) and every point z of this ball, there exists a continuous
path c between x and z such that every point z′ of this path verifies d(x, z′) + d(z′, z) < d(x, z) + η (for any η
satisfying 0 < η < r − d(x, z)), which implies that d(x, z′) < r and that c is contained in BY (x, r).
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⋃
γ∈ΓBY (γ y,R), the connected component V i of V by the connected component ÛR = UR(y)

of π−1 (BY (ȳ, R)), and the subgroup Γ̂iV of those γ ∈ Γ such that γ(V i) = V i by Γ̂2R(y) which

(by (80)) is the subgroup of those γ ∈ Γ such that γ(ÛR) = ÛR.
Mimicking the arguments and results of subsection 6.5.1, this allows to define the quotient spaces
Ŷ = Γ̂2R(y)\Y and Γ̂2R(y)\ÛR and the quotient mapping π̂ : Y → Γ̂2R(y)\Y ; the map π then

goes down to the quotient and provides the mapping π̄ : Γ̂2R(y)\Y → Γ\Y , which satisfies

π = π̄ ◦ π̂. As the inclusion mapping j : ÛR ↪→ Y trivially commutes with the two actions of
Γ̂2R(y) on ÛR and on Y , it gives (going down to the quotients) the canonical inclusion mapping

j′ : Γ̂2R(y)\ÛR ↪→ Γ̂2R(y)\Y ; we then define p (resp. p̂) as the restriction of π (resp. of π̂) to ÛR
at the origin and to BY (ȳ, R) (resp. to Γ̂2R(y)\ÛR) at the aim, equivalently j̄ ◦ p = π ◦ j (resp.
j′ ◦ p̂ = π̂ ◦ j) where j̄ is the canonical inclusion map BY (ȳ, R) ↪→ Ȳ . Consider now the map

π̄ ◦ j′ : Γ̂2R(y)\ÛR → Γ\Y = Y , as its image is included in the image of π ◦ j, thus in BY (ȳ, R)
(because π ◦ j = π̄ ◦ π̂ ◦ j = π̄ ◦ j′ ◦ p̂ and p̂ is surjective), it gives (by restriction at the aim) a

map p̄ : Γ̂2R(y)\ÛR → BY (ȳ, R) such that π̄ ◦ j′ = j̄ ◦ p̄. Moreover, one gets p̄ ◦ p̂ = p because

j̄ ◦ (p̄ ◦ p̂) = π̄ ◦ (j′ ◦ p̂) = π̄ ◦ (π̂ ◦ j) = π ◦ j = j̄ ◦ p .

All these results are summarized in the following diagram:

Γ y Y π̂ //

π

**

Ŷ = Γ̂2R(y)\Y π̄ // Y = Γ\Y

Γ̂2R(y) y ÛR
?�

OO

p̂ //

p

44
BŶ (ŷ, R) = Γ̂2R(y)\ÛR

p̄ //
?�

OO

BY (ȳ, R)
?�

OO
(81)

In this diagram, the equality BŶ (ŷ, R) = Γ̂2R(y)\ÛR (where ŷ := p̂(y)) is validated by the def-

initions of ÛR and of the quotient distance d̂ on Ŷ := Γ̂2R(y)\Y , which imply that ÛR = {z :

d
(

Γ̂2R(y) · y, z
)
< R} = {z : d̂ (π̂(y), π̂(z)) < R}, and thus that π̂

(
ÛR

)
= {π̂(z) : d̂ (ŷ, π̂(z)) <

R} = BŶ (ŷ, R).

Lemma 6.34. (Structure Lemma) For every proper action (by isometries without fixed point)

of any group Γ on any length space (Y, d), for any y ∈ Y , let us consider the open set ÛR :=⋃
γ∈Γ̂2R(y)BY (γ y,R), with the above notations, we have

(i) ÛR is the connected component of π−1 (BY (ȳ, R)) which contains y and

Γ̂2R(y) =
{
γ ∈ Γ : γ(ÛR) = ÛR

}
;

(ii) the maps π, π̂ are locally isometric coverings, and the maps p (resp. p̂) are locally isometric

coverings from ÛR onto BY (ȳ, R) (resp. onto BŶ (ŷ, R));

(iii) p̄ is a locally isometric homeomorphism from BŶ (ŷ, R) onto BY (ȳ, R).

Notice that, if R ≤ 1
2 sysΓ(y), then Γ̂2R(y) is trivial, ÛR = BY (y,R), Ŷ = Y , π̂ = idY ,

p̂ = idBY (y,R) and BŶ (ŷ, R) = BY (y,R), thus this Theorem reduces to classical properties of π.

Proof. The point (i) has been proved in the beginning of the present subsection 6.5.4. Property
(i), the connectedness of the balls in the length space (Y , d̄), and the fact that the action of Γ
is proper and by isometries without fixed point imply that the hypotheses of Lemma 6.29 are
verified if we replace the open set V of Lemma 6.29 by BY (ȳ, R) and the connected component
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V i of π−1(V ) by the connected component ÛR of π−1 (BY (ȳ, R)) which contains y. The point
(ii) is then a direct consequence of Lemma 6.29 (i) and (ii). Lemma 6.29 (iv) implies that the

mapping p̄ is a locally isometric homeomorphism between the two balls BŶ (ŷ, R) = Γ̂2R(y)\ÛR
and BY (ȳ, R). This ends the proof of (iii).

For the sake of simplicity, in the quotient Y := Γ\Y , a loop c̄ in Y will be said to be (homo-
topically) torsion-free if its iterates k · c̄ (for all k ∈ Z∗) are not homotopically trivial. A pair of
loops c̄1 and c̄2 will be said independent if they are both homotopically torsion-free and if, for
every p, q ∈ Z∗, p · c̄1 and q · c̄2 are not freely homotopic.

Given any parameters δ0, H0, D0, ε
′
0 > 0, recall that s0 := s0(δ0, H0, D0), α0 := α0(δ0, H0, D0),

and r0 := r0(δ0, ε
′
0) are the universal constants respectively defined at (60), at (68) and at (70);

define the function N ′ : R∗+ × R∗+ → N∗ by N ′(δ0, ε) := Max

([
13δ0 + ε

ε

]
, 2

)
. The following

Theorem concerns the sets of groups Hypconvex(δ0, H0, D0) and Hypthick(δ0, ε
′
0) introduced in

Definitions 6.2 and 6.4 respectively.

Theorem 6.35. Given any parameters δ0, H0, D0, ε
′
0, H > 0, for every element Γ of

Hypconvex(δ0, H0, D0) (resp. of Hypthick(δ0, ε
′
0)) and for every positive ε ≤ 1

3n′0H
, where n′0 :=

N ′(δ0, s0) (resp. n′0 := N ′(δ0, ε
′
0)), if we introduce the universal constant Rε := 1

4H ln

(
1

n′0H ε

)
−

1
4n
′
0 ε, then any proper action of Γ (by isometries without fixed point preserving the measure) on

a connected measured length space (Y, d, µ) whose entropy is bounded from above by H enjoys
the following properties for any point y ∈ Y such that sys�Γ(y) ≤ ε, for ȳ := π(y) ∈ Y := Γ\Y
and for ŷ := π̂(y) ∈ Ŷ := Γ̂2Rε(y)\Y (here we use the same notations as above and refer to the
diagram (81), where we replace R by Rε):

(i) the subgroups Γ̂2Rε(y) and Γ2Rε(y) are virtually cyclic and contain Γr′(y
′) for any r′ < 2Rε

and any y′ ∈ BY (y,Rε − 1
2 r
′);

(ii) BY (ȳ, 1
2 Rε) is isometric to a ball of radius 1

2 Rε in the quotient of (Y, d) by a virtually cyclic
subgroup of Γ, more precisely this isometry is the map p̄ from BŶ (ŷ, 1

2 Rε) to BY (ȳ, 1
2 Rε);

(iii) if sys�Γ(y) < ε, there exists a homotopically torsion-free loop c̄ (resp. ĉ) with base-point

ȳ (resp. ŷ) in Y (resp. in Ŷ ) such that length of c̄ = length of ĉ < ε and such that the
tubular neighbourhood of c̄ in Y of radius 1

2 (Rε − ε) is isometric to the corresponding

tubular neighbourhood of ĉ in the quotient Ŷ of (Y, d) by a virtually cyclic subgroup of Γ.

(iv) Considering the r-thin subset Y �r corresponding to positive values r ≤ α0

H (resp. r ≤ r0
H ),

every of its connected components Y ir which intersects BY (y,Rε − 1
2 r) has the following

property: every torsion-free element26 γ ∈ Γ̂ir admits a power γk which is a non trivial

element of Γ̂2Rε(y). Moreover, for every pair Y ir , Y jr of connected components of Y �r which

both intersect BY (y,Rε − 1
2 r), for every torsion-free elements γ ∈ Γ̂ir and g ∈ Γ̂jr, there

exist p, q ∈ Z∗ such that γp = gq.

If moreover Y is simply connected then

(v) if we denote by i∗ : π1 (BY (ȳ, Rε), ȳ) → π1

(
Y , ȳ

)
the morphism induced by the inclusion

i : BY (ȳ, Rε) ↪→ Y , the subgroup Γ̂2Rε(y) is identified with i∗π1 (BY (ȳ, Rε), ȳ) by the
canonical isomorphism Γ→ π1

(
Y , ȳ

)
.

As a consequence i∗π1 (BY (ȳ, Rε), ȳ) is a virtually cyclic subgroup of π1

(
Y , ȳ

)
;

(vi) for every r′ < 2Rε, for any homotopically torsion-free loops c̄1 and c̄2 of lengths ≤ r′,

whose images intersect BY (ȳ, Rε− r′

2 ), there exist p, q ∈ Z∗ and a (free) homotopy between
the loops p · c̄1 and q · c̄2;

26Recall that Γ̂ir is the subgroup of the elements γ ∈ Γ which verifies γ(Y ir ) = Y ir , see subsection 6.5.2.
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(vii) In (Y , d̄), every pair of independent loops c̄1 and c̄2 of lengths ≤ ε have disjoint tubular
neighbourhoods of radius

(
1
2 Rε −

1
4 ε
)
;

(viii) Considering the r-thin subset Y
�
r of Y := Γ\Y corresponding to positive values r ≤ α0

H (resp.

r ≤ r0
H ), in every pair Y

i

r, Y
j

r of its connected components which intersect BY (ȳ, Rε− 1
2 r),

loops c̄i and c̄j of lengths < r (with base-points in Y
i

r and Y
j

r respectively) cannot be
independent.

Remarks 6.36. • About Properties (ii) and (v): When Y is simply connected, as Ŷ is a
quotient of a simply connected space by a virtually cyclic group, its fundamental group
is virtually cyclic. However example (3) of Subsection 6.5.3 proves that the topology of
BŶ (ŷ, 1

2 Rε) is not that simple because, in this example, this ball is a cylinder with many
holes.

• About Properties (iv) and (viii): example (5) of Subsection 6.5.3 shows that the “long

tube” BY (ȳ, Rε) may intersect many of the connected components of the r-thin subset Y
�
r.

One can verify on this example that the closed geodesics which are the “souls” of these
components admit multiples which are homotopically equivalent.

Proof of Theorem 6.35. Notice that, as
1

n′0H ε
≥ 3, then

1

n′0H ε
ln

(
1

n′0H ε

)
≥ 3 ln 3 > 3 ≥

n′0 + 4

n′0
, and thus Rε > ε; remark also that every open ball of (Y, d) is path-connected (this is

a classical property of length spaces, see the footnote in the beginning of the proof of property
(77)), thus every ball in the quotient metric space (Y , d̄) is also path-connected. It follows from
these remarks, from (77), and from the fact that the action of Γ is proper and without fixed
point, that the hypotheses of Lemmas 6.29 and 6.34 are verified if we replace the radius R of
the balls involved in Lemma 6.34 by Rε, the open set V of Lemma 6.29 by BY (ȳ, Rε) and the

connected component V i of π−1(V ) (involved in Lemma 6.29) by the connected component ÛRε
of π−1 (BY (ȳ, Rε)) which contains y, and the subgroup Γ̂iV by Γ̂2Rε(y).

• The first part of (i) is an immediate consequence of Theorem 6.26 (i), which proves that,
under the hypotheses of Theorem 6.35, ΓR(y) is virtually cyclic for every R ≤ 2Rε.
Now, for every y′ ∈ BY (y,Rε − 1

2 r
′) and any σ ∈ Σr′(y

′), the triangle inequality gives:

d(y, σ y) ≤ 2 d(y, y′) + d(y′, σ y′) < 2Rε and thus σ ∈ Γ̂2Rε(y); this proves that Σr′(y
′) ⊂

Γ̂2Rε(y) and thus that Γr′(y
′) ⊂ Γ̂2Rε(y).

• Proof of (ii) : As π
(
BY (y, 1

2 Rε)
)

= BY
(
ȳ, 1

2 Rε
)

and π̂
(
BY (y, 1

2 Rε)
)

= BŶ
(
ŷ, 1

2 Rε
)

(by

definition of the quotient-distances d̄ and d̂, see above), we have

BY
(
ȳ, Rε/2

)
= π ◦ π̂

(
BY (y,Rε/2)

)
= π

(
BŶ
(
ŷ, Rε/2

))
= p̄

(
BŶ
(
ŷ, Rε/2

))
;

Lemma 6.34 (iii) then implies that the map p̄ may be restricted as a locally isometric
homeomorphism from BŶ

(
ŷ, 1

2 Rε
)

onto BY
(
ȳ, 1

2 Rε
)
. In order to show that this restriction

of p̄ is an isometry, it is sufficient to prove that, for every pair z, z′ ∈ BY (y, 1
2 Rε), one has

d̂
(
π̂(z), π̂(z′)

)
= d̄

(
π(z), π(z′)

)
: indeed Γ̂2Rε(y) ⊂ Γ and every γ ∈ Γ \ Γ̂2Rε(y) belongs to

Γ \ Σ̂2Rε(y), and thus verifies d(y, γ y) ≥ 2Rε; the triangle inequality then gives:

d(γ z, z′) ≥ d(γ y, y)− d(y, z′)− d(γ y, γ z) ≥ 2Rε − d(y, z′)− d(y, z) > Rε > d(z, z′) ,

and consequently

d̄
(
π(z), π(z′)

)
= inf
γ∈Γ

d(γ z, z′) = inf
γ∈Γ̂2Rε (y)

d(γ z, z′) = d̂
(
π̂(z), π̂(z′)

)
.

We conclude by the remark that BŶ
(
ŷ, 1

2 Rε
)

is a ball in the quotient (Ŷ , d̂) of (Y, d) by

the virtually cyclic group Γ̂2Rε(y).
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• Proof of (iii) : As sys�Γ(y) < ε, there exists a torsion-free element σ ∈ Γ∗ such that

d(y, σy) < ε, then σ ∈ Γ̂ε(y) ⊂ Γ̂2Rε(y) for ε < 2Rε. As (Y, d) is a length space, there
exists a path c : [0, 1]→ Y such that c(0) = y and c(1) = σy satisfying length of c < ε and,

as Rε > ε, this path is included in ÛRε . We define c̄ := π ◦ c = p ◦ c and ĉ := π̂ ◦ c = p̂ ◦ c
and get c̄ = p̄ ◦ ĉ; c̄ and ĉ are loops in Y and Ŷ respectively, because π(σy) = π(y) and

π̂(σy) = π̂(y) for σ ∈ Γ̂2Rε(y); for every k ∈ Z∗, as σk 6= e, then σky 6= y and the loops k · ĉ
and k · c̄ are not homotopically trivial. The tubular neighbourhood of c̄ (resp. of ĉ) in Y

(resp. in Ŷ ) of radius 1
2 (Rε − ε) being included in BY (ȳ, 1

2 Rε) (resp. in BŶ (ŷ, 1
2 Rε)) by

the triangle inequality, (ii) proves that p̄ is an isometry from the tubular neighbourhood of
ĉ onto the tubular neighbourhood of c̄.

• Proof of (iv) : Let yi be a point of Y ir ∩BY (y,Rε− 1
2 r), as sys�Γ(yi) < r, there exists some

torsion-free σ ∈ Σ̂r(yi); as (by Theorem 6.32 (i)) σ is a torsion-free element of the virtually

cyclic group Γ̂ir then, for every torsion-free γ ∈ Γ̂ir, there exist p, q ∈ Z∗ such that γp = σq.

On the other hand (i) implies that σ ∈ Γ̂2Rε(y), thus that γp = σq ∈ Γ̂2Rε(y).
Now, for every pair Y ir , Y jr of connected components of Y �r which both intersect BY (y,Rε−
1
2 r), for every torsion-free elements γ ∈ Γ̂ir and g ∈ Γ̂jr, there exist k, s ∈ Z∗ such that γk

and gs are torsion-free elements of Γ̂2Rε(y) and, as Γ̂2Rε(y) is virtually cyclic by (i), there
exist p, q ∈ Z∗ such that γp = gq.

• (v) is then an immediate corollary of Lemma 6.29 (v) and of point (i), which proves that

Γ̂2Rε(y) is virtually cyclic.

• Proof of (vi): Let us choose a point ȳ1 (resp. ȳ2) in the intersection of BY (ȳ, Rε− r′

2 ) with

the image of c̄1 (resp. of c̄2). As π is surjective from BY (y,Rε − r′

2 ) to BY (ȳ, Rε − r′

2 )
(by definition of the quotient-distance d̄), one can choose a point y1 ∈ π−1({ȳ1}) (resp.

y2 ∈ π−1({ȳ2})) such that y1, y2 ∈ BY (y,Rε − r′

2 ). Let us consider the homotopy class

[c̄1] ∈ π1

(
Y , ȳ1

)
(resp. [c̄2] ∈ π1

(
Y , ȳ2

)
) and its image σ1 (resp. σ2) by the canonical

isomorphism ψy1 :
(
π1

(
Y , ȳ1

)
,+
)
→ (Γ, ·) (resp. ψy2 :

(
π1

(
Y , ȳ2

)
,+
)
→ (Γ, ·)) associated

to the choice of y1 ∈ π−1({ȳ1}) (resp. of y2 ∈ π−1({ȳ2})), namely, for i = 1, 2, denoting
by ci the continuous path of Y satisfying ci(0) = yi and π ◦ ci = c̄i, σi := ψyi ([c̄i]) is
the only element of Γ such that σi(yi) is the endpoint of the path ci. By means of this
isomorphism the hypothesis ∀k ∈ Z∗ [k · c̄i] 6= 0 is traduced in ∀k ∈ Z∗ σki 6= e, thus each
σi is torsion-free and verifies d(yi, σi yi) ≤ length of ci = length of c̄i ≤ r′; it follows that

σi ∈ Σr′(yi) ⊂ Γ̂2Rε(y), where the inclusion is a consequence of (i). As Γ̂2Rε(y) is virtually

cyclic (by (i)) and, as σ1 and σ2 are torsion-free elements of Γ̂2Rε(y), there exist p, q ∈ Z∗
such that σp1 = σq2 and this implies that the two loops p · c̄1 and q · c̄2 are freely homotopic27.

• Proof of (vii): arguing by contradiction, suppose that the intersection of the tubular neigh-
bourhoods of radius

(
1
2 Rε −

1
4 ε
)

of c̄1 and c̄2 is non empty, then there would exist points
ȳ1 and ȳ2 on the images of c̄1 and c̄2 (respectively) such that d̄(ȳ1, ȳ2) < Rε − ε

2 . As the
images of c̄1 and c̄2 would then intersect BY (ȳ1, Rε − ε

2 ), and as sys�Γ(ȳ1) ≤ ε, using the
point (vi) (and replacing r′ by ε in it), this would imply that c̄1 and c̄2 are not independent,
in contradiction with the hypothesis. We conclude that the two tubular neighbourhoods
are disjoint.

• Proof of (viii): suppose that c̄i and c̄j are both homotopically torsion-free and denote

by ȳi and ȳj their respective base-points; as Y
i

r and Y
j

r both intersect BY (ȳ, Rε − 1
2 r),

then π−1(Y
i

r) and π−1(Y
j

r) both intersect BY (y,Rε − 1
2 r), and there exist two connected

components Y ir and Y jr of π−1(Y
i

r) and π−1(Y
j

r) (respectively) which intersect BY (y,Rε−
27This is a corollary of the following result: Given g ∈ Γ and any path γ1 from y1 to gy1 (resp. γ2 from y2

to gy2), the loops γ̄1 := π ◦ γ1 and γ̄2 := π ◦ γ2 are freely homotopic: in fact, if α is a path from y1 to y2, the
continuous path c := α · γ2 ·(g ◦ α−1) obtained by concatenation of the paths α, γ2 and g ◦ α−1 has origin at y1

and endpoint at gy1, thus the loops π ◦ c and γ̄1 = π ◦ γ1 are homotopic. On the other hand, as ᾱ := π ◦ α is a
path from ȳ1 to ȳ2, the loops π ◦c = ᾱ · γ̄2 · ᾱ−1 and γ̄2 are freely homotopic, thus γ̄1 and γ̄2 are freely homotopic.
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1
2r). As π(Y ir ) = Y

i

r and π(Y jr ) = Y
j

r by Proposition 6.31 (o) and (ii), there exist yi ∈ Y ir
and yj ∈ Y jr such that π(yi) = ȳi and π(yj) = ȳj .
Using the same notations and arguments as in the proof of (vi), we denote by σi and
σj the respective images of the homotopy classes [c̄i] and [c̄j ] by the isomorphisms ψyi :
π1

(
Y , ȳi

)
→ Γ and ψyj : π1

(
Y , ȳj

)
→ Γ (these isomorphisms being associated to the

aforementioned choices of yi ∈ π−1({ȳi}) and of yj ∈ π−1({ȳj}), then σi and σj are
torsion-free, because these isomorphisms traduce the assumption “c̄i and c̄j homotopically

torsion-free” by “σi and σj torsion-free”. Furthermore σi and σj belong to Σ̂r(yi) and

Σ̂r(yj) respectively, because (as in the proof of (vi)) d(yi, σi yi) ≤ length of c̄i < r and

d(yj , σj yj) ≤ length of c̄j < r. A consequence is that σi ∈ Γ̂ir and σj ∈ Γ̂jr by Theorem
6.32 (i); applying point (iv), this proves that there exist p, q ∈ Z∗ such that σpi = σqj .
Using the same argument as in the proof of (vi), this implies that p · c̄i and q · c̄j are freely
homotopic.

7 Applications

In this section we consider closed Riemannian manifolds (M, g) or compact polyhedrons (X, g)
endowed with a piecewise smooth Riemannian metric. In both cases we consider the entropy
of the universal cover (M̃, dg̃, dvg̃) or (X̃, dg̃, dvg̃). For the sake of simplicity we denote it by
Ent(M, g) or Ent(X, g).

7.1 Application to Manifolds

Let M be a closed n-dimensional manifold. Any two metrics g1, g2 on M are Lipschitz equivalent
so that Ent(M, g1) > 0 is equivalent to Ent(M, g2) > 0. Similarly, for any two finite generating
sets S1 and S2 of a group Γ, we have that Ent(Γ, S1) > 0 is equivalent to Ent(Γ, S2) > 0.
Moreover, the so-called Švarc-Milnor’s Lemma asserts that Ent(M, g) > 0 for one (and thus
every) metric on M is equivalent to Ent(Γ, S) > 0 for one (and thus every) generating set S of Γ,
[Shv55, Mil68]. In order to make the above quantities independent of the choices of the metric
and of the generating set, we define the minimal entropy Minent(M) of a manifold M and the
algebraic entropy Ent (Γ) of a finitely generated group Γ as follows.

Minent(M) := inf{Ent(M, g)Vol(M, g)
1
n | g Riemannian metric onM} (82)

Ent(Γ) := inf{Ent(Γ, S) |S finite generating set of Γ} (83)

In the sequel Mn is a closed n-dimensional manifold with fundamental group Γ. We denote
by BΓ = K(Γ, 1) an Eilenberg McLane space of Γ. The class of closed manifolds M with
positive minimal entropy contains those having a hyperbolic fundamental group thanks to the
two following Theorems due to M. Gromov and I. Mineyev.

Theorem 7.1 ([Gro82]). Let M be a closed manifold of dimension n. Then, for every Rieman-
nian metric g on M ,

Ent(M, g)nVol(M, g) ≥ C(n)‖M‖,
where C(n) depends on the dimension n.

Definition 7.2. Mn is said to be an essential manifold if the natural homomorphism f :
Hn(M,A) → Hn(BΓ,A) is non zero, where A = Z when M is orientable and A = Z/2Z
when M is non orientable. It is said to be essential on R if f : Hn(M,R)→ Hn(BΓ,R) is not
trivial hence injective since dimHn(M,R) = 1.

Theorem 7.3 ([Min01]). Let M be a n-dimensional closed manifold, n ≥ 2. Assume that the
fundamental group of M is a Gromov hyperbolic group and that M is essential on R, then the
simplicial volume of M is positive, i.e. ‖M‖ > 0.
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Proof. This is an immediate consequence of the results proved in [Min01] which we briefly de-
scribe. One has that the bounded cohomology of M , denoted by Hn

b (M,R), is isomorphic to
Hn
b (Γ,R) := Hn

b (BΓ,R) (see [Gro82], section 3.1, corollary A, p.40), the bounded cohomol-
ogy of its fundamental group. In [Min01] it is proved that under the hypothesis of Γ being
an hyperbolic group the natural map Hn

b (Γ,R) → Hn(Γ,R) is surjective, for n ≥ 2. Now
Hn(Γ,R) ' Hn(BΓ,R) ' Hn(BΓ,R), where we consider the simplicial cohomology of BΓ. Let
us recall that, for a torsion-free hyperbolic group, BΓ can be taken to be the Rips complex which
is a contractible simplicial complex on which Γ acts freely by isometries with compact quotient;
this is a finite simplicial complex. If Γ has torsion then its classifying space is of infinite dimen-
sion but has finitely many cells in any dimension (see [BH99], p. 468–471 and [GdlH90], chap.
4). Since M is essential on R the natural map f : Hn(M,R) → Hn(BΓ,R) is injective and
the fundamental class of M is sent to a non zero element in Hn(BΓ,R) ' Hn(Γ,R) which is
represented by a bounded cycle; this implies that the simplicial volume is non trivial.

Corollary 7.4. Let M be a closed manifold of dimension n ≥ 2 which is essential on R. We
assume that the fundamental group of M is Gromov hyperbolic, then Minent(M) > 0.

On the group side, there are two distinguished classes of finitely generated groups with positive
algebraic entropy which are worth mentioning, the non virtually nilpotent solvable groups and
the hyperbolic groups.

Theorem 7.5 ([Osi03]). Let Γ be a finitely generated solvable group. If Γ is not virtually
nilpotent, then Ent(Γ) > 0.

Theorem 7.6 ([Kou98]). Let Γ be a finitely generated group. Assume Γ is Gromov hyperbolic
and non virtually cyclic, then Ent(Γ) > 0.

When Γ is the fundamental group of a closed manifold M , it would be natural to have a relation
between Minent(M) and Ent(Γ). The following examples show that there exist manifolds M
with vanishing minimal entropy but with fundamental group Γ such that Ent(Γ) > 0 so that a
relation such as Minent(M) ≥ C(n)Ent(Γ) does not hold in full generality.

In the example 7.7, the fundamental group of M is hyperbolic but M is not essential (see the
definition 7.2).

Example 7.7. Let Nn be any closed manifold with Gromov hyperbolic fundamental group Γ and
consider Mn+k = Nn × Sk the cartesian product of Nn with the k-sphere, for k ≥ 1. Then, the
fundamental group of M coincides with Γ and therefore Ent(Γ) > 0 by Theorem 7.6. On the
other hand, considering the product metrics gε := g × ε2h on M , where g is any metric on N
and h any metric on Sk, we have

Ent(M, gε) = Ent(N, g) and Vol(M, gε) = εkVol(N, g)Vol(Sk, h) ,

so that by taking ε arbitrarily small, we get Minent(M) = 0.

In the example 7.8, M is essential but its fundamental group is not Gromov hyperbolic.

Example 7.8. Let MA be the mapping torus MA := T2 × [0, 1]/ ∼, where (x, 0) ∼ (Ax, 1) in

T2× [0, 1] with A =

(
2 1
1 1

)
. The fundamental group of MA is the solvable group ΓA := Z2oAZ,

where the action of Z on Z2 is defined for k ∈ Z and x ∈ Z2 by k.x = Akx. We also recall that
the action of ΓA on M̃A = R2 ×R is given by

(p, k) · (u, t) = (p+Aku, k + t) ,

where (p, k) ∈ ΓA := Z2 oA Z and (u, t) ∈ M̃A = R2 ×R.

The group ΓA is non virtually nilpotent, therefore Ent ΓA > 0 by Theorem 7.5. On the other
hand, MA is a torus bundle over the circle so that there exists a family of collapsing Riemannian
metrics gε on MA with bounded sectional curvature and limε→0 Vol(MA, gε) = 0 (This is part
of Cheeger-Gromov Theory, see [CG86]). Since the sectional curvature of gε is bounded below,
Ent(MA, gε) ≤ C and therefore Minent(MA) = 0.
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Finally, in the next example 7.9, the manifold M is essential as a product of essential manifolds
and its fundamental group is Gromov hyperbolic. However it has torsion. Notice that M is not
rationally essential, i.e. not essential on Q.

Example 7.9. The same construction as the one done in Example 7.7 can be made with Sk

replaced by a real projective space, say, for example, RP 3 and the same conclusion holds.

Our aim in what follows is to give an explicit lower bound of the minimal entropy of essential
manifolds whose fundamental group is torsion-free and Gromov hyperbolic.

Theorem 7.10. Let M be a n-dimensional essential closed manifold, n ≥ 2. Assume that the
fundamental group Γ of M is non cyclic, torsion-free and is a subgroup of finite index in some
group G belonging28 to Hyp(δ,H) then, for every Riemannian metric g on M ,

Ent(M, g)nVol(M, g) ≥ C(n, δ,H) > 0.

The case n = 1 is not adressed since the only closed 1-dimensional manifold is the circle and its
fundamental group is elementary. Notice that the quantity C(n, δ,H) depends on the dimension
n and on the fundamental group only. In particular for two essential closed manifolds of the
same dimension and having the same fundamental group the above lower bound of the minimal
entropy is the same.

The proof of this result relies on two theorems that we state below. One is a theorem proved
by S. Sabourau which states a universal relation between the Margulis invariant and the Filling
radius of a Riemannian manifold (M, g) such that M is orientable and essential. We now give
the necessary definitions.

Let (M, g) be a closed Riemannian n-manifold. Mimicking Definition 6.17, we define

Definition 7.11. The Margulis invariant of (M, g), denoted by Marg(M, g) is defined by

Marg(M, g) := sup{r |Γr(x) is cyclic for every x ∈ M} ,

where Γr(x) is the subgroup of π1(Mn) generated by all loops at x ∈Mn of length ≤ r.

As Γ is supposed to be torsion-free, by Remark 6.18, Marg(M, g) coincides with the Margulis

invariant of the action of Γ on the Riemannian universal cover (M̃, g̃) (see Definition 6.17).

We now denote by dg the distance on M induced by the Riemannian metric g. The map

ι : (M,dg)→ (L∞(M), ‖.‖) (84)

defined by ι(x) := dg(x, .) is an isometric embedding called the Kuratowski embedding. For
ε > 0, we denote ιε : M → Uε(M) the inclusion of M into the ε-neighbourhood of ι(M).

Definition 7.12. The Filling radius of (M, g) is defined as

Fillrad(M, g) := inf{ε > 0 | (ιε)∗([M ]) = 0 in Hn(Uε(M),A)}, (85)

where A = Z or Z2 according to whether M is orientable or not.

The Filling radius has been introduced by M. Gromov in [Gro83] where are related the volume
and the systole of an essential Riemannian manifold. One step toward this is the following
statement, which we will need later.

Theorem 7.13 ([Gro83]). Let (M, g) be a closed Riemannian manifold of dimension n, then

Vol(M, g) ≥ C(n)Fillrad(M, g)n ,

where C(n) depends on the dimension n only.

28We recall that Hyp(δ,H) is the set of non virtually cyclic groups G which admit a finite system of generators
S such that G is δ-hyperbolic (with respect to the associated algebraic distance dS) and satisfies Ent(G,S) ≤ H.
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The following is Theorem 4.5 in [Sab17].

Theorem 7.14 ([Sab17]). Let (M, g) be a n-dimensional essential closed manifold, n ≥ 2, whose
fundamental group is torsion-free and Gromov hyperbolic. Then, Marg(M, g) ≤ 8 Fillrad(M, g).
In particular,

Vol(M, g) ≥ C ′(n)Marg(M, g)n ,

where C ′(n) depends on the dimension n only.

Proof of Theorem 7.10. As Γ is non cyclic and torsion-free, it is non virtually cyclic by Remark
8.14, hence Γ belongs to Hypsub(δ,H) (see Definition 6.3). We can thus apply Theorem 6.19 (ii)

to the action of Γ on the Riemannian universal cover (M̃, g̃) of M , endowed with the Riemannian
distance and with the Riemannian measure, we get

Ent(M, g)Marg(M, g) = Ent(M̃, dg̃, dvg̃)MargΓ(M̃, dg̃) ≥ α′0(δ,H) (86)

(see (69) for the definition of α′0(. , .)). Now, being a subgroup of finite index in a Gromov-
hyperbolic group, Γ is also Gromov-hyperbolic and, from Theorem 7.14 and from the last in-
equality, we deduce

Ent(M, g)n Vol(M, g) ≥ C ′(n)Marg(M, g)n Ent(M, g)n ≥ C ′(n)α′0(δ,H)n .

This finishes the proof of Theorem 7.10.

Example 7.15 (Main example). Let N1 and N2 be two closed manifolds of the same dimension
n and let us assume that each of them carries a Riemannian metric of negative curvature. We
consider the connected sum M = N1#N2.

If n ≥ 3 the fundamental group Γ of M is the free product of the fundamental groups Γ1 of N1

and Γ2 of N2. The groups Γ1 and Γ2 are non elementary torsion-free hyperbolic groups hence
Γ = Γ1 ∗ Γ2 is also a non elementary torsion-free hyperbolic group (see [GdlH90], exercise 34,
p.19).

Now, the connected sum of two essential manifolds is essential (see [Gro83], p.3) hence Theorem
7.10 applies to M , for any finite system S of generators of Γ, we get a positive lower bound of
the minimal entropy of N1#N2 in terms of the hyperbolicity, of an upper bound, of the Entropy
of (Γ, S) and of the dimension n.

7.2 Application to Polyhedrons

In this section we extend Theorem 7.10 to the case of finite simplicial complexes endowed with
a Riemannian (or Finsler) metric. We follow the definition of ∆-complexes in [Hat02], chapter
2. The spaces X that we are considering can be built from collections of disjoint simplices by
identifying various subsimplices, where the identifications are performed using linear homeomor-
phisms; in other words it is a PL-structure on X. We then endow each closed simplex with a
smooth Riemannian (or Finsler) metric in such a way that it coincides on the intersections; it is
sometimes called a piecewise Riemannian (or Finsler) metric and for the sake of simplicity we
shall simply call it a Riemannian (or Finsler) metric. Now X, endowed with such a metric, is
called a Riemannian polyhedron or simply a polyhedron and the metric will be denoted by g
(notice that C∞ smoothness of the metric on the simplices may not be completely necessary in
the results that follow, we could even consider some geodesic measured metric structures, see
[Gro83] p. 264, remark (b)). Furthermore we notice that, when X is compact, it has a dimension
n which is the maximal dimension of a simplex in X. We can define its volume, diameter and
entropy since it has a universal cover. More informations on simplicial complexes can be found in
[BH99] for the topological aspects and in [Bab02] for the Riemannian aspects. Finally, working
with polyhedrons allows to define all the Riemannian invariants that we need, however it is worth
noticing that a polyhedron is a special kind of CW-complex since the k-simplices are k-cells. This
allows us to use the fact that continuous maps between cell-complexes are homotopic to a cellular
map (see below) and to use the more flexible cellular homology as in Lemma 7.17.
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Now, let K = BΓ be the classifying space of the fundamental group Γ of X. The space K is an
aspherical (possibly infinite) simplicial complex.

Definition 7.16. A polyhedron X of dimension n is said to be n-essential if there exists a
continuous map F : X → K which does not contract to the (n− 1)-skeleton of K.

This definition is different from the one used in [Gro83] p.139 and [Gro07] p.260. Indeed, in these
references being essential means that there exists an aspherical simplicial complex with the above
property, which might not be the classifying space of Γ. For our purpose we need properties of
the free loop space of K described in [Sab17], Proposition 3.6 and Remark 3.8, which are satified
by the classifying space BΓ. Any essential manifold Mn is n-essential, however it is not clear to
us whether the converse is true or not.

In the sequel we use the following consequence of n-essentiality. For a CW-complexe X we denote
by X(k) the k-skeleton, that is the closure of the union of the k-cells. All homology groups below
are with coefficients in k = Z or k = Z2.

Lemma 7.17. If X is a n-dimensional n-essential polyhedron, the induced map between the
relative cellular homologies of X and K respectively,

F∗ : Hn(X(n), X(n−1)) −→ Hn(K(n),K(n−1)) ,

is non identically zero.

Proof of Lemma 7.17. As mentioned above we can assume that F is a cellular map between
X and K and hence that each p-cell of X(p) is sent to K(p) for all 0 ≤ p ≤ n. We consider
X(n)/X(n−1), that is the space obtained by identifying X(n−1) to a point. This space is a
bouquet of (topological) n-spheres, each of them corresponding to a n-cell in X(n), similarly we
define K(n)/K(n−1). Now, let us take a topological n-sphere S := Sn in K(n)/K(n−1), we can
send K(n)/K(n−1) onto S by contracting the other spheres in K(n)/K(n−1) to a point (the vertex
of the bouquet). For the details the reader is referred to [Spa66], Chapter 4, Section 4. Then we
consider the composite map sending X(n)/X(n−1) to S which we call FS . If F∗ is zero then each
of these maps has zero degree for each S and hence the map FS can be deformed to a constant
map. This shows that if F∗ is identically zero then F can be continuously deformed to a map
into K(n−1).

We now state our main result which is a version of Theorem 7.10 for polyhedrons.

Theorem 7.18. Let X be a n-dimensional n-essential compact polyhedron, n > 0. Assume that
the fundamental group Γ of X is non cyclic, torsion-free and is a subgroup of finite index in some
group G belonging29 to Hyp(δ,H) then, for every Riemannian metric g on X,

Ent(X, g)nVol(X, g) ≥ C(n, δ,H) > 0.

Notice that contrary to Theorem 7.10, the case n = 1 is included in the above result, and
examples are given below.

The proof is similar to the one of Theorem 7.10: we however have to replace the filling radius by
another invariant introduced by M. Gromov in [Gro83] p.138, namely the (n− 1) contractibility
radius. More precisely, we shall again consider the Kuratowsky embedding

ι : (X, d)→ (L∞(X), ‖.‖) (87)

defined by ι(x) := d(x, .) which is an isometric embedding, and, as before, for ε > 0, we denote
by ιε : X → Uε(X) the inclusion of X into the ε-neighbourhood of ι(X).

Definition 7.19. Let X be compact n-dimensional polyhedron.

29We recall that Hyp(δ,H) is the set of non virtually cyclic groups G which admit a finite system of generators
S such that G is δ-hyperbolic (with respect to the associated algebraic distance dS) and satisfies Ent(G,S) ≤ H.
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• for ε > 0, the map ιε is said to be (n − 1)-contractible if it is homotopic to a map which
factors through a (n− 1)-dimensional polyhedron. That is, ιε is homotopic to a continuous
map f = f ′′ ◦ f ′ with,

X
f ′−→ Y

f ′′−→ L∞(X) ,

where Y is a (n− 1)-dimensional polyhedron.

• The (n− 1) contractibility radius is defined by,

ContRad(X) = inf{ε > 0; ιε is (n− 1)-contractible} .

In [Gro83] p.138 a whole bunch of contractibility radii are defined indexed by a non-negative
integer not greater than n. Here we only consider the possibility of contracting ιε(X) to a
(n− 1)-dimensional polyhedron.

The proof of Theorem 7.18 is the same as the proof of Theorem 7.10: the inequality (86) being
valid for the action of Γ on any metric measured space (see Theorem 6.19 (ii)), we get that
Ent(X, g)Marg(X, g) ≥ α′0(δ,H). In order to prove the inequality Vol(X, g) ≥ C ′(n)Marg(X, g)n

which concludes, we need the analogous of Theorems 7.13 and 7.14, where we replace the Filling
radius by the Contractibility radius. The analogous of Theorem 7.13 is the following

Theorem 7.20 ([Gro83], p.138). Let (X, g) be an arbitrary n-dimensional compact polyhedron
endowed with a Riemannian (or Finsler) metric, then

Vol(X, g) ≥ C(n)ContRad(X, g)n ,

where C(n) depends on the dimension n only.

In order to obtain the analogous of Theorem 7.14, we had to adapt the proof of [Sab17] to this
new context. While writing this text we got the article [BS20] which gives a proof of the following
theorem along the exact same lines and for the sake of completeness we shall only give the basic
construction in the proof that follows.

Theorem 7.21 (see [BS20]). Let (X, g) be a n-dimensional compact n-essential polyhedron en-
dowed with a Riemannian metric, n ≥ 1, whose fundamental group is torsion-free and Gromov
hyperbolic. Then,

If n ≥ 2, Marg(X, g) ≤ 8 ContRad(X, g). In particular,

Vol(X, g) ≥ C ′(n)Marg(X, g)n ,

where C ′(n) depends on the dimension n only.

Furthermore, if n = 1 then we have,

Vol(X, g) ≥ Marg(X, g) .

The Margulis invariant being defined as before.

Proof of Theorem 7.21. The proof follows exactly the scheme used by S. Sabourau in the proof
of Theorem 4.5 of [Sab17] and of Theorem 4.15 in the recently posted [BS20]. We will not give
all details and the reader is referred to these articles.

We proceed by contradiction and assume that ContRad(X, g) < 1
8µ(g). Let us choose ρ such that

ContRad(X, g) < ρ < 1
8µ(g). Since ρ > ContRad(X, g) the map ιρ is homotopic to a continuous

map f : X → Uρ(X) ⊂ L∞(X) which factors through a (n − 1)-dimensional polyhedron Y ,
namely f = f ′′ ◦ f ′, with f ′ : X −→ Y and f ′′ : Y −→ Uρ(X) ⊂ L∞(X). Since X and Y are
simplicial complexes f ′ can be approximated, and hence replaced, by a simplicial map still called
f ′. By replacing Y by the sub-complex f ′(X) we also may assume that f ′ is surjective.

Since X is n-essential there exists a continuous map F : X −→ K which does not contract to the
(n− 1)-skeleton of K. We may identify X with ιρ(X) = ι(X) ⊂ L∞(X) since ιρ is an isometry
hence an homeomorphism.
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The homotopy between ιρ and f is a continuous map h0,

h0 : X × [0, 1] −→ Uρ(X) ⊂ L∞(X) ,

with h0|X×{0} = ιρ and h0|X×{1} = f . Notice that X × [0, 1] can be given the structure of a
(n+ 1)-dimensional polyhedron (after subdivisions).

We now define the mapping cylinder P of the map f ′ as the quotient of the disjoint union
(X × [0, 1]) t Y obtained by identifying (x, 1) ∈ X × [0, 1] with f ′(x) ∈ Y . The homotopy h0

factors through this identification and yields a continuous map, which we denote by h,

h : P −→ Uρ(X) ⊂ L∞(X) ,

which coincides with ιρ on X × {0} and with f ′′ on (X × {1}) f ′∼ Y . The mapping cylinder of
a simplicial map can be endowed with a simplical structure extending that of (X × {0}) (see
[Sak13], Chapter 4, p.218).

The idea is now to try to extend F : X × {0} ' X −→ K to a continuous map F̄ : P −→ K.
If so, F̄|(X×{t}) is a continuous deformation between F|(X×{0}) and F̄|Y and, furthermore, P
retracts onto its subcomplex Y (see [Spa66], Chapter 1, Section 5, p. 32). Then, since Y and K
are CW-complexes, F̄|Y is homotopic to a map sending Y into the (n−1)-skeleton on K and this
would be in contradiction with the essentiality of X. Unfortunately, as in [Sab17] and [BS20],
this scheme of proof is not possible in this context but instead we can extend F to a map with
value in another space Z. Some details are described below.

Since ιρ is an isometric embedding the map F can then be written as F = G ◦ ιρ with G :
ιρ(X) −→ K. Up to taking subdivisions in P , we may assume that the images by h of its have
a diameter less than ε. We choose this number so that 0 < ε < 1

4Marg(X, g)− 2ρ.

We recall that we denote by P (k) the k-skeleton of P . We now define F̄ on P (0) ∪ (X × {0}) so
that it coincides with ιρ on X × {0}. Take p ∈ P (0) \ (X × {0}) and send it to any choice ιρ(x),
x ∈ X, of a point in ιρ(X) nearest to h(p); we then set F̄ (p) = G◦ ιρ(x). For adjacent vertices pi
and pj of P (0), that are related by an edge, we consider the corresponding chosen points xi and
xj in X and a shortest path between them (any choice). We now send the edge of P (1) between
pi and pj , to this chosen curve; again, composing with G we get the extension F̄ on P (1). We
then have,

dX(xi, xj) = dL∞(ιρ(xi), ιρ(xj)) ≤ dL∞(ιρ(xi), h(pi)) + dL∞(h(pi), h(pj)) + dL∞(h(pj), ιρ(xj))
≤ 2ρ+ ε := r < 1

4Marg(X, g) .

For the details the reader is referred to [Sab17], proof of Theorem 4.5 and [BS20], proof of
Theorem 4.15.

This extension sends the boundary of every 2-cell ∆ of P to the image by ιρ of a curve in X whose
length is at most 3r. If this number were smaller than the systole of X, all these curves would be
contractible and, as K is aspherical, the obstruction theory would give the desired extension Ḡ.
Unfortunately, 3r may be too large and some of the boundary closed curves of some 2-simplices
might be longer than the systole. Let ∆ be a 2-cell of P , if F̄ (∂∆) is not contractible, the
properties of the loop space of K given in [Sab17], Proposition 3.6 and Remark 3.8 produce a
homotopy from F̄ (∂∆) to a closed curve depending only on the non trivial homotopy class of
F̄ (∂∆). This homotopy class is included in a unique maximal infinite cyclic subgroup generated
by a primitive loop γ∆. Following [Sab17] we then define,

Z = K ∪
( ⋃

∆∈C
D∆

)
where we glue a 2-cell D∆ along γ∆ for each 2-cell ∆ of P such that F̄ (∂∆) is not contractible in
K, the family of these 2-cells being denoted by C. The space Z is not aspherical, hence it may be
difficult to extend the above map to 3-simplices. However S. Sabourau overcame this difficulty
in [Sab17], by induction, and extend F to a map from P to Z, which we call F̄ (see also [BS20],
proof of Theorem 4.15). Notice that F̄ sends P (1) ∪ (X × {0}) into K.
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To summarise, the map

X × {0} ιρ−→ ιρ(X)
G−→ K ↪→ Z ,

extends to
F̄ : P −→ Z ,

such that F̄ (P (1) ∪X × {0}) = F (X) ⊂ K ⊂ Z.

As mentioned before the maps F̄|(X×{t}) realize a homotopy between F|X and F̄|Y , where Y is
by construction a sub-complex of P . The map F̄|Y is homotopic to a cellular map sending Y
into the (n − 1)-skeleton of Z (see [Spa66], Chapter 7, Section 6, Corollary 18 p. 404). Hence,
F̄ (X × {0}) retracts in Z to its (n− 1)-skeleton. On the other hand F (X) = F̄ (X × {0}) does
not retract to the (n− 1)-skeleton of K by the definition of n-essentiality.

For n ≥ 3 this is in contradiction with Lemma 7.17. Indeed, the injection K ↪→ Z induces an iso-
morphism between Hn(K(n),K(n−1)) and Hn(Z(n), Z(n−1)), if n ≥ 3, since we just added a bunch
of 2-cells. Then F̄ (X×{0}) cannot be identically zero in Hn(K(n),K(n−1)) ' Hn(Z(n), Z(n−1)),
however it is homotopic to F̄ (X × {1}) whose image is in the (n− 1)-skeleton of Z and hence is
identically zero in Hn(Z(n), Z(n−1)). A contradiction.

The same proof works for n = 2, that is, the map F∗ cannot be identically zero. In this case
though the injection K ↪→ Z does not induce an isomorphism since we added 2-cells in order to
get Z. However, let us choose B ∈ K ⊂ Z a 2-cell such that the map X(2) −→ K(2) ↪→ Z(2) −→
B/∂B = S2 is not homotopic to a constant, we get a non trivial map H2(X,k) −→ H2(S2,k)
yielding a contradiction as above.

Finally for n = 1, X is a graph with possibly edges which start and end at the same vertex.
Its universal cover is a simply connected graph hence a tree (see [Spa66], Chapter 3, Section
7, p.139). Its fundamental group is then a free group generated by primitive cycles and the
condition that it is non elementary rules out graphs with only one primitive cycle. The systole
of X is the length of the shortest primitive cycle whereas the Margulis invariant is the length of
the second shortest primitive loop. On the other hand the volume of X is the sum of the length
of all the edges, hence the inequality Vol(X) ≥ Marg(X, g) is obvious.

Remark 7.22. It is worth noticing that Theorems 7.18 and 7.10 could have a different form if
we assumed that the fundamental group Γ of M or X is a torsion-free and non cyclic subgroup
of finite index in some group G belonging30 to Hyp?action(δ,H,D). Indeed, it suffices, in the
above proof, to replace Theorem 6.19 (ii) by Theorem 6.19 (i). Theorems 6.19 (i) and 7.21
then prove that Ent(M, g)n Vol(M, g) (resp. Ent(X, g)n Vol(X, g)) is bounded from below by
C ′(n)α0(δ,H,D)n, where α0(δ,H,D) is the universal constant defined in (68).

7.2.1 Some examples

Graphs

Let X be a finite connected polyhedron of dimension 1, in other word, X is a finite connected
graph. We endow X with a polyhedron metric g, that is, every 1-simplex is isometric to an
interval of R whose length is the only parameter. The corresponding volume is defined by

Vol(X, g) :=
∑
σ

l(σ),

where the σ’s are the 1-simplices ofX and l(σ) is the length of σ. We assume that the fundamental
group Γ of X is non elementary, thus Γ is a non abelian free group on r generators with r ≥ 2.
Notice that if S = (s1, ..., sr) is a canonical set of generators of Γ, then (Γ, S) is 0-hyperbolic
and Ent(Γ, S) = ln(2r − 1). Moreover, X is 1-essential and by Theorem 7.18 above we have for
every metric g on X,

Ent(X, g) Vol(X, g) ≥ C(r). (88)

30We recall that Hyp?action(δ,H,D) is the set of groups G which admit a proper action by isometries on some
connected, non elementary, δ-hyperbolic metric space whose entropy and co-diameter are bounded from above by
H and D respectively.
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It is known that, for a graph X, the rank r of the fundamental group of X is given by

r = 1 +
1

2

( ∑
x∈V (X)

(kx − 1)
)
,

where V (X) is the set of vertices of X and kx + 1 denotes the valency of X at x. In the case
when kx ≥ 2 for every x ∈ X, the exact value of the minimal entropy, as well as the minimizing
metric, has been computed by S. Lim, [Lim08], see also [KN07], who showed that

Ent(X, g) Vol(X, g) ≥ 1

2

∑
x∈V (X)

(kx + 1) ln(kx). (89)

Moreover, the equality in (89) is achieved if and only if the metric g is given, up to scaling, by

l(e) :=
ln
(
ki(e)kt(e)

)∑
x∈V (X)(kx + 1) ln(kx)

, (90)

for every edge e of X, where i(e) and t(e) are the initial and terminal point of e.

Notice that the exact value of the minimal entropy of X depends on the simplicial structure
of X and not only on its homotopy type. Indeed, for example, if X1 is a bouquet of 2 circles,
its minimal entropy equals 2 ln 3, but if X2 is a union of 2 circles attached at the 2 ends of a
segment, then its minimal entropy is 3 ln 2 < 2 ln 3.

It raises the question of the dependance of the minimal entropy on the polyhedral decomposition.
Notice that the minimal entropy decreases while taking subdivision, it might be thus possible
that no best decomposition exists.

Note also that when X is a finite graph, the minimal entropy of X tends to infinity when the
rank of the fundamental group of X tends to infinity, while our lower bound C(r) of the minimal
entropy given in (88) is tending to 0.

Surfaces attached along a geodesic

Let S1 and S2 be two hyperbolic surfaces of genus two. Assume that each of them have a simple
closed geodesic γ1 ∈ S1 and γ2 ∈ S2 with the same length. We denote by X the polyhedron
obtained from S1 and S2 identifying γ1 and γ2 by an isometry. The universal cover of X can
be described inductively as follows. The universal cover S̃i of Si, i = 1, 2 are two copies of the
Poincaré disk. In each S̃i, denote γ̃i any lift of γi. Consider first S̃1 with the collection of all the
lifts of γ1 and attach to each of these a copy of S̃2 identifying γ̃1 isometrically with some lift γ̃2 of
γ2. Then, on every such attached copy of S̃2 consider each unidentified lift γ̃2 and attach to it a
copy of S̃1 identifying γ̃2 with some γ̃1. We keep doing these gluing and get the universal cover of
X, which looks like an hyperbolic building. In particular, it is CAT(−1). The fundamental group
Γ of X is isomorphic to the amalgamated product Γ1 ∗

Z
Γ2 where Γi are the fundamental groups

of Si, i = 1, 2, hence Γ is Gromov-hyperbolic. Note also that X is 2-essential. By Theorem 7.18,
we then have, for every metric on X,

Ent(X, g)2 Vol(X, g) ≥ C(δ,H),

where δ ≥ 0 is the hyperbolicity constant of Γ and H satisfies Ent(Γ,Σ) ≤ H for some generating
set Σ.

Remark 7.23. When the metric on X comes from two hyperbolic metrics on Si such that the
common length of the geodesics γi is a number ε going to 0, then, denoting by gε the resulting
metric on X, we see that Ent(X, gε) tends to 1 (cf. the remark on p. 4 in [Bou16]) and

lim
ε→0

Ent(X, gε)
2 Vol(X, gε) = Vol(S1) + Vol(S2) ,

where Vol(Si) denotes the hyperbolic volume of Si.

We then could conjecture that

inf
g
{Ent(X, g)2 Vol(X, g)} = 2π(|χ(S1)|+ |χ(S2)|).
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Notice that this construction can be generalized considering two closed hyperbolic n-manifolds
M1, M2, each containing a closed totally geodesic codimension one hypersurface N1 and N2 such
that N1 is isometric to N2. The complex X obtained by gluing the Mi’s along Ni satisfies the
same conclusion as above, that is

Ent(X, g)n Vol(X, g) ≥ C(δ,H).

Surfaces with an attached circle

Let S be a closed hyperbolic surface and C be a circle. Given points y ∈ S and z ∈ C, let X be
the complex defined as the disjoint union of S and C with y and z being identified. We denote
by X = S ∨ C and S̃, C̃, the universal cover of S, C respectively. The universal cover of X is
a ”tree of hyperbolic plane” and can be described inductively as follows. To each lift ỹ ∈ S̃ of
y, we attach a copy of C̃ identifying ỹ with some z̃ ∈ C̃ any lift of z. Next, to each unidentified
z̃ on some previously attached C̃, we attach a copy of S̃ at some free ỹ and we repeat these
constructions, attaching to each new ỹ a copy of C̃ at some z̃, etc.... The fundamental group
G := π1(X) of X is the free product G = Γ ∗ Z where Γ is the fundamental group of S. If
(s1, · · · , sk) is a generating set of Γ and t a generator of Z and if Γ is δ-hyperbolic with respect
to (si)i=1...,k, then G is δ-hyperbolic with respect to the generating set (si, t).

We consider a metric g on X, defined by a metric h on S and a metric h′ on C, the latter being
characterised only by the length of the circle C. The volume Vol(X, g) = Vol(S, h) does not
depend on (C, h′) but only on the sub-complex S of X of maximal dimension.

One sees that X is 2-essential, thus, by Theorem 7.18 , we have

Ent(X, g)2 Vol(X, g) ≥ C(δ,H)

where H = Ent(G,Σ) with respect to the generating set Σ = {s1 . . . , sk, t}.
One weakness of the above lower bound comes from the fact that the lower dimensional simplex,
namely C, can be responsible for a large entropy of X while it does not affect the volume of X.
Indeed, one has, in particular,

lim
l(C)→0

Ent(X, g)2 Vol(X, g) = +∞

where l(C) is the length of C.

On the other hand, we have

lim
l(C)→+∞

Ent(X, g)2 Vol(X, g) = Ent(S, h)2 Vol(S, h) .

Notice that since Vol(X, g) = Vol(S, h) and Ent(X, g) ≥ Ent(S, h), one has

Ent(X, g)2 Vol(X, g) ≥ Ent(S, h)2 Vol(S, h) ,

so that

inf
g
{Ent(X, g)2 Vol(X, g)} = inf

h
{Ent(S, h)2 Vol(S, h)} = Ent(S, hyp)2 Vol(S,hyp)

where hyp denotes any hyperbolic metric on S.

We remark that for any simplicial complex M of dimension m and any simplicial complex N of
dimension n < m, then, X = M ∨N satisfies

inf
g
{Ent(X, g)m Vol(X, g)} = inf

h
{Ent(M,h)m Vol(M,h)} .

A 3-dimensional polyhedron
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We now describe an example of a finite 3-essential polyhedron of dimension 3 with torsion-free
non elementary Gromov-hyperbolic fundamental group. It will be clear from the construction
that this polyhedron is not a manifold,

This example comes from a general construction of Gromov hyperbolic Coxeter groups which
associates to each hyperbolic CAT(0)-cube complex another hyperbolic CAT(0)-cube complex
with higher homological dimension (see, [Osa13]).

The fundamental result underlying this construction is the following Theorem 7.25 of D. Osajda.
In order to state it, we need the following classical fact.

Proposition 7.24 ([Dav15], Section 1.2, Proposition 1.2.3 and Appendix I, Proposition I.6.8).
Let X be a finite flag simplicial complex of dimension d, then there exists a CAT(0)-cube complex

Ỹ of dimension d + 1 whose vertices have link X and a right-angled Coxeter group G acting
geometrically on Ỹ . When X is moreover assumed to be 5-large, then Ỹ is Gromov hyperbolic.

Recall that for a simplicial complex, being flag means that any finite set of vertices which are
pairwise connected by edges (i.e. generating a complete graph) spans a simplex. A flag simplicial
complex X is 5-large if every k-cycle in X has length k larger than or equal to 5, where a k-cycle
is a closed combinatorial loop made of k vertices and k edges which is full as a subcomplex of
X, [Osa13], 2.1 p. 355. Here, a subcomplex Y of a simplicial complex X is said to be full if
every subset of vertices of Y contained in a simplex of X is contained in a simplex of Y . A cube
complex is said to be locally 5-large if the link of each of its vertices is 5-large (see, [Osa13], 2.1
p. 355).

Theorem 7.25 ([Osa13], Main Theorem, p. 354). Let X be a finite 5-large simplicial complex

such that Hn(X,Q) 6= 0. Consider G and Ỹ the right-angled Coxeter group and the CAT(0)-cube
complex given in Proposition 7.24. Then, G is hyperbolic and there exists a finite index, torsion-
free subgroup, Γ ⊂ G, such that the quotient Y := Ỹ /Γ is a compact cube complex satisfying
Hn+1(Y,Q) 6= 0.

We now briefly describe the different steps of the construction of our example before giving the
details. We start from a compact surface S with a square complexe structure. We then “thicken”
S into a 3-dimensional simplicial complex X. The compact surface has to be chosen in such a
way that this “thickening” is 5-large. Theorem 7.25 then produces a CAT(0)-cube complex Ỹ

of dimension 4 and a torsion-free hyperbolic group Γ acting properly discontinuously on Ỹ with
compact quotient Y = Ỹ /Γ such that H3(Y,Q) 6= 0. To end up, Y can be retracted onto a
simplicial complex M of dimension 3. This M will be our example, in particular it turns out to
be 3-essential.

In order to define the surface S, we consider Γ0 ⊂ PSL(2,R) the subgroup generated by the
reflexions on the sides of a right-angled pentagon of the hyperbolic plane H2. By Poincaré’s
Theorem, Γ0 is a discrete group with fundamental domain a right-angled pentagon P of H2

whose Γ0-translates generate a tiling of H2. Its dual tiling is by hyperbolic squares of angle 2π/5
and is also Γ0-invariant. Notice that this tiling of H2 by squares defines a 5-large square complex
since the link of each vertex is a pentagon. We then pick a torsion-free subgroup Γ1 of Γ0 in
such a way that H2/Γ1 is a closed surface with a CAT(−1)-square complex structure such that
every homotopically non trivial edge-loop has length at least 5. We denote by S := H2/Γ1 this
squared surface. The underlying square complex structure on S = H2/Γ1 is therefore locally
5-large since, by the latter condition, the closure of the union of the 5 squares adjacent to a
vertex in H2 embeds in S so that the link of every vertex of S is also a pentagon.

We now “thicken” the surface S as defined by D. Osajda in [Osa13], definition 3.1, p. 357. The
thickening X of the square complex S consists in associating to each square of S a standard
3-simplex keeping track of the vertices and edges of the square. Formally, two more edges appear
on the 3-simplex which correspond to the diagonals of the square. When two adjacent squares
meet along an edge we glue the two corresponding 3-simplices along the corresponding edge. The
new simplicial complex X thus obtained is clearly of dimension 3 and is homotopy equivalent to
S (cf. [Osa13], Lemma 3.5), therefore H2(X,Q) 6= 0. Moreover X is a 5-large simplicial complex
by Proposition 3.4 of [Osa13].
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To conclude, we have obtained a 5-large simplicial complexX of dimension 3 such thatH2(X,Q) 6=
0. We now apply Theorem 7.25 to it in order to get a 4-dimensional CAT(0)-cube complex Ỹ
with a proper and discontinuous action of a right-angled Coxeter group G and a torsion-free hy-
perbolic subgroup Γ ⊂ G acting properly discontinuously on Ỹ with compact quotient Y = Ỹ /Γ
such that H3(Y,Q) 6= 0.

The 4-dimensional cube complex Y retracts on a 3-dimensional complex M . Indeed, recall that
the thickening X of the square complex S has been constructed replacing each square by the
3-simplex spanned on the vertices of the square. Therefore, the 3-simplices of X meet only along
edges as the corresponding squares do. The neighbourhood of every vertex of the 4-cube Y is a
cone over X and therefore two adjacent 4-cubes meet along 2-cubes, namely cubical cones over
edges. The cube complex Ỹ is thus a 4-dimensional cube complex such that cubes of dimension
4 are attached along 2-dimensional faces. As a consequence, the 3-faces of Ỹ are left free and
therefore, after taking a barycentric subdivision of Ỹ , we can perform a G-equivariant retraction
of Ỹ onto a subset M̃ of its 3-skeleton. Let us briefly describe this retraction. Before doing this,
we define M̃ .

We consider a 4-cube of Ỹ and its standard decomposition in cubes of smaller dimension and we
describe below a polyhedral subdivision into 4-simplices. The barycentric subdivision is obtained
inductively by adding to each k-face, (k = 1, 2, 3, 4), its barycenter and then coning from this
new vertex onto the barycentric subdivision of the (k− 1)-faces. Notice that each 4-simplex σ of
this subdivision has a unique 3-face f(σ) whose intersection with the boundary of the cube is a
2-face contained into a 2-face of the standard decomposition of the cube. The union of all these
2-faces cover the standard 2-skeleton of the cube. Notice that the barycentre of C is a vertex of
f(σ), for every σ. Now for a cube C, the union of these 3-faces f(σ), for σ running through the
set of all 4-simplices of the barycentric subdivision of C, is denoted by F (C). The intersection

of F (C) with the boundary of C is the union of the 2-faces of C. Since the cubes C of Ỹ meet
along their 2-faces, their 3-subcomplexes F (C) naturally attach themselves and give rise to a

simplicial subcomplex M̃ of Ỹ of dimension 3.

We first perform the retraction inside each 4-cube of a fundamental domain of the action of G
and then extend it. For such a cube C and a 4-simplex σ of the barycentric subdivision of C, we
consider the map that sends all vertices of σ(0) which are not in (f(σ))(0) to the barycentre of C
which is a vertex of f(σ); we then extend it linearly as a retraction of σ onto f(σ). We therefore
get a simplicial retraction of C onto F (C) which is the identity on the 2-skeleton of C. Since the
gluing of the cubes only take place on their 2-skeleton we can extend it to the union of the cubes
of a fundamental domain for G. We finally extend the retraction of the fundamental domain of
G to an equivariant retraction of Ỹ onto M̃ , this is made possible by the fact that the action of
G is by cubical isometries (see [Dav15] p.11), hence preserving all faces of the cubes and of their
barycentric subdivisions. A nice picture, one dimension less, is given in [BM10] on page 2290.
The retraction described above, in the context of this article, consists in sending all yellow dots
to the centre of the cube and extending it linearly.

Notice that, unlike Ỹ , the complex M̃ may not be CAT(0), however M := M̃/Γ is a retract of

Y = Ỹ /Γ. Note also that the 3-dimensional simplicial complex M is distinct from X.

We now show that M is 3-essential. Since M is a retract of Y = Ỹ /Γ and H3(Y,Q) 6= 0, we

have H3(M,Q) 6= 0. On the other hand, Ỹ is a CAT(0)-space, hence Ỹ /Γ is a classifying space
K(Γ, 1) of Γ and so is M since it is a retract of Y . We deduce from this discussion that the
3-dimensional complex M is essential since it is a classifying space of Γ and H3(M,Q) 6= 0, hence
M is 3-essential.

We therefore obtained a 3-essential compact 3-dimensional simplicial complex M with hyperbolic
fundamental group Γ. Notice that Γ cannot be elementary since H3(M,Q) 6= 0. We thus can
apply Theorem 7.18 and for every metric g on M we have

Ent(M, g)3 Vol(M, g) ≥ C(δ,H),

where H = Ent(G,S) with S some generating set of G such that (G,S) is δ-hyperbolic.

Remarks 7.26. i) Starting from the 4-dimensional cube complex Y we could apply the same
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construction and get a 5-dimensional complex for which Theorem 7.18 would give a lower
bound for its minimal entropy. Inductively, starting from one surface S as above we could
produce examples in any odd dimension. We could also change the surface and get another
series of spaces. This construction is thus a powerful tool to produce lots of examples.

ii) It would be interesting to compute the constant of hyperbolicity δ and the entropy H of
(G,S). Notice that Γ being a subgroup of the Coxeter group G, it is a subgroup of GL(N,R)
for some N , and therefore the algebraic entropy of non virtually abelian subgroup can also
be estimated in term of N by [BG08].

iii) The simplicial complex M is a finite union of 3-simplices, which raises the following ques-
tion: is the minimal entropy achieved by the metric which is the hyperbolic metric of max-
imal volume on each 3-simplex ?

CAT(0)-square complexes

A square complex is a 2-dimensional cube complex. In [KS19] A. Kar and M. Sageev have proved
the following

Theorem 7.27. Let G be a finitely generated group acting freely on a CAT(0)-square complex.
Then either G is virtually abelian or Ent(G) ≥ 21/10.

If we furthermore assume that G is Gromov-hyperbolic, we deduce from this result and Theorem
7.21 the following bound on the minimal entropy of compact CAT(0)-square complexes.

Theorem 7.28. Let X be a compact CAT(0)-square complex with non virtually abelian, torsion-
free and hyperbolic fundamental group such that H2(X,Z) 6= 0. Then, for every Riemannian
metric g on X, we have

Ent(X, g)2 Vol(X, g) ≥ C > 0,

where C is a universal constant.

Proof. The universal cover of X is a CAT(0) metric space, thus it is contractible and since
H2(X,Z) 6= 0, X is 2-essential. Moreover, the space X ′ obtained from X by adding a vertex
in the middle of each square and joining it to each vertex of this square is a polyhedron which
is 2-essential. Each metric g on X yields a metric on X ′, still denoted by g, and such that
Vol(X ′, g) = Vol(X, g) and Marg(X ′, g) = Marg(X, g).

Now, applying Theorem 7.21 to (X ′, g), we get Vol(X, g) ≥ C ′Marg(X, g)2, where C ′ = C ′(2). By
the definition of the Margulis invariant Marg(X, g) and by Remark 6.18, for every r > Marg(X, g),
there exists x ∈ X such that Σr(x) generates a non virtually nilpotent subgroup, thus a non
virtually abelian subgroup Γr(x) of the fundamental group Γ of X. Theorem 7.27 then shows
that Ent

(
Γr(x),Σr(x)

)
≥ 21/10 hence, by Lemma 3.6, that

rEnt(X, g) ≥
(

Maxσ∈Σr(x) d(x, σx)
)

Ent(X, g) ≥ Ent
(
Γr(x),Σr(x)

)
≥ 21/10.

When r goes to Marg(X, g), this proves that Marg(X, g) Ent(X, g) ≥ 21/10 and we deduce that
Ent(X, g)2 Vol(X, g) ≥ C ′Marg(X, g)2 Ent(X, g)2 ≥ 22/10C ′.

It is important to notice that the bound given in this result neither depends on H nor on δ as
in the previous examples. The bound also neither depends on the square complex X nor on the
group G.

There are a lot of compact CAT(0)-square complexes Y with hyperbolic fundamental group and
H2(Y,Z) 6= 0 and we describe some below.

For example, consider any finite graph X with girth larger than or equal to 5 and without end
point. From the assumption on the girth, the graph X is 5-large and, since X has no end
point, H1(X,Q) 6= 0. Therefore, by Theorem 7.25 (relying on Proposition 7.24), there exists a

Gromov hyperbolic CAT(0)-square complex Ỹ and a torsion-free group Γ acting geometrically on
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Ỹ such that Y := Ỹ /Γ is a compact locally CAT(0)-square complex with torsion-free hyperbolic
fundamental group Γ and H2(Y,Q) 6= 0. Graphs such as above can be chosen, for example,
among Ramanujan graphs X = Xp,q, for p, q distinct prime numbers congruent to 1 mod 4, (see,
[LPS88]). By [LPS88], p.262-263, these graphs are p+ 1 regular Cayley graphs of PSL(2,Z/qZ)

or PGL(2,Z/qZ). By [LPS88] p. 263, when the Legendre symbol
(
q
p

)
= −1, these graphs

Xp,q are regular graphs of degre p + 1 with v = q(q2 − 1) vertices and whose girth satisfies

girth(Xp,q) ≥ 4 logp(
q(q2−1)

3 ) ≥ 5 for q large enough. Therefore, for every fixed p ≥ 2 and q large
enough, the graph Xp,q provide an infinite family of examples of compact square complexes as
above. Notice that the same conditions also hold with different constants in the case when the
Legendre symbol

(
q
p

)
= 1.

Hyperbolic buildings also provide another class of examples of compact CAT(0)-square complexes
X with hyperbolic fundamental group and H2(X,Q) 6= 0. In [Bou97] M. Bourdon has considered
a family of 2-dimensional hyperbolic buildings Ipq defined for integers p, q as follows. Let R be
a regular hyperbolic p-gon with angle π/2. We associate now to the p-gon the complex of
groups where for each edge e of R the corresponding group is Ge = Z/qZ and for each vertex
s of R, the group is Gs = Z/qZ × Z/qZ, and where, for each pair of edges e and e′ adjacent
to a vertex s, there is a natural injective morphisms from Ge and G′e on each of the factors
of Gs. The fundamental group Γpq of this complex of groups has the following presentation,
Γpq =< s1, .., sp, | sqi = [si, si+1] = 1 >. It acts on a hyperbolic building X whose chambers are
the hyperbolic right-angled p-gons, the apartments the hyperbolic plane H2 and the link at each
vertex is the complete bipartite q-graph. Each p-gon in Ipq can be subdivised by squares in the
following way: join the center of each p-gon to the middle of each of its sides. This subdivision
gives rise to a Γpq-invariant CAT(−1)-square complex structure on X = Ipq where each square
has three right angles and one angle equal to 2π/p.

Let us consider a finite index torsion-free subgroup Γ ⊂ Γpq. Such subgroups do exist since
the Γpq are R-linear (see [Hag06], Corollary 1.2). As an example, the kernel of the surjective
morphism from Γpq into (Z/qZ)p is a subgroup of Γpq of index qp.

The hyperbolic building X is a CAT(−1) space hence M := X/Γ is a classifying space of Γ. In
the sequel, we assume q even and claim that M is essential and in particular that it is 2-essential.
Indeed, let us show that H2(M,Z) 6= 0. Let W := Γp2 be the Coxeter group of the right-angled
pentagon P ⊂ H2. Notice that W ⊂ Γpq since q is even and that W stabilizes the totally geodesic
chamber Ip2 = H2 ⊂ Ipq. Since Γ has finite index in Γpq, we deduce that W ∩ Γ has finite index
in W , hence Ip2/(W ∩ Γ) is a compact surface Σ which is immersed in X/Γ. Since the building
has dimension 2, the surface Σ defines a non trivial element in H2(M,Z).

To sum up, M is a compact locally CAT(0)-square complex with torsion-free hyperbolic funda-
mental group and therefore we can apply Theorem 7.27 which yields that, for every metric g on
M , we have

Ent(M, g)2 Vol(M, g) ≥ C .

As in the previous examples of the 3-dimensional polyhedron, we could conjecture that the
hyperbolic metric achieves the minimal entropy of these hyperbolic buildings. Notice that, by
an argument of A. Katok (cf. [Kat88]), the hyperbolic metric realises the minimal entropy in its
conformal class.

7.3 Finiteness and Compactness Results

7.3.1 General Definitions and Results

Let us recall that, on a fixed closed manifold M of dimension n ≥ 3, Einstein Riemannian metrics
are the critical points of the functional,

S : g 7−→ 1

Vol(M, g)
n−2
n

∫
M

scal(g)dvg ,
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where scal(g) is the scalar curvature of the Riemannian metric g. Notice that S is scale-invariant.
In dimension 2 and 3 Einstein metrics have constant sectional curvature, hence the question of
describing them makes sense in dimension greater than 3.

We now call Einstein structure an equivalence class of Einstein metrics for the following relation:
(Mg) and (N,h) are equivalent if there exists a diffeomorphism φ : M 7−→ N which is an
homothety, that is φ∗(h) = λg for some positive real number λ.

We are interested in the critical points of S as well as its critical values. As an example let
us mention that there exist examples for which the set of critical values is infinite and has an
accumulation point at zero (see [Be], p.471-472, Add. 3).

We recall that, when a group Γ acts properly on a metric space (X, d), the associated entropy of
(X, d) is computed with respect to any measure µ invariant by this action of Γ: indeed, when Γ\X
is compact, the entropy of (X, d) does not depend on the choice of this measure (see subsection
3.1).

Let us recall that, to any pair δ0, ε
′
0 > 0, corresponds the class Hypthick(δ0, ε

′
0) of non virtu-

ally cyclic groups which admit a proper action by isometries on some δ0-hyperbolic metric space
(X, d0) such that every torsion-free γ ∈ Γ∗ verifies `(γ) ≥ ε′0 (see Definition 6.4) and that Hypthick

is the union of all the classes Hypthick(δ0, ε
′
0) for all pairs δ0, ε

′
0 > 0 (see Definition 6.5).

To the class of groups Hypthick(δ0, ε
′
0), one associates the positive universal constant r0 =

r0(δ0, ε
′
0) defined in (70).

7.3.2 Finiteness and compactness results when the Ricci curvature is bounded from
below

We now prove the main finiteness and compactness results.

Definition 7.29. Given n ∈ N (n ≥ 2), D,K, i0 > 0 and δ0, ε
′
0 > 0, let Rδ0,ε

′
0

univers(n,K,D, i0)
(resp. R∞univers(n,K,D, i0)) be the set of Riemannian n-dimensional manifolds (M, g) which
verify the hypotheses:

(i) the fundamental group ΓM of M is torsion-free and belongs to Hypthick(δ0, ε
′
0) (resp. to

Hypthick),

(ii) Ricg ≥ −(n− 1)K2 · g and diam(M, g) ≤ D,

(iii) the injectivity radius of its Riemannian universal cover (M̃, g̃) is bounded from below by i0,

Notice that, in this definition, the property (iii) is verified in particular when the geodesics of
(M, g) have no conjugate points.

In the sequel, for any integer n ≥ 2 and every δ0, ε
′
0,K,D > 0, we define

S0 = S0(δ0, ε
′
0, n,K,D) :=

ε′0
13δ0 + ε′0

· 1

2(n− 1)K
e−4(n−1)KD . (91)

Theorem 7.30. For every integer n ≥ 2, every D,K, i0 > 0 and every δ0, ε
′
0 > 0, there are only

finitely many differentiable structures in Rδ0,ε
′
0

univers(n,K,D, i0).

We now call Riemannian structure an equivalence class of smooth (i.e. C∞) Riemannian metrics
for the following relation: (Mg) and (N,h) are equivalent if there exists a diffeomorphism φ :
M 7−→ N which is an isometry, that is φ∗(h) = g. The space of Riemannian structures on a given
manifold M can thus be viewed as the quotient of the spaceM(M) of Riemannian metrics on M
by the action of the group Diff(M) of diffeomorphisms of M (every ϕ ∈ Diff(M) acts as g 7→ ϕ∗g).
A convergence of a sequence of Riemannian structures is thus a convergence of a sequence of
corresponding Riemannian metrics (gi)i∈N modulo re-parametrization by some sequence (ϕi)i∈N
of diffeomorphisms. However, in each case, we have to precise the chosen topology of M(M),
and the prescribed regularity of the diffeomorphisms involved and of the limit-metric.
More precisely we define:
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Definition 7.31 ((see [AC92], precised in [HH97])). Given n ∈ N (n ≥ 2) and s ∈ (0, 1), for
any sequence (Mi, gi)i∈N of smooth compact n-dimensional Riemannian manifolds, the sequence
of underlying Riemannian structures is said to converge in the C0,s-topology if there exists a
smooth compact n-dimensional differentiable manifold M , a C0,s metric g on M and (for every
sufficienly large integer i) C1,s-diffeomorphisms ϕi : M → Mi such that ϕ∗i gi converges to g in
the C0,s topology when i → +∞. This means that (for every s′ < s) there exists a sub-atlas of
the C∞ complete atlas of M such that, in each chart (Uk, ψk) of this sub-atlas, each coordinate
of ϕ∗i gi (viewed as a function on the open subset ψk(Uk) of Rn) converges (when i → +∞) to

the corresponding coordinate of g with respect to the C0,s′ norm for functions on Rn, this norm
being defined by

‖f‖C0,s′ := sup
y 6=x

|f(y)− f(x)|
|y − x|s′

.

In [AC92], it is remarked that, transporting by ϕi the C∞ differentiable structure of Mi cre-
ates a C∞ differentiable structure on the limit M which a priori depends on i and that we
denote by Diffϕi(M). However, fixing some j0 ∈ N sufficiently large and the correspond-
ing C∞ differentiable structure Diffϕj0 (M) on M , approximating each C1,s-diffeomorphisms

ϕi ◦ ϕ−1
j0

: Mj0 → Mi (with respect to the C1,s-norm in the charts) by a C∞-diffeomorphism

φj0,i : Mj0 →Mi and replacing the C1,s-diffeomorphisms ϕi : M →Mi by ϕ̃i := φj0,i ◦ ϕj0 , one
obtains C∞-diffeomorphisms ϕ̃i from M (endowed with the differentiable structure Diffϕj0 (M))

onto Mi such that ϕ̃∗i gi still converges to the metric g in the C0,s-topology. Notice that all the
differentiable structures on M obtained by transporting by ϕ̃i the C∞ differentiable structure of
Mi coincide with Diffϕj0 (M) and this fixes the C∞ differentiable structure of M .

Denoting by “can” the canonical metric of the simply connected n-space with constant sectional
curvature −K2 and by BK(R) one of its balls of radius R (they are all isometric), we have the

Theorem 7.32. For every n ∈ N (n ≥ 2), every s ∈ (0, 1) and every D,K, i0 > 0, on
each compact n-dimensional manifold M whose fundamental group belongs to Hypthick, the set
of Riemannian structures corresponding to (C∞) Riemannian metrics g such that (M, g) ∈
R∞univers(n,K,D, i0) (if non empty) has compact closure in the set of C0,s Riemannian structures
on M . More precisely, every sequence (gi)i∈N of smooth Riemannian metrics on M such that
(M, gi) ∈ R∞univers(n,K,D, i0) admits a subsequence (gj)j such that the underlying subsequence
of Riemannian structures converges in the C0,s-topology (see Definition 7.31). The limit space
is the smooth manifold M , endowed with the C0,s Riemannian structure represented by a C0,s

metric denoted by g∞.
Moreover, the limit-metric g∞ satisfies the following bounds :

i) diam(M, g∞) ≤ D,

ii) (M, g∞) verifies the same Bishop-Gromov inequality as the gi’s, namely, for r ≤ R,

Volg∞ BM (x,R)

Volg∞ BM (x, r)
≤ Volcan BK(R)

Volcan BK(r)
,

iii) for every x̃ ∈ M̃ and s′ < s, the function dg̃∞(x̃, •)2 is C1,s′ on every ball of (M̃, g̃∞),

centered at x̃ and of radius < i0; in this sense, the injectivity radius of (M̃, g̃∞) is ≥ i0
(see Remark 7.33 (2)).

Remarks 7.33.

(1) Our proof uses the work [AC92]. However, the main difference between Theorems 7.30
and 7.32 and the results in [AC92] is the fact that [AC92] assumes the injectivity radii of
the compact Riemannian manifolds (M, g) under consideration to be bounded from below
by the universal constant i0 while we only assume here that the injectivity radii of their
Riemannian universal cover (M̃, g̃) is bounded from below by i0. This last hypothesis is
much weaker than the previous one. Indeed, for example, it is verified by every compact
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Riemannian manifold (M, g) whose sectional curvature is non-positive and, more generally,
by every compact Riemannian manifold (M, g) without conjugate points. In these two

cases, the Riemannian universal cover (M̃, g̃) of (M, g) has infinite injectivity radius, while
the injectivity radius of (M, g) itself could be arbitrarily small.

(2) For any C∞-metric on M the injectivity radius inj(x̃) of (M̃, g̃) at the point x̃ is defined
as the supremum of the positive values of r such that the geodesic ball B

(M̃,g̃)
(x̃, r) verifies

one of the two following equivalent conditions:

(a) the function dg̃(x̃, .)
2 is smooth when restricted to B

(M̃,g̃)
(x̃, r),

(b) the exponential map is injective from the ball of radius r in the tangent space Tx̃M̃
onto B

(M̃,g̃)
(x̃, r).

In the case where the limit-metric is C0,s, only definition (a) makes sense (where smoothness
is replaced by C1,s′ for every s′ < s), because the exponential map is not correctly defined;
indeed, two geodesics which coincide on any interval [0, t] may branch at time t (an example
is given by the piecewise C1 metric obtained by gluing two copies of R2 \ B2 on their
boundary S1 = ∂B2).

(3) As the limit-metric g∞ is only C0,s, the condition “Ricci curvature bounded from below”
makes no sense at the limit, we must thus find an analogous condition. Following the
viewpoint of J. Cheeger and T. Colding described in their works about the structure of
Riemannian manifolds with Ricci-curvature bounded below, the analogous assumption that
we use is the Bishop-Gromov inequality. Hence, in Theorem 7.32, we show that the limit
spaces (M, g∞) all verify this Bishop-Gromov inequality.

Proof of Theorems 7.30 and 7.32. Consider any (M, g) ∈ Rδ0,ε
′
0

univers(n,K,D, i0) and its Rieman-

nian universal covering π : (M̃, g̃) → (M, g) and (for sake of simplicity) denote by Γ the funda-
mental group of M , viewed as the group of deck-transformations of this Riemannian universal
covering. Let us first prove that

∀(M, g) ∈ Rδ0,ε
′
0

univers(n,K,D, i0) inj(M, g) ≥ Min (i0;S0(δ0, ε
′
0, n,K,D)) . (92)

Indeed, let S0 = S0(δ0, ε
′
0, n,K,D) for the sake of simplicity, for every x̃ ∈ M̃ and every positive

r ≤ S0

2 , if we set x := π(x̃), π maps Bg̃(x̃, r) into Bg(x, r). Moreover π is surjective from
Bg̃(x̃, r) onto Bg(x, r) because, for every y ∈ Bg(x, r), as inf ỹ∈π−1(y) dg̃(x̃, ỹ) = dg

(
π(x̃), y)

)
< r ,

there exists ỹ ∈ π−1(y) such that dg̃(x̃, ỹ) < r. Let ỹ, z̃ be any two points of Bg̃(x̃, r) such
that π(z̃) = π(ỹ), there then exists some γ ∈ Γ such that z̃ = γ ỹ. Theorem 6.26 (ii) (and
the fact that Ent(M, g) ≤ (n − 1)K by Bishop-Gromov’s comparison Theorem) implies that
infp∈M sys�Γ(p) > S0(δ0, ε

′
0, n,K,D), hence, if γ is non trivial, that dg̃(ỹ, z̃) = dg̃(ỹ, γ ỹ) > S0 ≥

2 r, in contradiction with the fact that ỹ, z̃ ∈ Bg̃(x̃, r). Consequently γ is trivial and z̃ = ỹ. It
follows that π is bijective from Bg̃(x̃, r) onto Bg(x, r).
Every pair c1, c2 of normal (locally minimizing) geodesics of (M, g) issued from x with distinct

initial unit speeds can be lifted as a pair of normal (locally minimizing) geodesics c̃1, c̃2 of (M̃, g̃)

issued from x̃ with distinct initial unit speeds. As the injectivity radius of (M̃, g̃) is bounded
from below by i0, we have c̃1(t) 6= c̃2(s) for every t, s ∈ ]0, i0[, thus for every t, s ∈ ]0, ε′0[, where
ε′0 := Min (i0, S0); as π is bijective from Bg̃(x̃, ε

′
0) onto Bg(x, ε

′
0), we have π ◦ c̃1(t) 6= π ◦ c̃2(s),

and thus c1(t) 6= c2(s) for every t, s ∈ ]0, ε′0[. This proves (92).

Now, by the Bishop-Gromov’s comparison Theorem, we have

∀(M, g) ∈ Rδ0,ε
′
0

univers(n,K,D, i0) Vol(Bg(x,D)) ≤ Vol(Bg̃(x̃, D)) ≤ Volcan BK(D) . (93)

As all the Riemannian n-manifolds (M, g) ∈ Rδ0,ε
′
0

univers(n,K,D, i0) are compact, verify Ricg ≥
−(n − 1)K2 · g, have volume uniformly bounded from above (by (93)) and injectivity radius
uniformly bounded from below (by (92)), they all satisfy the hypotheses of the compactness
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theorem proved in [AC92] (Theorem 0.2).

This result proves that Rδ0,ε
′
0

univers(n,K,D, i0) contains a finite number of differentiable structures,
and hence proves Theorem 7.30.
On any fixed compact n-dimensional manifold M the set of Riemannian structures corresponding
to metrics g such that (M, g) ∈ R∞univers(n,K,D, i0) is either empty or precompact: indeed, as the
fundamental group Γ of M is fixed, if this group belongs to Hypthick, it belongs to Hypthick(δ0, ε

′
0)

for some fixed δ0 ≥ 0 and ε′0 > 0. It follows that the set of metrics g such that (M, g) ∈
R∞univers(n,K,D, i0) is included in the set of metrics g such that (M, g) ∈ Rδ0,ε

′
0

univers(n,K,D, i0).
A consequence is that all the metrics g such that (M, g) ∈ R∞univers(n,K,D, i0) verify Ricg ≥
−(n − 1)K2 · g, have volume uniformly bounded from above (by (93)) and injectivity radius
uniformly bounded from below (by (92)). We can thus again apply the compactness theorem
in [AC92] (Theorem 0.2), which proves that the set of Riemannian structures corresponding to
metrics g on M such that (M, g) ∈ R∞univers(n,K,D, i0) (if non empty) is precompact in the
C0,s topology for every s ∈ (0, 1): this means that, for every sequence of metrics (gi)i∈N on M
such that (M, gi) ∈ R∞univers(n,K,D, i0), there exists a subsequence (gj)j and diffeomorphisms

ϕj : M → M such that the sequence of metrics ϕ∗jgj converges (in the C0,s′ topology, for every

s′ < s) to some C0,s Riemannian metric g∞.

Let us now prove that the Riemannian manifold (M, g∞) verifies properties analogous to the
ones satisfied by the Riemannian manifolds (M, g) lying in R∞univers(n,K,D, i0). As the funda-
mental group Γ of M is torsion-free and belongs to Hypthick, we only have to prove that the
diameter is bounded from above, that the injectivity radius is bounded from below (by constants
comparable to D and i0 respectively) and that (M, g∞) satisfies the Bishop-Gromov inequality.
The convergence of the metrics (ϕ∗jgj)j∈N being C0,s, it is a fortiori C0, and there thus exists a
strictly positive sequence (εj)j∈N (such that limj→+∞ εj = 0) which verifies

(1− εj)2g∞ ≤ ϕ∗jgj ≤ (1 + εj)
2g∞ . (94)

A consequence of (94) is that (1− εj)dg∞ ≤ dϕ∗j gj ≤ (1 + εj)dg∞ , which implies firstly that

diam(g∞) = lim
j→+∞

diam(ϕ∗jgj) ≤ D ,

and secondly that (for every p ∈M)

Bϕ∗j gj
(
p, (1− εj)R

)
⊂ Bg∞(p,R) ⊂ Bϕ∗j gj

(
p, (1 + εj)R

)
.

These inclusions and the comparison (1 − εj)n ≤
dvϕ∗j gj

dvg∞
≤ (1 + εj)

n between the Riemannian

measures (coming from (94)) yield

Volϕ∗j gj

(
Bϕ∗j gj

(
p, (1− εj)R

))
(1 + εj)n

≤ Volg∞
(
Bg∞(p,R)

)
≤

Volϕ∗j gj

(
Bϕ∗j gj

(
p, (1 + εj)R

))
(1− εj)n

,

hence that, for every r,R > 0 such that r < R,

(
1− εj
1 + εj

)n Volg∞
(
Bg∞(p,R)

)
Volg∞

(
Bg∞(p, r)

) ≤ Volϕ∗j gj

(
Bϕ∗j gj

(
p, (1 + εj)R

))
Volϕ∗j gj

(
Bϕ∗j gj

(
p, (1− εj)r

)) =
Volgj

(
Bgj
(
ϕj(p), (1 + εj)R

))
Volgj

(
Bgj
(
ϕj(p), (1− εj)r

))
≤

Volcan BK
(
(1 + εj)R

)
Volcan BK((1− εj)r)

,

where the last inequality is a consequence of the classical Bishop-Gromov inequality (recalling
that Ricgj ≥ −(n− 1)K2 · gj). Taking the limit when j → +∞, we get

Volg∞
(
Bg∞(p,R)

)
Volg∞

(
Bg∞(p, r)

) ≤ Volcan BK(R)

Volcan BK(r)
,
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which is exactly the Bishop-Gromov inequality verified by all the Riemannian manifolds (M, g)
such that Ricg ≥ (n− 1)K2 · g.

Let us now define %∞ := dg̃∞(x̃, .)2 and verify that, given i < i0, %∞ is C1,s′ in the ball

B
(M̃,g̃∞)

(x̃, i), that we shall denote by B̃(x̃, i) for the sake of simplicity: it is the Property

(5) of Theorem 0.1 of [AC92], which is proved to be valid for the limit-metric g∞ in Theorem 0.2
of [AC92]. Applying roughly this Theorem seems to only prove that %∞ is C1,s′ in every ball of
radius 1

2 i
′
0, where i′0 := Min (i0;S0) is a lower bound of the injectivity radii of all the manifolds

(M, g) ∈ R∞univers(n,K,D, i0) given by (92).
However, the remark (2) p. 267 of [AC92] proves that the conclusions of Theorem 0.2 of [AC92]

are still valid on compact domains of (M̃, g̃∞); this proves31 that %∞ is C1,s′ in the ball B̃(x̃, i)
and this ends the proof.

7.3.3 Finiteness and compactness Results for Einstein Structures

We now wish to apply the previous results to the study of Einstein structures.

Let us recall that, given any parameters δ0, ε
′
0 > 0, the universal constant r0 = r0(δ0, ε

′
0) is

defined in (70).

Theorem 7.34. Given any K, δ0, ε
′
0 > 0, let us consider the set of compact n-dimensional

manifolds, whose fundamental group is torsion-free and belongs to Hypthick(δ0, ε
′
0) and which

admit an Einstein metric g without conjugate point and such that scal(g) diam(g)2 ≥ −n(n −
1)K2,

(i) for every K > 0, this set is finite,

(ii) if K ≤ r0(δ0,ε
′
0)

2(n−1) , this set is empty.

Conclusion (ii) remains valid if one does not assume that the metric is without conjugate point.
Conclusion (i) remains valid if the hypothesis “g without conjugate point” is replaced by the
following weaker hypothesis: there exists a constant i0 > 0 such that, for all the metrics of the
set defined in Theorem 7.34, the injectivity radius inj(g̃) of the pulled-back metric g̃ := π∗g on

the universal cover verifies
inj(g̃)

diam(g)
≥ i0. Notice that, when (M, g) has no conjugate points,

then the injectivity radius of its Riemannian universal covering (M̃, g̃) is infinite.

The notion of Ck-convergence for sequences of Riemannian metrics on M being defined either
in a fixed system of local charts (the derivatives being then given by the partial derivatives with
respect to the coordinates in the charts) or referring to a given Riemannian metric g0 on M ,
the Ck-convergence is then defined by the following norm on the space of smooth symmetric
2-tensors: ‖h‖Ck(g0) :=

∑k
i=0 ‖(Dg0)ih‖g0 (where Dg0 is the Levi-Civita covariant derivative

associated to the Riemannian metric g0).

31As the elements of this last proof are distributed in the whole of [AC92], we shall summarize them here: from
[AC92] (Theorem 0.1 and discussion pp.266-267), it follows that it is possible to choose the diffeomorphisms ϕj ,

a system of g∞ harmonic charts {(U`, H`)}`∈I of M̃ (with values in the euclidean ball B(r) with fixed radius r)

and, defining hj = ϕ∗j gj , a system of h̃j-harmonic charts {(Uj,`;Hj,`)}`∈I of M̃ (with values in B(r)) such that{
H−1
` [B(r/2)] ∩H−1

j,` [B(r/2)]
}
`∈I is still a covering of M̃ and moreover that Hj,` ◦H−1

` converges (in the C1,s′

sense for every s′ < s) to the canonical injection B(r/2) ↪→ B(r). Defining %j = dh̃j
(x̃, ·)2 and %∞ = dg̃∞ (x̃, ·)2 and

choosing i1 ∈]i, i0[, the proof of the lemma 1.4 of [AC92] establishes that the h̃j-Laplacian of %j is bounded (from
above and from below) on the ball B

(M̃,g̃∞)
(x̃, i1) (whose closure is included in B

(M̃,g̃j)
(x̃, i0) for j large enough

by (94)), hence that %j ◦H−1
j,` , whose euclidean Laplacian is bounded (because the coordinates are harmonic), has

bounded Hp
2 -norm (for every p) on B(r/2)∩Hj,`

(
B̃(x̃, i)

)
(see [AC92], formula (0.10)); hence a subsequence of the

sequence
(
%j◦H−1

j,`

)
j

converges (in C1,s′ -norm on B(r/2)) to a limit-function f`, which is C1,s′ . As %j converges to

%∞ in the C0 sense (on every compact set) by (94), recalling that, for any ỹ ∈ H−1
` [B(r/2)]∩H−1

j,` [B(r/2)]∩B̃(x̃, i),

the sequences
(
%j ◦ H−1

j,` [Hj,`(ỹ)]
)
j

and
(
f` ◦ (Hj,` ◦ H−1

` )[H`(ỹ)]
)
j

respectively converge to f`[Hj,`(ỹ)] and

f`[H`(ỹ)], using the triangle inequality and taking the limit, one obtains that %∞ = f` ◦H` in each chart, thus

that %∞ is C1,s′ on B̃(x̃, i).
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Definition 7.35 (see [HH97]). Given any compact smooth manifold M and any k ∈ N, for
any sequence (gi)i∈N of smooth Riemannian metrics, the sequence of underlying Riemannian
structures is said to converge in the Ck-topology if there exists a smooth Riemannian metric g
on M and, for every sufficienly large integer i, C∞-diffeomorphisms ϕi : M →M such that ϕ∗i gi
Ck-converges to g when i→ +∞.

Definition 7.36. On any compact manifold M , we denote by EinstM (K,D, i0) the set of Ein-
stein metrics g, verifying scal(g) ≥ −n(n − 1)K2 (where n = dimM), diam(g) ≤ D and such

that the injectivity radius of its Riemannian universal cover (M̃, g̃) is bounded from below by i0.

Notice that the set of Einstein metrics g on M without conjugate point and verifying scal(g) ≥
−n(n− 1)K2 and diam(g) ≤ D is a subset of EinstM (K,D, i0); hence all properties verified on
EinstM (K,D, i0) are verified on this set of metrics.
The set of Riemannian structures corresponding to metrics in EinstM (K,D, i0) has nice com-
pactness properties, summarized in the following results:

Theorem 7.37. On every compact n-dimensional manifold M whose fundamental group is
torsion-free and belongs to Hypthick, and for every K,D, i0 > 0 and every k ∈ N, the set of
Riemannian structures corresponding to metrics belonging to EinstM (K,D, i0) is (sequentially)
compact in the Ck-topology for every k ∈ N, i. e. from every sequence (gi)i∈N belonging to
EinstM (K,D, i0), one can extract a subsequence (gj)j∈Jk⊂N such that the underlying sequence of
Riemannian structures converges, in the Ck-topology, to some Riemannian structure represented
by a metric g∞ which belongs to EinstM (K,D, i0).

Notice that, if the convergent subsequence (gj)j∈Jk⊂N and the corresponding diffeomorphisms
are chosen randomly, then the limit g∞ depends on the value of k. Nevertheless, one gets the

Corollary 7.38. On every compact n-dimensional manifold M whose fundamental group is
torsion-free and belongs to Hypthick, and for every K,D, i0 > 0, from every sequence (gi)i∈N of
elements of EinstM (K,D, i0), one can extract a subsequence (gj)j∈J and find diffeomorphisms
φj such that

(
φ∗jgj

)
j∈J C∞-converges, when j goes to +∞, to some metric g which belongs to

EinstM (K,D, i0).

Proof of Theorem 7.34. For sake of simplicity, we denote by Γ the fundamental group of M ,
notice that it is torsion-free by assumption. Applying Corollary 6.25 (iii) with (Y, d, µ) =

(M̃, dg̃, dvg̃) we get that Ent(M, g) := Ent(M̃, dg̃, dvg̃) > 0. Since the metric g is Einstein its
Ricci curvature satifies Ricg = 1

n scal(g) · g, where the scalar curvature scal(g) is constant, hence

a real number. Now, Bishop-Gromov’s Inequality shows that Ent(M, g) ≤
√

n−1
n scal−(g), where

scal−(g) = Max (−scal(g) , 0). The positiveness of the entropy of (M, g) then implies that scal(g)

is negative. We may thus apply Theorem 6.21 (iii) (where we replace H by
√

n−1
n scal−(g) ),

which proves that there exists p̃ ∈ M̃ such that

4 scal−(g) · diam(g)2 ≥ scal−(g) · sysΓ(p̃)2 = scal−(g) · sys�Γ(p̃)2 ≥ n

n− 1
r0(δ0, ε

′
0)2 . (95)

This implies (ii) since it proves that n(n− 1)K2 ≥ −scal(g) diam(g)2 ≥ n
4(n−1) r0(δ0, ε

′
0)2.

For sake of simplicity, we now let MK be the set of compact n-dimensional manifolds, whose
fundamental group is torsion-free and belongs to Hypthick(δ0, ε

′
0) and which admit an Einstein

metric h without conjugate point and such that scal(h) diam(h)2 ≥ −n(n− 1)K2. By rescaling,
on every manifold M ∈MK there exists some Einstein metric g, without conjugate point, such
that diam(g) = 1 and scal(g) ≥ −n(n− 1)K2, and this yields Ricg ≥ −(n− 1)K2 · g. It follows

that (M, g) ∈ Rδ0,ε
′
0

univers(n,K, 1,+∞) and thus, using Theorem 7.30, that there are only a finite
number of differentiable structures in MK .

Proof of Theorem 7.37. For the sake of simplicity, let us denote by Γ the fundamental group of
M ; as this group is fixed and belongs to Hypthick, it belongs to Hypthick(δ0, ε

′
0) for some fixed
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δ0 ≥ 0 and ε′0 > 0. By Definitions 7.36 and 7.29, EinstM (K,D, i0) ⊂ Rδ0,ε
′
0

univers(n,K,D, i0) and it
follows from Theorem 7.32 that the set of Riemannian structures corresponding to Riemannian
metrics g ∈ EinstM (K,D, i0) (if not empty) has compact closure in the set of C0,s Riemannian
structures on M .

On the other hand, for every g ∈ EinstM (K,D, i0), as (M, g) ∈ Rδ0,ε
′
0

univers(n,K,D, i0), we may
apply the inequalities (92) and (93), which yield

inj(g) ≥ Min (i0; S0(δ0, ε
′
0, n,K,D)) and Vol(g) ≤ Vol(Bg(x,D)) ≤ Volcan BK(D) . (96)

As Ricg ≥ −(n−1)K2·g and as Dk Ricg = 0 for every k ∈ N∗, the hypotheses of the main theorem
of [HH97] are all satisfied and it implies that, for every k ∈ N, from every sequence (gi)i∈N of
metrics belonging to EinstM (K,D, i0), one can extract a subsequence (gj)j and a sequence of
Ck+1-diffeomorphisms ϕj : M →M such that the sequence of metrics ϕ∗jgj converges (in the Ck

topology) to some Ck-metric g∞. For the sake of simplicity, let us denote by hj the metric ϕ∗jgj .
As k may be chosen ≥ 2 (and as the Ricci curvature may be written in terms of the first and
second derivatives of the coordinates of the metric), the equalities Richj = 1

n scal(hj) ·hj give, at
the limit, Ricg∞ = 1

n scal(g∞) · g∞ and g∞ is Einstein, thus it is C∞. Going to the limit, we also
get scal(g∞) ≥ −n(n− 1)K2 and diam(g∞) ≤ D. In order to end the proof, it is thus sufficient

to show that, for every x̃ ∈ M̃ , injg̃∞(x̃) ≥ lim supj→+∞ injh̃j (x̃), where (M̃, g̃∞) and (M̃, h̃j)

are the riemannian covers of (M, g∞) and (M,hj) respectively. This is proved by the following
Lemma, whose consequence is that every sequence of Riemannian structures corresponding to
metrics in EinstM (K,D, i0) admits a converging subsequence (in the Ck-topology) whose limit
is a Riemannian structure corresponding to some g∞ ∈ EinstM (K,D, i0).

Lemma 7.39. For any k ≥ 0, on any smooth complete Riemannian manifold (X, g), for
any sequence of C∞ complete metrics (gi)i∈N which Ck-converges to g, one has injg(x) ≥
lim supi→+∞ injgi(x) for every x ∈ X.

Proof of Lemma 7.39. Arguing by contradiction, suppose that injg(x) < lim supi→+∞ injgi(x)
for some x ∈ X, there then exists a subsequence (gj)j and a sequence (εj)j of real numbers
going to zero such that limj→+∞ injgj (x) = lim supi→+∞ injgi(x), thus such that injg(x) <
limj→+∞ injgj (x) = injgj (x) + εj . Therefore, there exits some g-geodesic c : [0,+∞[→ X and
some real number t0 (injg(x) ≤ t0 < limj→+∞ injgj (x)) such that c is minimizing between c(0)
and c(t0) and is not minimizing between x = c(0) and c(t) (for every t > t0). Let us denote by cj
the gj-minimizing geodesic between c(0) and c(t0), cj still minimizes between cj(0) = c(0) and
cj(tj), where tj = Min

(
injgj (x), t0 + 1), we thus have t0 < tj and thus t′j := dgj

(
x, c(t0)

)
< tj

when j is large enough. By compactness of the closed ball of radius t0 + 1, there exists a
subsequence of the sequence

(
cj(tj)

)
j

(still denoted by
(
cj(tj)

)
j

for the sake of simplicity) such

that cj(tj) converges (with respect to the Riemannian distance dg) to some point y ∈ X; as
cj(t

′
j) = c(t0), this yields

dgj
(
x, c(t0)

)
+ dgj

(
c(t0), cj(tj)

)
= t′j + |tj − t′j | = tj = dgj

(
x, cj(tj)

)
(for t′j < tj) ;

taking the limits of both sides when j → +∞ yields

dg
(
x, c(t0)

)
+ dg

(
c(t0), y

)
= dg

(
x, y
)

= lim
j→+∞

tj = Min
(

lim
j→+∞

injgj (x), t0 + 1
)
> t0 .

It follows that dg
(
c(t0), y

)
> 0 and that, if γ is a minimizing geodesic from c(t0) to y, the

path obtained by concatenation of c and γ is minimizing, and thus that it is a minimizing
geodesic which coincides with the geodesic c. Consequently, there exists t > t0 such that c
minimizes between c(0) and c(t), in contradiction with the hypotheses. It is thus impossible that
injg(x) < lim supi→+∞ injgi(x) for some x ∈ X, this ends the proof.

Proof of Corollary 7.38. By Theorem 7.37, for every k ∈ N, from any sequence (gi)i∈N of ele-
ments of EinstM (K,D, i0), one can extract a subsequence (gj)j∈Jk⊂N and find C∞-diffeomorphisms
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ϕkj such that
(
(ϕkj )∗gj

)
j∈Jk

Ck-converges (when j → +∞ in Jk) to some metric gk which also

belongs to EinstM (K,D, i0). Constructing the infinite subset Jk+1 by extraction from the in-
finite subset Jk, we obtain that Jp ⊂ Jk for every p ≥ k. This implies that, for the Lipschitz
distance dL between the corresponding Riemannian structures (modulo isometries), one has:
dL(gj , g

p) = dL((ϕpj )
∗gj , g

p) → 0 and dL(gj , g
k) = dL((ϕkj )∗gj , g

k) → 0 when j goes to +∞ in

Jp ⊂ Jk; a consequence is that dL(gk, gp) = 0, thus that gp is isometric to gk. There there-
fore exists a fixed Riemannian metric g and a sequence of diffeomorphisms (ψk)k∈N such that
gk = (ψk)∗g for every k ∈ N, hence g also belongs to EinstM (K,D, i0).
As, for every smooth diffeomorphism ϕ, the map h 7→ ϕ∗h, from the set of symmetric 2-tensors
into itself, is continuous with respect to the Ck(g0)-norm (see before Definition 7.35), by defin-

ing φkj := ϕkj ◦ ψ
−1
k , we obtain that (for every k ∈ N)

(
(φkj )∗gj

)
j∈Jk

=
((
ψ−1
k

)∗(
(ϕkj )∗gj

))
j∈Jk

Ck-converges to
(
ψ−1
k

)∗
gk = g when j goes to +∞ in Jk. Let us now define, for every p ∈ N,

J ′p = {j ∈ Jp : ‖g − (φpj )
∗gj‖Cp(g0) ≤ 2−p} ;

by definition of a Cp(g0)-converging sequence, Jp \ J ′p is finite. Choose one integer jp in each
subset J ′p such that jp ≥ p, this yields, for every k ∈ N and every p ≥ k,

‖g − (φpjp)∗gjp‖Ck(g0) ≤ ‖g − (φpjp)∗gjp‖Cp(g0) ≤ 2−p .

Hence (gjp)p∈N is a subsequence of the initial sequence of metrics which verifies the following
property: there exists a sequence of diffeomorphisms

(
φpjp
)
p∈N such that

(
(φpjp)∗gjp

)
p∈N Ck-

converges to g for every k ∈ N. By definition, this means that
(
(φpjp)∗gjp

)
p∈N C∞-converges to

g.

A list of open questions were asked by A.L. Besse ([Bes87], pp. 354–355). We address some of
them below.

1) Is it possible, for some manifolds Mn, to show and compute a number ε = ε(M) > 0 such
that the functional S defined above has no critical values in the interval (−ε(M), ε(M)) ?
([Bes87], question 12.63).

2) Is it possible, for some manifolds Mn, to show that the set of critical values of S (i.e the
values S(g) for g an Einstein metric) is a closed and discrete set (for example in negative
curvature) ?([Bes87], question 12.63).

3) For which manifolds is this set finite ? ([Bes87], question 12.62).

Answers to question 1) have already been given. In particular M. Gromov in [Gro82] shows that,
if the simplicial volume of Mn is non-zero (see [Gro82] for the definition), then there exists a
constant Cn such that any Einstein metric satisfies:

S(g) ≤ −Cn (SimplicialVolume (M))
2/n

.

We precise this inequality and extend it to some manifolds whose simplicial volume vanishes.
We also answer positively to Question 2) (in any dimension and in negative curvature) and to
Question 3) (in dimension 4). We furthermore show, in negative curvature, that to each critical
value of S, corresponds a finite number of critical points.

Corollary 7.40. Let M be a closed differentiable manifold of dimension n ≥ 4, then:

(i) the image by S of the set of negatively curved Einstein metrics is a closed and discrete
subset of (−∞, 0 ).

(ii) For all K ∈ R, the set of negatively curved Einstein structures [g] on M which satisfy
S([g]) ≥ −K2, is finite.
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Proof. Up to rescaling we may consider the set EK of Einstein metrics g on M which satisfy
Vol(g) = 1, scal(g) ≥ −K2 and σ(g) < 0, where σ(g) is the sectional curvature of g. If EK 6= ∅,
let us fix a metric g0 ∈ EK .

The fundamental group Γ of M acts co-compactly on the simply connected space (M̃, g̃0) where
g̃0 has pinched negative curvature (and hence is Gromov-hyperbolic). This action is furthermore
without fixed point, hence Γ is torsion-free by Lemma 8.40, thus all the elements γ ∈ Γ∗ are
hyperbolic isometries and verify inf

x̃∈M̃ dg̃0(x̃, γ x̃) = `(γ) by Lemma 8.41; this implies that, for

every γ ∈ Γ∗, `(γ) ≥ SysΓ(M̃, g̃0) > 0, and hence that Γ ∈ Hypthick. On the other hand, every
metric g ∈ EK verifies −K2 ≤ scal(g) < σg < 0, the main theorem of [Gro78] gives an upper
bound of the diameter of (M, g) in terms of Vol(g), hence by a constant C(n)Knr−1 (where

r = 1 if n ≥ 8 and r = 3 if 4 ≤ n ≤ 7). The injectivity radius of the universal cover (M̃, g̃) of

(M, g) being infinite, we deduce that EK ⊂ EinstM (K ′, D,+∞), where K ′ :=
K√

n(n− 1)
and

D := C(n)Knr−1. We can then apply Corollary 7.38: from every sequence (gi)i∈N of elements
of EK we can extract a subsequence (gj)j∈J and find diffeomorphisms φj such that

(
φ∗jgj

)
j∈J

C∞-converges to some Einstein metric g∗ which satisfies Vol(g∗) = 1, scal(g∗) ≥ −K2, σ(g∗) ≤ 0
and diam(g∗) ≤ C(n)Knr−1.

Let us denote by E the set of all Einstein metrics on M of volume equal to 1. A theorem
of N. Koiso (see, for example, [Bes87], p. 351, theorem 12.49) shows the existence of C∞-
neighbourhoods of g∗ in the space of Riemannian metrics, denoted by U and U ′, of a real
analytic submanifold Z of finite dimension in the same space, such that any element of E ∩U ′ is
isometric to an element of E∩Z∩U , and such that E∩Z∩U is a real analytic and path-connected
subset of Z ∩ U (see [Bes87], p. 352, Corollary 12.52). It follows that there exists a sequence
of diffeomorphisms ϕj : M → M such that, for any j ≥ j0, ϕ∗jgj ∈ E ∩ Z ∩ U , hence ϕ∗jgj is
connected to g∗ by a path of Einstein metrics t 7→ gt such that g0 = ϕ∗jgj and g1 = g∗. Let
I = {t : gt is isometric to g0}, then I is open because, for every t0 ∈ I, as gt0 is isometric to g0,
gt0 is Einstein with negative sectional curvature and (see [Bes87], p. 357, corollary 12.73) the
Einstein structure of gt0 is isolated in E , thus gt is isometric to gt0 (and to g0) for every t in a
neighbourhood of t0, hence t ∈ I for every t in a neighbourhood of t0. The set I is also closed
for, if (tp)p∈N is any sequence of elements of I which converges to t ∈ [0, 1] then the Lipschitz
distance dL between Riemannian structures verifies

dL
(
dgtpe, dg0e

)
= 0 and dL

(
dgtpe, dgte

)
→ 0 when tp → t ,

where dge is the Riemannian structure corresponding to the metric g. An immediate consequence
is that dL

(
dgte, dg0e

)
= 0, thus that gt is isometric to g0, which proves that t ∈ I. It follows that

I = [0, 1] and that any sequence of Einstein structures of strictly negative sectional curvature
and on which the functional S is bounded below has a stationary subsequence, which implies
(ii). Finally, (i) follows immediately from (ii).

In dimension 4 the Allendoefer-Chern-Weil theory (see, for example, [Bes87], Sections 6.31 and
6.34, p. 161) gives the following formulas for the Euler characteristic χ(M) and the signature
τ(M) of a closed Riemannian manifold (M, g):

8π2χ(M) =

∫
M

(‖W+(g)‖2 + ‖W−(g)‖2 − ‖Z(g)‖2 + ‖U(g)‖2)dvg ,

12π2τ(M) =

∫
M

(‖W+(g)‖2 − ‖W−(g)‖2)dvg .

Where W+(g), W−(g), Z(g) and U(g) are the irreducible components of the curvature tensor
of g under the action of SO(4) on TxM for each x ∈ M . For an Einstein metric, we have, by
definition,

Z(g) = 0 and ‖U(g)‖2 =
1

24
scal(g)2 ,

from which we deduce that,

S(g) ≥ −4
√

6π
√

2χ(M)− 3|τ(M)| .
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With this lower bound on S(g) we can apply Corollary 7.40 and get,

Corollary 7.41. Let M be a closed differentiable manifold of dimension 4, the set of Einstein
structures with negative sectional curvature on M is finite.

Concerning the question 1) above, about the possibility of finding an interval around 0 without
critical values of S, we get the following proposition.

Proposition 7.42. Let M be a closed differentiable manifold of dimension n ≥ 4, and let us
assume that M admits a non-zero degree continuous map f : M → X, where X is a closed
differentiable manifold which carries a metric g0 with negative sectional curvature. Then, for
any Einstein metric g on M , we have

S(g) ≤ −n(n− 1)|deg(f)|2/n|max(σ(g0))|Vol(g0)2/n < 0 .

The equality occurs if and only if both metrics have constant sectional curvature and if there
exists λ > 0 such that the map f is homotopic to a Riemannian covering from (M,λ · g) onto
(X, g0).

Proof. With the same proof than that of Corollary 1.4 (p. 156-157) from [BCG99], one can easily
show that,

Ent(M, g)n Vol(g) ≥ |deg(f)|(n− 1)n|max(σ(g0))|n/2 Vol(g0) ,

with equality when both metrics have constant curvature and f is homotopic to a locally homo-
thetic covering. We finish by applying Bishop’s comparison Theorem which yields:

Ent(M, g)2 Vol(g)2/n ≤ −(n− 1)(
scal(g)

n
) Vol(g)2/n = −

(n− 1

n

)
S(g) .

Remarks 7.43. There is one interesting particular case. When g0 is a locally real hyperbolic
metric (with constant curvature equal to −1) on M , g another Einstein metric on M and f = id,
the previous inequality then becomes,

S(g) ≤ S(g0) < 0 ,

and equality if and only if g and g0 define the same Einstein structure.

In fact, in [BCG95], Theorem 9.6, p. 774 it is proved that, in dimension 4, if (M, g0) is locally
real hyperbolic then g0 is the only Einstein metric up to homothety.

The next three results go further in the finiteness results and isolation phenomenons.

Proposition 7.44. For K > 0 and n ≥ 4, there is only a finite number of closed manifolds
of dimension n (modulo diffeomorphisms) which admit an Einstein metric of negative sectional
curvature satisfying,

S(g) ≥ −K2 .

In dimension 4, among the closed manifolds satisfying χ(M)− 3
2 |τ(M)| ≤ K, only a finite number

of them admit Einstein metrics of negative curvature.

Proof. Let (M, g) be a closed Einstein manifold, of sectional curvature σ(g) < 0 and satisfying
S(g) ≥ −K2. Up to rescaling we may assume that Vol(g) = 1 which implies that scal(g) ≥
−K2. Following the proof of Corollary 7.40 we deduce that −K2 ≤ σ(g) < 0 and that diam(g)
is bounded above by a constant of the form C(n)Knr−1. J. Cheeger’s Comparison Theorem
([Che70]) then shows that,

Vol(g) ≤
∫ diam(g)

0

l(c) cosh(Kt)
( sinh(Kt)

K

)n−2
dt ,
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for every periodic geodesic c, where l(c) is its length. Consequently one has,

inj(g) = inf
c

(l(c)) ≥ Kn−1
(∫ C(n)Knr

0

cosh(u)(sinh(u))n−2du
)−1

.

Hence, the Einstein metrics under consideration have universal bounds on their sectional curva-
ture, diameter and injectivity radius. Cheeger’s Finiteness Theorem then shows that there are
only finitely many possible differentiable manifolds (modulo diffeomorphisms).

In dimension 4, the proof of Corollary 7.41 shows that,

S(g) ≥ −4
√

6π
√

2χ(M)− 3|τ(M)| ≥ −8
√

3π
√
K ,

if χ(M) − 3
2 |τ(M)| ≤ K; from the preceeding argument the set of differentiable manifolds ad-

mitting such an Einstein metric is finite.

For a Riemannian manifold (M, g) let us now define sgl(M̃, g̃) to be the length of the smallest

geodesic loop in the universal cover (M̃, g̃). If there is no such loop, in particular if the curvature

of (M, g) is non positive or more generally if (M̃, g̃) is a Busemann space, we have sgl(M̃, g̃) = +∞
by Remark 8.37.

Proposition 7.45. Let δ0 ≥ 0 and ε′0 > 0, if M is a closed differentiable manifold of dimension
n ≥ 4 and whose fundamental group is torsion-free and belongs to Hypthick(δ0, ε

′
0) then, for any

Einstein metric g on M , one has

S(g) ≤ −C(n) min{sgl(M̃, g̃)2|scal(g)|; r0(δ0, ε
′
0)2} ,

where C(n) is a constant depending on n only. In particular, if g is non positively curved or

more generally if (M̃, g̃) is a Busemann space, we get

S(g) ≤ −C(n)r0(δ0, ε
′
0)2 .

Notice that the upper bound of S(g) given by this last inequality only depends on the fundamental
group modulo isomorphisms.

Proof. For the sake of simplicity we call Γ the fundamental group of M and we denote by H the
entropy of (M, g). From Theorem 6.21 and the fact that Γ is torsion-free, there exists a point

m̃ ∈ M̃ such that sysΓ(m̃) ≥ r0
H . If m is the projection of m̃ on M by the covering map this

implies that the ball B
M̃

(m̃, r) ⊂ M̃ projects isometrically onto the ball BM (m, r) ⊂M for any
radius r < r0

2H .

On the other hand, the main theorem of [Sab04] asserts that, for r < sgl(M̃, g̃)/2, we have

Vol(B
M̃

(m̃, r)) ≥ C1(n)rn ,

for some number C1(n) depending on n only. Then, if R = 1
2 min{sgl(M̃, g̃), r0H } we get,

Vol(M, g)1/n ≥ Vol(BM (m,R))1/n = Vol(B
M̃

(m̃,R))1/n ≥ 1

2
C1(n)1/n min

{
sgl(M̃, g̃),

r0

H

}
,

and Bishop’s Comparison Theorem gives,

H2 = Ent(M, g)2 ≤ −n− 1

n
scal(g) .

Combining these two inequalities and noticing that |scal(g)|
H2 > 1 yield the desired results for

C(n) = 1
4C1(n)2/n.
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Remark 7.46. We wish to emphasise that among the manifolds which verify the hypotheses
of Proposition 7.45 there are some with zero simplicial volumes. Indeed, examples are given by
products of a sphere and a negatively curved closed manifold and connected sums of these products
with a simply connected manifold. Proposition 7.45 thus improves M. Gromov’s result mentioned
above.

The last result of this section is the

Proposition 7.47. Let V be a positive real number and n ≥ 4 be an integer. There exists ε =
ε(n, V ) > 0 such that every closed Einstein manifold of dimension n and of negative curvature,
(Mn, g), which admits a continuous map of non-zero degree onto a closed locally real hyperbolic
manifold (Xn, g0) (i.e., σ(g0) ≡ −1) with Vol(Xn, g0) ≤ V , and whose scalar curvature satisfies
S(g) > S(g0)− ε, is homothetic to (Xn, g0).

We recall that, by homothetic, we mean that there exists λ > 0 such that (M,λg) is isometric
to (X, g0). This result applies, in particular, when M = X and the map is the identity and as
such can be viewed as a gap theorem.

Proof. From Proposition 7.44 there is only finitely many closed manifolds, M1, . . . ,Mp, such that
the set,

ΣMi
=
{
S(g) : g Einstein metric on Mi such that σ(g) < 0 and S(g) ≥ −n(n− 1)(V 2/n + 1)

}
,

is non empty. The hyperbolic manifolds that we are considering, that is with Vol(Xn, g0) ≤ V ,
are members of the set {M1, . . . ,Mp}. Let us define Σ =

⋃p
i=1 ΣMi

; from Corollary 7.40, Σ is a
finite set whose elements will be denoted by s1, . . . , sN and we set,

ε = min
{

min
1≤i 6=j≤N

(|si − sj |), n(n− 1)
}
.

The number ε only depends on n and V . Let (Xn, g0) be a locally real hyperbolic manifold of
volume less than or equal to V , let Mn admit a non-zero degree map f onto Xn and g be an
Einstein metric on Mn with negative curvature and satisfying S(g) > S(g0) − ε. Remark 7.43
implies that S(g0)− ε < S(g) ≤ S(g0), hence that |S(g)− S(g0)| < ε. As S(g) and S(g0) belong
to Σ, the choice of ε shows that S(g) = S(g0). The inequality stated in Proposition 7.42 proves
that |deg(f)| = 1; from this and from the equality case of Proposition 7.42 (see also Remark
7.43) we deduce that f is homotopic to a homothety.

8 Appendix : Basic results on Gromov-hyperbolic spaces

8.1 Why is there quantitative gaps between basic sources, and how to
precise coherently the constants:

These quantitative gaps are mainly due to the fact that each of the basic references (for example [GdlH90],
[CDP90], [BH99]) starts from a different definition of Gromov δ-hyperbolic spaces and use different
methods in order to prove the basic results. A consequence is that, depending on the source, all these
definitions and results (though qualitatively equivalent) may differ by a multiplicative factor: these
differences are not worries when one is working modulo quasi-isometries, but they become a real problem
when one wants to pick results from different sources and to chain them together and when the final
value is important, by example when one aims to determine a precise explicit universal bound for some
invariant (especially if one wants this bound to be as independent as possible of the δ-hyperbolic space
under consideration). We thus propose in this subsection a journey in order to raise these ambiguities and
to control all these constants in a coherent way. As these results are (modulo multiplicative constants)
classical, the proofs of the most classical ones will be left to the reader.

Given any three nonnegative numbers α, β, γ, we define the tripod T := T (α, β, γ) as the metric
simplicial tree with 3 vertices x′, y′, z′ of valence 1 (the “endpoints”), one vertex c of valence 3
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(the “branching point”), and 3 edges [cx′], [cy′], [cz′] of respective lengths α, β, γ (the “branches”).
We denote by dT (u, v) the distance on this tree between two points u, v ∈ T , i. e. the minimal
length of a path contained in T and joining u to v).

For sake of simplicity, we only consider geodesic metric spaces (see Definition in section 2). In
such a space a geodesic triangle ∆ = [x, y, z] is the union of three geodesics [x, y], [y, z] and [z, x].
Given any three points x, y, z in any geodesic metric space, there exists at least one geodesic
triangle ∆ = [x, y, z] whose sides have respective lengths d(x, y), d(y, z) and d(x, z).

Lemma 8.1. To any geodesic triangle ∆ corresponds a metric tripod (T∆, dT ) and a surjective
map f∆ : ∆→ T∆ (called the “approximation of ∆ by a tripod”) such that, in restriction to each
side of ∆, f∆ is an isometry,

Indeed, T∆ is constructed as the tripod T (α, β, γ), where (by the triangle inequality) (α, β, γ) is
the unique element of [0,+∞[3 such that d(x, y) = α + β, d(x, z) = α + γ and d(y, z) = β + γ.
This choice of (α, β, γ) implies the existence of the map f∆ : ∆→ T∆ as asserted in Lemma 8.1.

Definitions 8.2. A geodesic triangle ∆ of (X, d) is said to be δ-thin if, for every u ∈ T and
every x, y ∈ f−1

∆ ({u}), one has d(x, y) ≤ δ.
In the whole of this paper, a metric space is said to be δ-hyperbolic if it is geodesic, proper, and
if all its geodesic triangles are δ-thin.

The following results are well known (and often taken as definitions of δ-hyperbolicity); their
proof may be found (with variable constants, depending on the choice of the definition) in any
classical source (see for example [GdlH90], [CDP90], [BH99]).

Lemma 8.3. For every δ-hyperbolic space (X, d), one has:

(i) For every geodesic triangle ∆, its approximation f∆ : ∆→ (T∆, dT ) by a tripod verifies

d(u, v)− δ ≤ dT
(
f∆(u), f∆(v)

)
≤ d(u, v) .

(ii) (Quadrangle Lemma) For every four points x, y, z, w ∈ X, one has

d(x, z) + d(y, w) ≤ Max
(
d(x, y) + d(z, w) ; d(x,w) + d(y, z)

)
+ 2 δ , ;

if moreover if [x, y], [y, z], [z, w] and [x,w] are geodesic segments between the vertices of
the quadangle [x, y, z, w] then, for every v ∈ [x,w], one has

d(v , [x, y] ∪ [y, z] ∪ [z, w]) ≤ 2 δ .

We often use the following sharper version of the above Quadrangle Lemma:

Lemma 8.4. On any geodesic triangle ∆ = [x, y, z], for every point u ∈ [y, z], one has

d(x, u) + d(y, z) ≤ Max
(
d(x, y) + d(u, z) ; d(x, z) + d(y, u)

)
+ δ

Proof. Using the approximation f∆ : ∆→ (T∆, dT ) by the associated tripod, as f∆(u) is on the
union of the branches [c, f∆(y)] and [c, f∆(z)] of this tripod (where c is the branching point of
T ), we easily verify that

dT (f∆(x), f∆(u)) + dT (f∆(y), f∆(z)) =

= Max
(
dT (f∆(x), f∆(y)) + dT (f∆(u), f∆(z)) ; dT (f∆(x), f∆(z)) + dT (f∆(y), f∆(u))

)
.

We now use Lemma 8.1, which proves that dT (f∆(y), f∆(z)), dT (f∆(x), f∆(y)), dT (f∆(x), f∆(z)),
dT (f∆(u), f∆(z)) and dT (f∆(y), f∆(u)) are respectively equal to d(y, z), d(x, y), d(x, z), d(u, z)
and d(y, u) and Lemma 8.3 (i), which proves that d(x, u) ≤ dT

(
f∆(x), f∆(u)

)
+ δ and ends the

proof.
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8.2 Projections and quasi equality in the triangle inequality

Definition 8.5. For every closed subset F of any metric space (X, d) and every point x ∈ X, a
“projection of x on F” is any point x̄ ∈ F such that d(x, x̄) = d(x, F ) := infz∈F d(x, z).

When it exists, a projection of x on F is generally not unique. By continuity of the distance
there always exist a projection of x on F when F is compact, and when F is closed if the metric
space is proper; however the assumption “proper space” is not necessary when F is the image of
a geodesic, as proved by the following

Lemma 8.6. If c is a geodesic line (or radius or segment) in a metric space (X, d), every point
x ∈ X admits a projection on the image Im(c) of c and the map x 7→ d(x, Im(c)) is Lipschitz
with Lipschitz constant 1.

The proof, elementary, is left to the reader.

Lemma 8.7. In a δ-hyperbolic space (thus geodesic and proper) (X, d), for any three points
x, y, z and any geodesic segment [y, z] joining y to z, if d(x, y) ≤ d

(
x, [y, z]

)
+ η, then d(x, z) ≥

d(x, y) + d(y, z)− 2 (η + δ).

Proof. Let ∆ be any geodesic triangle with vertices x, y, z whose third side [y, z] is the geodesic
segment under consideration, let (T∆, dT ) be the tripod associated to ∆ and f∆ : ∆ → T∆ the
approximation of ∆ by this tripod. If x′, y′, z′ are the three endpoints f∆(x), f∆(y), f∆(z) of the
tripod, the branching point c satisfies f−1

∆ ({c}) = {cx, cy, cz}, where cx, cy and cz respectively
lie on [y, z], [x, z] and [x, y]). One thus gets:

dT (x′, y′) = d(x, y) ≤ d
(
x, [y, z]

)
+η ≤ d(x, cx)+η ≤ dT (f∆(x), f∆(cx))+δ+η = dT (x′, c)+δ+η ,

where the first, second, third, fourth and fifth equalities or inequalities respectively follow from
Lemma 8.1, from the hypothesis, from the fact that cx ∈ [y, z], from Lemma 8.3 (i) and from
the fact that f∆(cx) = c. From this we deduce that dT (y′, c) = dT (x′, y′) − dT (x′, c) ≤ δ + η;
a consequence of this last inequality, of Lemma 8.1 and of the definition of the distance on the
tripod is that

d(x, z) = dT (x′, z′) = dT (x′, y′) + dT (y′, z′)− 2 dT (y′, c) ≥ d(x, y) + d(y, z)− 2 (δ + η) .

Replacing η with 0 in Lemma 8.7, we get the following immediate corollary, where the geodesic
c under consideration is either a geodesic line, or a geodesic ray, or a geodesic segment.

Lemma 8.8. (quasi equality in the triangle inequality) In any δ-hyperbolic space (X, d), for
any geodesic c of (X, d) and every point y on this geodesic, for every point x ∈ X, any of its
projections x̄ on the geodesic verifies d(x, y) ≥ d(x, x̄) + d(x̄, y)− 2 δ.

Lemma 8.9. In any δ-hyperbolic space (X, d), for any four points x, y, x̄, ȳ such that x̄ and ȳ
are projections of x and y (respectively) on some geodesic segment [x̄, ȳ] between x̄ and ȳ, then

d(x̄, ȳ) > 3 δ =⇒ d(x, y) ≥ d(x, x̄) + d(x̄, ȳ) + d(ȳ, y)− 6 δ .

Proof. The lemma 8.8 gives d(x, ȳ) ≥ d(x, x̄) + d(x̄, ȳ)− 2 δ and d(y, x̄) ≥ d(y, ȳ) + d(ȳ, x̄)− 2 δ.
From this and from the hypothesis d(x̄, ȳ) > 3 δ, we get:

d(x, ȳ) + d(y, x̄)− 2 δ ≥ d(x, x̄) + 2 d(x̄, ȳ) + d(y, ȳ)− 6 δ > d(x, x̄) + d(y, ȳ) ,

and, using this inequality and the quadrangle Lemma 8.3 (ii), we obtain

d(x, x̄)+2 d(x̄, ȳ)+d(y, ȳ)−6 δ ≤ d(x, ȳ)+d(y, x̄)−2 δ ≤ Max (d(x, x̄) + d(y, ȳ) ; d(x, y) + d(x̄, ȳ))

≤ d(x, y) + d(x̄, ȳ) ,

and this concludes.
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8.3 Asymptotic and diverging geodesic lines

In the following Proposition, points (i) and (iii) are classical: indeed, for any pair of geodesic rays
γ1, γ2 : [0,+∞[→ X, the definition of the ideal boundary of a Gromov-hyperbolic space (X, d) (see
Definition 7.1, p. 117 of [GdlH90] and the Definition given in chapter 2 of [CDP90], these two definitions
being equivalent by Proposition 7.4 p. 120 of [GdlH90]) implies the equivalence between the equality
γ1(+∞) = γ2(+∞) and the finiteness of the Hausdorff distance between the images of γ1 and γ2. In the
case where γ1 and γ2 are geodesic lines (as in (i)), it is sufficient to consider each γi as the union of two
geodesic rays. The proofs of properties (i) and (ii) being classical, we shall leave them to the reader and
only precise what are the constants which occur according to our definition of δ-hyperbolic spaces.
On the contrary, we shall give a proof of the point (iii) of the same Proposition, though it is similar
to a classical result, which says that, given three geodesic rays γ, γ1, γ2 : [0,+∞[→ X such that
γ1(+∞) = γ2(+∞) = γ(+∞), the Busemann function bγ associated to γ verifies supt∈[0,+∞[ |bγ

(
γ1(t)

)
−

bγ
(
γ2(t)

)
| ≤ C(δ), where the bound C(δ) only depends on the hyperbolicity constant δ for a good choice

of the origins of the rays. In fact, in the point (iii) of next Proposition, we need to precise quantitatively
the choice of these origins and the value of C(δ).

Proposition 8.10. In any δ-hyperbolic (thus geodesic and proper) space (X, d)

(i) if γ1, γ2 : R → X are two geodesic lines verifying γ1(+∞) = γ2(+∞) and γ1(−∞) =
γ2(−∞) then, for every t ∈ R, there exists s = s(t) ∈ R such that d

(
γ1(t), γ2(s)

)
≤ 2 δ.

Moreover there exists choices of the origins t0 and s0 of γ1 and γ2 (respectively) such that
d
(
γ1(t0 + t), γ2(s0 + t)

)
≤ 4 δ for every t ∈ R.

On the other hand, if γ1, γ2 : [0,+∞[→ X are two geodesic rays satisfying γ1(+∞) = γ2(+∞),

(ii) for every t ∈ [d(γ1(0), γ2(0)) , +∞[, there exists s ∈ [0,+∞[ such that d(γ1(t), γ2(s)) ≤ 2 δ,

(iii) there exist t1, t2 ≥ 0, verifying t1+t2 = d
(
γ1(0), γ2(0)

)
, such that d (γ1(t1 + t), γ2(t2 + t)) ≤

2 δ for every t ∈ R+.

Proof of (iii). Using (ii), if t′ is great enough (this implies that t′ > d
(
γ1(0), γ2(0)

)
+ 2 δ), there

exists s′ such that d
(
γ1(t′), γ2(s′)

)
≤ 2 δ. For sake of simplicity, make x0 = γ1(0), y0 = γ2(0),

x = γ1(t′), y = γ2(s′) and consider two geodesic triangles ∆ = [x0, x, y0] and ∆′ = [x, y, y0]
(with common side [x, y0]) and their approximations by tripods f∆ : (∆, d) → (T∆, dT ) and
f∆′ : (∆′, d) → (T∆′ , dT ′) (as in Lemma 8.1). Denoting by c (resp. by c′) the branching point
of T∆ (resp of T∆′), we have f−1

∆

(
{c}
)

= {c0, c1, c2}, where c0, c1 and c2 respectively lie on the
sides [x0, y0], [x0, x] and [y0, x] of ∆. Define

t1 = d(x0, c1) = d(x0, c0) = dT (f∆(x0), c) , t2 = d(y0, c2) = d(y0, c0) = dT (f∆(y0), c) ,

where t1 + t2 = d(x0, y0) and where (by the last equations and by Lemma 8.1)

t1 − t2 = dT (f∆(x0), c)− dT (f∆(y0), c) = dT (f∆(x0), f∆(x))− dT (f∆(y0), f∆(x))

= d(γ1(t′), x0)− d(γ1(t′), y0) ; (97)

as γ1(t1) = c1, Lemma 8.3 (i) implies that d (γ1(t1), c2) ≤ δ and, for every t ∈ [0, t′−2δ− t1], the
point γ1(t1 + t) relies on [c1, x], thus the point f∆

(
γ1(t1 + t)

)
is located on the branch [c, f∆(x) ]

of the tripod T∆. Denote by u the point of the geodesic segment [c2, x] ⊂ [y0, x] such that
f∆(u) = f∆

(
γ1(t1 + t)

)
, thus verifying d(c2, u) = d (c1, γ1(t1 + t)) = t (by Lemma 8.1); hence u

satisfies the following three properties:

d(y0, u) = t2 + t , d(x, u) = t′ − t1 − t ≥ 2 δ , d (γ1(t1 + t), u) ≤ δ , (98)

where the first equality follows from the properties d(c2, u) = t, d(y0, c2) = t2 and c2 ∈ [y0, u] and
where the two last inequalities result from the equality f∆(u) = f∆

(
γ1(t1 + t)

)
, from Lemma 8.3

(i) (which proves that d (γ1(t1 + t), u) ≤ δ) and from the fact that d(x, u) = dT
(
f∆(x), f∆(u)

)
=

d
(
x, γ1(t1 + t)

)
= t′ − t1 − t by Lemma 8.1).
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As u ∈ [x, y0], by construction of the tripod (T∆′ , dT ′) (see before Lemma 8.1), f∆′(u) lies in the
union of the two branches [c′, f∆′(x)] and [c′, f∆′(y0)] of T∆′ . As d(x, y) = d

(
γ1(t′), γ2(s′)

)
≤ 2 δ,

Lemma 8.1, the second of the properties (98) and the definition of t give:

dT ′ (f∆′(x), c′) ≤ dT ′ (f∆′(x), f∆′(y)) = d(x, y) ≤ 2 δ ≤ d(x, u) = dT ′ (f∆′(x), f∆′(u)) ;

thus, as an immediate consequence, f∆′(u) /∈ ]c′, f∆′(x)] and f∆′(u) lies on the branch [c′, f∆′(y0)]
of T∆′ . Hence, there exists u′ = γ2(s) ∈ [y0, y] = γ2

(
[0, s′]

)
such that f∆′(u

′) = f∆′(u), thus (us-
ing Lemma 8.3 (i)) such that d (u, u′) ≤ δ; in addition, Lemma 8.1, the equality f∆′(u

′) = f∆′(u)
and the first of properties (98) imply that s = d(y0, u

′) = dT ′ (f∆′(y0), f∆′(u)) = d(y0, u) = t2+t,
thus that u′ = γ2(t2 + t); the triangle inequality and the last of properties (98) then give:
d (γ1(t1 + t), γ2(t2 + t)) ≤ d (γ1(t1 + t), u) + d(u, u′) ≤ 2 δ for every t ∈ [0, t′ − 2δ − t1], thus
(when t′ → +∞) for every t ∈ [0,+∞[.

For every geodesic c of (X, d) and every x ∈ X, call πc(x) the set of all the projections of the
point x on the image Im(c) of c; Lemma 8.6 guarantees that, if c is a geodesic segment, or ray,
or line, then πc(x) is never empty. The image πc(E) of a subset E ⊂ X by the projection on c
is defined as ∪x∈E πc(x). We have the

Proposition 8.11. If c1, c2 are any two geodesic lines in any δ-hyperbolic space (X, d) verifying
{c1(−∞) , c1(+∞)} ∩ {c2(−∞) , c2(+∞)} = ∅ (in the ideal boundary), then

(i) the subset Π of R such that γ1(Π) = πc1(Im(c2)) is bounded from below and from above,

(ii) there exists points x0 = c1(s0) and x′0 = c1(s1) on the geodesic line c1 such that, for every
s ∈ R, the gap between the two sides of the triangle inequality is bounded, precisely:{

lim supt→+∞ [d (c1(s), x0) + d (x0, c2(t))− d (c1(s), c2(t))] ≤ 5δ
lim supt→−∞ [d (c1(s), x′0) + d (x′0, c2(t))− d (c1(s), c2(t))] ≤ 5δ

Proof of (i). We shall only prove that Π admits a bound from above (the proof of the existence
of a bound from below is the same, while changing the orientation of c1). By contradiction,
suppose the existence of a sequence (sn)n∈N in Π which goes to +∞, there then exists a real
sequence (tn)n∈N such that c1(sn) ∈ πc1 (c2(tn)), and then

• either (tn)n∈N is bounded, but then d (c1(0), c2(tn)) is bounded by some constant D > 0
and d (c2(tn), c1(sn)) = d (c2(tn), Im(c1)) ≤ d (c1(0), c2(tn)) ≤ D, and this implies (by the
triangle inequality) that sn = d (c1(0), c1(sn)) ≤ 2D;

• or there exists a subsequence of (tn)n∈N (still denoted by (tn)n∈N) which goes to ±∞.
When n → +∞, as the limits (on the ideal boundary ∂X) of c1(sn) and c2(tn) do not
coincide, Gromov’s product32

(
c1(sn)|c2(tn)

)
(with respect to the origin c1(0)) is bounded

by some constant D′, and (using also the inequality d (c2(tn), c1(sn)) = d (c2(tn), Im(c1)) ≤
d (c1(0), c2(tn))) this implies:

sn ≤ d (c1(0), c1(sn)) + d (c1(0), c2(tn))− d (c2(tn), c1(sn)) = 2
(
c1(sn)|c2(tn)

)
≤ 2D′ .

This contradiction proves the non-existence of a sequence (sn)n∈N in Π which goes to +∞.

Proof of (ii). Denote by Kt the closure of πc1 (c2([t,+∞[)); for every sequence (tn)n∈N going
to +∞ define ∩n∈N Ktn = K (verify that K does not depend on the choice of the sequence).
Property (i) implies that each Kt is bounded and thus compact (because (X, d) is proper), it
results that K (as a decreasing intersection of the compact sets Kn) is a non empty compact set.
Let us now prove that

K is included in a segment [c1(a), c1(b)] of length ≤ 3δ of the geodesic c1 . (99)

32Gromov’s product
(
x|y
)

with respect to a chosen origin x0 is defined as
(
x|y
)

:= 1
2

(
d(x0, x)+d(x0, y)−d(x, y)

)
.

The fact that
(
c1(sn)|c2(tn)

)
is bounded when c1(+∞) 6= c2(+∞) is a direct consequence of the definition of the

ideal boundary given (for instance) in [CDP90], section 2.1 p. 16, see Proposition 2.1.2 p. 18 of [CDP90].
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Indeed, for every n ∈ N, K ⊂ Kn ⊂ Im(c1). Furthermore, every x, x′ ∈ K are (respectively)
limits of sequences (xn)n∈N and (x′n)n∈N of elements of πc1 (c2([n,+∞[)): in fact, as x (resp. x′)

lies in the closure Kn of πc1
(
c2([n,+∞[)

)
, we only have to choose xn (resp. x′n) in the (non

empty) intersection of πc1 (c2([n,+∞[)) with BX
(
x, 1

n

)
(resp. with BX

(
x′, 1

n

)
). There thus

exist tn, t
′
n ∈ [n,+∞[ such that xn (resp. x′n) is a projection on c1 of c2(tn) (resp. of c2(t′n)).

Using two times the lemma 8.8, and afterwards the quadrangle Lemma 8.3 (ii), we get:

d (x′n, c2(t′n)) + 2 d (xn, x
′
n) + d (xn, c2(tn)) ≤ d (xn, c2(t′n)) + d (x′n, c2(tn)) + 4δ

≤ Max [d (xn, x
′
n) + d (c2(tn), c2(t′n)) ; d (xn, c2(tn)) + d (x′n, c2(t′n))] + 6δ . (100)

As d (xn, c1(0)) and d (x′n, c1(0)) are bounded by property (i), then d (xn, c2(0)) and d (x′n, c2(0))
are bounded by some constant (say C); from this and the triangle inequality, when n is great
enough, follows that:

d (xn, c2(tn)) ≥ tn − d (xn, c2(0)) ≥ tn − C , d (x′n, c2(t′n)) ≥ t′n − d (x′n, c2(0)) ≥ t′n − C ,

As tn + t′n − |tn − t′n| = 2 Min(tn, t
′
n) ≥ 2n, when n is great enough it comes that

d (xn, c2(tn))+d (x′n, c2(t′n)) ≥ tn+t′n−2C ≥ |tn−t′n|+2n−2C > d (c2(tn), c2(t′n))+d (xn, x
′
n) ,

where the last inequality (which is valid as soon as n > 2C) is a consequence of the fact that
d(x, x′) ≤ 2C by the point (i) and the triangle inequality. Plugging this last series of inequalities
in (100), we obtain:

d (x′n, c2(t′n)) + 2 d (xn, x
′
n) + d (xn, c2(tn))− 6 δ ≤ d (xn, c2(tn)) + d (x′n, c2(t′n)) .

This implies that d (xn, x
′
n) ≤ 3 δ and (going to the limit) that d (x, x′) ≤ 3 δ, this proves that

diameter of K ≤ 3 δ and, as K ⊂ Im(c1), this achieves the proof of (99).

As c1 : R → X is an isometric (proper) injection, the compact sets K ′t := c−1
1 (Kt) and K ′ :=

c−1
1 (K) are compact subset of R verifying K ′ ⊂ [a, b] (by (99)) and such that K ′ is the decreasing

intersection of the compact sets K ′t when t → +∞; it follows that, for every ε > 0, there exists
Aε ∈ R+ such that K ′t ⊂ [a−ε, b+ε] for every t ≥ Aε. We choose x0 = c1

(
a+b

2

)
(the middle-point

of [c1(a), c1(b)]). For every t ∈ R, if z = c1(τ) is a projection of c2(t) on the geodesic line c1, one
has z ∈ πc1 (c2([t,+∞[)) = Kt = c1(K ′t); hence, for every t ≥ Aε, one gets that τ ∈ [a− ε, b+ ε]
and thus d(x0, z) ≤ 3

2 δ + ε. Using Lemma 8.8 and the triangle inequality, we conclude that, for
every s ∈ R and every t ≥ Aε,

d (c1(s), c2(t)) ≥ d (c2(t), z) + d (z, c1(s))− 2 δ ≥ d (c2(t), x0) + d (x0, c1(s))− 5 δ − 2 ε ;

and, when ε→ 0, this achieves the proof of the first inequality of (ii).

Now, defining c̃2(t) = c2(−t) and applying the first inequality of (ii) to the pair of geodesic lines
c1, c̃2, we prove that there exists a point x′0 on the geodesic line c1 such that, for every s ∈ R,

lim sup
t→+∞

[d (c1(s), x0) + d (x0, c2(−t))− d (c1(s), c2(−t))] ≤ 5δ

and this ends the proof of the second inequality of (ii)

8.4 Isometries and displacements

8.4.1 Discrete subgroups of the group of isometries

Considering the action (by isometries) of any group Γ on any metric space, we recall that, for every
R > 0, and every x ∈ X, we have defined ΣR(x) := {γ ∈ Γ : γ x ∈ BX(x,R)}.

The following Proposition precises the equivalences between a “proper” and a “discrete” action
(see Definitions 2.1 of these two notions)
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Proposition 8.12. On a metric space (X, d) every faithful and proper action by isometries is
discrete. Conversely, if (X, d) is a proper metric space, then every faithful and discrete action
by isometries is proper.

Proof. Consider any faithful action (by isometries) of a group Γ on any metric space (X, d), this
authorizes to view Γ as a subgroup of the group Isom(X, d) of isometries of (X, d), endowed with
the topology of uniform convergence on compact sets.
If this action is supposed proper, let (γn)n∈N be any converging sequence of elements of Γ and
denote by g ∈ Isom(X, d) its limit; let x be any point in X, there then exists N ∈ N such
that, for every p ∈ N, one has d

(
x, γ−1

N γN+p x
)

= d
(
γN x, γN+p x

)
< 1, and the sequence

p 7→ γ−1
N γN+p, running in the finite set Σ1(x), is stationary because it converges. This proves

that the initial sequence n 7→ γn is also stationary, thus that Γ is a closed discrete subset of
Isom(X, d).
Conversely, if Γ is a discrete subgroup of Isom(X, d) and if (X, d) is a proper space, arguing
by contradiction, suppose that there exist x0 ∈ X and R0 > 0 such that ΣR0

(x0) is infinite,
Ascoli’s Theorem then proves that, for any k ∈ N∗, ΣR0(x0) is a relatively compact subset of
the set of continuous mappings from BX(x0, k) to X (endowed with the topology of uniform
convergence)33. As ΣR0

(x0) is infinite, stable under the mapping γ 7→ γ−1, and relatively
compact, it contains a sequence of distinct elements and, from this sequence, we can extract a

subsequence n 7→ γkn such that
(
γkn
)
n∈N and

((
γkn
)−1
)
n∈N

uniformly converge on BX(x0, k), with

respective limits continuous mappings fk and hk from BX(x0, k) to X. By successive extractions
of subsequences, we can construct fk+1 and hk+1 from BX(x0, k + 1) to X as extensions of fk
and hk (respectively); this process constructs continuous mappings f and h from X to X, which
coincide (for every k ∈ N∗) with fk and hk on BX(x0, k). By a diagonal process34 we can choose,
for each k ∈ N∗, an element γknk in each sequence

(
γkn
)
n∈N such that the two sequences k 7→ γknk

and k 7→
(
γknk
)−1

are made of distinct elements and converge respectively to f and g (uniformly
on each compact set).

As every γknk and
(
γknk
)−1

are isometries, their uniform limits f and h also preserve distances

and also verify h ◦ f = limk→+∞
(
γknk
)−1 ◦ γknk = idX and (by similar arguments) f ◦ h = idX ;

this proves that f and h are isometries. Another consequence is that limk→+∞
(
γknk
)−1 ◦γk+1

nk+1
=

h◦f = idX and, as idX is isolated in Γ, that
(
γknk
)−1 ◦γk+1

nk+1
= idX , thus that γk+1

nk+1
= γknk when

k is great enough, in contradiction with the fact that the sequence
(
γknk
)
k∈N∗ is made of distinct

elements. This contradiction can be avoided only if ΣR(x0) is finite for every R > 0.

Lemma 8.13. Every proper action (by isometries) of a group Γ on a metric space (X, d) verifies:

(i) the quotient space Γ\X is a metric space when endowed with the quotient-distance d̄ defined
by d̄(Γ · x,Γ · y) := infγ∈Γ d(x, γ y),

(ii) if (X, d) is a proper space and if (Γ\X, d̄) has finite diameter, then Γ\X is compact,

(iii) if Γ acts without fixed point, then the action is faithful and discrete.

(iv) if Γ is torsion-free, then the action is faithful, discrete and without fixed point

33Indeed, the hypotheses of Ascoli’s Theorem are verified for BX(x0, k) is compact and (X, d) (being proper)
is a complete metric space, ΣR0

(x0), being included in Isom(X, d), is an equicontinuous family and, for every

x ∈ BX(x0, k), {γ x : γ ∈ ΣR0 (x0)}, being included in the compact ball BX(x0, R0 + k), is a relatively compact
subset of (X, d).

34The uniform convergence on BX(x0, k) of the two sequences n 7→ γkn and n 7→
(
γkn
)−1

imply that, to

every k ∈ N∗ corresponds an infinite set Ak ⊂ {γkn : n ∈ N} whose elements γkn verify simultaneously

supx∈BX (x0,k) d
(
f(x), γkn(x)

)
< 1/k and supx∈BX (x0,k) d

(
h(x),

(
γkn
)−1

(x)
)
< 1/k; we choose γ1

n1
in A1 and, if

γ1
n1
, . . . , γk−1

nk−1
have already been chosen, we choose γknk as an element of Ak \ {γ1

n1
, . . . , γk−1

nk−1
}. In this way, we

obtain a sequence k 7→ γkn of distinct elements such that
(
γknk

)
k∈N∗

and

((
γknk

)−1
)
k∈N∗

uniformly converge

to f and h (respectively) on each closed ball.

119



Proof. The proof of (i) is classical; the proof of (ii) is straightforward because (X, d) is a proper
space. These two proofs are thus left to the reader.
Proof of (iii): if the action is fixed-point-free, the stabilizer of every point is trivial, thus the
action is faithful and, as it is proper by hypothesis, it is discrete with the help of the first part
of Proposition 8.12.
Proof of (iv): The action being proper, the stabilizer of every point is a finite subgroup, which is
trivial because Γ is torsion-free, this implies that the action is faithful and fixed-point-free, thus
discrete by the point (iii).

The following remark is well known by the specialists of group theory

Remark 8.14. Every non trivial, torsion-free, virtually cyclic group is isomorphic to (Z,+).

Proof. As the group G under consideration is non trivial and torsion-free, it is infinite and,
being virtually cyclic, it contains a cyclic (infinite) subgroup H of finite index in G, thus H is
isomorphic to Z. For every g ∈ G, define %(g)(g′H) = (gg′)H, then % is a morphism from G into
the (finite) group of permutations of G/H, whose kernel is a normal subgroup of finite index in
G and is contained in H. Replacing H by Ker %, we reduce the problem to the case where H
is a normal subgroup of finite index in G and is isomorphic to Z; we fix one generator of this
subgroup, denoted by τ .
Denote by r : G → Aut(H) the conjugacy morphism defined by r(g)(h) = ghg−1 then, for
every g ∈ G, r(g) maps τ onto τ or τ−1. Suppose that there exists some g ∈ G such that
r(g) 6= idH , thus such that gτg−1 = τ−1, then ghg−1 = h−1 for every h ∈ H; as there exists
n ∈ N∗ such that gn ∈ H, it follows that g gng−1 = g−n, thus that g2n = e, in contradiction
with the “torsion-free” hypothesis. It comes that ghg−1 = r(g)(h) = h for every (g, h) ∈ G×H,
hence H is contained in the center of G; let N := #

(
G/H

)
, then the transfer homomorphism

V : G → H verifies V (h) = hN for every h ∈ H and is thus injective when restricted to H,
by the “torsion-free” hypothesis, and the quotient map G → G/H induces an injective map
Ker(V ) = Ker(V )/

(
Ker(V ) ∩H

)
→ G/H. This implies that KerV is finite, thus it is trivial by

the “torsion-free” hypothesis; it follows that V is an isomorphism from G onto some (infinite)
subgroup of H, which is isomorphic to Z.

8.4.2 Isometries and displacements in Gromov-hyperbolic spaces

Let (X, d) be any δ-hyperbolic (thus geodesic and proper) space, denote by ∂X its ideal bound-
ary35. It is well known that every isometry γ of (X, d) can be extended as a continuous mapping
(moreover Lipschitz for a convenient metric) from X∪∂X to X∪∂X (see for example Proposition
11.2.1 p. 134 of [CDP90]). An isometry γ of (X, d) is said to be

• elliptic if, for at least one x ∈ X (thus for every x ∈ X), the sequence k 7→ γkx is bounded,

• parabolic if, for at least one x ∈ X (thus for every x ∈ X), the sequence k 7→ γkx admits
one and only one accumulation point, denoted by γ∞, located on the ideal boundary ∂X
(γ∞ does not depend on the choice of x),

• hyperbolic if, for at least one x ∈ X (thus for every x ∈ X), the map k → γkx is a
quasi-isometry from Z to X.

The following Theorem is classical

Theorem 8.15. (see for example [CDP90], Théorème 9.2.1 p. 98) On any δ-hyperbolic space,
every isometry is either elliptic, or parabolic, or hyperbolic.

If γ is an hyperbolic (resp. parabolic) isometry, it is a classical result [see for example [CDP90],
Proposition 10.6.6 p. 118, (resp. [GdlH90], Théorème 17 in Chapter 8)] that the action (extended

35For two definitions of this ideal boundary and of its topology, see Definition 7.1 p. 117 of [GdlH90] and
chapter 2 of [CDP90], these two definitions being equivalent by Proposition 7.4 p. 120 of [GdlH90].
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as explained above) of γ on X ∪ ∂X admits exactly two (resp. one) fixed points, which are the
limits γ+ and γ− of γpx and γ−px when p → +∞ (resp. which is the limit γ∞ of γkx when
k → ±∞).
The following remark is well known by the specialists; its proof is trivial (and left to the reader)
if one notices that, by Lemma 8.12, every discrete subgroup of the group Isom(X, d) of isometries
of (X, d) acts properly on (X, d).

Remark 8.16. On any δ-hyperbolic space (X, d), if Γ is a discrete subgroup of Isom(X, d), then

(i) an element of Γ∗ is elliptic if and only if it has torsion; if Γ is torsion-free, every γ ∈ Γ∗

is either hyperbolic or parabolic;

(ii) for every g ∈ Γ∗ and every k ∈ Z∗ such that gk 6= idX , g is hyperbolic (resp. parabolic,
resp. elliptic) if and only if gk is hyperbolic (resp. parabolic, resp. elliptic); moreover, in
the cases where g is hyperbolic or parabolic, then gk and g have the same set of fixed points.

In case of an hyperbolic isometry γ, we introduce (in Definitions 8.25) the set G(γ) of the oriented
(generally not unique) geodesic lines from γ− to γ+ (γ−, γ+ ∈ ∂X being the two fixed points of
γ) and the union M(γ) ⊂ X of the images of these geodesic lines.

Remark 8.17. On any δ-hyperbolic space (X, d), for every hyperbolic isometry, if c ∈ G(γ),
then γk ◦ c ∈ G(γ) for every k ∈ Z; consequently M(γ) is (globally) invariant under γk.

The proof, straightforward, is left to the reader.

Definitions 8.18. To each non trivial isometry γ of a δ-hyperbolic space (X, d), one associates:

• its asymptotic displacement `(γ), i. e. the limit36 (when k → +∞) of 1
k d(x, γk x),

• its minimal displacement s(γ) := infx∈X d(x, γ x).

Notice that `(γk) = |k| `(γ) for every k ∈ Z and that 37 `(γ) ≤ s(γ).

The following Lemma is classical (see for instance [CDP90], Proposition 10.6.3, p. 118):

Lemma 8.19. On any δ-hyperbolic space (X, d), for every isometry γ, γ is hyperbolic if and
only if `(γ) > 0.

Lemma 8.20. On any δ-hyperbolic space (X, d), for every isometry γ and every x ∈ X,

(i) d(x, g2x) ≤ d(x, g x) + `(g) + 2 δ ,

(ii) ∀p ∈ N d(x, g2px) ≤ d(x, g x) + (2p − 1) `(g) + 2 p δ ,

(iii) ∀n ∈ N∗ d(x, gnx) < d(x, g x) + (n− 1) `(g) + 4 δ
ln(n)

ln(2)
.

Proof of (i). The proof of (i) is a simple rearrangement of the arguments used in the proof of
the Lemme 9.2.2 pp 98-99 of [CDP90]: define an := d(x, gnx) and apply Lemma 8.3 (ii) to the
quadrangle with vertices x, g x, g2x and gnx, this gives:

a2 + an−1 ≤ Max(a1 + an−2 , a1 + an) + 2 δ (101)

for every n ≥ 3, and thus for every n ≥ 2.
By contradiction, suppose that there exists a point x such that d(x, g2x) > d(x, g x) + `(g) + 2 δ,
which means that there exists α > `(g) which verifies

a2 ≥ a1 + α+ 2 δ , (102)

36By sub-additivity, this limit exists and, by the triangle inequality, it does not depend on the point x, see for
example [CDP90], Proposition 10.6.1 page 118).

37Indeed, for every x ∈ X and every k ∈ N, the triangle inequality gives
1

k
d(x, γk x) ≤ d(x, γ x).
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the inequality (101) then implies that

∀n ≥ 2 , an−1 + α ≤ Max(an−2 , an) . (103)

Let us prove the property
∀n ∈ N an+1 ≥ an + α : (104)

the proof of this property is by iteration: indeed the inequality an+1 ≥ an + α is verified when
n = 1 (by the inequality (102)) and also when n = 0 because, by (102) and the triangle inequality,
a0 +α+a1 +2 δ = α+a1 +2 δ ≤ a2 ≤ 2 a1 (for a0 = 0). Following the iteration process, assuming
the inequality an+1 ≥ an + α, we now prove that an+2 ≥ an+1 + α: indeed, from (103), we get
Max(an+2 , an) ≥ an+1 + α ≥ an + 2α, thus that an+2 ≥ an+1 + α, and (by iteration) this ends
the proof of (104).
A consequence of (104) is that an ≥ nα, thus that limn→+∞

(
1
n d(x, gnx)

)
≥ α > `(g), in

contradiction with the Definition 8.18 of `(g). The only solution to avoid this contradiction is
thus that, for every x ∈ X, one has d(x, g2x) ≤ d(x, g x) + `(g) + 2 δ.

Proof of (ii). Let us denote by (Qp) the property “ d(x, g2px) ≤ d(x, g x) + (2p− 1) `(g) + 2 p δ ”,
this property is trivially verified when p = 0 and, by (i), when p = 1; if (Qp) is verified, then
(Qp+1) is satisfied also because, using (i) and the fact that `(gk) = |k| `(g), one gets

d(x, g2p+1

x) ≤ d(x, g2p x) + `(g2p) + 2 δ ≤ d(x, g x) + (2p+1 − 1) `(g) + 2 (p+ 1) δ ,

which proves (Qp) for every p ∈ N, and thus proves (ii).

Proof of (iii). Let us define the property(
Pp
)

: ∀n ∈ N∗ such that 2p < n < 2p+1 , d(x, gnx) ≤ d(x, g x) + (n− 1) `(g) + 4 δ p .

As (ii) solve the case where n = 2p, in order to prove (iii), it is sufficient to verify property
(
Pp
)

for every p ∈ N∗. For every p ∈ N∗ and every n such that 2p < n < 2p+1, the quadrangle Lemma
8.3 (ii) implies that

d(x, gnx)+d(g2px, g2p+1

x)−2 δ ≤ Max
[
d(x, g2px) + d(gnx, g2p+1

x) ; d(x, g2p+1

x) + d(gnx, g2px)
]

≤ Max
[
d(x, g2px) + d(gnx, g2p+1

x) ; d(x, g2p x) + 2p `(g) + 2 δ + d(gnx, g2px)
]
,

where the second inequality comes from point (i). Simplifying, we obtain:

d(x, gnx) ≤ Max
[
d(x, g2p+1−nx) ; 2p `(g) + 2 δ + d(x, gn−2px)

]
+ 2 δ . (105)

Applying the inequality (105) to the case p = 1 and n = 3, it comes:

d(x, g3x) ≤ 2 δ + Max [d(x, g x) ; 2 `(g) + 2 δ + d(x, g x)] = d(x, g x) + 2 `(g) + 4 δ ,

and this proves property
(
P1

)
. We now show that, for every p ≥ 2, if

(
P1

)
, . . . ,

(
Pp−1

)
are

all verified, then
(
Pp
)

is verified too: thus, assuming that
(
P1

)
, . . . ,

(
Pp−1

)
are verified and

property (ii), the inequality d(x, gix) ≤ d(x, g x) + (i − 1) `(g) + 4 δ (p − 1) is verified for every
i ∈ N such that 1 ≤ i ≤ 2p, and this implies that, for every n ∈ N∗ such that 2p < n < 2p+1,
then 1 ≤ 2p+1 − n, n− 2p ≤ 2p − 1 and we get that

d(x, g2p+1−nx) ≤ d(x, g x) +
(
2p+1 − n− 1

)
`(g) + 4 (p− 1) δ ,

d(x, gn−2px) ≤ d(x, g x) + (n− 2p − 1) `(g) + 4 (p− 1) δ ,

Plugging these two last inequalities in (105) and noticing that n− 1 ≥ 2p+1 − n, it follows that

d(x, gnx) ≤ d(x, g x)+4 p δ+Max
[(

2p+1 − n− 1
)
`(g)− 2 δ ; (n− 1) `(g)

]
≤ d(x, g x)+(n−1) `(g)+4 p δ .

This proves that
[(
P1

)
and . . . and

(
Pp−1

)]
=⇒

(
Pp
)
. This proves property

(
Pp
)

for every
p ∈ N∗ and ends the proof as announced above.
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Lemma 8.21. On any δ-hyperbolic space (X, d), for every isometry g and every x ∈ X, if m is
the middle-point of some geodesic [x, g x] from x to gx, then

Max
[
0 , d(x, g2x)− d(x, g x)

]
≤ d(m, gm) ≤ Max

[
0 , d(x, g2x)− d(x, g x)

]
+ δ ≤ `(g) + 3 δ .

Proof. The proof consists in updating the proof of Lemma 9.3.1 p. 101 of [CDP90]. After having
chosen two geodesic segments [x, gx] and [x, g2x], we fix the geodesic segment [gx, g2x] as the
image by g of [x, gx], then gm is the middle-point of [g x, g2x]. Apply the approximation Lemma
8.1 to the geodesic triangle ∆ = [x , g x , g2x] which is the union of these three geodesic segments
and to the approximation map f∆ from ∆ to the metric tripod (T∆, dT ); denote by α, β and γ
the lengths of the branches of T∆ with respective endpoints f∆(x), f∆(g x) and f∆(g2x), and by
c the branching point of this tripod. Lemma 8.1 guarantees that

α+ β = dT
(
f∆(x), f∆(g x)

)
= d(x, g x) = d(g x, g2x) = dT

(
f∆(g x), f∆(g2x)

)
= β + γ ,

thus that γ = α; Lemma 8.1 also implies that

dT
(
f∆(m), f∆(x)

)
= dT

(
f∆(m), f∆(g x)

)
=
α+ β

2
= dT

(
f∆(gm), f∆(g x)

)
. (106)

• If β ≥ α, it follows from (106) that f∆(m) and f∆(gm) both lie on the same branch
[c , f∆(g x)] of the tripod and that f∆(m) = f∆(gm) because dT

(
f∆(gm), f∆(g x)

)
=

dT
(
f∆(m), f∆(g x)

)
; by Lemma 8.3 (i), this implies that d(m, gm) ≤ δ

• If β < α (i. e. if d(x, g2x) > d(x, g x)), it follows from (106) that f∆(m) and f∆(gm)
respectively lie on the branches [c , f∆(x)] and [c , f∆(g2x)] of the tripod; from this and
from Lemmas 8.1 and 8.3 (i), we deduce that

d(x, g2x)−d(x, g x) = γ−β = dT
(
f∆(x), f∆(g2x)

)
−dT

(
f∆(m), f∆(x)

)
−dT

(
f∆(gm), f∆(g2x)

)
= dT

(
f∆(m), f∆(gm)

)
≤ d(m, gm) .

By the approximation Lemma 8.3 (i), it then comes that

d(x, g2x)− d(x, g x) ≤ d(m, gm) ≤ dT
(
f∆(m), f∆(gm)

)
+ δ ≤ d(x, g2x)− d(x, g x) + δ ,

This proves the first and second inequalities of Lemma 8.21, the third one then follows from
Lemma 8.20 (i)

Lemma 8.22. On a δ-hyperbolic space (X, d), every parabolic isometry γ satisfies the following
property: for every geodesic ray c such that c(+∞) ∈ ∂X is the single fixed point γ∞ of γ, there
exists T = T (γ) ≤ d

(
c(0), γ ◦ c(0)

)
such that d

(
c(t), γ

(
c(t)
))
≤ 7δ for every t ∈ [T,+∞[.

Proof. As γ ◦ c(+∞) = γ(γ∞) = γ∞ = c(+∞), we may apply Proposition 8.10 (iii) to the
geodesics c and γ ◦ c and conclude that there exist t1, t2 ≥ 0, verifying t1 + t2 = d

(
c(0), γ ◦ c(0)

)
,

such that d (c(t1 + s), γ ◦ c (t2 + s)) ≤ 2 δ for every s ≥ 0. Let us define T := max(t1, t2), then
two cases are possible:

• If |t2 − t1| ≤ 3 δ then, for every s ∈ [0,+∞[, the last inequality and the triangle one give:

d
(
c(t2+s), γ ◦ c(t2+s)

)
≤ d
(
c(t2+s), c(t1+s)

)
+d
(
c(t1+s), γ ◦ c(t2+s)

)
≤ |t2−t1|+2 δ ≤ 5δ ,

and, making s := t− t2, which is nonnegative when t ≥ T , this ends the proof in this case.

• If |t2 − t1| > 3 δ, for every s ∈ [0,+∞[, let us consider a geodesic triangle
∆ =

[
c(t1 + s) , γ ◦ c(t2 + s) , c(t2 + s)

]
and its approximation by the associated tripod

f∆ : (∆, d) → (T∆, dT ), the branching point of this tripod being denoted by e and the
lengths of the three branches with respective ending points f∆

(
c(t1 + s)

)
, f∆(γ ◦ c(t2 + s))

and f∆(c(t2 + s)) being denoted by α, β and γ.
Lemma 8.1 and the previous inequality d (c(t1 + s), γ ◦ c (t2 + s)) ≤ 2 δ yield α+γ = |t2−t1|,
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α+β ≤ 2 δ, γ+β = d
(
c(t2 +s), γ ◦ c(t2 +s)

)
, and consequently γ−β = (α+γ)− (α+β) ≥

|t2 − t1| − 2 δ > δ > 0. This last inequality implies that, if ms is the middle point
of the geodesic side [c(t2 + s), γ ◦ c (t2 + s)] of ∆, the point f∆(ms) lies on the branch[
e, f∆(c(t2 + s))

]
of the tripod T∆; there thus exists a point m′s = c

(
τ(s)

)
of the geodesic

side
[
c(t2 + s), c(t1 + s)

]
of ∆ such that f∆(m′s) = f∆(ms). Applying Lemma 8.3 (i), we

obtain that d(ms,m
′
s) ≤ δ. From this, from the triangle inequality and from Lemma 8.21,

for every s ≥ 0, we deduce:

d
(
c
(
τ(s)

)
, γ c

(
τ(s)

))
= d(m′s, γ m

′
s) ≤ d(ms, γ ms) + 2 δ ≤ `(γ) + 5 δ = 5 δ , (107)

where this last equality comes from the fact that `(γ) = 0 for γ is parabolic.
As s+ min(t1, t2) ≤ τ(s) ≤ s+ max(t1, t2), it follows first that τ(s) ≤ T + s, on the other
hand, defining s′ := s+ |t2 − t1| one has

τ(s′) = τ(s+ |t2 − t1|) ≥ s+ |t2 − t1|+ min(t1, t2) = s+ max(t1, t2) = T + s .

As τ(s) ≤ T + s ≤ τ(s′), from (107) and from the convexity (modulo an error ≤ 2δ) of the
distance between geodesics in a δ-hyperbolic space, we draw, for every s ≥ 0,

d
(
c(T+s), γ ◦ c(T+s)

)
≤ Max

[
d
(
c
(
τ(s)

)
, γ ◦ c

(
τ(s)

))
; d
(
c
(
τ(s′)

)
, γ ◦ c

(
τ(s′)

))]
+2 δ ≤ 7 δ ,

and, making s := t− T , which is nonnegative when t ≥ T , this ends the proof in this case.

Lemma 8.23. Let g be any non trivial isometry of any δ-hyperbolic space (X, d), then

(i) `(g) ≤ s(g) ≤ `(g) + δ,

(ii) if s(g) > δ, for every p ∈ N∗, one has the property:(
Qp
)

: ∀x ∈ X d
(
x, g2px

)
≥ d(x, g x) + (2p − 1) (s(g)− δ)

(iii) if s(g) > 3 δ, for every x ∈ X, the sequence
(
d(x, gnx)

)
n∈N∗ is strictly increasing.

Proof. Denote by mx the middle-point of any geodesic [x, g x] from g to g x. If s(g) > δ, one has
d(mx, g mx) > δ and Lemma 8.21 then proves that

∀x ∈ X s(g)− δ ≤ d(mx, g mx)− δ ≤ d(x, g2x)− d(x, g x) . (108)

We are going to prove (by iteration) property
(
Qp
)

for every p, an immediate corollary being:

s
(
g2p
)
− δ ≥ 2p (s(g)− δ) . (109)

Property
(
Q1

)
is verified by (108); suppose

(
Qp
)

to be verified, then its corollary (109) is also

verified, in particular one has s
(
g2p
)
> δ and one may apply inequality (108), and afterwards(

Qp
)

and its corollary, which give:

d
(
x, g2p+1

x
)
≥ d
(
x, g2px

)
+ s
(
g2p
)
− δ ≥ d(x, g x) +

(
2p+1 − 1

)
(s(g)− δ) ;

a consequence is that
(
Qp
)

=⇒
(
Qp+1

)
for every p ∈ N∗, and thus that property

(
Qp
)

is
verified for every p ∈ N∗. This proves (ii).

The proof of the inequality `(g) ≤ s(g) has been given after Definitions 8.18. Let us now prove
that s(g) ≤ `(g) + δ: if s(g) ≤ δ this inequality is trivially verified, let us thus suppose that
s(g) > δ; this allows to apply property

(
Qp
)
, which gives: `(g) = limp→+∞ 2−p d

(
x, g2px

)
≥

s(g)− δ. This proves (i).
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By (i), the hypothesis s(g) > 3 δ implies that `(g) > 2 δ, thus g is an hyperbolic isometry by
Lemma 8.19. Applying (108), and afterwards the quadrangle Lemma 8.3 (ii), we obtain:

d
(
x , gn+1x

)
+ d(x, g x) + s(g)− δ ≤ d

(
x , gn+1x

)
+ d
(
x , g2x

)
= d
(
x , gn+1x

)
+ d
(
gnx , gn+2x

)
≤ Max

[
d
(
x , gnx

)
+ d
(
gn+1x , gn+2x

)
, d
(
x , gn+2x

)
+ d
(
gnx , gn+1x

)]
+ 2 δ .

From this, defining dn = d
(
x , gnx

)
, we deduce that dn+1 ≤ Max [dn, dn+2] + 3 δ − s(g) <

Max [dn, dn+2] for s(g) > 3 δ; as d1 < d2 by (108), this implies (arguing by iterations) that the
sequence

(
dn
)
n∈N∗ is strictly increasing. This proves (iii).

The following Lemma is an explicit and quantified version of the lemma 9.2.3 p. 98 of [CDP90]:

Lemma 8.24. Let (X, d) be a δ-hyperbolic space, α be any strictly positive real value, and {g, h}
be any pair of isometries of (X, d) which satisfies the property:

∃x ∈ X s.t. d(gx, hx) ≥ Max [d(x, gx) ; d(x, hx)] + 5 δ + α , (110)

then either `(g) ≥ 3δ + α, or `(h) ≥ 3δ + α, or `(gh) = `(hg) ≥ 2α.

Proof. The proof mimics the one of Lemma 9.2.3 of [CDP90] (pp. 98-101).
Let us suppose that `(g), `(h) < 3δ + α (if not, the lemma is automatically verified); applying
the quadrangle Lemma 8.3 (ii) to the points x, gx, g2x, ghx, we get:

d(x, gx) + d(gx, hx)− 2 δ = d(x, gx) + d(g2x, ghx)− 2 δ

≤ Max
[
d(x, g2x) + d(gx, ghx) ; d(gx, g2x) + d(x, ghx)

]
≤ Max [d(x, gx) + `(g) + 2 δ + d(x, hx) ; d(x, gx) + d(x, ghx)] ,

where the last inequality is derived from Lemma 8.20 (i). As, by assumption,

d(gx, hx) ≥ d(x, hx) + 5 δ + α > d(x, hx) + `(g) + 2δ ,

the above inequality gives: d(gx, hx) ≤ d(x, ghx)+2 δ; by a similar proof (exchanging the names
of g and h) we get d(gx, hx) ≤ d(x, hgx) + 2 δ and thus, using the assumption (110):

Min[d(x, ghx) ; d(x, hgx)] ≥ Max [d(x, gx) ; d(x, hx)] + 3 δ + α .

This and the quadrangle Lemma 8.3 (ii) (applied to points x, gx, ghx, ghgx) imply:

2 Max [d(x, gx) ; d(x, hx)] + 4 δ + 2α ≤ d(x, ghx) + d(x, hgx)− 2 δ

= d(x, ghx) + d(gx, ghgx)− 2 δ ≤ Max [d(x, gx) + d(ghx, ghgx) ; d(x, ghgx) + d(gx, ghx)]

= Max [2 d(x, gx) ; d(x, ghgx) + d(x, hx)] = d(x, ghgx) + d(x, hx) ,

which implies that
d(x, ghgx) ≥ Max [d(x, gx) ; d(x, hx)] + 4 δ + 2α .

This and the quadrangle Lemma 8.3 (ii) (applied to the points x, ghx, ghgx, ghghx) yields:

d(x, ghx) + Max [d(x, gx) ; d(x, hx)] + 2 δ + 2α ≤ d(x, ghx) + d(x, ghgx)− 2 δ

= d
(
ghx, (gh)2x

)
+d
(
x, ghgx

)
−2 δ ≤ Max

[
d(x, ghx) + d

(
ghgx, (gh)2x

)
; d
(
x, (gh)2x

)
+ d(ghx, ghgx)

]
= Max

[
d(x, ghx) + d

(
x, hx

)
; d
(
x, (gh)2x

)
+ d(x, gx)

]
= d
(
x, (gh)2x

)
+ d(x, gx) .

This last inequality and the lemma 8.20 (i) imply that:

d(x, ghx) + 2 δ + 2α ≤ d
(
x, (gh)2x

)
≤ d(x, ghx) + 2 δ + `(gh) ,

and we conclude that `(hg) = `(h(gh)h−1) = `(gh) ≥ 2α.
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8.5 Margulis’ domains of an hyperbolic isometry

Definitions 8.25. On any δ-hyperbolic space (X, d), for every hyperbolic isometry γ, we denote
by γ− and γ+ the fixed points of γ, by G(γ) the set of the geodesic lines such that c(−∞) = γ−

and c(+∞) = γ+ and by M(γ) the subset of X obtained as union of these geodesic lines.
On the other hand, Mmin(γ) is the name of the (non empty38) set of points of X where the
function x→ d(x, γ x) attains its infimum s(γ).

Though they generally do not coincide, the sets M(γ) and Mmin(γ) are equal when the distance
is convex (see Lemma 8.41). Furthermore, in the case of Hadamard spaces or of CAT(−1) spaces,
the sets M(γ) and Mmin(γ) coincide with the unique geodesic line which joins points γ− and γ+.

Definition 8.26. To each isometry γ of (X, d) and to each point x ∈ X, one associates its
displacement radius at x, defined as Rγ(x) = infn∈N∗ d(x, γn x). This infimum is attained when
γ is non elliptic.

Notice that Rγ ≡ 0 when γ has torsion, we shall always exclude this case in the sequel.
The proof of the fact that the infimum is attained is as follows: when γ is non elliptic, it is
parabolic or hyperbolic by Theorem 8.15, and then gkx goes to infinity when k → ±∞; this
proves that {k ∈ Z∗ : d(x, γk x) ≤ Rγ(x) + 1} is finite; there thus exists n ∈ N∗ such that
d(x, γn x) = infn∈N∗ d(x, γn x) = Rγ(x).

Lemma 8.27. For every x ∈ Mmin(γ) and any choice of a geodesic segment [x, γ x] from x to
γ x, the union ∪p∈Z γp ([x, γ x]) is a γ-invariant local geodesic included in Mmin(γ).

Proof. Denote by
[
γp x , γp+1 x

]
the geodesic γp ([x, γ x]) from γp x to γp+1 x; for every : u ∈[

γp x , γp+1 x
]
, one has

d(u, γ u) ≤ d(u, γp+1 x)+d(γp+1 x, γ u) = d(γp x, u)+d(u, γp+1 x) = d(γp x, γp+1 x) = d(x, γ x) = s(γ) .

This implies first that d(u, γ u) = s(γ), thus that u ∈ Mmin(γ) and, in a second time, that the
above inequalities are all equalities, thus that d(u, γ u) = d(u, γp+1 x) + d(γp+1 x, γ u), which
means that [u, γp+1 x] ∪ [γp+1 x, γ u] is a (minimizing) geodesic from u to γ u. It follows that
∪p∈Z γp ([x, γ x]) is a continuous path which is minimizing on any sub-path of length s(γ), and
consequently it is a local geodesic.

Lemma 8.28. If `(γ) > 3 δ, one has d
(
x,M(γ)

)
≤ 1

2

(
d(x, γ x)− `(γ)

)
+ 3 δ for every x ∈ X.

Proof. Let us consider any geodesic cε ∈ G(γ) such that d(x, cε) ≤ d (x,M(γ)) + 1
2 ε. For every

k ∈ Z, denote by cε(tk) a projection of the point γk x onto the image of the geodesic cε. We now
prove the property

∃p ∈ N tels que d
(
cε(tp), cε(tp+1)

)
> `(γ)− 1

2
ε . (111)

Indeed, let cε(t
′
k) be a projection of γk(cε(t0)) on the image of the geodesic cε, Proposition

8.10 (i) (and the fact that cε and γk ◦ cε are two geodesics from γ− to γ+) guarantees that
d
(
γk cε(t0) , cε(t

′
k)
)
≤ 2 δ, and this yields

d
(
γk x, cε(tk)

)
≤ d

(
γk x, cε(t

′
k)
)
≤ d

(
γk x, γk cε(t0)

)
+ d

(
γk cε(t0) , cε(t

′
k)
)
≤ d(x, cε) + 2δ ;

we deduce that d
(
cε(t0), cε(tk)

)
≥ d

(
x, γk x

)
− d

(
x, cε(t0)

)
− d

(
γk x, cε(tk)

)
≥ d

(
x, γk x

)
−

2 d(x, cε)− 2 δ, thus that

lim
k→+∞

(
1

k

k−1∑
i=0

d
(
cε(ti), cε(ti+1)

))
≥ lim
k→+∞

(
1

k
d
(
cε(t0), cε(tk)

))
= lim
k→+∞

(
1

k
d
(
x, γk x

))
= `(γ) ;

38We shall prove in Lemma 8.34 (iv) that this set is non empty and, by continuity, closed.

126



a consequence is that supp∈N d
(
cε(tp), cε(tp+1)

)
≥ `(γ), and this proves property (111).

When `(γ) > 3 δ, choosing ε small enough, property (111) implies the existence of some p ∈ N
such that d

(
cε(tp), cε(tp+1)

)
> `(γ)− 1

2 ε > 3 δ, and it then follows from Lemma 8.9 that

d (x, γ x) = d
(
γp x, γp+1 x

)
≥ d (γp x, cε(tp)) + d

(
cε(tp), cε(tp+1)

)
+ d

(
cε(tp+1), γp+1 x

)
− 6 δ

≥ 2 d
(
x,M(γ)

)
+ `(γ)− 1

2
ε− 6 δ , (112)

where the last inequality is a consequence of the inequality d (γp x, cε(tp)) = d (x, γ−p ◦ cε) ≥
d
(
x,M(γ)

)
(for the geodesic γ−p ◦ cε belongs to G(γ)). We end the proof by making ε go to zero

in the inequality (112).

Definition 8.29. In a δ-hyperbolic space (X, d), for every isometry γ 6= id, every R ∈ ]0,+∞[
and every p ∈ Z∗, one defines

• the p-th Margulis domain Mp
R(γ) := {x ∈ X : d(x, γp x) ≤ R},

• the Margulis domain MR(γ) := ∪k∈Z∗Mk
R(γ).

The following remark is an immediate consequence of the definition of Rγ(x) as infn∈N∗ d(x, γn x)
and of the fact that this infimum is attained (see Definition 8.26).

Remark 8.30. In a δ-hyperbolic space (X, d), for every non elliptic isometry γ and every R ∈
]0,+∞[, one has MR(γ) = {x : Rγ(x) ≤ R}.

Lemma 8.31. In every non elementary δ-hyperbolic space (X, d), for every hyperbolic isometry
γ and every real number R > 0, X \MR(γ) 6= ∅.

Proof. Observe that `(γ) > 0 by Lemma 8.19. Define k0 :=
[
R
`(γ)

]
and notice that Mk

R(γ) = ∅ for

every integer k ≥ k0 +1, because every x ∈ X verifies d(x, γk x) ≥ `(γk) ≥ (k0 +1) `(γ) > R (see
the definition 8.18 of `(γ) and the properties following this definition).; consequently MR(γ) =
∪0<k≤k0 M

k
R(γ). Denote by {γ−, γ+} the set of fixed points of γ, it is included in the ideal

boundary ∂X of (X, d) (see the beginning of section 8.4.2); choose some point θ ∈ ∂X \{γ−, γ+}
and any geodesic ray c0 such that c0(+∞) = θ. For every k ∈ N∗, the geodesic ray γk ◦ c0 verifies
γk ◦ c0(+∞) = γk θ 6= θ, thus d

(
c0(t) , γk ◦ c0(t)

)
→ +∞ when t→ +∞, and this guarantees the

existence of some Tk > 0 such that c0(t) /∈Mk
R(γ) for every t > Tk. Define T := max0<k≤k0(Tk),

then, for every t ∈ ]T,+∞[, c(t) /∈ ∪0<k≤k0M
k
R(γ), hence c(t) /∈MR(γ).

Lemma 8.32. For every hyperbolic isometry γ and every real number R > 0 and, as

(i) for every k ∈ Z∗, Mk
R(γ) is empty when R < |k| `(γ) and non empty when R > |k| `(γ) + δ,

(ii) MR(γ) is a closed set which is empty when R < `(γ) and non empty when R > `(γ) + δ.

Proof. Notice that `(γ) > 0 by Lemma 8.19. If Mk
R(γ) is not empty, for every x ∈ Mk

R(γ),
the basic properties of functions s(·) and `(·) (see comments after Definitions 8.18) give R ≥
d(x, γk x) ≥ s(γk) ≥ `(γk) = |k| `(γ); this proves that Mk

R(γ) = ∅ when R < |k| `(γ). On
the other hand, by the Definition 8.18 of the function s(·), Mk

R(γ) 6= ∅ =⇒ s(γk) ≤ R and
s(γk) < R =⇒ Mk

R(γ) 6= ∅; as s(γk) ≤ `(γk) + δ = |k| `(γ) + δ by Lemma 8.23 (i), then
R > |k| `(γ) + δ =⇒ Mk

R(γ) 6= ∅.
By continuity of x 7→ d(x, γk x), each Mk

R(γ) is a closed subset of (X, d). Hence MR(γ) is
closed for it is a finite union of the closed sets Mk

R(γ) (corresponding, by (i), to the k’s such
that |k| ≤ R

`(γ) ). If R < `(γ), then R < |k| `(γ) for every k ∈ Z∗ and it follows from (i) that

∀k ∈ Z∗ Mk
R(γ) = ∅, thus that their union MR(γ) is empty. If R > `(γ) + δ, (i) guarantees that

M1
R(γ) 6= ∅, thus that MR(γ) 6= ∅.

Lemma 8.33. For every hyperbolic isometry γ, for every r , R ∈ ]0,+∞[ (r < R) such that
Mr(γ) 6= ∅, every point x of the closure of X \MR(γ) verifies d(x,Mr(γ)) ≥ 1

2 (R− r).
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Proof. Denote by x̄ any projection of x onto the closed set Mr(γ). By Definition 8.26 and Remark
8.30, there exists k ∈ N∗ such that d(x̄, γk x̄) ≤ r. As d(x, γk x) ≥ R, we get

2 d(x,Mr(γ)) + r = 2 d(x, x̄) + r ≥ d(x, x̄) + d(x̄, γk x̄) + d(γk x̄, γk x) ≥ d(x, γk x) ≥ R ,

and this ends the proof.

Lemma 8.34. For every hyperbolic isometry γ, for every R > 0 such that MR(γ) 6= ∅,

(i) every geodesic line c connecting the fixed points γ− and γ+ of γ verifies (for every x ∈
MR(γ)) : Mint∈R d

(
x, c(t)

)
≤ 1

2

(
7 δ
`(γ) + 1

)
R+ 7

2 δ,

(ii) given any sequence
(
xn
)
n∈N going to infinity in MR(γ) all limit points (in ∂X) of every

subsequence are in {γ−, γ+}.

(iii) given any origin x0 ∈ X and the corresponding Dirichlet domain Dγ(x0) := {x : ∀k ∈
Z d(x0, x) ≤ d(γk x0, x)} of the action of the group 〈γ〉, then X = ∪k∈Z γk

(
Dγ(x0)

)
and

MR(γ) ∩Dγ(x0) is compact,

(iv) the function x 7→ d(x, γ x) attains its minimum on X.

Proof of (i). Given any x ∈ MR(γ), by Definitions 8.26 and 8.29, there exists p ∈ N∗ such that

d(x, γp x) ≤ R, thus verifying R ≥ d(x, γp x) ≥ s(γp) ≥ p `(γ), hence p ≤ R

`(γ)
. Considering the

integer k such that (k − 1) p `(γ) ≤ 7δ < k p `(γ), denote by yk (resp. y0) a projection of the
point γkp(x) (resp. of the point x) onto the geodesic line c; denote by y′k a projection of γkp(y0)
onto the geodesic line c and by z0 a projection of y0 onto the geodesic line γkp ◦ c; as c and γkp ◦ c
are two geodesic lines from γ− to γ+, the proposition 8.10 (i) implies that

d
(
γkp y0, y

′
k)
)

= d
(
γkp y0, c

)
≤ 2 δ , d (y0, z0)) = d

(
y0, γ

kp ◦ c)
)
≤ 2 δ (113)

The quadrangle Lemma 8.3 (ii) and the equality d(γkp x, γkp y0) = d(x, y0) imply that

d(y0, γ
kp x) + d(x, γkp y0)− 2 δ ≤ Max

[
d(x, γkp x) + d(y0, γ

kp y0) , 2 d(x, y0)
]

; (114)

using first the triangle inequality, and afterwards Lemma 8.8 and inequalities (113), we obtain

d(x, γkp y0) ≥ d(x, y′k)−d(y′k, γ
kp y0) ≥ d(x, y0)+d(y0, y

′
k)−4 δ ≥ d(x, y0)+d(y0, γ

kp y0)−6 δ and

d(y0, γ
kp x) ≥ d(z0, γ

kp x)−d(y0, z0) ≥ d(γkp x, γkp y0)+d(γkp y0, z0)−4 δ ≥ d(x, y0)+d(y0, γ
kp y0)−6 δ ,

where we used the fact that y0 and γkp y0 are respective projections of x and γkp x onto the
geodesic lines c and γkp ◦ c. These two inequalities yield

d(y0, γ
kp x) + d(x, γkp y0)− 2 δ ≥ 2 d(x, y0) + 2 d(y0, γ

kp y0)− 14δ > 2 d(x, y0) ,

where the last inequality stems from the choice of k, which guarantees that d(y0, γ
kp y0) ≥

`(γkp) = k p `(γ) > 7 δ. Carrying forward these two last inequalities in (114), we get

2 d(x, y0) + d(y0, γ
kp y0)− 7δ < 2 d(x, y0) + 2 d(y0, γ

kp y0)− 14δ < d(y0, γ
kp x) + d(x, γkp y0)− 2 δ

≤ d(x, γkp x) + d(y0, γ
kp y0) ≤ k R+ d(y0, γ

kp y0) ≤
(

7 δ

p `(γ)
+ 1

)
R+ d(y0, γ

kp y0) ,

and thus: Mint∈R d
(
x, c(t)

)
= d(x, y0) ≤ 1

2

(
7 δ

p `(γ)
+ 1

)
R+

7

2
δ ≤ 1

2

(
7 δ

`(γ)
+ 1

)
R+

7

2
δ ;

and this concludes.
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Proof of (ii) and (iii). Let c be any geodesic line from γ− to γ+.
Given any sequence

(
xn
)
n∈N going to infinity in MR(γ), point (i) guarantees the existence of

some tn ∈ R such that d
(
xn, c(tn)

)
≤ 1

2

(
7 δ
`(γ) + 1

)
R + 7

2 δ, thus c(tn) goes to infinity (and thus

|tn| → +∞) when n→ +∞. Consequently, as d
(
xn, c(tn)

)
is bounded independently of n, when

n → +∞, either tn → +∞ and then c(tn) and xn both go to γ+, or tn → −∞ and then c(tn)
and xn both go to γ−, or I+ := {n : tn ≥ 0} and I− := {n : tn < 0} are both infinite and the
sub-sequences

(
c(tn)

)
n∈I+ and

(
xn
)
n∈I−

are respectively going to γ+ and γ−. This proves (ii).

If c(tk) is a projection of γk ◦ c(0) on the image of c, Proposition 8.10 (i) and the fact that c and
γk ◦ c are two geodesics from γ− to γ+ guarantees that d

(
c(tk), γk ◦ c(0)

)
≤ 2 δ, and thus that,

for every k ∈ Z,

|tk+1 − tk| = d
(
c(tk), c(tk+1)

)
≤ d
(
γk c(0), γk+1 c(0)

)
+ 4 δ ≤ d

(
c(0), γ c(0)

)
+ 4 δ . (115)

Fix any t ∈ R. When k goes to +∞ (resp. to −∞), γk c(0) goes to γ+ (resp. to γ−), thus c(tk)
also goes to γ+ (resp. to γ−) for d

(
c(tk), γk ◦ c(0)

)
≤ 2 δ by Proposition 8.10 (i), and consequently

tk goes to +∞ (resp. to −∞); it follows that there exists k′ ∈ Z such that tk′ ≤ t < tk′+1. It
comes from this and from (115) that there exists k ∈ Z such that |t− tk| ≤ 1

2 d
(
c(0), γ c(0)

)
+2 δ.

Hence, for every t ∈ R, there exists k ∈ Z such that

d
(
c(t), γk c(0)

)
≤ d
(
c(t), c(tk)

)
+ d
(
c(tk), γk c(0)

)
≤ 1

2
d
(
c(0), γ c(0)

)
+ 4 δ . (116)

Consider any x ∈ MR(γ) and one of its projections c(t) onto the geodesic line c; a consequence
of (116) and of point (i) is the existence of one k ∈ Z satisfying d

(
x, γk c(0)

)
≤ d

(
x, c(t)

)
+

d
(
c(t), γk c(0)

)
≤ R1, where R1 :=

1

2

(
7 δ

`(γ)
+ 1

)
R + 1

2 d
(
c(0), γ c(0)

)
+

15

2
δ; it follows that

d
(
x, γk x0

)
≤ d
(
x, γk c(0)

)
+d
(
γk c(0), γk x0

)
≤ d
(
x0, c(0)

)
+R1. For every x ∈MR(γ)∩Dγ(x0),

one has d(x, x0) ≤ d
(
x, γk x0

)
by definition of the Dirichlet domain, and the previous inequality

gives d
(
x, x0

)
≤ d

(
x0, c(0)

)
+ R1. Thus MR(γ) ∩Dγ(x0), being a closed bounded subset of the

proper space (X, d), is compact.

Proof of (iv). Denote by f the continuous function x 7→ d(x, γ x) and let s(γ) := infx∈X f(x)
and R := s(γ) + 1; as {x : f(x) ≤ R} = M1

R(γ) ⊂MR(γ), it is sufficient to prove that f attains
its minimum when restricted to MR(γ) = ∪k∈Z

(
γk (Dγ(x0)) ∩MR(γ)

)
and, as f ◦ γk = f and

as MR(γ) is stable by γk, it is sufficient to prove that f attains its minimum when restricted to
MR(γ) ∩Dγ(x0). This is verified for MR(γ) ∩Dγ(x0) is compact by (iii).

Lemma 8.35. For every hyperbolic isometry γ and every R > 0, one has

(i) for every p ∈ N∗ and every x ∈Mp
R(γ), every geodesic segment from x to γp x or to γ−p x

is included in Mp
R(γ),

(ii) for every x, y ∈Mp
R(γ), every geodesic from x to y is included in Mp

R+2 δ(γ).

(iii) for any x ∈MR(γ) and every k ∈ Z, any geodesic from x to γk x is contained in MR+2 δ(γ).

Proof of (i) and (ii). We suppose that Mp
R(γ) 6= ∅ (elsewhere (i) and (ii) are trivially verified).

For every x ∈Mp
R(γ) and any q ∈ {−p, p}, choose any geodesic segment [x, γq x] from x to γq x;

for every u ∈ [x, γq x], the triangle inequality yields

d(u, γp u) = d(u, γq u) ≤ d(u, γq x) + d(γq x, γq u) = d(x, u) + d(u, γq x) = d(x, γq x) ≤ R ,

hence u ∈Mp
R(γ) and this proves (i).

For every x, y ∈ Mp
R(γ) and any (normally parametrized) geodesic segment c from x to y, if

L := d(x, y), the quasi-convexity property of δ-hyperbolic spaces (see Proposition 25 , p. 45 of
[GdlH90]) and (afterwards) the fact that c(0) = x and c(L) = y both belong to Mp

R(γ) give:

d
(
c(t) , gp ◦ c(t)

)
≤
(

1− t

L

)
d
(
c(0) , gp ◦ c(0)

)
+
t

L
d
(
c(L) , gp ◦ c(L)

)
+ 2 δ ≤ R+ 2 δ ,
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and this proves (ii) because c is entirely contained in Mp
R+2 δ(γ).

Proof of (iii). By definition of MR(γ), for any x ∈ MR(γ), there exists some p ∈ N∗ such that
x ∈ Mp

R(γ). For every k ∈ Z, as γk x also belongs to Mp
R(γ), it comes from (ii) that every

geodesic segment from x to γk x is contained in Mp
R+2 δ(γ).

8.6 Hyperbolic isometries of Busemann Gromov-hyperbolic spaces

Definition 8.36. A metric space (X, d) is a Busemann space if it is geodesic, proper and if its
distance d is convex: i. e. if, for every pair of geodesic segments c1 , c2 (reparametrized in order
that c1 , c2 are defined from [0, 1] to X), the function t 7→ d(c1(t), c2(t)) is convex.

Examples of Busemann spaces are given by simply connected Riemannian manifolds whose sec-
tional curvature is non-positive and, more generally, by CAT(0) spaces.

Remark 8.37. In a Busemann space any two points are connected by a unique geodesic segment.

The proof, elementary, is left to the reader.

Lemma 8.38. In a Busemann space, for any pair c0 , c1 of geodesic segments the function
t 7→ d

(
c1(t), Im(c0)

)
is convex.

Proof. Denote by [ 0, a0 ] and [ 0, a1 ] the intervals of definition of c0 and c1 (respectively); for
every t1, t2 ∈ [ 0, a1 ] (t1 < t2), denote by c0(s1) and c0(s2) the respective projections of c1(t1) and

c1(t2) onto the image of c0. For every t ∈ [t1, t2], we define β :=
t− t1
t2 − t1

(i. e. t = (1−β) t1 +β t2)

and the convexity of the distance yields:

d
(
c1(t), Im(c0)

)
≤ d

(
c1
(
(1− β) t1 + β t2

)
, c0
(
(1− β) s1 + β s2

))
≤ (1− β) d

(
c1(t1), c0(s1)

)
+

+β d
(
c1(t2), c0(s2)

)
= (1− β) d

(
c1(t1), Im(c0)

)
+ β d

(
c1(t2), Im(c0)

)
,

and this ends the proof.

Lemma 8.39. On a Busemann space (X, d), every local geodesic is a (minimizing) geodesic.

Proof. Consider any local geodesic c : I → X (see definition in section 2) and any pair t1, t2 ∈ I
(t1 < t2); denote by [x, y] the (minimizing) geodesic segment from x := c(t1) to y := c(t2) and
by K the closed nonempty subset of [t1, t2] where the function f : s 7→ d(c(s), [x, y]) attains its
maximum (on [t1, t2]). For every t ∈ K∩ ]t1, t2[, there exists an open interval J containing t
on which the restriction of c is a (minimizing) geodesic and on which f is convex (by Lemma
8.38), as f attains its maximum at t, its convexity implies that f is constant on J , consequently
K∩ ]t1, t2[ is open and closed in ]t1, t2[ thus either K∩ ]t1, t2[=]t1, t2[ (and then, for every t ∈
]t1, t2[, f(t) = f(t1) = 0 by continuity) or K∩ ]t1, t2[= ∅ (and then K ⊂ {t1, t2}, thus f = 0
on [t1, t2]). In every case c([t1, t2]) coincides with the geodesic segment [c(t1), c(t2)] and c is
minimizing between any pair of its points.

Lemma 8.40. On every Busemann space (X, d), every isometry γ 6= idX of finite order admits
some fixed point. Reciprocally, for every isometry γ 6= idX such that the subgroup 〈γ〉 is discrete,
if γ admits a fixed point, then it has finite order.

Proof. The converse property being proved in Lemma 8.13 (iv), it is sufficient to prove that
every isometry γ 6= idX of finite order N admits some fixed point. Let G := {idX , γ, . . . , γN−1}
be the subgroup generated by γ. Choosing an initial point u0, there exists x0 ∈ X and R > 0
such that G ·u0 ⊂ BX(x0, R). We construct by iteration the sequence (un)n∈N by choosing un+1

as the middle-point of the geodesic segment [un, γ un]. Let us prove by iteration the property
G · un ⊂ BX(x0, R): this property is true when n = 0; suppose now that it is true at step
n and prove it at step n + 1: as BX(x0, R) is convex and as G · un ⊂ BX(x0, R), for every
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k ∈ {0, . . . , N − 1}, one has γk([un, γ un]) = [γk un, γ
k+1 un] ⊂ BX(x0, R), thus its middle-point

γk un+1 lies in BX(x0, R), this proves thatG·un+1 ⊂ BX(x0, R) and thus that G·un ⊂ BX(x0, R)
for every n ∈ N.
As BX(x0, R) is compact, there exists a subsequence (unk)k∈N of the sequence (un)n∈N which
converges, denote by u its limit. As d(un+1, γ un+1) ≤ d(un+1, γ un)+d(un, un+1) = d(un, γ un),
the sequence n 7→ d(un, γ un) is decreasing and converges to some value α ≥ 0, it follows that
α = d(u, γ u).
If α > 0, let v be the middle-point of [u, γ u], there exists a positive sequence εk (going to zero
when k → +∞) such that d(u, unk) < εk and d(γ u, γ unk) < εk; the convexity of the distance
(applied to the middle-points of [u, γ u] and [unk , γ unk ]) then implies d(v, unk+1) < εk; this (and
the fact that n 7→ d(un, γ un) is decreasing) yields

d(u, γ u) = d(γ u, γ v) + d(v, γ u) ≥ d(v, γ v) ≥ d(unk+1, γ unk+1)− 2 εk ≥ d(u, γ u)− 2 εk .

When εk → 0, this proves that d(v, γ v) = d(v, γ u) + d(γ u, γ v), thus that, for every k ∈
{0, . . . , N − 1}, the length of [γk v, γk+1 u] ∪ [γk+1 u, γk+1 v] is equal to d(γk v, γk+1 v); hence
[γk v, γk+1 u] ∪ [γk+1 u, γk+1 v] is the (minimizing) geodesic from γk v to γk+1 v. It follows that
the union of all the [γk u, γk+1 u] is a local geodesic, thus a (globally minimizing) geodesic by
Lemma 8.39, in contradiction with the fact that it is a closed path.
The only possibility is thus that α = 0 and this implies that u is a fixed point of γ.

Lemma 8.41. On any δ-hyperbolic Busemann space (X, d), for every hyperbolic isometry γ and
every x ∈ Mmin(γ), the union (or more precisely the concatenation), for all the p ∈ Z, of the
geodesic segments

[
γp x, γp+1 x

]
is a γ-invariant geodesic line cγ from γ− to γ+, contained in

Mmin(γ), such that γ
(
cγ(t)

)
= cγ

(
t+ `(γ)

)
. Consequently s(γ) = d(x, γ x) = `(γ).

Proof. By Lemma 8.37
[
γp x, γp+1 x

]
= γp ([x, γ x]) is the unique geodesic segment from γp x

to γp+1 x. Then Lemma 8.27 proves that the concatenation cγ := ∪p∈Z
[
γp x, γp+1 x

]
(oriented

in the sense of increasing values of p) is a γ-invariant local geodesic included in Mmin(γ) and
Lemma 8.39 guarantees that this local geodesic is a (minimizing) geodesic. This implies that,
for every k ∈ Z, d(x, γk x) = |k| d(x, γ x), thus that cγ is defined on ] − ∞,+∞[ and veri-
fies cγ(±∞) = limp→+∞ (γ±p x) = γ±. This also implies that `(γ) = limp→+∞

1
p d(x, γp x) =

d(x, γ x) = s(γ). Notice that, for every t ∈ R, there exists p ∈ Z such that cγ(t) ∈
[
γp−1 x, γp x

]
,

and then d
(
cγ(t), γ cγ(t)

)
= d
(
cγ(t), γp x

)
+d
(
γp x, γ cγ(t)

)
= d
(
γp−1 x, cγ(t)

)
+d
(
cγ(t), γp x

)
=

d
(
γp−1 x, γp x

)
= d(x, γ x) = `(γ). This proves that, if cγ(s) := γ cγ(t), then s−t = d

(
cγ(t), γ cγ(t)

)
=

`(γ) and this achieves the proof.

Lemma 8.41 does not claim that there exists a unique geodesic from γ− to γ+; indeed this is
generally false: a counter-example can be constructed starting from a simply connected surface
S with sectional curvature ≤ −1, choosing an hyperbolic isometry γ and its γ-invariant geodesic
cγ and gluing a flat strip of width ε between the two connected components of S \ cγ .

8.7 Elementary subgroups

In this section we consider discrete subgroups G of the isometry group of any Gromov-hyperbolic
space X. A classification of these groups has been sketched by M. Gromov [Gro87] (see also
[DSU17], [CCMT15]), in terms of their limit set LG (i. e. the set of accumulation points of any
orbit of the action of G on X); he classified these groups in the following classes39:

• elliptic groups (also said bounded): finite groups whose all orbits are thus bounded;

• parabolic (or, according to the original terminology, horocyclic) groups: infinite groups G
such that #(LG) = 1. A parabolic group thus only contains parabolic or elliptic elements40.

39Here we only consider groups acting discretely; excluding for instance focal groups whose action is not discrete.
40Indeed, if G contains an hyperbolic isometry g, its fixed points g+ and g− are accumulation points of the

sequence
(
gk x

)
k∈Z, they thus belong to LG.
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• “lineal” groups: infinite groups G such that #(LG) = 2; a “lineal” group only contains
hyperbolic or elliptic elements (for a proof, see for instance [Cou16] section 3.4.2).

• groups of general type: groups G such that #(LG) ≥ 3 (in this case LG is infinite); this
is equivalent to say that G contains (at least) two hyperbolic elements whose sets of fixed
points are disjoint41.

In the three first cases, the action of G on X is said to be elementary. By extension, an hyperbolic
group will be said “elementary” if the action of G (by left translations) on G (endowed with the
algebraic word-metric) is elementary; as, for this action, LG coincides with the ideal boundary
∂G, an hyperbolic group is “elementary” iff #(∂G) ≤ 2.
Notice that, if the action of G is elementary, the set Fix(g) of fixed points of any non elliptic
element g ∈ G coincides42 with the limit set LG of G.

In the three following Propositions, we shall recall basic properties of elementary groups, most
of them being immediate corollaries (well known among specialists) of the above classification
and will thus be recalled without proof, with a simple reference.

Proposition 8.42. (Elementary actions) Let G be a discrete subgroup of the isometry group of
any Gromov-hyperbolic space X, then:

(i) if γ1, γ2 ∈ G are two hyperbolic elements with a common fixed point, then they have the
same pair of fixed points, i. e. {γ−1 , γ

+
1 } = {γ−2 , γ

+
2 };

(ii) if γ ∈ G is an hyperbolic isometry, the subgroup Gγ =
{
g ∈ G : g

(
{γ−, γ+}

)
= {γ−, γ+}

}
is the maximal subgroup among all virtually cyclic subgroups of G which contain γ; if
moreover G is torsion-free, then Gγ = {g ∈ G : g(γ−) = γ− and g(γ+) = γ+};

(iii) if G est amenable (e. g. virtually nilpotent), then the action of G is elementary;

(iv) if G is virtually nilpotent, its non elliptic elements are either all parabolic or all hyperbolic
and all have the same set of fixed points.

(v) if γ ∈ G is an hyperbolic isometry, for every g ∈ G, the subgroup generated by γ and g γ g−1

is virtually cyclic if and only if the subgroup generated by γ and g is virtually cyclic;

(vi) if a and b are hyperbolic isometries and if 〈a, b〉 is not virtually cyclic then, for every
p, q ∈ Z∗, ap and bq are hyperbolic and 〈ap, bq〉 is not virtually cyclic;

(vii) if γ ∈ G is an hyperbolic isometry, any subset S of G such that 〈γ, g〉 is virtually cyclic for
every g ∈ S generates a virtually cyclic group.

For the proof of points (i) and (ii) of Proposition 8.42, a reference is [Cou16], Propositions 3.21
and 3.27; though this last Proposition only proves the first part of (ii), the second part of (ii)
immediately follows from this first one because, for every g ∈ Gγ which swaps points γ− and γ+,
g2 fixes γ− and γ+ and, as the torsion-free hypothesis implies the absence of elliptic elements (by
Remark 8.16 (i)), g2 is parabolic or hyperbolic, thus hyperbolic (because a parabolic isometry
cannot fix two points of the ideal boundary), and then g would fix γ− and γ+ by Remark 8.16
(ii).
If the action of G is non elementary, then G contains a free subgroup (see [Del96], [Kou98],
[CDP90] section 11 Prop. 3.1 and[DSU17] Prop. 10.5.4) and is thus non amenable; this proves
(iii).

41If G contains two hyperbolic elements g1 and g2 whose sets of fixed points Fix(g1) and Fix(g2) are disjoint,
a trivial consequence is that #(LG) > 2, for #(LG) contains Fix(g1)∪Fix(g2) the converse implication is proved
for instance in [Cou16], Lemma 3.7. The fact that, if #(LG) > 2, then LG is infinite uncountable is announced
in [Gro87], section 3.5, Theorem p.194; one can find a complete proof in [DSU17], Proposition 6.2.14.

42Indeed, for any parabolic (resp. lineal) group G, for every parabolic (resp. hyperbolic) isometry g ∈ G,
the fixed points of g are the accumulation points of the sequence

(
gk x

)
k∈Z, thus Fix(g) ⊂ LG; furthermore, as

#
(
Fix(g)

)
= #(LG), then Fix(g) = LG.

132



Point (iv) immediately follows from point (iii) (which proves that the action of G is elementary),
from the above classification of elementary groups and from the remark which follows this clas-
sification, which says that every non elliptic γ ∈ G verifies Fix(g) = LG.
Point (vii) is a direct consequence of (ii), which implies that 〈γ, g〉 ⊂ Gγ for every g ∈ S.
Let us now prove (v): if the subgroup 〈γ, g〉 generated by γ and g is virtually cyclic, then its
subgroup 〈γ, g γ g−1〉 is also virtually cyclic. Conversely, if the subgroup 〈γ, g γ g−1〉 is virtually
cyclic, then the point (ii) implies that the set {γ−, γ+} of fixed points of γ is globally invariant by
g γ g−1; this proves that {γ−, γ+} is the set of fixed points of the hyperbolic isometry g γ2 g−1. As
the fixed points of g γ2 g−1 are also g(γ−) and g(γ+), it follows that {g(γ−) , g(γ+)} = {γ−, γ+}
and the point (ii) then implies that 〈γ, g〉 is virtually cyclic, as being a subgroup of the subgroup
Gγ which (globally) stabilizes the set {γ−, γ+}.
Proof of (vi): By Remark 8.16 (ii), ap and bq are hyperbolic and their sets of fixed points verify
Fix(ap) = Fix(a) and Fix(bq) = Fix(b); if 〈ap, bq〉 is virtually cyclic, it comes from (iv) that
Fix(ap) = Fix(bq), thus that Fix(a) = Fix(b); by (ii), this implies that 〈a, b〉 is virtually cyclic.

Corollary 8.43. Let Γ be a group acting properly (but eventually not faithfully) on a Gromov-
hyperbolic space (X, d), and let γ be any element of Γ such that `(γ) > 0, then

(i) for every g ∈ Γ, the subgroup generated by γ and g γ g−1 is virtually cyclic if and only if
the subgroup generated by γ and g is virtually cyclic,

(ii) for every g ∈ Γ satisfying `(g) > 0, if there exists p, q ∈ Z∗ such that γp and gq generate a
virtually cyclic subgroup, then γ and g generate a virtually cyclic subgroup of Γ,

(iii) any subset S ⊂ Γ∗ such that 〈γ, σ〉 is virtually cyclic for every σ ∈ S generates a virtually
cyclic subgroup of Γ.

Proof. Let % : Γ→ Isom(X, d) be the representation corresponding to the action of Γ on (X, d),
Lemmas 5.8 (vi) and 8.19 prove that %(γ) is an hyperbolic isometry of (X, d).
Proof of (i): Proposition 8.42 (v) implies that, for every g ∈ Γ, the subgroup generated by %(γ)
and %(g γ g−1) is virtually cyclic if and only if the subgroup %(〈γ, g〉) generated by %(γ) and %(g)
is virtually cyclic, thus (by Lemma 5.8 (vii)) if and only if the subgroup 〈γ, g〉 is virtually cyclic.
Proof of (ii): For every g ∈ Γ satisfying `(g) > 0, %(g) is also an hyperbolic isometry of (X, d)
by Lemma 8.19; if 〈γp, gq〉 is virtually cyclic, then 〈%(γ)p, %(g)q〉 is virtually cyclic too and
Proposition 8.42 (vi) then guarantees that 〈%(γ), %(g)〉 = %(〈γ, g〉) is virtually cyclic, it then
follows from Lemma 5.8 (vii) that 〈γ, g〉 is virtually cyclic.
Proof of (iii): for any S ⊂ Γ∗, if 〈γ, σ〉 is virtually cyclic for every σ ∈ S, then 〈%(γ), %(σ)〉 is
virtually cyclic for every %(σ) ∈ %(S) and it follows from Proposition 8.42 (vii) that 〈%(S)〉 is
virtually cyclic, thus (by Lemma 5.8 (vii)) that 〈S〉 is virtually cyclic.

In the co-compact case, one has the following classical results:

Proposition 8.44. (Cocompact actions, see [GdlH90], [CDP90], [BH99]) Let G be a discrete
co-compact group of isometries of a Gromov-hyperbolic space X, then

(i) G is a finitely generated Gromov-hyperbolic group;

(ii) G does not contain any parabolic isometry;

(iii) G is elementary if and only if the space X is elementary;

(iv) G is elementary if and only if it is virtually cyclic;

(v) every virtually nilpotent subgroup of G is virtually cyclic.

For a proof of (i), a reference is [GdlH90]: indeed, in the co-compact case, the space and the
group are quasi-isometric, thus the space is Gromov-hyperbolic if and only if the group is43.

43The notion of Gromov-hyperbolicity does not depend on the system of generators, however the hyperbolicity
constant δ highly depend on this system. This is a problem that we have to take into account all over this paper.
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For point (ii), it is classical that an hyperbolic group contains no parabolic element (for the action
by left-translations, see [GdlH90] section 8, théorème 29 or [CDP90] section 9, théorème 3.4).
Proving the same result for any co-compact action of the same group on any Gromov-hyperbolic
space is part of the folklore, the main argument being the quasi-isometry between the group and
the space44. The same argument proves that G is elementary iff its co-compact action on X is
elementary.
Point (iii) follows from this (i. e. ∂X ' ∂G) and from the fact that, in the co-compact case,
LG = ∂X.
For point (iv), either G is finite, and then (iv) is trivially verified, or G is infinite and Lemma
5.14 then implies that ∂G has exactly two points and that G contains a hyperbolic isometry γ
(thus {γ−, γ+} = ∂G and the group Gγ of the elements g such that g({γ−, γ+}) = {γ−, γ+}
coincides with G). Applying Proposition 8.42 (ii) then proves that Gγ = G is virtually cyclic.
Point (v) is a consequence of the fact that G is an hyperbolic group (by (i)) and of the fact that
every infinite nilpotent subgroup G′ of G contains a cyclic subgroup of finite index (by [GdlH90],
section 8, Théorème 37 p. 157).
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[Sab04] Stéphane Sabourau. Global and local volume bounds and the shortest geodesic loops.
Commun. Anal. Geom., 12(5):1039–1053, 2004.

[Sab17] S. Sabourau. Small volume of balls, large volume entropy and the Margulis constant.
Math. Ann., 369(3-4):1557–1571, 2017.

[Sak13] Katsuro Sakai. Geometric aspects of general topology. Tokyo: Springer, 2013.

[Shv55] A. S. Shvarts. A volume invariant of coverings. Dokl. Akad. Nauk SSSR, 105:32–34,
1955.

[Spa66] Edwin H. Spanier. Algebraic topology. McGraw-Hill Series in Higher Mathematics.
New York etc.:McGraw-Hill Book Company. XIV, 528 p. (1966)., 1966.

[Zas38] H. Zassenhaus. Beweis eines Satzes über diskrete Gruppen. Abh. Math. Semin. Univ.
Hamb., 12:289–312, 1938.

[Zud09] Fabio Zuddas. Some finiteness result for groups with bounded algebraic entropy.
Geom. Dedic., 143:49–62, 2009.

137



[Zud11] Fabio Zuddas. A finiteness result for groups which quasi-act on hyperbolic spaces.
Geom. Dedic., 150(1):35–47, 2011.

G. Besson, Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058
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