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Abstract

We prove curvature-free versions of the celebrated Margulis Lemma. We are interested by
both the algebraic aspects and the geometric ones, with however an emphasis on the second
and we aim at giving quantitative (computable) estimates of some important invariants.
Our goal is to get rid of the pointwise curvature assumptions in order to extend the results
to more general spaces such as certain metric spaces. Essentially the upper bound on the
curvature is replaced by the assumption that the space is hyperbolic in the sense of Gromov
and the lower bound of the curvature by an upper bound on the entropy of which we recall
the definition.
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Introduction

The celebrated Margulis Lemma is the keystone of a beautiful theory of the structure of complete
Riemannian manifolds with bounded sectional curvature. It has two main aspects: the first one is
algebraic and concerns the fundamental group of the manifold, the second one is more geometric



and yields a thin-thick decomposition of the manifold. To be more precise let us state a weak
version of this lemma pertaining to the first aspect (see | L[ I, 1 ] Section 37.3).

Theorem 1.1. There exist constants €(n) > 0 and C(n) > 0 such that, for every complete
Riemannian manifold M whose sectional curvature satisfies —1 < Sect(M) < 0, every point
p € M and every e < e(n), the subgroup T'c(p) of m1 (M) generated by the loops at p of length less
than € is virtually nilpotent. Furthermore, the index of the nilpotent subgroup is bounded above
by C(n).

This statement is a weak version, indeed in the strong one the upper bound on the sectional cur-
vature could be positive, with extra assumption though. A version of this theorem for manifolds
of strictly negative curvature was simultaneously proved by E. Heintze in his habilitationsschrift
of 1976 (see | D.

The history of this result goes back to Bieberbach Theorem (| ]) which describes the discrete
subgroups of the isometry group of the Euclidean spaces and consequently gives a structure
theorem for the flat manifolds and orbifolds. Later, this result was extended to the study of
discrete subgroups of Lie groups by H. Zassenhaus (] ]) and to locally symmetric spaces
by D. Kazhdan and G. Margulis ([ ], using Zassenhaus’ Lemma). Recently there has been
progresses on the question of extending this result to different spaces or curvature conditions:
for example, after a short sketch of proof by J. Cheeger and T. Colding (see | ]) under the
hypothesis “Ricci curvature bounded from below” and a first complete proof of V. Kapovitch, A.
Petrunin and W. Tuschmann ([ |) under the hypothesis “sectional curvature bounded from
below”, V. Kapovitch and B. Wilking (] ]) recently established a Margulis-like Lemma under
the hypothesis “Ricci curvature bounded from below by —(n—1)” instead of “—1 < Sect(M) < 0”
(see also | | for references and a detailed exposition).

This paper is the first of a series of articles devoted to this theme. Here we are interested by both
aspects, algebraic and geometric, with however an emphasis on the second and we aim at giving
quantitative (computable) estimates of some important invariants. Our goal is to get rid of the
pointwise curvature assumptions, as mentioned in the title, in order to extend the results to more
general spaces such as certain metric spaces. Essentially the upper bound on the curvature is
replaced by the assumption that the space is d-hyperbolic (in the sense of Gromov, see | ]
and Section 8.1 of Appendix 8 for precise definitions) and the lower bound by an upper bound
on the entropy which we define below. Notice that & behaves like a distance and it is rather 52
which is curvature-like.

The starting point of the ideas developed in this paper is the prepublication [ ], which
initially concerned the isometric actions of a more limited class of groups on less general types
of spaces, namely fundamental groups of manifolds with sectional curvature o < —1 and with
injectivity radius > ip > 0 (and groups such that any non abelian subgroup with two generators
admits an injective homomorphism into such a fundamental group). Several developments of
the ideas contained in | | were established by G. Reviron (] D), F. Zuddas (| 1,
[ 1), F. Cerocchi ([ 1), F. Cerocchi and A. Sambusetti ([ I, [ ] and | ], this
last paper being devoted to prove Margulis’ properties in the abelian setting) .

Let (X,d) be a (non-elementary) metric space which we assume to be proper, i.e the closed
metric balls are compact. We only consider metric spaces which are geodesic. More precisely, a
geodesic segment is the image of an interval of I C R by an isometric map from I into X. The
space (X,d) is said to be geodesic if any two points of X are joined by at least one geodesic
segment. Let p be a positive (non identically zero) Borel measure. We call (X, d, ) a measured
metric space.

Definition 1.2. Let (X, d, 1) be a metric measured space we define its entropy by

1
Ent(X, d, pi) = liminf — In (u(Bx (2, R)))

where Bx (x, R) is the open ball of radius R around x € X. Furthermore, the entropy is inde-
pendent of x.



In the sequel we will consider a group I' acting by isometries on (X, d) properly and, often,
co-compactly. We recall that the action is said to be proper if for z € X and for all R > 0,
the number of v € T satisfying d(x,vyx) < R is finite; this does not depend on z. In that case,
for any measure p invariant by I' the above definition yields the same number which we call
the entropy of (X, d) and denote by Ent(X,d). If (X,d) is a d-hyperbolic geodesic metric space
and ~ a torsion-free isometry, we define the asymptotic displacement of 7 (sometimes also called
“stable displacement”) by
1
U(y) = kEI—iI-loo %d(xv'ykx)v

this definition does not depend on the choice of z € X. One of our results is the following (see
Proposition 5.10).

Proposition 1.3. For every non-elementary 0-hyperbolic metric space (X,d) and every group
T acting properly by isometries on (X, d), if diam(T\X) < D < +o0, then

S In2 In2
~ L+175+2D ~ 275+ 10D’

Ent(X,d)

where L = inf {{(v) : v hyperbolic element of T'\ {e}}.

Note that in the proof we show that, in the above situation, there always exists an hyperbolic
element v € T'\ {e} which satisfies () < 8D + 109.

Now, let T be a group which is non-elementary (i.e. whose boundary has at least three points)
and X be a finite generating set for I'. The Cayley graph of I" defined by ¥ is a metric space
when endowed with the distance such that the edges have length 1. We say that (I',X) is a
d-hyperbolic group if this metric space is J-hyperbolic. The group I' acts by isometries on this
metric space and the quotient is compact and has diameter 1. The entropy of this metric space
is denoted by Ent(I", X) and is called the algebraic entropy of " with respect to 3. We also define
the algebraic entropy of I" by
Ent(T) = irzlf{Ent(I‘7 )},

the infimum being taken among all finite generating sets 3.

The study of the algebraic entropy of groups with exponential growth has recently made pro-
gresses. When the group acts on a Hadamard manifold the three first authors have proved a
quantitative version of the Tits alternative, see | ] and the references herein.

A corollary of the above Proposition is the following statement (see 5.13),

Corollary 1.4. Let I" be a non-elementary group and ¥ a finite generating set such that (I', X))
is 0-hyperbolic, then

In2
Ent(I,¥) > ———— ..
nill %) 2 510
Remarks 1.5. Once the first version of this article was completed E. Breuillard mentioned to us
his joint work with K. Fujiwara (see, [ ]) which contains an improvement of [ | and
/ [; Corollary 1.4 is then similar to their result.

These two estimates do not provide any lower bound of the algebraic entropy of the group I'.
Indeed, when the generating system varies in order to minimize the Entropy, its hyperbolic-
ity constant may go to infinity. We obtain such a lower bound of the algebraic entropy as a
consequence of our Bishop-Gromov inequality (see Theorems 1.9 and 5.1), namely:

Corollary 1.6. Let ' be a non virtually cyclic Gromov-hyperbolic group then, for every positive
constant M, if there exists a finite system So of generators of T such that (T, Sy) is dp-hyperbolic

and Ent(T', Sy) (60 + 1) < M, then the algebraic entropy of T' and of any finitely generated and

In2
non virtually cyclic subgroup TV of T' is bounded from below by BN (B2 420 MF 1) 12 where
e

N(+) is the function which appears in Theorem 5.19.



This study starts with the simple remark that if two elements, a and b, of a discrete subgroup I' of
the isometry group of a Hadamard manifold X generate a free group and if their displacements
at © € X, that is d(x,az) and d(x,bx), are small, then the entropy of X is big. Hence an
upper bound on the entropy prevents the subgroup of I' generated by the elements with small
displacement at x to be algebraically ”big”. Nevertheless, even in the case of controlled entropy,
free-subgroups or free-semigroups do exist but their generators must have large displacements.
Conversely, if the asymptotic displacements of two independent elements a and b of I are bounded
from below, then there exist bounded powers of a and b which generate a free semi-group (see
Proposition 4.9). This underlines the importance of computing a universal lower bound of the
asymptotic displacements of all the torsion-free elements of the group (see Theorems 1.12 and
5.26).

This can be made effective and the next theorem is in this spirit.

A metric space (X, d) is said to be geodesically complete if all geodesic segments can be defined
on R. Tt is called a Busemann space (see | ], p. 187) if the distance d is convex, that is
if the function d(c(t), ' (t)) is a convex function of ¢ € [0, 1] for two geodesic segments ¢ and ¢/,
affinely reparametrized. We have (see 4.22),

Theorem 1.7. Let (X,d) be a connected, geodesically complete, non-elementary d-hyperbolic
Busemann metric space. Let I' be a torsion-free discrete subgroup of the isometry group of
(X,d). We assume that diam(T\X) < D < 400 and Ent(X,d) < H. For all pairs of elements
a,b of T, if the subgroup generated by a and b is not cyclic, then, for all integers p,q > S(6, H, D)
one of the two semi-groups generated by {a?,b%} or by {aP,b=9} is free.

Here S(9, H, D) is a function of §, H and D which we describe precisely.

In the same spirit we can minimise the normalised volume entropy on certain closed manifolds.
Let us recall that, for a closed Riemannian manifold (M, g), by abuse of language, we denote
by Ent(M, g) the entropy of the metric space (]T/f ,dg,dvg) where g is the pulled back metric on
the universal cover M of M. We then prove the following theorem (see Subsection 7.1 for the
necessary definitions and Theorem 7.10).

Theorem 1.8. Let M be a n-dimensional essential closed manifold, n > 2. Assume that the
fundamental group T' of M is non elementary, torsion free and admits a generating set S such
that T is 0-hyperbolic with respect to S and satisfies Ent(T', S) < H then, for every Riemannian
metric g on M,

Ent(M, g)"Vol(M, g) > C(n,0,H) > 0.

We extend this result to polyhedrons in Theorem 7.18 of Subsection 7.2 (see the begining of
Subsection 7.2 for the notion of Riemannian polyhedrons). This opens the applications to a
wide range of metric spaces some of which are described right after Theorem 7.18, including
CAT(0)-square complexes with hyperbolic fundamental groups as well as higher dimensional
constructions related to cube complexes.

One of the key tools used in proving the main results of this article is a Bishop-Gromov-like
theorem which yields an explicit link between the algebraic and geometric aspects. The next
theorem proves such a Bishop-Gromov inequality in the case of Gromov-hyperbolic metric spaces,
where the hypothesis “Ricci curvature bounded from below” is replaced by the much weaker
(see subsection 3.3) hypothesis “Entropy bounded from above”. The following statement is a
simplification of Theorem 5.1 for the purpose of this introduction.

Theorem 1.9. Let (X, d) be a §-hyperbolic metric space, for every proper action by isometries
of a group T on (X, d) such that the diameter of T\X and the entropy of (X,d) are respectively
bounded by D and H, then, for every x € X

(i) for every I'-invariant measure p on X, for every R > r > %(7D + 40) one has,

u(Bx(@.R) _ . up (R)M (R)G’”’ JSH(R 1)
n(Bx(w,m) ~ r

)
r



(ii) for every R >r > 10 (D + ), the counting measure pl = > ver Oya of the orbit T'x verifies

the inequalities: B
Mg (BX (SU»R)) <3 (R>25/4 eGH(R—gr) )
Mg (BX (l‘, ’/‘))

r
It is possible to reinterpret these Bishop-Gromov-like inequalities (i) and (ii) in terms of the
doubling properties in the sense of Definitions 3.7 (see the comments following the statement
of Theorem 5.1). The second inequality is interesting since the counting measure concerns the
algebraic properties of the group and its geometric action. It thus make the link between the two
aspects of our study and it is somehow a good surprise that, despite the fact that the counting
measure is the most primitive one in this context, strong results could be obtained.

We also remind the reader that the classical Bishop-Gromov inequality for manifolds has been
a revolutionary tool which, in particular, led to compactness as well as finiteness results. In a
forthcoming paper ([ 1), we shall prove finiteness and compactness results for compact
quotients of metric measure spaces satisfying a weak Bishop-Gromov inequality similar to the
above theorem 1.9, these results will be applied in particular to compact quotients of J-hyperbolic
metric spaces with bounded entropy (see the chapter 3 of [ | for a report presenting these
results).

Finally, we mention a result related to the thick-thin decomposition. Let us first give the defini-
tion of an interesting family of groups (see 6.4).

Definition 1.10. Given parameters dg > 0 and i > 0, we denote by Hypp;ac (0, () the set of
non virtually cyclic groups I' which admit a proper, possibly non co-compact, action by isometries
on some 0g-hyperbolic metric space (Xo,dy) such that every torsion-free v € T'\ {e} wverifies

((y) = &p-

Notice that the space (Xo,dp) may depend on I' and that non trivial examples of such groups
are given in the present article. For the sake of simplicity we shall assume, in this introduction,
that T is torsion-free.

In subsection 6.1.2, we compare the class of groups Hypip;ac (00, () with the class of acylindri-
cally hyperbolic groups (with some normalization), proving that this last class is included in
HyDinick (00, €6)-

Now, if T acts on a metric space (X, d) by isometries, we define the pointwise and global systoles
by,

sysp(r) = velrn\f{e}{d(x, yx)}, Sysp(X) = zlg)f({sysF(z)}-

The next theorem is a curvature-free version of the celebrated “collar lemma” for metric spaces.
It shows that, under the hypotheses, if one has a small loop at some point any other independent
loop at this point is long. More precisely (see Theorem 6.26),

Theorem 1.11. Let §o > 0, and e, H > 0, there exists an integer ny depending on §y and
gy only such that, for any (torsion-free) element I' of Hyp ik (00, €5), for any proper action, by
isometries preserving the measure, of T on a connected metric measured space (Y,d, i) whose
entropy is bounded from above by H we have,

(i) (Collar Lemma) if y € Y and o € T* wverify d(y,oy) = sysp(y) < QR}JH, then every v € T’

1
)> Lol syse(y).

which does not commute with o satisfies d > L In(—
o satisfies d(y,vy) > 75 <n,OHSy5F(y

(#) if moreover (Y,d) is path-connected, then

1 - diam
SySF(Y) 2 m (& 4H (T\Y) .

Notice that if the quotient of Y by T is non compact then Inequality (i7) is trivial. Theorem 1.11
is stated in a weak form for the sake of simplicity and the reader is referred to Theorem 6.26 for
a more general statement.



Let us summarize this result by the following sentence: a thin tube is long and has simple
topology. More precise statements on the topology and the structure of thin tubes will be given
in Subsection 6.5. Notice that in the inequality ¢) the right hand side goes to 400 logarithmically
when sysp(y) goes to 0, exactly like in the standard collar theorem. Furthermore, in Theorem
1.11, the metric space (Y,d) is not assumed to be d-hyperbolic. A striking case is when Y is
a manifold which carries a Riemannian metric gy of sectional curvature less than —1, Theorem
1.11 then applies to any other Riemannian metric on Y whose entropy is less than H.

In order to make Theorem 1.11 effective we have to provide a lower bound of £} in terms of the
data. Such lower estimates are given in this article in various situations. One particular case is
when we consider a proper co-compact action by isometries on a d-hyperbolic space for which &
can be taken to be the global systole of the action. The next theorem gives such a bound (see
5.26).

Theorem 1.12. Let (X, d) be a d-hyperbolic, non elementary, geodesically complete, Busemann
space whose entropy satisfies Ent(X,d) < H. Let T' acting properly, co-compactly by isometries
on this space such that diam(T\X) < D. Then, for any torsion-free element v of '\ {e} we
have,

4(ry) > so(0, H, D),

for so(0, H, D) a function of §, H and D which we describe. If furthermore we assume that I' is
torsion-free, we get,
Sysp(X) > so(6, H, D).

This last result is the main step in the proof of Theorem 1.7 and, together with Theorem 1.7,
they are the key tools which lead to effectiveness in Theorem 1.11.

Let us finish this introduction by stating a finiteness/compactness result for Riemannian mani-
folds whose Ricci curvature is bounded from below (Theorems 7.30 and 7.32).

Theorem 1.13. Givenn > 2, D, K,iy > 0 and dg,g( > 0, let us consider the set of Riemannian
n-dimensional manifolds (M, g) which verify the following hypotheses:

(i) the fundamental group Tz of M is torsion-free and belongs to Hypipiac (90, €0),
(ii) Ricy > —(n — 1)K? - g and diam(M, g) < D,
(#ii) the injectivity radius of its Riemannian universal cover (M, g) is bounded from below by ig.

Then, this set contains only finitely many differentiable structures and is a finite union of com-
pacts for the C%*-topology (see Definition 7.51 and Theorem 7.32 for clarifications).

Applications of this last result are finiteness, and rigidity results for Einstein manifolds and
existence of upper bounds for the possible values of their scalar curvature (see Section 7.3.3).

We now describe the plan of this article. Section 2 contains the basic notations. Section 3 con-
tains the definition of the various entropies and several versions of the doubling property which
are compared according to their generality. Section 4 is devoted to describing the techniques
used to produce discrete free groups and free semi-groups of isometries of a d-hyperbolic space,
in particular an adapted version of the Ping-Pong method and the precise study of two kinds
of Margulis constants which (when bounded from below by 16J) guarantee the existence of free
subgroups or free semigroups generated by elements with bounded displacements. Section 5
begins with one of the main tools running all over the paper: a Bishop-Gromov and doubling
property for any d-hyperbolic space which admits a co-compact action of a group of isometries,
see Subsection 5.1. This tool allows to prove lower bounds of the exponential growth of spaces
and groups and several Margulis properties, which yield a lower bound of the asymptotic dis-
placements of all the torsion-free elements of the group. In Section 6 we develop the idea which
we call transplantation of Margulis properties. Grosso modo, the underlying philosophy is that,
if a discrete group acts properly by isometries on a Gromov-hyperbolic space, then it inherits,



from this action, algebraic properties which in turn translate into Margulis type properties when
it acts on another metric measured space whose entropy is bounded. This is the section in which
the interplay between algebraic and topological properties is the most enlightening. Section 7 is
devoted to applications. We first show in Theorem 7.10 that closed manifolds which are essential
and whose fundamental groups are hyperbolic (see the precise statement) have a minimal en-
tropy, for a given volume, bounded away from zero by an explicit constant. We extend this result
to polyhedrons in Subsection 7.2. The end of this section concerns Einstein metrics on manifolds
for which we prove compactness and finiteness results in our context. Finally, in Section 8, we
recall the basic facts about Gromov-hyperbolic spaces and their isometries.
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2 Basic definitions and notations

Definitions 2.1. Let (X,d) be a metric space and T be a group acting by isometries on (X,d),

(i) the space (X,d), is said to be “proper” if every closed ball is compact.

(i) the action of T is said to be “proper” if, for at least one x € X (and then Vx € X ), and
VR > 0, the set of v € T’ such that d(x,vx) < R is finite.

(7ii) the action is said to be “discrete” if it is faithful and if the image of T' (by this action) in
the isometry group of (X,d) is a discrete subgroup (for the topology of uniform convergence
on compact sets).

Remark 2.2. On a proper space (X, d), every faithful action is proper if and only if it is discrete.

The proof of Remark 2.2 will be given in Proposition 8.12.

Except for the results described in Section 3, the metric spaces and the actions that we study
will be assumed to be proper.

Classically, one defines the systole of a Riemannian manifold (Y, h) to be the infimum of the
length of non-homotopically trivial loops. If (Y, h) is viewed as the quotient of its universal
cover (Y, h) by the action of its fundamental group G, the systole coincides with the invariant
inf_ 3 (miny e qey d(z,7z)) of the action of G on (Y, h).

We generalize this notion in the following definitions:

Definition 2.3. Let (X, d) be a metric space, let T' be a group acting by isometries (X, d),

e Vx € X, the pointwise systole of this action is defined by sysp(z) := infgep ey d(, g2),
e the global systole of this action is defined by Sysp(X) := inf e x sysp(z),
e the diastole of this action is defined by Diasr(X) = sup,¢ x sysp(z).
The systole, in the classical sense, of a Riemannian manifold (Y, k) is then the global systole of

the action of its fundamental group on the universal cover (Y, h) of (Y, h), endowed with the
Riemannian distance associated to the pulled-back Riemannian metric h.



Notice that in our situation, contrarily to the Riemannian case, the pointwise systole and hence
the global systole of the action of a group I' on a metric space (X, d) could vanish. One of our
goals will be to find large classes of metric spaces and group actions such that the pointwise and
global systoles of these spaces and actions are bounded by the same positive constant.

In the sequel, except in section 6, for any 6 > 0, we shall consider metric spaces which are
d-hyperbolic in the sense of Gromov. A definition will be given at the beginning of Subsection
8.1. Notice that this definition implies that the space is automatically geodesic and proper. On
such a space we shall also consider any proper action by isometries of a group I' (see Definitions
2.1) which is assumed to be non-virtually cyclic.

Definition 2.4. We note I'* the set T'\ {e}. We also note $,(z) (resp. S,(x)) the set (which
is finite when the action is proper) of v € T such that d(x,vx) < r (resp. d(x,yx) < r), and
we note T,.(y) (resp. T'.(x)) the subgroup of T' generated by X,.(x) (resp. by 3. (x)).

In the sequel we work in the general frame of metric measured spaces (X,d, ). We denote by
Bx(x,r) (resp. Bx(z,r)) the open (resp. closed) ball with centre x and radius » > 0 of the
space (X, d).

A metric space (X, d) is said to be a length space if, ¥(z,y) € X x X, there exists a continuous
rectifiable path from x to y and if d(z,y) is the infimum of the length the paths joining x and y.

In a length space, we call geodesic the image of an interval I C R by an isometric embedding ¢
(i. e. satisfying d(c(t),c(s)) = |t — s|,Vt,s € I). A geodesic is then, by definition, minimizing.
When we restrict I to be [a, b, or [a, +00[, or | — 0o, +00[, this geodesic will be respectively called
a geodesic segment, a geodesic ray, or a geodesic line.

We call local geodesic a map c from an interval I C R in X which is locally minimizing', that is
Vt € I, there exists an € > 0 such that c is a geodesic on the interval |t —¢,t + e[N1.

We will often consider geodesic spaces. A metric space is said to be geodesic if any two points
can be joined by at least one geodesic segment. Several geodesic segments may join two distinct
points x,y: by abuse of notation we will denote by [z, y] anyone of these geodesic segments.

A geodesic metric space (X, d) is said to have the property of geodesic extension if, for all local
geodesic ¢ : [a,b] = X (a # b), there exists ¢ > 0 and a local geodesic ¢ : [a,b+ ] — X which

extends ¢ (i.e. cT[ g = ¢). This space will be said to be geodesically complete if every local

geodesic ¢ : [a,b] = X (a # b) can be extended in a local geodesic ¢ :] — 00, +00[— X. It is worth
recalling that a complete metric space (X,d), which furthermore is geodesic, has the geodesic
extension property if and only if it is geodesically complete (cf. [ | Lemme I1.5.8 (1) p. 208).

On these metric spaces a group I' will act. We will only consider proper actions by isometries
(see the definitions 2.1), which implies, in particular, that I' acts via a representation ¢ : I’ —
Isom (X, d) whose kernel is a finite and normal subgroup of I" and whose image o(T") is a discrete
subgroup of the group Isom(X,d) of isometries of (X, d) (see Lemma 5.8, whose results (i) and
(ii) are valid on general metric spaces); this also implies that the stabiliser Stabr(z) in ' of any
point z is finite. Finally, the quotient space I'\X will be endowed with the quotient distance d
(see definition in Lemma 8.13 (i)).

For such an action of a group I' on a metric space X, a certain number of results that we prove
will be called “Margulis properties”. This means that for each of the problems M; (i = 1,2,3,4)
stated below, we will try to compute explicitly universal constants (i. e. valid on the largest set
M, of metric spaces X, of groups I' and of actions of T).

e Problem M;: Find a set M; and a constant £; > 0 such that, VX € My, Vo € X, T, (x)
is virtually nilpotent.

e Problem M;: Find a set Ms and a constant €5 > 0 such that, VX € My, Diasp(X) > e5.

e Problem Mj: Find a set M3 and a constant £3 > 0 such that VX € M3, Sysp(X) > e3.

1In the case of Riemannian manifolds the Riemannian geodesics are local ones.



e Problem M,: Find a set My and constants g4, Cy, C; > 0 satisfying the following prop-
C
erty: Ve €]0,e4], if R(e) = Cy1n <€0>, then VX € My, Vo € X, if there exists a torsion-

free element o € I'* such that d(z,0x) < ¢, then I'p(.)(y) is a virtually cyclic subgroup
containing o (notice that R(¢) — 400 when ¢ — 0).

Among the group actions to which this work apply, we will consider the action of a discrete group
T, generated by a finite set X, on its Cayley graph Gs(I'). We denote by |v|s the word metric
related to ¥ and dsx, the associated algebraic distance on T (i. e. ds(v,9) := |7 1 gls) as well
as the length distance on the graph Gs(T'). By abuse of language we use the same notation for
these two distances.

The measures p considered in this article are Borel, non-negative and non identically vanishing.
The main examples are the following:

the counting measure #, for discrete sets,

the orbital counting measure pl, = Zyer 0o on the orbit I' - « of a point z, associated to
a proper action of a group I' on a space X, where ¢, denotes the Dirac measure at y,

the 1-dimensional measure induced on the Cayley graph Gs(T'), given by the length of the
edges.

the Riemannian measure dvy on a Riemannian manifold (X, g).

The metric spaces which are our main concern are (except in section 6) the d-hyperbolic spaces in
Gromov sense. We recall their definition and basic properties in the Appendix (section 8). We
only consider d-hyperbolic spaces which are geodesic and proper without necessarily recalling it.
A group I with a finite generating set ¥ is said to be a d-hyperbolic group if its Cayley graph
Gs(I') endowed with the distance ds is d-hyperbolic in Gromov sense.

For a é-hyperbolic space (in Gromov sense) (X, d), we use the symbols 90X to denote its ideal
boundary and LT to denote the limit set of a discrete group I' acting by isometries on X (i. e.
the set of accumulation points in X of any orbit I" - z). Finally an hyperbolic space or group is
called elementary if its ideal boundary has at most two points; similarly, any action of a group
" on an hyperbolic space (X, d) whose limit set has at most two points is called elementary; see
subsection 8.7 for more informations about elementary groups or actions.

In Section 6, we leave the realm of §-hyperbolic spaces to study general metric spaces and focus on
the type of groups whose actions on metric measured spaces still satisfy the Margulis properties
which were proved (in sections 4 and 5) to be valid on §-hyperbolic spaces. On all these spaces the
key invariant, which is a guideline all along this article and replaces the curvature, is the entropy
of a metric measured space. It will be defined, discussed and compared to other invariants in the
next section.

3 Entropy, Doubling and Packing Properties

3.1 Entropies

Definition 3.1. Let T be a group acting on (X,d), we call covering domain a subset K C X
such that Uvel“ v K = X and fundamental domain a covering domain such that v K°NK° =)
for all v € T* (where K° denote the interior of K ). The action of T is said to be co-compact if
there exists a compact covering domain.

Definition 3.2. The entropy of a metric measured space (X,d, p) (denoted by Ent(X,d, p)) is

1
the lower limit (when R — +00) of = In (,u(BX(x,R))). It does not depend of the choice of x.
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This invariant, possibly infinite, gives an asymptotic hence weak information on the geometry
of the metric space (see subsection 3.3), nevertheless it becomes interesting when there exists a
group I acting properly by isometries on (X, d) (and possibly co-compactly) and when we restrict
ourselves to Borel measures p which are invariant by this action. A particular role will be played
by the counting measure pl on the orbit T -z of a point x . Notice that in the co-compact case
the entropy does not depend on the chosen I'-invariant measure, has shown in the

Proposition 3.3. Let (X,d) be a non compact metric space and I' be a group acting properly
and co-compactly on (X,d) by isometries. For every non trivial measure p on X which is
invariant by this action, if there exists some compact covering domain of finite u-measure, then
Ent(X,d, u) = Ent(X,d, ul) for every z € X.

If, furthermore, (X,d) is a length space, then Ent(X,d,u) is the limit (when R — +00) of
% In (M(Bx(x, R)))

Following this proposition we shall use the notation Ent(X,d) instead of Ent(X,d,u) for this
type of measures.

The proof of Proposition 3.3 relies on the two following lemmas.

Lemma 3.4. Let T' acting properly on a metric space (X,d), if the quotient T\X is compact,
then the space (X,d) is proper and every closed ball of radius at least equal to the diameter of
\X is a compact covering domain for this action.

Proof. If I'\ X is compact of diameter D, for all R > D, for all x € X and for all sequence
(Yn)nen of points in the closed ball Bx (x, R), there exists a subsequence (denoted by (¥, )nen)
whose image by 7 converges in (I'\X,d). By definition of the quotient distance d (see Lemma
8.13 (i)) and since Bx(z, R) is a covering domain, there exists a point 3., € Bx(x, R) and a
sequence (7,,)nen of elements of I' such that d(y,,7,, Yoo) — 0 when n — +o0o. Consequently
there exists N € N such that, for all n > N, we have

d(x, v, ) < d(@,yn) + d(Yns Yy Yoo) + AV Yoos T ) < 2R + 1.

The action being proper, this implies that the sequence (v,,),>n take finitely many values, and
hence admits a constant subsequence equal to v € T'. There thus exists a subsequence of (¥, )nen
which converges towards 7y y.,. This shows that the closed ball of radius R > D are compact
covering domains, and hence that every closed ball is compact. O

Lemma 3.5. Let (X, d) be a non compact metric space and I be a group acting properly and co-
compactly on (X, d) by isometries. Let u be a T'-invariant measure and K be a compact covering
domain, then, Vo € X, VR, R’ such that 0 < R’ < R, we have

1(Bx (z, R'))
pL (Bx (z, R 4 diam(K)))

15 (Bx (2, R-R')) < p(Bx (@, R)) < p(K)-ul (Bx (2, R+diam(K)

Proof. The proof which follows is a variation on Proposition 2.3 of | ]. By the definition
of a covering domain, there exists g € I' such that x € g- K. For the sake of simplicity let
K’ := g- K, denoting by X, (z) the set of v € T" such that d(z,yz) < r and D := diam(K) the
diameter of K, the triangle inequality gives:

pBx (@, R) < (Ues,nw 1K) S Y wOK') = u(K) - ik (Bx(z, R+ D).

Y€S R4 (2)

To prove the first inequality of Lemma 3.5, recall that, if u; and uo are two Borel measures on
X, for all Borel set U C X, we have

[ ma(Bx(en) duin(e) = [ (B 10) dpata) &
U X

11



X 2 .
Replacing 1 by pkt and po by 1, equality (1), and the fact that M(Bx(fy x, R’)) = ,u(BX(x,R’))
(thanks to the I'-invariance of d and ) yields

W (Bx (R~ B)) - (B (o, ) = [ u(Bx (2 R)) dul(z) =
Bx (z,R—R’)

/B . ph (Bx (y, B') N Bx (x, R — R')) dp(y) < pi, (Bx (z, R’ + D)) - p(Bx (x, R)) ,

where the last equality follows from the fact that, by definition of a covering domain, for all
y € X, there exists g € I' such that Bx(y, R') C Bx(gx, R’ + D). O

End of the proof of Proposition 3.3: Let us chose a compact covering domain K such that u(K) <
400 and a point z € X, there exists a point 2’ € K and an isometry g € T such that
x = gx’; we set D := diam(K) and chose R = D + 1, so that K C Bx(a',R’). The fact
that pl, (Bx(2/, R+ D)) < 400 for all R > 0 (since the action is proper), input in the second
inequality of Lemma 3.5, has two consequences: on the one hand u(B x (2’ ,R)) < 400 for all
R > 0, on the other hand, if ©(K) vanishes, we would have ,u(BX (2, R)) =0 for all R > 0 and,
as increasing union of Bx (2, R), u(X) would vanish too, which would imply that p is trivial, this
contradicts the hypothesis. We then have p(K) > 0, which implies that u(Bx (2, R')) > 0. In-
puting these two positivity results and the finiteness of 1(K) and of u(Bx (2, R')) in the inequal-

1
ities of Lemma 3.5, we obtain that the lower limits (when R — +o00) of = In (ﬂ(BX («, R))),

of éln (pg, (Bx (2, R))) and of %ln (u£ (BX(a:,R))) coincide. The last coincidence is a con-
sequence of the fact that u},, = u), and that uy, (Bx(ga’, R)) = ul, (Bx (2, R)). This proves
that Ent(X, d, u) = Ent(X, d, ul).

Let us now assume that (X, d) is a length space, then the above properties and Lemma 3.5 imply
that, if % In (,ug (BX (z, R))) has a limit when R — +o0, it is the same for %ln (,u(BX(x, R)))
The existence of such a limit is deduced from the fact that the function R — In (,ug (Bx(z, R+

2D))) is non decreasing and sub-additive, see Property 2.5 of | | for a complete proof. O

Two classical examples:

— The classical notion of Volume entropy of a closed Riemannian manifold (M,g), is defined,
following Definition 3.2, as Ent(M ,dg, dvg), where (M ,g) is the Riemannian universal cover
of (M,g), dj its Riemannian distance and dvg its Riemannian measure. In this case I' is the
fundamental group of M acting by isometric deck transformations on (M ,§). By Proposition
3.3, one can replace, in this definition, dvz by the counting measure p. on any orbit, or by any
other I'-invariant measure .

— The notion of algebraic entropy of a finitely generated group I’ with a finite generating set ¥ . In
this case, the algebraic entropy of I related to X (also called rate of exponential growth or critical
exponent of T related to X) is denoted by Ent(T", X)) and can be defined in two different ways as
follows : either as the entropy of the metric measured space (T, dx, #), where ds; is the algebraic
distance defined in Section 2, or as the entropy of the metric measured space (Gn(I"),ds, u),
where G5 (T") is the Cayley graph of I' associated to X, and dy, and p are respectively the length
distance and the 1-dimensional measure induced on the graph (see Section 2).

A link between these two notions is given by the following classical result. Denote by d, the
geometric pseudo-distance defined on ' by d(y,~") := d(yx, v x), the balls of d,, are well defined
on I', one can then define the entropy of the pseudo-metric measured space (', d,;, #) as the lower
limit, as R — 400, of £ In(#{7 : dx(e,7) < R}). Denoting by Stabr(z) the stabilizer of z in T,
the pseudo-distance induces a distance on I'/Stabr(x) and the entropy of the metric measured
space (I'/Stabr(x),d,,#) coincides with the entropy of (I",dy, #) when Stabp(z) is finite.
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Lemma 3.6. — Let I be any group which admits a finite generating set X and which acts
properly (by isometries) on a metric space (X,d). For all T-invariant measure p on X, for all
r € X, we have

1
Ent(X,d, ) > Ent(X, d, u) = Ent(T, dy, #) > Ent(T, ¥).
nt(X, d, p) > Ent(X, d, p1,,) = Ent(T, #)_Maxaezd(x,m) nt (', X)

Proof. The definitions of pl and of the pseudo-distance d, implying that gl (BX(x,R)) =
#{v:d.(e,7) < R}, the equality Ent(T, d,, #) = Ent(X,d, uL) follows. The triangle inequality
implies that d(z,vx) < M - ds(e,7), where M := Max,¢x d(z,0x), hence that

%m (ug(BX(a;,R))) > %m (# {7 Hds(e,n) < ﬁ}) ;

which, by taking the lower limit when R — +o00, proves the last inequality of Lemma 3.6 (notice
that this result is still valid when Ent(X,d, uL) = +00).

The total measure of X being strictly positive, there exists R’ > 0 such that u(B(z, R')) > 0.
If there exists R such that p(B(z,R)) = +oo, then Ent(X,d, ) = 400 and the inequality
Ent(X,d, ) > Ent(X,d, ul) is trivially verified, hence we shall suppose that VR, u(B(x, R)) <
+00. Formula (1) (where ju; is replaced by pk and us by i) then yields, for all R > 0,

W (Bx (@ B) - n(Bx(o.R) = [ u(Bx(aR) dul(e)
Bx(ZE,R)
=/ py (Bx (y, R)) N Bx (z, R)) dp(y) S/ py (Bx (v, R))) duly),  (2)
Bx (¢,R+R’) Bx (z,R+R')

If d(y,Tz) > R/, then B(y,R') NTz = 0 and puL (Bx(y,R')) = 0; if d(y,I'z) < R/, there exists
g € T such that d(y, gx) < R’ and the triangle inequality ensures that Bx(y, R') C Bx(gz,2R’),
and hence that

N’g (BX(y7 RI)) < /’Lg (BX(gx’ 2Rl>) = Mg (BX(wv 2R/))'

The last equality follows from the I'— invariance of the measure pL and the fact that Bx (g, 2R’) =
g(BX (z, ZR’)). Plugging these two estimates in Inequality (2), we obtain

tiy (Bx (z, R)) - p(Bx (z, R')) < pi (Bx (2,2R)) - u(Bx (z, R+ R')).

Taking the logarithm of both sides, dividing by R + R’ and taking the lower limit of both sides
when R — 400, we deduce that Ent(X,d, u) > Ent(X, d, uL), which ends the proof. O

3.2 Doubling and Packing Properties

Definitions 3.7. Let Cy > 1 and I C|0, 400 be an interval. We consider a metric measured
space (X,d, n) and a point x € X.

(i) (X,d,pn) is said to satisfy the Cy-doubling for all balls centred at x and of radius r € I if

w(Bx (z,2r))

Vrel, 0<u(B , <+ d
r w(Bx (z,7)) 0o an (B (1))

< Cp. (3)

(1) (X,d, ) is said to satisfy the weak Co-doubling around z at the scale ro if it satisfies the
Co-doubling for all balls centred at x and of radius r € [%“, ZTO].

(iii) (X,d, p) is said to satisfy the strong Cy-doubling around z at the scale rq if it satisfies the
Co-doubling for all balls centred at x and of radius r € )0, 2rg].
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If Condition (3) is satisfied for all x € X, we say, in case i), that (X,d,u) satisfies the Co-
doubling for all balls of radius r € I, in case i), that it satisfies the weak Cy-doubling at scale
ro and, in case i), that it satisfies the strong Cp-doubling at scale rg.

In all cases Cy is called the (doubling) amplitude and 7o the (doubling) scale?.

Given a proper action (by isometries) of a group I' on (X, d), the application of these definitions
to the counting measure pl of the orbit of x (introduced after Definition 3.2) will be important
in the sequel. In Lemma 3.15 we shall show that, if there exists some I'-invariant measure
which satisfies a doubling condition, then ul satisfies the same doubling condition (thus this last
condition is weaker). One difficulty though comes from the fact that, for all y € X such that
d(y,T - x) > ro, pL(Bx(y,m0)) = 0. Consequently, the doubling condition (3) does not make
sense for balls centred at y and of radius r < rg; consequently the weak Cy-doubling at a scale
r1 < rg around y does not make sense. For this reason, in the sequel, doubling conditions for
the measure pl will only concern balls centred at o (or at any point of its orbit).

Let us remark that it is not necessary to assume that the action of I" is fixed point-free. Indeed, if
the stabilizer or any point of the orbit of = is not trivial, it is finite by the properness assumption
on the action. We could think of the counting measure as defined by p/,(4) = #(ANTz) for
any A C X; we then have pl = #(Stabp(x)) - u! 5 this implies that ul satisfies the Cy-doubling
condition for all balls of radius r € I centred at x if and only if u does.

For this reason, in the sequel, when we shall consider doubling properties satisfied by the counting
measure this will indifferently refer to p’, or to uL.

Finally, related to doubling conditions, the packing condition can be stated as follows,

Definition 3.8. For all Ny € N* and rg > 0, a metric space (X,d) is said to satisfy the packing
condition with bound Ny at scale rq if, for all x € X, the mazimal number of disjoint balls of
radius 1o/2 included in the ball Bx (x,9r¢) is not greater than Ny.

3.3 Comparison between the various possible hypotheses : bound on
the entropy, doubling and packing conditions, Ricci curvature

Let us start by a general comment. An upper bound on the entropy as well as the weak doubling
condition for the counting measure on an orbit of the action of a group I' makes sense on general
metric spaces. On the other hand, a lower bound on the Ricci curvature concerns, in our context,
mainly Riemannian manifolds. However, even if we restrict ourselves to Riemannian manifolds,
where I' is the fundamental group of a compact manifold acting by deck transformations on its
universal cover, the comparison between all these conditions is roughly summarized as follows :

Comparison 3.9. An upper bound on the entropy is a condition that is strictly weaker than the
weak doubling (around x) of the counting measure of an orbit Tz (cf. Lemma 3.10 (ii)), which is
itself strictly weaker than a packing condition at a similar scale (c¢f. Lemma 3.12), itself weaker
than the weak doubling condition on the Riemannian measure (cf. Lemma 3.1/), itself strictly
weaker than the strong doubling at the same scale (c¢f. Lemma 3.17 and its Corollary 3.18), itself
strictly weaker than a lower bound on the Ricci curvature (cf. Lemma 3.16).

If we furthermore restrict ourselves to comparing the wvarious weak doubling conditions, the
smaller the scale, the stronger the condition (cf. Lemma 3.10 (i)).

It is worth noticing that, in the co-compact case, on a Riemannian manifold (X, g), for any scale
ro, there always exists a constant C' := C(rg, X, g) such that the Riemannian measure satisfies
the weak C-doubling at the scale ¢ := ro(X, g). Similarly, there always trivially exists a constant
H := H(X,g) which bounds from above the entropy of (X, g). However, the idea in this article
is to compute these constants C,rp and H in such a way that they are simultaneously valid on all
the elements (X, d) of a family of metric measured spaces (i. e. independently of (X, d)); a first

2Notice that for A > 0, neither the scale nor the amplitude are changed when the measure is multiplied by .
When the distance is multiplied by A the amplitude remains unchanged but the scale is multiplied by A.
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condition will be said to be strictly weaker than a second one if the family of spaces satisfying the
second one is strictly included in the family satisfying the first one and if the constants appearing
in the definition of the first condition can be (explicitly) computed in terms of those appearing
in the definition of the second condition. The next lemmas makes this philosophy precise.

Lemma 3.10 (Entropy bounded from above versus weak doubling of the counting measure).
For every proper action (by isometries) of a group T on a length space (X,d) such that T\X is
compact with diameter < D, if there exists o € X such that the counting measure ugo of its
orbit satisfies the weak Cy-doubling around xq for at least one scale Ry > D, then

2R1]

3(1+
(i) pgo satisfies the weak Co( [ "o 1 _doubling around xq at every scale Ry > Ro,

(ii) the entropy of (X,d) is bounded from above by Ri InCy.
0

In (ii) the condition “entropy bounded from above” is strictly weaker than the weak doubling
one, as can be seen when considering any lattice I" acting on R™. Indeed, R™ has zero entropy
however the Cp-doubling at scale Ry is not any more satisfied when n is large enough.

Proof. Let us recall that ir(fbo) denotes the set of v € I' such that d(zg,yx9) < 7 and let
R > Ry. From equality (1) (applied for two measures equal to ugo), we deduce that

/ P B AR) il ) = [ (B Ro) 0 B (oo, ) dit (o)
BX Io,R X

this and the fact that « — ,ugo (BX (, 4R0)) is constant on the support of ugo yields

,ugo (Bx(wo,R)) '/Jgo (Bx($0,4R0)) Z Z ,U,go (Bx<’7$0,4R0) ﬁBx(.’Jﬁo,R)). (4)

YES R+ Ry (%0)

o If d(zg,vx0) < |R — 4Rp|, then Bx(vyxo,4Ro) N Bx(xo, R) contains one of the balls
Bx(l'mR) or Bx(’}/l‘o,élRo), thus Mgn (Bx(’y.%'o,4R0) n Bx($O7R)) Z ,ugo (Bx(xo,R())).

o If |R — 4Ry| < d(xo,vx0) < R+ Ro, since we are on a length space, for all € such that
0 < e < Ry— D, there exists a point y(v) € X (chosen for example on an almost minimizing
path from zq to vz, whose length is less than d(zg,~y zo) + €) such that,

1 1
d(zo,y(7)) = 3 [d(x0,v20) + R —4Ro] and d(vxo,y(7)) < 3 [d(xo,y20) — R+ 4Ro +2¢].

We easily check that Bx (y(7), 252 — ¢) is included in Bx (y(7), & [R + 4Ro — d(z0,7 20)] — €),
itself included in Bx (v zo, 4Ro)NBx (o, R). Since there exists g € I' such that d(gzo, y(7)) <
D < Ry — ¢, the intersection Bx (v, 4Ro) N Bx (zo, R) contains the ball Bx (gzo, £2).

For all v € iR+RO(ﬂc0), we thus have pl (Bx(yzo,4Ro) N Bx(wo,R)) > pk, (Bx(xo,%));
plugging this inequality in (4) yields
Hio (Bx (20, R)) - iy (Bx (20, 4R0)) > iy (Bx (o, R+ Ro)) - i, (Bx (0, Ro/2))

fip, (Bx (0, R+ Ro)) < fi, (Bx (0, 4Ry))

Mo (Bx (20, R)) = pf, [B (20, 3 Ro)]
,ugo(Bx(l‘o,R—FkRo))

and thus

< (3, and consequently, for all k €

pih, (Bx (2z0,2R))

N*, < CO2F, which implies on the one hand that
pk, (Bx (20, R)) 0 pk, (Bx (20, R))
3(14 | A&
CO( [RO}) and ends the proof of (i), and on the other hand that the entropy is bounded above

by Ri In(Cp), which ends the proof of (ii) (recall that the entropy does not depend on the choice
0

of the measure by Proposition 3.3). O
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The lemma that follows describes the basic tools to compare doubling and packing.

Lemma 3.11. For every proper action (by isometries) of a group T' on a metric space (X,d),
for every x € X, every integer k > 5 and every r > 0, we denote by NL (r) the mazimal number
of disjoint balls of radius 5, centred on points of the orbit I - x that can be included in the ball
Bx(x,k%). Then, for every I'-invariant measure p, we have

& Brlolb-13) _ o lBr(ep)
A Bx ) S B )

Proof. For sake of simplicity we set N := N,g (r); denote by 1z, . .., yva the centres of a maximal
packing of the ball Bx(x,k%) by disjoint balls of radius § centred on points of I' - 2. By I'-
invariance of 1 and of the distance, p (Bx(viz,5)) = p (Bx(z,%)) for all i, and consequently
N -y (Bx(z, %)) < p(Bx(z,k%)); this proves the right inequality of Lemma 3.11.

If there exists v € I' such that y2 € Bx (z,(k—1)5) NI -z and that yz ¢ UY, Bx (yiz,r),
then the balls of radius , centred on 12, ...,yn(x), vz are disjoint and included in Bx (z, k3).

This contradicts the maximality of the packing by the balls (B x (v x, g)) L<i<n: 1t follows that

By (9:, (k- 1)%) Nz C Uiﬂl(BX ('yix,r)ﬂf~x),
and thus that # (Bx (z,(k—1)5)NT-2) < N # (Bx (z,7) NT - z). This gives

WL (By (k- 1)8))  # (Bx (¢.(k—1)Z)NT - 2)

< 9,
py, (Bx (z,7)) #(Bx (z,r)NT-z)  —
and this ends the proof. O

Lemma 3.12 (Weak doubling of the counting measure versus packing). Let (X,d) be a metric
space satisfying the packing condition with bound Ny at scale 7o and T' a group acting on (X, d)
properly and by isometries. For all x € X, the counting measure ul on the orbit T - x satisfies
the weak No-doubling at scale 2rqy around x.

Proof. Recalling that Nig(r) is the maximal number of disjoints balls of radius % (centred
at points of I' - ) included in Bx(z,9r¢), Definition 3.8 gives Ni(r9) < Np. Then the first
inequality of Lemma 3.11 (with k = 18) implies that, for all r € [rq, 4ro],

L (Bx (,20)] _ i [Bx (2. 5ro)]

r
pl [Bx (x,r)] = ub[Bx (z,70)] < Nig(ro) < No.

The series of examples that follow shows that these various conditions are strictly different.

Examples 3.13. We choose a scale 79 > 0. In each of the following examples we construct a sequence
of Riemannian manifolds (X4, gx) and of groups 'y, acting properly and isometrically on them, such that
the maximal number N*(ro) of disjoint balls of radius ro/2 which are included in a ball of (X4, gx) of
radius 9ro goes to infinity with k. This shows that, for a given Ny and for k sufficiently large, (X&, gx)
does not satisfy the packing condition with bound Ny at scale rq. On the other hand we show that, for
every k, the counting measure pi,’; of the orbit of this action satisfies the weak Co-doubling at scale 2rg
(where Co and o are independent of k).

(1) Let T'x := 1 - Z x k- Z*"" be a lattice acting on (R*,can.) and = € R*, then the measure "
satisfies the weak 2-doubling condition at scale 2ro (for any 7o > 0) around x as soon as k > 8rg.
On the other hand, N*(rg) goes to infinity with the dimension k.

(2) This example generalizes to the case where each (X, gx) is the universal Riemannian cover of a
closed Riemannian manifold (Yk, Jk) whose sectional curvature is between —1 and —K 2 and Ty, is
its fundamental group. A variation on Margulis Lemma shows the existence of €9 > 0 (independent
of k) such that, in each connected component of the set of points where the injectivity radius is
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< €0, there exists a periodic geodesic ¢, of length less than 2¢e0 and whose homotopy class generates
2.y (zk), where xy is the lift of a point T € . Since I'ac,(zk) acts by translation on the lift
cx of & passing through zj, and d(zx,y2r) > 2eo for every v € I'y \ Tz <o (1), the measure py*
satisfies the weak 2-doubling condition at scale ¢ for each ro < g¢ /2. On the contrary, choosing
any z € Xj, when k — 400, if dim(X}) — 400, then the packing parameter N*(ro) goes to 4occ.

In this example, the sequence (Xg, gr)ren= is constructed so that the dimension of X} is fixed
equal to n and that the topology of X becomes more and more complicated when k — +4o00; this
complexity can be estimated (for example) by the Euler characteristic; we fix the scale r¢ to be
any positive number (independent of k).

Let (X, ) be a Riemannian manifold, (X, g) its Riemannian universal cover and I its fundamental
group. For & > 0 small enough, let N(¢) be the maximal number of disjoint balls of radius
e that can be included in (X, g) and let Zy,... Ty be the centres of these balls, then these

centers are a 2¢-lattice in X: indeed, if there exists Z € X such that T ¢ UN<E)B (zi,2¢),
then B (Z,e) N Bx (Zs,e) = 0 for every ¢, in contradiction with the maximality of the packing
(Bx (@, s))fv(f), thus X C UN(E)BY (%;,2¢). We modify the metric § on each ball B(Z;,2¢?) so
that the new metric, still denoted by g, is flat on By(ii,EQ). The lattice R. lifts as a 2e-lattice
R. = {x;}ier of (X, g), globally I'-invariant.

Let (Y,h) be any closed Riemannian manifold, whose diameter is equal to 2ro and two points
v,y such that dy(y,y’) = 2ro. We modify the metric, as above, so that it becomes flat in a
neighbourhood of y; the ball By (y,e®) is then isometric to each ball Bx(z;,&?), which ensures
that the boundaries of the balls Bx (x:,e%) are By (y,e®) are both isometric to the Euclidean
sphere S*~' (%) of radius ¢®. We denote by (Y’,h') the Riemannian manifold with boundary
obtained” by gluing a cylinder C: := [0,] x S"" (¢°) to Y \ By (y,&%), identifying OBy (y,&”)
with {€”} x S"7' (¢%). Let us consider a family (Y/),.; of copies of (Y',h') and let us glue each
Y/ to X \ (User Bx (zi,€%)) identifying Y] = {0} x S"! (¢*) with the connected component
OBx (x,€°) of the boundary of X \ (U,c; Bx (zi,¢”)). If we choose e = e — 0 we then obtain
Riemannian manifolds called (X&, gx)-

We now consider maps fr : X — X, which send Y; onto the ball Bx (x,€}), contracting Y C Y
on x;, sending the generatrices of the cylinder C., C Y; onto the rays of the ball and such that
fx restricted to X \ (U, Bx(wi,e3)) is the identity. The map fi : (X, gx) — (X, g) is then
contracting and, furthermore, there exists a sequence 7 going to zero with k£ such that

Vz,z € X\ (Uier Bx (mi,67)) , dx(fu(@), fr(2)) = dx(2,2) > (1+m) dx, (2,2) —mk . (5)

Let z € X \ (UZGI Bx(wi,e})) and J := {i € I : ; € Bx(,6r0)}. The number of elements of J,
denoted by NS (r0), is the number of elements of 2 ex-lattice in a fixed ball, thus it goes to infinity
when ¢; — 0, hence when k — +o00.

For every i € J, we have Y/ C Bx, (x,9r0): indeed, for any z € Y, there exists 2’ € dBx(x;,&®)
such that dx, (2, 2) < 2ro+¢; and Inequality (5) implies that dx, (z,2") < (14+nx) (dx (2, 2)+m),
which yields

13
dx, (2, 2") < (1+me)(dx (2, 20) + €8 +nx) < (1+ 1) (6r0 + & +mp) < 570

From the three last inequalities and the triangle inequality, we deduce that dx, (z,z) < %ro +
2ro + €7 < 9ro, hence that Y/ C Bx, (z,9r0). As each Y; contains a ball of radius 7o, and as
Y/ NY] =0 when ¢ # j, the maximal number of disjoint balls of radius ro included in Bx, (x, 970)
is at least equal to NE,C (r0)), hence it goes to infinity when k — +oo. Hence, for any choice of the
constants Ny and ro, for k sufficiently large, (Xk,gr) does not satisfy the packing condition with
bound Ny at scale rg.

On the other hand, the above construction being I'-invariant, I" also acts by isometries on (X, gx)
and we have fi(yz) =~ fu(z) for all v € T and x € X; the application fr being contracting, we
deduce that {y: vz € Bx, (z,7)} C{y: 7 fe(z) € Bx(fr(z),r)}. The manifold (X, g) (and the
action of I" on it) being fixed, there exists Cy > 1 such that the counting measure ,u?k@) on the orbit
of fr(z) under the action of I' satisfies u?k(x) (Bx (fx(x),870)) < Co. The previous inclusion shows
that the counting measure ;ﬁ; of the orbit of x € X}, for the action satisfies ,ug (Bx,, (z,8r0)) < Co,
which gives, for all r € [ro, 4r0],

pz (Bx, (@, 2r))

UL (B, @ 7)) = He (Bxa(@,20) < Co.

3The Riemannian metric b’ is only piecewise C'' but it could easily be smoothed out.
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Lemma 3.14 (Packing versus weak doubling). Let (X,d) be a melric space, if there exists a
measure |1 which satisfies the weak Cy-doubling for every ball of radius r € [%),97“0} centred at
every point* x € X, then (X,d) satisfies the packing condition with bound C§ at scale rq.

Proof. Let x € X and consider a packing of Bx (z,9r¢) by N disjoint balls Bx (a;“ 3 ) Amongst
these balls, let us denote by Bx (%07 20) one which has minimal measure, we then have

r
N - u(BX (mio, 50) ) < u(BX(aU,QrO)) < u(BX (X4, 18r0)).
,u(BX (244, 1870) )
M(BX (wim %0) )
Lemmas 3.12 and 3.14 asserts that a weak doubling condition on the counting measure of the

orbit of a point is weaker than the weak doubling condition for any other measure around every
point. It is however interesting to give a pointwise and precise result, this is the

We thus get N < < C’g. O

Lemma 3.15 (Counting measure vs any measure). For any proper action (by isometries) of a
group T' on a proper metric space (X, d), for any x € X, if there exists a T'-invariant measure
which satisfies the Cy-doubling for all balls centred at z, of radius r € [ 70, rl] (where r1 > 7'0),

1 (Bx (, 2r))

< C2 for every r € [ro, 211].
W (Bx (o) = 0 Jor evervr € [rorgn)

then the counting measure u. of T'-x satisfies

Proof. Lemma 3.11, where we choose k = 5, ensures that, for all r € [ro, %7’1], we have

=
83
>
=
NI
2
3]
>
=

3|3
IN
)

~
~—

/1'1; [BX (%271)} < (BX(%% )) ;U'(BX(xvr) .
piy [Bx (z,7)] — u(B (967%)) w(Bx(z,%))  w(Bx(z,r)

E
s
>
&
wlafrolen

since 7,7 and 2 77 belong to the interval [ 70, rl] O]

Lemma 3.16 (Strong doubling versus Ricci curvature bounded below). For all K > 0 and

rog > 0, we set Cy = 2"(cosh(Kro))n71. Let (X,g) be a complete Riemannian manifold such
that its Ricci curvature satisfies, Ric, > —(n — 1)K? - g, then (X, g) satisfies the Co-doubling
condition for all balls of radius r €]0,1q] (independently of their centre).

Proof. Bishop-Gromov’s comparison theorem implies that, for all x € X and all r < rg,

-1 Kr , . n—1
h(Kt dt h(2t dt
Vol, Bx (x,2r) - fo (& sinh(Kt))" A, fOKT(Sm (2t)) o cosh Kyt
Voly Bx (x,7) Jo (& sinh(Kt))" " dt Jo ' (sinh(t))" ™" dt

O

It is easy to find examples of sequences (X , gk) of Riemannian manifolds which all satisfy the

kEN
strong Cy-doubling condition at scale ro (where 80 and 7o do not depend on k) and, nevertheless,
such that the minimum of their Ricci curvature goes to —oo when k goes to +00. One example
can be obtained by gluing two copies of R™ \ B™ on their boundary S*~! by constructing, on
the resulting space, a sequence of smooth Riemannian metrics converging towards the singular

metric obtained by endowing each copy with its Euclidean metric.

It is clear (from Definitions 3.7 (ii) and (iii)) that the strong Cp-doubling condition is stronger
than the weak one (at the same scale, around the same point, with the same amplitude). In fact,
it is strictly stronger by the following results:

4The fact that the measure must satlsfy the Cp-doubling condition for all balls of radius r € [— 91”0} imposes
that for all z € X, the ball Bx(x, -2 3-) has positive measure. This, in particular, excludes the counting measure
of an orbit of a group I' acting properly by isometries when the diameter of I'\ X is greater than rq.
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Lemma 3.17 (Weak vs strong doubling). Let (X,g) be a complete Riemannian manifold, of
dimension n > 2, whose Ricci curvature satisfies Ricg > —(n — 1)K? - g; fix any ro > 0 and set
Co= 1+22"(cosh(Kr0))2n_2. Let (Y, hi) be any sequence of closed n-dimensional Riemannian
manifolds, whose diameters and volumes go to zero when k — +oo. Let X = X#Yy be the
connected sum of X with Yy, then, the metric g, on each Xy being obtained by gluing g and hy,
the corresponding Riemannian measure on (Xy,gx) satisfies the weak Co-doubling condition at
scale ro (for k large enough).

Furthermore, for any ro > 0 and Cy > 1+ 22”(cosh(K7"0))2n72, there exists a choice of the
sequence (Yi, hy) such that all the (X, gx) satisfy the weak Co-doubling condition at scale ro and
none of them satisfies the strong Cy-doubling condition at the same scale.

Corollary 3.18. For any Cy > 22" 4+ 1 and 79 > 0, the weak Cy-doubling condition at scale rg
does not imply any restriction to the topology and the geometry of the balls of radius less than or
equal to 5&. Hence it does not imply any restriction to the local topology and geometry.

Proof of Lemma 5.17. As the Ricci curvature of (X,g) is > —(n — 1)K? - g, it follows from
Lemma 3.16 that, for every rg > 0, the Riemannian measure of (X, g) satisfies the Cj-doubling
condition for all balls of radius r € ]0, 2ry], where C{ = 2”(cosh(2Kr0))n_1.
Let us make the construction of (X, gr) = X#Y) more precise we cut out balls By :=
Bx (z0,7%) C X and Bj, := By, (Yx, %) C Y, of radius ry < 155 Min (inj(X, ¢);inj(Yz, hx)).
We then glue, as in Example 3.13 (3), X \ By and Y3 \ Bj, at the two ends of a cylinder
Ck = [0, 7"3/4] S"=1 (r4) of radius ry. Again, similarly to Example 3.13 (3), we construct a
contractmg map fr : X — X such that there exists a sequence (7x),cy, g0ing to zero when k
goes to +oo, such that dx (fx(z), fx(y)) > dx, (z,y) — nk. Since fi is contracting and onto, we
have

Voly, (Bx,(z,7)) = Volg (fr(Bx,(z,7))) = Voly (Bx (fi(z),r —nk)) . (6)
Now, from the definition of f, there exists a sequence (V}),y, going to zero when k goes to
+00, such that, for all domain A C X,

Volg (fx (A)) = Volg, (AN (X '\ By)) = Voly, (A) = Volg, (Vi \ By,) = Volg, (Ci) = Volg, (A) = V.

From this and the fact that f, is contracting (which implies that fi (Bx, (z,2r)) C Bx (fx(z),2r))
we deduce that

Volg, (Bx,(z,2r)) < Volg (fx (Bx,(x,2r))) + Vi < Volg (Bx (fr(x),2r)) + Vi.

As % and 7 belong to 0, 2r] for every r € [%,2ro], this last inequality and (6) imply that there

exists No € N such that, for all k > No, for all z € X and for all r € [%,2rg], one has

Voly, Bx, (z,2r) < Vol, (Bx (fr(x),2r)) + Vi < Volg (Bx (fr(x),2r))
Voly, Bx, (x,7) ~ Volg (Bx (fe(z),r —nx)) ~ Volg (Bx (fr(z),7/2))

Hence, for all k& > Ny, the Riemannian measure of (X, gr) satisfies the weak Cy-doubling
condition at scale rg around every point € X. This shows the first part of the lemma.

1<(C5)*+1=0o.

Consider any sequence of n-manifolds (Y )ren+ such that each Yy admits® a Riemannian metric
h), whose sectional curvature is < —k2 and whose injectivity radius is > 4ry. Choosing a real
sequence (ex),cy, going to zero when k goes to +oo and verifying Vk, e < diam(Y,hj)~2,
we define the metric hy on Yy by hy := €7 - h}. Constructing (Xy, gx) as a connected sum of
(X,g,%0) and (Yg, hi,yx) as above, we choose a point zj € Y}, at hj-distance of y;, at least 5ry.
For all r < 2rg, we have By, n,)(Tk, 4k 70) = By, ny)(Tk,410) C Y\ By, hence Bx, (w, ex7”) =
By, wy(zk, 1) for every ' < 4rg; this yields
( k> k)

Voly, Bx, (zk,2exr)  Volu, By ny) (@, 2r) fozr sinh™ ! (kt)dt o Dk
Volg, Bx, (zk:exr) Vol By, (xk,r) — [ sinh™H(kt)dt — '

5Up to taking a subsequence, one can verify that the existence of such a sequence of metrics h;c is equivalent
to the existence of a sequence of metrics h}/ whose sectional curvature is < —1 and whose injectivity radius goes
to +o0.
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The doubling amplitude (for balls whose radius is close to zero) then goes to +o0o with k. Hence,
for all Cyp > 1 and rg > 0, and for all k large enough, none of the manifolds (Xy, g) satisfy the
strong Cp-doubling as scale ry around xy. O

Proof of Corollary 3.18. Let (X, g) be a n-dimensional flat torus. As in the proof of Lemma
3.17, we construct (X, gx) as a connected sum of (X, g, zo) and (Y%, hk, yr), where the diameters
and the volumes of the (Y%, hg)’s go to zero when k — +o00. Since there is no restriction on the
topology of Y}, and on the geometry (modulo homotheties) of h;, and as the gluing is made within
a ball of radius much smaller than g3, there is no restriction on the topology and on the geometry
of the balls of X} of radius less than 3%, centred around a point x; € Y3 \ Bj. Nevertheless
Lemma 3.17 (where we make K = 0) shows that, for any ry > 0 and every Cy > 22" + 1, there
exists Ny € N such that (for every k > Np) the Riemannian measure of (Xy, gr) satisfies the

weak Cp-doubling condition at scale . O

3.4 Doubling property induced on subgroups

An important feature of the counting measure on a group, that we will extensively use in the
sequel, is that the doubling condition transfers to subgroups. The next proposition makes this
more precise.

Proposition 3.19. Let T be a group acting properly by isometries on a metric space (X, d). Let
I C T be a subgroup and o € X a point. We then have,

(i) If the counting measure ,u£.0 satisfies the C-doubling condition for all balls of radius r €

[%ro, %7"1] centred around xo (where 0 < 1o < ry) the measure ug; satisfies:

,ug(/) (Ex(xo, 2’1"))
pt! (Bx (wo,7))

Vr € [ro, 1], < 8.

I B 72
/1’300( X(«TO ’I“)) < Ce™ for all r € [%T()a +OO[7 then

(ii) If the counting measure u. satisfies —~—— 22 <
o 1, (Bx (20, 7))

/ .
the measure ugo satisfies

ug; (EX (20, 2r))
1y (Bx (20, 7))

19
Vr € [rg, +o0], < CPesor,

Proof. Let us recall that, for all » > 0, we have denoted by N (r) (resp. NI'(r)) the maximal
number of disjoint balls of radius § contained in the ball Bx (xo, gr), and centred around points
of the orbit I' - zy (resp. of the orbit IV - 2y). Being in I' - z( is more restrictive than being in
Iz, hence we have N}" () < N} (r). Lemma 3.11 applied twice, firstly to the counting measure
ugé on the orbit I - zg, and secondly to the counting measure ugo on the orbit I' - xg, yields

Ha (Bx (w0, 37))
#iy (Bx (z0.3))
fny (Bx (0, 37))  py (Bx (20, 37)) i, (Bx (20, 7))
X )
1.5

= ph, (Bx(z0,37))  pb, (Bx(wo, §7))  ph, (Bx(zo, 57))
e For all r € [rg,71], since 57, g

e, (Bx (w0,2r))

ug;(BX(xo,r)) < N5,(7') < NF(r) <

(7)

5 r and %r belong to [%ro, %rl], the doubling condition, assumed
in (i), satisfied by pL allows to bound from above by C' each term in the last inequality of (7),
pih [Bx (w0, 27)]
Hizg [Bx (20, 7)]
e For all r € [rg, +oo], the hypothesis assumed in (i¢) allows to bound from above each term in
the last inequality of (7) by, respectively, C'e%‘s”“7 Ce? and Cez°". This proves (ii). O

< C? and ends the proof of (4).

which proves that
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4 Free Subgroups

In this section, we only consider torsion-free isometries of a 0-hyperbolic space (X,d) (hence geodesic
and proper by Definition 8.2). To each isometry v of (X,d), we associate its minimal displacement
s(y) = infyer= d(z, vy x) and its asymptotic displacement £(y) = limy, 4 oo %an) (see Definitions 8.18).
If v is hyperbolic, G(7y) is the set of oriented geodesics joining its fized points v~ and v*, and M(vy) is
the union of these geodesic lines (see Definitions 8.25). For the basic properties concerning projections
in hyperbolic spaces the reader is referred to Section 8.2.

The following remark will be useful in all this paper:

Remark 4.1. Let (X,d) be a §-hyperbolic space and v an isometry, then the three conditions
%y is non elliptic”, “y is torsion-free and the action of the group (y) generated by ~ is proper”
and ‘“y is torsion-free and the action of the group (v) is discrete” are equivalent; in the sequel,
we shall thus indifferently use one or the others of these three equivalent hypothesis.

Proof. The fact that the assumptions “proper” and “discrete” (concerning the action of (7)) are
equivalent is due to Lemma 8.12. If « is torsion-free and if the group (v) acts properly on (X, d),
then v is non elliptic by Remark 8.16 (i).

Conversely, if v is supposed non elliptic, then it is hyperbolic or parabolic by Theorem 8.15 and
(by the definition of these notions given before Theorem 8.15) it is torsion-free and, for every
r € X, d(x,v* ) goes to +00 when k — +o0; hence the action of (v) on (X, d) is proper. O

4.1 Ping-pong Lemma

Let (X,d) be a d-hyperbolic space and v a non elliptic isometry. For all z € X we denote by
D, (x) and D’ (x) the Dirichlet domains (respectively open and closed) of the point x for the
action of (), i. e. the subsets defined by":

Dy (x) = {y : Mingez- d(y,7*x) > d(y, )} , D)(x) = {y : Mingez d(y,7"2) = d(y,x)}.  (8)

Let us remark that D, (z) = D’ (z), and that (for all k € Z) D, (vEz) = +* (Di/ (z)) and let us
define the attraction (resp. repulsion) domains U (z) (resp. U (x)) of 7 associated to x by:

U () == Upen D, (7" @) = Upen 7" (D (2)) , U, (z) == Uj,l(a:) . (9)

Let us remark that, by Definition (9), Uy () UUS (x) = Upez- D’ (yPx) and, by taking comple-
ments, one has:

X\ (U (@)U () ={y : VpeZ" Mingezd(y,7" z) < d(y,7" z)}

= {y : Mingez d(y, 7" x) < Minyez- d(y,7* x)} = {y : d(y,z) < Minyez- d(y,7* x)}.
A consequence of this equality and of Definition (9) are the properties:
X\ (U; (z)UUS () = Dy(2), VkeZ* Wk(D;(x)) CU, (x) VU () . (10)

Remark also that, as « is a parabolic or hyperbolic isometry by Theorem 8.15, then Vk &
Z*, y*x #z and x € D, ().

Definitions 4.2. Let us consider two non elliptic isometries a and b of (X, d) and a point x € X,

(i) a and b are said to be in Schottky position with respect to x if the subsets U, (x) UU; ()
and Uy (x) UU," (z) are disjoints.

(ii) a and b are said to be in half-Schottky position with respect to x € X if Ut(z) C X\
(Uy (2) UUF (@) and Uy () € X\ (U (2) UUH(@)).

6The minima in question in the sequel are achieved since the torsion-free and discreteness hypotheses ensure
(by Remark 8.16 (i)) that v is hyperbolic or parabolic, and hence that g*z goes to infinity when k — +oo.
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Proposition 4.3. Let X be a finite set of non elliptic isometries of the Gromov-hyperbolic space
(X,d). If every pair of elements of X is in Schottky position with respect to the same point
x € X, then ¥ generates a free subgroup of the group of isometries of (X,d).

Proof. Every non-trivial relation involving elements of ¥ is written as s{* - s5? ... sPm = e, where
$1,82,...,8m are elements of ¥ such that s; # s;41 for all i € {1,...,m — 1}, and where

P1,P2, - - -, Pm are elements of Z*.
Let us prove by induction that, for all i € {1,...,m}, s7"- s\ ... sbm(2) € U, (2)UUS (). This

7
is true for i = m, since x € Dy, (), and hence sbr (z) € sbr (D, (x)) C Uy, () UUS (x); this
last inclusion is a consequence of (10). We now assume that s -s; ' ... sk (z) € U, (2)UUS (2);
since s; and s;_1 are distinct elements of 3, they are in Schottky position with respect to x,
we then have U, (z) UUS (z) C X\ (U;_l(x) U U;_l(x)) = D,, ,(x), where this last equality
follows from (10). From this and from (10), we deduce that
st st s () € sV (UL (m) U () € sVt (D, (2)) C U, () VU (2),

which proves the induction. It then follows that z = si* - s5?...sPm(z) is an element of
U, (z) UU (x), which contradicts the fact that = € D, (z) (see above) since, by (10), Ds, () N
(U, () UUS (z)) = 0. Consequently, there is no non-trivial relation between elements of ¥. O

Proposition 4.4. Let {a,b} be a pair of non elliptic isometries of (X,d), if a and b are in
half-Schottky position with respect to some point x € X, then {a,b} generates a free semi-group.

Before proving Proposition 4.4, we establish the following lemma.

Lemma 4.5. Let {a,b} be a pair of non elliptic isometries of (X,d), if a and b are in half-
Schottky position with respect to some point x € X, then any product R(a,b) of positive powers
of a and b satisfies R(a,b)x € U () (resp. R(a,b)x € U (x)) if the first factor of the product
R(a,b) is a power of a (resp. of b).

Proof. Tt is sufficient to give the proof when the first factor of R(a,b) is a power of a. Let us
then assume that

R(a,b) = aP°b® ... aP*b% or R(a,b) = aP°b?® ... aPkbI*aPr+1 |

where all p;’s and ¢;’s belong to N*.

We note that b% (z) € b% (Dy(x)) C U, (x), where the inclusion follows for the first equality in
(9). Similarly we show that aP*+1(z) € U (z). As a and b are in half-Schottky position with
respect to x, we also have

al? (U;‘(a:)) C aPi (X\ (Ua_(x) U U;_(l‘))) = qPi (Da(x)) C Ul ()

where the equality and the last inclusion follows from the properties (10) and (9). Similarly we
show that b% (U (z)) C U, (z). Iterating and alternating these two properties, we deduce that
arop®o ... aPrpi(x) and aPob® ... aP*bi* aPr+1(z) belong to U, (r) and this ends the proof. [

End of the proof of Proposition 4.4. We show that, if the semi-group generated by a and b is not
free, one of the two following alternatives is satisfied:

Case 1 : There exists a relation involving a and b which has, after suitable simplifications, the
form R(a,b) = e = idx, where R(a,b) is a product of strictly positive powers of a and b.

Case 2 : There exists a relation involving a and b which has, after suitable simplifications, the form
Ri(a,b) = Ra(a,b), where Ry(a,b) and Ry(a,b) are products of strictly positive powers of
a and b. We leave to the reader to check that we may furthermore assume that the first
letter appearing in Rj(a,b) is different from the first letter appearing in Ry(a, b).
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Lemma 4.5 implies that every product R(a,b) of strictly positive powers of a and b satisfies
R(a,b)z € U} (x) UU, (x). On the other hand the first equality of (10) (and the fact that = €
D.,(z) when 7 is non elliptic) gives x € D,(z)NDy(z) = X\ (U (z) VU, (z) VU, (z) UU; (),
it is not possible to have R(a,b)x = x, hence the relation R(a,b) = e. This takes care of Case 1.
If now R;(a,b) and Ra(a,b) are non-trivial products of strictly positive powers of a and b with
the first letter in Ry (a,b) different from the first letter in Ry (a, b), Lemma 4.5 implies that either
Ri(a,b)z € U (x) and Rz(a,b)x € U, (z), if the first letter of Ry (a,b) is a, or Ry(a,b)z € U} ()
and Rs(a,b)x € US(z), if the first letter of Ry(a,b) is b. This shows that we cannot have
Ri(a,b)x = Ry(a,b)x. This takes care of Case 2 and ends the proof of Proposition 4.4. O

The next proposition generalizes, in the context of isometric actions on a §-hyperbolic metric
space, a result proved by Th. Delzant for hyperbolic groups (see | ], Lemma 1.2, p. 179).

Proposition 4.6. Let (X,d) be a 0-hyperbolic space and a and b two isometries of (X, d).

(1) If there exists a point x € X such that d(aPx,blz) > Max [d(z, aPx), d(z,b%x)] + 26 for all
(p,q) € Z* X Z*, then a and b are in Schottky position with respect to x and the group
generated by a and b is free.

(i) If there exists a point x € X such that d(aPz,b%x) > Max [d(x, aPx), d(x, b%x)] + 25 for all
(p,q) € (Z* X Z*)\ (Z~ X Z™), then a and b are in half-Schottky position with respect to
x € X and the semi-group generated by a and b is free.

Remark 4.7. Any of the hypotheses made in points (i) or (ii) of Proposition 4.6 automatically
implies that a and b are non elliptic and that the point x appearing in these two points is never
fized by any element of (a) \ {idx} and by any element of (b) \ {idx}.

Proof of Remark 4.7. Any of the hypotheses made in 4.6 (i) or (ii) implies that, for all (p,q) €
(Z* x N*) and all (p,q) € (N* x Z*, we have

Max [d(z, aPz), d(x,b%z)] + Min [d(x, aPx), d(x,b%x)] = d(z, dPz) + d(z, blx) > d(aPx,bix)

> Max [d(z, aPx), d(z, b%x)] + 20 .

We deduce that Min [d(x, aPx), d(x,blx)] > 26 for all (p, q) € N*xN*, hence for all (p, q) € Z* xZ*
and thus aPx # x and b%x # x: this proves the second part of the remark. We also deduce that,
for all (k,p) € Z x Z such that p # k, we have d(a*z,aPz) > 26 and d(b*x, bPz) > 26; this shows
that the sequence (akm) N does not admit any Cauchy subsequence, and is thus unbounded (by
the properness of (X, d)); hence a is non elliptic. We similarly show that b is non elliptic. O

Proof of Proposition 4.6. Remark 4.7 ensures that a and b are non elliptic, we can then use the
definitions and results of Section 4.1.

Proof of (i): Let y € U, (z) U U, (x), Definitions (9) shows that there exists k € Z* such that
y € Dj(b*x), which implies that d(y, b*z) < d(y,z). Let us choose this number k. For all p € Z*,
the Quadrangle Lemma 8.3 (ii), applied to the points y, a’x, x and b*z, yields

d(y.x) + d(a¥x, b x) < Max [d(y.bx) + d(x,a?x) ; d(y, aPx) + d(z, b)) + 25

The hypothesis allows then to deduce d(y,z) < Max [d(y,b*z); d(y,aPz)], hence that d(y,z) <
d(y,aPz) for all p € Z*, which in turn implies y € D,(z) = X \ (U, (z) UUS(z)) for all
y € U, (z) UU,! (), hence that U, (z) UU," (z) € X \ (U (z) UUS (x)). Definition 4.2 (i), then
shows that a and b are in Schottky position with respect to x. Proposition 4.3 then ensures that
the subgroup of the isometry group of (X, d) generated by a and b is free.

Proof of (ii): The proof that U;" (z) C X\ (U, (z)UU, (z)) is identical to the proof of (i), except
that we need to choose a random point y € U;’ (x), and consequently assume that k € N*. The
proof that U; (z) € X\ (U, (z) UU,! (2)) is done along the same lines, exchanging the roles of a
and b. From Definition 4.2 (ii),it follows that a and b are in half-Schottky position with respect
to x. Proposition 4.4 then shows that the semi-group generated by a and b is free. O
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Corollary 4.8. Let (X,d) be a 6- hyperbolic space and T' a group acting on (X,d), for ev-
ery pair a, b of elements of I", if there exists some point x € X such that d(aPx,blz) >
Max [d(x, aPx), d(x,b%x)] + 25 for all (p,q) € (Z* X Z*)\ (Z~ x Z™), then the semi-group gener-
ated by a and b is free.

Proof. Let o be the representation from I' to Isom (X, d) associated to the action under consider-
ation; as (by definition of ) vz := o()x for every v € T', the above hypothesis may be rewritten
as d(o(a)Pz, o(b)4z) > Max [d(z, o(a)Pz), d(z, 0(b)%x)] 426 for all (p,q) € (Z* x Z*)\ (Z~ x Z7).
Applying Proposition 4.6, p(a) and o(b) generate a free semi-group. If a and b do not generate
a free semi-group then any non trivial relation between positive powers of a and b maps to a
similar non trivial relation between positive powers of o(a) and o(b), in contradiction with the
fact that o(a) and o(b) generate a free semi-group. Hence a and b generate a free semi-group. [

4.2 When the asymptotic displacement is bounded below

Proposition 4.9. Let (X,d) be a §-hyperbolic space and a and b two isometries such that the
group generated by a and b is a discrete non virtually cyclic subgroup of the isometry group, then
(i) if s(a),s(b) > 136, one of the two semi-groups generated by {a,b} or by {a,b='} is free,

130

m, one of the two semi-groups

(i) if £(a),£(b) > O then, for every integers p,q >
generated by {a?, b} or by {aP,b™1} is free.

Corollary 4.10. For any proper action (by isometries) of a group T' on a §-hyperbolic space

(X, d), for every hyperbolic elements a and b of I" which generate a non virtually cyclic subgroup
130

2 i P pa
Min(0(a) 1(5))’ one of the two semi-groups generated by {aP, b}

of ', for every integers p,q >
or by {a?, b~} is free.
Before proving Proposition 4.9 and Corollary 4.10, we state and prove the following lemma.

Lemma 4.11. Let v be an hyperbolic isometry acting on a d-hyperbolic space (X, d) and verifying
s(y) > L6, let ¢ € G(v) be any oriented geodesic from v~ to v, and let x € M(v), we then
have

(i) d(z,yx) < L(v) + 46,

(ii) if c(ty,) denotes a projection of Y*z on c, then the sequence (t) ey s strictly increasing.

Proof of (ii). By contradiction, assume that the sequence (t), .y is not strictly increasing. As
ty, — Foo when k — Zoo, there exists p € Z such that ¢, < Min (tp,l,tpﬂ). Let us set
6k = d(~v* z,c(ty)), Proposition 8.10 (i) implies that §; < 26 for all k € Z (since ¢ and 7* oc are
two geodesics of G()). We then have the following.

o Ift, <t,_1 <tpy1, then the triangle inequality, Lemma 8.23 (ii), and the hypothesis made
on s(7y) imply that:

tpr1 — tp +20p—1 + 0p1 +0p > d(7P 2, AP x) 4 d(P AP )
2
> d(x,yx) +d(z,v*z) > 2d(z,yx) +s(y) —6 > 3s(y) — 6 > ?55. (11)

As 6), < 26 for all k € Z, we deduce from this inequality that d(c(t,), c(tp41)) > 38 and we
can apply Lemma 8.9 to get:

d(z,yx)+60 = d(/P 2,77 x) + 65 >ty —ty+0pr1 +0, > 2d(x,y2) +5(7) =6 — 25,1,
where the last inequality comes from (11); we deduce that 2s(y) < d(z,vx) + s(y) <
76 + 20,1 < 118, which contradicts the hypothesis on s(7y).
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o If t, <tpy1 <tp_1, exchanging the roles of p — 1 and p+ 1 and using arguments similar to
the previous case we get: 2s(y) < d(z,yx) + s(y) < 76 4+ 20,41 < 114, in contradiction to
the hypothesis on s(7).

This shows that the sequence (tz), ., is strictly increasing. O

Proof of (i). As we saw before, for all k € N* g, 6, < 20, the triangle inequality gives:
d(z,v* z) — 46 < d(z,7* x) — 6g — 0p < |t —to| < d(z,7* ) + 0 + 0 < d(z, 7" 2) +45.

From (ii) we know that the sequence (t;),.y is increasing, we deduce that

k—1
m (L3 (1 S U
kEToo (k} =0 |ti+1 - tl|)> a kgrfoo <k|tk B t0|)> o kgrfoo <kd(1',’}/ $)> B 6(7) ’

which implies that inf;en |ti41 — ti] < £(y). We deduce that
d(z,yz) = iggd(v" z, ) < inf ([tiv1 — il +6i + 0iv1) <€) +49.
]

Proof of Proposition 4.9. Notice that, in the assertion (i) as in the assertion (ii) of Proposition
4.9, the hypotheses imply that a and b are hyperbolic (by Lemma 8.19) because £(a), £(b) > 0 in
both cases (in the case of assertion (i), this is deduced from the inequality £(y) > s(vy) — 9 > 125

proved in Lemma 8.23 (i)). To simplify, let us denote by N the smallest integer strictly greater

136
than Nin(0(a) 20))" We first show that (i) = (i4). Indeed, for every p,q > Ny, the group

(aP,b?) is not virtually cyclic (by the proposition 8.42 (vi)), and s(aP) > ¢(aP) > N1f(a) > 136,
while s(b?) > £(b?) > N1£(b) > 135. Property (i) then implies that one of the two semi-group
generated by {a?,b?} or by {a?,b" 9} is free.

Proof of (i) : Under the hypotheses of (i), the lemma 8.23 (i) proves that ¢(a) > s(a) — ¢ > 12§
and that £(b) > s(b) — & > 126; a consequence is that

Vk e Z*, s(a®) > max (13,12[k]) -6 and s(b%) > max (13,12[k[) - 0; (12)

indeed, this property is satisfied (by hypothesis) when k = £1. When |k| > 2, we have s(a*) >
{(a*) = |k|€(a) > |k| - 120 > 246 and we show in the same way that s(b¥) > |k| - 128 > 246.

a” and a™ (resp. b~ and bT) being the fixed points of a (resp. of b), we denote by ¢, (resp. cp)
one of the oriented geodesics from a~ to at (resp. from b~ to b™). If the limit sets {a™,a™}
and {bT,b} have a common point, they are identical by Proposition 8.42 (i) and are the fixed
points of all the elements of (a, b), which in turn implies, from Proposition 8.42 (ii), that (a,b)
is virtually cyclic which is excluded. Hence {a*,a™} and {b", b~} have no common point.

Proposition 8.11 (ii) then shows that there exist points zg = c4(s9) and z = c4(s() on the
geodesic line ¢, such that, for every sequence (t,), .y going to +oo, there exists a sequence
(€n) ey of strictly positive real numbers, going to zero when n — +o0, such that, for all ¢ € R,

d(ca(t), cp(tn)) = d(cy(tn), z0) + d (20, ca(t)) — 56 — en. (13)

d(ca(t), cp(—tn)) > d(cp(—tn), x() + d (2, ca(t)) — 56 — &y (14)
By eventually changing b in b=! (which changes the orientation of ¢,) hence exchanging xo and
xh, we may assume in the sequel that si < sg.

Let us note yo = ¢,(ro) a projection of xg on the geodesic ¢p. Denote by c¢,(sxk) a projection of

a*zg on ¢, and by ¢,(r,) a projection of b7y, on ¢;. Proposition 8.10 (i), applied to the geodesics

¢, and a® o ¢, (resp. to the geodesics ¢, and b? o ¢,), gives:

Vk,q € Z, d(akxo,ca(sk)) <25 andresp. d(b%o,cp(rg)) < 26. (15)
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For all ¢ € N* and all k € Z*, we consider a sequence (t,),, .y Which goes to +o0o. By hypothesis
s(b) > 134, we can then apply Lemma 4.11, which shows that the sequence n — r, is strictly
increasing. In particular, we have ro < 7, and hence, when n is large enough, d(yo,cb(tn)) =
d(yo, cb(rq)) + d(cu(rq), co(tn)). Applying Lemma 8.8 and the triangle inequality, gives, when n
is large enough,

d(zo, co(tn)) + 28 > d(mo,y0) + d(yo, cu(tn)) = d(b%20,b%y0) + d(yo, cu(rq)) + d(cv(rq), co(tn))

> d(quo,cb(rq)) — 2d(cb(rq), bqyo) + d(yo, bqyo) + d(cb(rq), cb(tn)) )
From the second inequality (15) we deduce:
d(wo, co(tn)) > d(b%0, cy(tn)) — 66 + d(yo, b%yo) - (16)

Applying inequality (13) and the quadrangle inequality (Lemma 8.3 (ii)), we get, when &, is
small enough,

d(zo, b%20) + d(zo, ca(sk)) + d(wo, cp(tn)) — 76 — &, < d(wo,b%20) + d(calsk), co(tn)) — 28
< Max [d(mo,ca(sk)) + d(bqacg, cb(tn)) ; d(quo,ca(sk)) + d(xo, cb(tn))}

< d(b%20, calsk)) + d(wo, cp(tn)) ; (17)

where the last inequality follows from Inequality (16) and from the fact that d(wg,b%wo) +
d(yo,b%yo) > 2s(b%) > 260 by Property (12). When n is large enough, for all ¢ € N* and all
k € Z*, applying the inequality Min [d(mo, quo) , d(zo, akxo)] > Min(s(a¥), s(b?)) > 136 + &,
(which follows from Property (12) and from the fact that n is large), applying Inequalities (17),
(15) and finally the triangle inequality, we deduce that

Max [d(a:o,quo) , d(mo,akxo)] + 26 < d(a:o,bqaro) + d(mo,akxo) — 116 — ¢,
< d(l’o, bq:L’o) + d(zo, ca(sk)) —96 —¢, < d(quo,ca(sk)) — 26 < d(bq:ro, akxo) . (18)

Let us now consider the case where & € N* and ¢ € —N* and where (t,),, oy is a real valued
sequence which goes to +00. Lemma 4.11 and the hypothesis on s(a) ensure that the sequence
k — sp is strictly increasing. We have s < so < s; and then d(gcg,ca(sk)) = d(gcg,xo) +
d(wo, ca(sk)). Inequality (14) and the triangle inequality yields, when n is large enough,

d(ca(sk),co(—tn)) + 58 +en > d(cp(—tn), z() + d (xh, ca(sk))

> d(co(—tn), 25) + d (20, o) + d(x0, Calsk)) > d (co(—tn), x0) + d (0, calsk)) -
From this and from the Quadrangle Lemma 8.3 (ii), when n € N* is large enough, we get
d(xo,b%20) + d (cp(—tn), zo) + d (To, ca(sk)) — 70 — en < d(mo, b%20) + d (ca(sk), co(—tn)) — 20

< Max [d(zo, ca(sk)) + d(blzg, cp(—tn)); d(b9x0, ca(sk)) + d(zo, co(—1y)] - (19)

As Lemma 4.11 and the hypothesis on s(b) ensures that n +— r, is strictly increasing, we
have —t, < r4 < 1o (when n is large), which implies that d(yo,cy(—tn)) = d(yo,cu(rq)) +
d(cb(rq), cb(—tn)). With this equality, Lemma 8.8 and the triangle inequality, we get

d(xo, cp(=tn)) + 26 = d(zo,yo) + d(yo, cb(—tn)) = d(wo, yo) + d(yo, cs(rq)) + d(cv(rq), cb(—tn))

Z d(an yO) + d(yoa bqyO) - 20 + d(Cb(T'q), Cb(_tn)) )

where the last inequality follows from (15). From this last inequality, using the triangle inequality,
the fact that d(yo, b%o) > 136 and (15), we deduce

d(blzo, cp(—tn)) < d(b%xo, byo) + d(b%yo, cb(rq)) + d(cp(rq), cb(—tn)) + d(yo, blyo) — 130

< d(xo,y0) + d(cp(rq), co(—tn)) + d(yo, b%yo) — 116 < d(xo, cp(—ty,)) — 79,

26



which implies
d(@o, ca(sk)) + d(b%xo, cy(—tn)) < d(xo, calsk)) + d(@o, co(—tn)) — 70
< d(xo,b%x0) + d (cp(—tn), zo) + d (zo, cal(sk)) — 70 — e .
Plugging this last inequality in (19), we deduce that
d(xo,bx0) + d (zg, co(sk)) — 70 — e, < d(b20, cal(sk))
which yields, using the triangle inequality and estimates (15),
d(zg,blzg) +d (J:o, akxo) — 96 — &, < d(b%xg,a"zo) + 26.

Now, applying the inequality Min [d(z0o,b%20),d(z0,a"z¢)] > Min(s(a”),s(b?)) > 136 + e,
(which follows from property (12) and is valid when ¢, is small enough), we deduce that

Vk,p € N*, Max [d(mo, b)), d(xo, akxo] + 20 < d(qumakxo) .
This last inequality and (18) show that, for all (p,q) € (Z* x Z*) \ (Z~ x Z~), we have
d(b?z0, a*zg) > Max [d(20, b%x0), d(z0, a" 20| + 26 . (20)

Proposition 4.6 (ii) then shows that the semi-group generated by a and b is free. This ends the
proof of (i) and hence of Proposition 4.9. O

Proof of Corollary /.10. If ¢ is the representation I' — Isom(X, d) associated to the action of T’
on (X,d), Lemma 5.8 (v) and (vi) proves that o(a) and o(b) are hyperbolic isometries of (X, d)
satisfying £(o(a)) = €(a) > 0 and £(p(b)) = ¢(b) > 0. As (a,b) is non virtually cyclic and as
the action is proper, Lemma 5.8 (ii) and (vil) guarantees that o(a) and o(b) generate a non

virtually cyclic discrete subgroup of isometries of (X,d). For every p,q > m =
136

Min (€(e(a)), £(2(0)))" Proposition 4.9 (ii) (applied to g(a) and p(b)) implies that o(aP) and

o(b9) (or o(aP) and o(b~7)) generate a free semi-group; eventually changing b in b=, suppose
that o(a?) and p(b?) generate a free semi-group. If a? and b? do not generate a free semi-group
then any non trivial relation between positive powers of a? and b? maps to a similar non trivial
relation between positive powers of o(aP) and o(b9), in contradiction with the fact that o(aP)
and o(b?) generate a free semi-group. Hence a? and b? generate a free semi-group. O

4.3 When some Margulis constant is bounded below:

For every group G and every A, B, S C G, we denote by A-B the image of A X B by the map (v,9) — 7+g
and define (by induction) S* as S*~' . S.

The aim of this subsection is to prove that, for any finite set S of isometries of any é-hyperbolic space
(X, d),which generates a non virtually cyclic group (S) of isometries, if the Margulis constant of S (see
Definitions 4.12) is > C'§, then S'° contains two elements which generate a free semi-group. In the case
where #S = 2, modifying a little the definition of the Margulis constant, we get a sufficient condition
for the group (S) to be free. These two “Margulis constants” are defined as follows:

Definitions 4.12. For any metric space (X, d), denote by Isom (X, d) the group of the isometries
of (X,d) and define

(i) the Margulis constant L(a,b) of a pair {a,b} C Isom(X,d) as the infimum of the function
(z,p,q) — Max [d(x, aPz); d(z,blzx)] for all the (x,p,q) € X X Z* x Z*,

(i) the Margulis constant L*(S) of a finite set S C Isom(X,d) as the infimum of the function
x — Maxyecs d(z,yx) for all the z € X.

Remark that, as L(a,b) < L*({a,b}), assuming a lower bound for L*({a,b}) is a weaker hypoth-
esis than assuming a lower bound for L(a,b).
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4.3.1 When the Margulis constant L* is bounded below:

a) When L* is applied to a pair of isometries

Theorem 4.13. On any d-hyperbolic space (X,d), for every pair {a,b} C Isom(X,d) such that
L*({a,b}) > % 0 and which generates a discrete and non virtually nilpotent subgroup, one has

(i) either Max[l(a),£(b)] > & and one of the semi-groups generated by {a'*, ba**b=1} or by
{a', ba=14b~1} is free,

(ii) or all the elements v € {ab,ab™* ba,ba=',a=tb,a= b~ b~ ta,b=ta='} wverifies £(y) > 26
and one of the semi-groups generated by {(ab)”, (ba)"} or by {(ab)”, (ba)~"} is free,

Before proving this Theorem, let us first establish the two following preliminary Lemmas:

Lemma 4.14. Let (X,d) be a §-hyperbolic space, for any pair {a,b} C Isom(X,d) such that
L*({a,b}) > 36 + Max ({(a),£(b)), for every x € X, the middle points m, (resp. mp) of
any geodesic segment from x to ax (resp. from x to bx) satisfy d(mg,mp) > L*({a,b}) —
(5(¢(a) + £(b)) +30)

Proof. For sake of simplicity, we set L* := L*({a, b}) and D := d(mg, mys); consider any geodesic
¢:[0,D] = X from m, to mp. By Lemma 8.21, we have

d(mg,amg) <36+4L(a) ;  d(mp,bmp) < 30+ £(b)

From this and from the triangle inequality, it follows that d(c(t),aoc(t)) < 2t + 36 + £(a) and
d(c(t),boc(t)) <2(D —t)+ 30+ £(b); by the definition of L*({a,b}), this gives, V¢ € [0, D]:

L* < Max [d(c(t),aoc(t)), d(c(t),boc(t)) | <Max [2t+{(a), 2(D —t) +£(b)] +36 . (21)
Applying this inequality for ¢t = 0 and ¢ = D (and the hypothesis ¢(a), £(b) < L* — 36) yields
)< L*—35§<2D+4(a) and {Lla)<L*—35<2D+4L(b);

these inequalities imply that [¢(b) — £(a)| < 2D, thus that to := (2D + £(b) — £(a)) verifies
0 < tp < D; we may then apply the inequality (21) to ¢t = o and obtain:

L* =36 < Max 2t 4 £(a), 2(D —to) + £(b) | = d(mq,ms) + %(Z(a) + (b)) ,

which concludes. O

Lemma 4.15. Let (X,d) be a §-hyperbolic space, for any finite set S C Isom(X,d) such that
L*(S) > 44, for any positive value e < L*(S)—49 and any point x such that Max,egs d(z,vz) <
L*(S) + ¢, if a € S verifies d(z,ax) = Max,es d(z,vx), then either £(a) > § or there exists
be S\ {a,a=1} such that d(z,bx) > L*(S) — 6 —e.

Proof. If £(a) > ¢, the lemma is proved, we shall therefore suppose that £(a) < 4.
Let us fix geodesic segments [z, a x|, [z, a?z] and [ax, a®x] := a([z,ax]), and a geodesic triangle
A = [z, ax,az], whose sides are these geodesic segments. Let us consider its approximation by a
tripod fa : (A,d) = (Ta,dr) (the construction of this approximation is described before Lemma
8.1); let ¢ be the branching point of this tripod and let us denote by «, 8,y the respective lengths
of the branches [c, fa(a®)], [c, fa(a®x)], [e, fa(x)] of this tripod. By Lemma 8.1, d(z,az),
d(z,a’z) and d(az,a’z) are respectively equal to dr (fa(z), fa(az)), dr (fa(z), fa(a’z)) and
dr (falaz), fa(a’z)) and we deduce that a4+ v = d(z,az) = d(az,a?z) = a+ B (which means
that 3 = v), and that d(x,a?r) = v+3 = 28. A consequence of this and of Lemma 8.20 (i) is
that 28 < a+ 4+ £(a) 4+ 26 and so that

a2

(d(z,ax) —(a)) — 0 > = (L*(S) — 30) > %(5—&—5) .

N —
|
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Let y be the point of [z, ax] such that d(z,y) = £(§ +¢), then ay is the point of [a z, a®z] such

that d(az,ay) = 1(8 + ¢); it follows from Lemma 8.1 that dr (fa(az), fa(ay)) =10 +¢) <
and that the point fa(ay) is on the branch [¢, fa(a x)] of the tripod. It comes from this (and from

the fact that dp (fa(x), falaz)) > L*(S) > 40 +¢ > dr (falax), falay)) + dr (fa(x), fa(y)))
that

dr (fa(y), falay)) = dr (fa(z), falaz)) —dr (fala), falay)) —dr (fa(z), fa(y))
<L (S)+e—b-¢ .

It follows from Lemma 8.3 (i) that d(y,ay) = d(y,a 'y) < dr (fa(y), falay)) + 35 < L*(S),
there therefore exists some b € S such that d(y,by) > L*(S), and we automatically get that
b ¢ {a,a"1}, the triangle inequality concludes that d(x,bx) > L*(S) — 6 — ¢. O

Proof of Theorem 4.15. We may assume that Max[¢(a),(b)] < § (if not, the Theorem 4.13
is automatically verified); hence we have to prove that, under this assumption, every v €
{ab,ab=1,ba,a='b} verifies £(y) > 26. As L*({a,b}) = L*({a,b'}) = L*({b,a}) = L*({a™1,b})
(because d(z,vx) is always equal to d(x,y~!z)), if the pair {a,b} satisfies the assumptions of
Theorem 4.13, then these assumptions are also satisfied by the pairs {a,b=1}, {b,a} and {a7!,b};
it is thus sufficient to prove that, under the assumptions of Theorem 4.13, if Max[¢(a), £(b)] < §,
then ¢(ab) > 24. By contradiction, let us suppose that £(ab) < 24.

For any ¢ > 0 such that £ < § — Max[{(a), £(b)], let us fix some point z such that

L*({a,b}) < Max [d(z,azx); d(z,bx)] < L*({a,b}) + ¢ .
The above assumptions and the lemma 8.24 then give:
dlaz,bx) <Max[d(z,az); d(x,br)] +66 . (22)

On the other hand, as the hypothesis and the choice of € imply that L*({a,b}) > % 0>4042¢,
the aforementioned choice of x and the lemma 4.15 prove that

|[d(x,ax) —d(z,bx)| = Max [d(z,az); d(z,bx)] — Min [d(z,az); d(z,bx)] <d+2e . (23)

For the sake of simplicity, let us denote by L* the Margulis constant L*({a,b}) and by m, (resp.
by my) the middle point of some geodesic segment from x to ax (resp. from z to bz). From the
assumptions, it comes that L* > 46 > 36 + Max (€(a), K(b)) and, applying Lemma 4.14, that

1 1 9

d(mg,mp) > L* — g(ﬁ(a) + (b)) — 36 > 3 (L* + 3 0 — Min[ﬂ(a),ﬂ(b)]) ) (24)
where the last inequality follows from the assumption L*({a,b}) > 226 > 2! 6 + Max[((a), £(b)].
Let us now consider any geodesic triangle A = [z,az,bx] (with vertices z,ax,bz) and its
approximation by a tripod fa : (A,d) — (Ta,dr) (the construction of this approximation is
described in the beginning of the subsection 8.1); let ¢ be the branching point of this tripod and
let us denote by «, 3, v the respective lengths of the branches [c, fa(a2)], [¢, fa(bx)], [¢, fa(x)],
of this tripod. A consequence of Lemma 8.1 is that fa(mg) and fa(m;) are the middle points of

the sides [fa(x), fa(az)] and [fa(z), fa(bx)] of this tripod; from this, from Lemma 8.3 (i) and
from (24) we deduce that

1 ) .
dr (fa(ma), fa(my)) > d(mg,mp) — 3§ > 3 (L* + 3 J— Mln[ﬁ(ct)l(b)]) . (25)
A consequence of Lemma 8.1 and of (23) and (25) is that

ldr (fa(@), fa(ma)) — dr (fa(@), falms)) | = d(z,ma) — d(z,my)| = %Idmw) — d(z, ba)
<9 e <dr(falma), falm)) :
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it follows that the side [fa(z), fa(az)] := [fa(z), ] U[c, fa(ax)] of the tripod contains fa(m,),
but not fa(mp) and that the side [fa(z), fa(bz)] := [fa(z), c]U][e, fa(bx)] of the tripod contains
fa(mp), but not fa(mg), which proves that fa(mg) (resp. fa(mp)) belongs to the branch
le, fa(ax)] (resp. to the branch Je, fa(bz)]). From this we deduce that

a—7
2

 drle fa(my) = P22

dr(c, fa(ma)) = dr (fa(z), fa(ma)) —dr (¢, fa(x)) = B

(where the proof of the second equality is similar to the proof of the first one), proving by the
way that v < Min(8, «). A consequence of these last equalities, of the fact that fa(mg) (resp.
fa(my)) belongs to two different branches of the tripod, and of the first inequalities of (25) and
(24) is that

=+ e} S = dr (fa(ma), fa(my)) > d(ma,my) = 6 > L* = %(E(a) +(b)) —46.  (26)
As, by Lemma 8.1, d(z,a x), d(z,bx) and d(a x, b x) coincide respectively with dr (fa(z), fa(ax)),
dr (fa(z), fa(bzx)) and dr (fa(ax), fa(bz)), and then with v+4«, v+8 and « + B respec-
tively, we deduce from (22) and (23) that Min(«,8) — 66 < v < Min(«, 8) and Min(a, §) >
Max (o, 8) —d—2 €; plugging these two estimates in (26), and recalling that Max[¢(a), £(b)] < 6—¢
by the choice of €, we get

§+E> 1(1\/Iax(oz,5)—1\/Iin(0¢,ﬂ)) = a+ﬁ—Min(a,ﬂ) > a+6—7—6§: a*7+ﬂ*7_65
2 2 2 2 2 2
zL*—%(é(a)M(b)) —106 > L*—116+¢,

in contradiction with the assumption L* > 22—3 0. Hence the assumption ¢(ab) < 246 is false, and
this proves the first part of Theorem 4.13.

Proof of the second part of Theorem /.13: if the subgroup (a,b) generated by a and b is discrete
and not virtually cyclic, then firstly (a, bab=!) is not virtually cyclic by Proposition 8.42 (v) and
secondly, as (a,b) = (ab,b) is not virtually cyclic, (ab, ba) = (ab, b(ab)b~1) is not virtually cyclic
too by Proposition 8.42 (v). From the first part of Theorem 4.13, we know that

e cither ¢(bab™') = ¢(a) > ¢, and the proposition 4.9 (ii) then implies that one of the two
semi-group generated by {a'*, ba'*b=1} or by {a'* ba=14b1} is free,

e either ¢(b) > §, and the proposition 4.9 (ii) then implies that one of the two semi-group
generated by {b!4, ab**a=1} or by {b**, ab= a1} is free,

e or /(ba) = £(ab) > 24, and the proposition 4.9 (ii) then implies that one of the two semi-group
generated by {(ab)”, (ba)”} or by {(ab)7, (ba)~"} is free. O

Lemma 4.16. Let (X,d) be a d-hyperbolic space, for any pair {a,b} of isometries of (X,d), and
for any point x € X such that d(x,ax) > d(z,bx), if £(a), £(b), £(ab), £(b~'a) and £(b~2a) are
(strictly) bounded above by &, then the middle point m of any geodesic segment from x to ax
satisfies Max[d(m,am); d(m,bm)] < 2L6.

Though it looks similar to Theorem 4.13 (assuming however stronger hypotheses), this Lemma
is original for the point m only depends on a and not on b. This point will be important in

the proof of Theorem 4.17, which extends Theorem 4.13 to the case where the pair of isometries
{a, b} is replaced by any finite set S of isometries.

Proof. Lemma 8.21 and the assumptions prove that
dim,am) <35+ £(a) <46 (27)

It is thus sufficient to prove that d(m,bm) < 2- 8. As {(a), £(b), £(ab) < §, Lemma 8.24 yields

d(az,br) < Max [d(z, ax) ; d(x,bz)] + 131 § =d(z,az) + 1?1 0. (28)
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Similarly, as £(b=1), £(b=ta), £(b~2a) < §, Lemma 8.24 also gives

11
iy

d(b~'z,b ax) < Max [d(z,b'z); d(z,b Lax)] + 5

hence 1
d(z,ar) < Max [d(x,bz) ; d(ax,bz)] + 7 d . (29)

Let us fix geodesic segments [z, az], [z,bz] and [az,bz], and a geodesic triangle A = [z,az, b ],
whose sides are these geodesic segments. Let us consider its approximation by a tripod fa :
(A,d) = (Ta,dr) (the construction of this approximation is described in the beginning of the
subsection 8.1); let ¢ be the branching point of this tripod and let us denote by «, 3, the respec-
tive lengths of the branches [c, fa(a )], [¢, fa(bx)], [c, fa(x)], of this tripod. By Lemma 8.1
d(z,ax), d(x,bz) and d(ax,bx) are respectively equal to dr (fa(x), falax)), dr (fa(x), fa(bz))
and dr (fa(ax), fa(bzx)) and we get:

dz,ax)=v4+a , d(z,bz)=~v+p , daz,bx)=a+p. (30)
The assumption d(z,bz) < d(x,ax) means that 5 < a. A consequence of (30) and (28) is that

B <+ 16§, while (30) and (29) imply that Min(y,a) < 8+ 41 6. We summarize all these
estimates in the inequalities:

min(vy, @) — % 0 < <min (fy+121 d, a) (31)

e First case: if a < 7: Let us denote by m; the middle point of [z,bx], as § < «, one

has 0 < % < % < =, which means that fa(m) and fa(m) both belong to the branch

[e, fa(z)] of the tripod T and satisfy

dr (falm), Fa(m)) = 152 -T2 < Ls

where the last of these inequalities is derived from (31). A consequence of this and of the Lemma

8.3 (i) is that d(m,m1) < 234. On the other hand, applying the assumption and Lemma 8.21, it
comes: d(my,bmy) <30+ €(b) < 44. These two last estimates and the triangle inequality give:

d(m,bm) < d(my,bmq) + 2d(m,my) < 2235 .

e Second case: if a > v: Let us denote now by ms the middle point of [az,bz]; as vy ta

and & +5 are both smaller than «, the points fa(m) and fa(ms) both belong to the branch
[c, fa(ax)] of the tripod T and satisfy

dr (fa(m), fa(mz)) =

Yy+a a+p 11
2 2

because | —v| < 41§ by (31). This inequality and Lemma 8.3 (i) yields d(m,ms) < 124.
The image by a~! of [az,bz] being denoted by [x,a~!bz], whose middle point is m} := a~ma,
Lemma 8.21 and the fact that £(a=1b) = £(b~'a) < & by hypothesis imply that

d(ma,ba" mso) = d(mb,a " bmb) <35+ L(a”tb) < 46 .
Using this last inequality and the aforementioned inequality d(m,msg) < % 6, we get:
23
2
This last estimate, together with (27) and with the triangle inequality gives:

d(m,ba"tm) < d(mg,ba” ma) + 2d(m,ma) < =5 ,

2 1
d(m,bm) < d(m,ba"'m) + d(ba"'m,bm) < ?3 d+d(m,am) < % J.

This upper bound of d(m,bm), together with (27), ends the proof. O
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b) When L* is applied to any finite set of isometries

For any finite set ¥ of elements of a given group G, we denote by ¥7! the set {y:y—-1€X}; &
is said to be “symmetric” if £~ = 3. To any such finite set X, one associates its ”symmetrized
set” S := L UX™!; notice that the groups generated by ¥ and by S = XUX ™! coincide, that their
Cayley graphs verify Gg = Gs;, and thus that their algebraic word distances dg and dy, (associated
respectively to the sets of generators S and ¥, see their definition in section 2) coincide.

Theorem 4.17. Let (X, d) be a 6-hyperbolic space, for any finite symmetric set S of isometries,
if L*(S) > 315, then

(i) there exists v, € S* such that {(vyy) > §

(i) moreover, if the subgroup generated by S is discrete and not virtually cyclic, there ex-
ists o € S such that one of the two semi-groups generated by {vi*, o~vi* o=t} or by

14 __ .
{7t ovg oY s free.

Proof. Arguing by contradiction, let us suppose that ¢(y) < § for every v € S3, let us fix any
point € X and denote by a an element of S such that d(z,az) = Maxgeg d(z, gz). For any
g € S, we have d(z,az) > d(x,gz), and (by assumption) ¢(a), £(g), £(ag), {(g~ta) and £(g~2a)
are (strictly) bounded above by §, Lemma 4.16 then proves that the middle point m of any
geodesic segment from x to ax satisfies d(m,gm) < ?’2—1 0; as this inequality is valid for every
g € S, we deduce that L*(S) < %5, a contradiction with the hypothesis which proves (i).

From (i), there exists v, € S such that £(7,) > &, on the other hand, there exists o € S such
that the subgroup generated by {v,,0} is not virtually cyclic, otherwise (by the Proposition
8.42 (vii)) the subgroup generated by S would be virtually cyclic. By the proposition 8.42 (v),
we deduce that {v,, 07,07 '} generates a non virtually cyclic discrete subgroup. Hence we
may apply the proposition 4.9 (ii) to the pair {v,, 0v,0 '}, which proves that one of the two
semi-groups generated by {v¢*, ov{* o1 or by {~§?, 07614 o1} is free. O

4.3.2 When the Margulis constant L is bounded below:

Let us now assume that a and b are hyperbolic isometries, we then have

Lemma 4.18. If the group {(a,b) generated by a and b is a non virtually cyclic discrete subgroup
of the isometry group of (X,d), then, for all R > 0 such that Mgr(a) and Mg(b) are non empty,
there exists points xo € Mpg(a) and yo € Mg(b) such that d(zo,yo) is the minimum of d(x,y)
among (x,y) € Mp(a) x Mg(b).

Proof. Let us denote by a™ and a™ (resp. b™ and b™) the points in the limit set of a (resp. of b).
Let us assume that there exists a sequence (x,,, ¥y, ) of elements of Mg (a) x Mg(b) which goes to
infinity and such that d(z,,y,) is bounded. In the following we assume that x,, goes to infinity,
the argument would be the same with y,,. In this case, Lemma 8.34 (ii) shows the existence of
a subsequence z,,, which converges to a™ or a~ and, as d(z,,,yn,) is bounded, it follows that
the sequence y,,, converges towards a™ or a~. Lemma 8.34 (ii) shows that the limit of y,, can
only be bt or b~, hence we have {a,at}N{b~,b"} # 0, which implies (by Proposition 8.42 (i))
that {a~,a™} = {b=,b"} and consequently that all elements of the group (a,b) have {a~,a™}
as fixed points set. Then, from Proposition 8.42 (ii) we deduce that (a,b) is virtually cyclic.
This contradicts the hypothesis, then d(x,y) goes to +0o when (x,y) does. This ensures the
existence of a point (zg,yo) € Mr(a) x Mpg(b) where the function (x,y) — d(x,y) achieves its
minimum. O

Clearly, Lemma 4.18 is trivial when Mg (a) N Mg(b) # 0 since then (xq, zo) with 2o € Mg(a) N
Mpg(b) is a solution. It is thus important to have a criterion characterizing those values of R
such that Mg(a) N Mg(b) = 0. This is the goal of the next result.

Lemma 4.19. Let R > 0 be such that Mg(a) and Mg(b) are non-empty. If L(a,b) > R, the
Margulis domains Mg(a) and Mg(b) are disjoints. Conversely, if the Margulis domains Mpg(a)
and Mg (b) are disjoints, then L(a,b) > R.
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Proof. If there exists x € Mp(a) N Mg(b), there exists (p,q) € Z* x Z* such that d(z,aPz) < R
and d(z,b%x) < R. From the definition de L(a,b), this implies that L(a,b) < R.

Conversely, if the Margulis domains Mg(a) and Mg(b) are disjoints, then every point x € X
satisfies © € X \ Mg(a) or x € X \ Mg(b), which implies that, for all p,q € Z*, d(x,aPx) > R or
d(xz,b%z) > R. Taking the infimum, we deduce that L(a,b) > R. O

Theorem 4.20. Let (X,d) be a d-hyperbolic space. Let a and b be two hyperbolic isometries
acting on (X, d) such that the subgroup (a,b) is discrete and non-virtually cyclic. If the Margulis
constant satisfies L(a,b) > 239, we then have the following alternatives:

(i) if £(a),L(b) < 136, the subgroup generated by {a,b} is free,
(ii) if £(a), £(b) > 135, one of the two semi-groups generated by {a,b} or by {a,b='} is free,
(iii) if €(a) < 138 and €(b) > 135, one of the two semi-groups generated by {b,aba=1} or by

{b,ab=ta=1} is free,

(iv) if £(a) > 135 and £(b) < 136, one of the two semi-groups generated by {a,bab='} or by
{a,ba=1b=1} is free.

The proof relies of the following proposition:

Proposition 4.21. Let (X,d) be a 0-hyperbolic space. Let a and b be two hyperbolic isometries
acting on (X, d) such that the subgroup {(a,b) is discrete and non-virtually cyclic. If " the Margulis
constant L(a,b) satisfies L(a,b) — Max[l(a),£(b)] > 106, then a and b generate a free subgroup
of the isometry group of (X,d).

Proof of Proposition 4.21. For the sake of simplicity let ¢y = Maz[l(a),£(b)]. The hypothesis
L(a,b) > 100 + ¢y allows to choose Ry such that 10§ + ¢y < Ry < L(a,b). Let us denote by ¢
any real number such that 0 < e < Rg — (106 4 £p) and define ¢’ > 0 by Ry = 100 4+ ¢y + & +2¢’.
We also set rg := €y + ¢ + ¢, Lemmas 8.32 (ii) and 4.19 implies that M, (a) and M,,(b) are
closed disjoints and non empty sets. Furthermore, from Lemma 4.18, we can choose two points
x9 € My,(a) and yo € M, (b) such that d(xg,yo) is the minimum of d(x,y) when (z,y) runs
through M, (a) x M,,(b). We then fix a geodesic [z, yo] between these two points. Let us first
prove the following property:

Iz € [xo,y0] such that V(p,q) € Z* x Z*, d(z,a’x) > Rp and d(z,b%z) > Ry . (32)

Indeed, one has L(a,b) > Ry, Lemma 4.19 then implies that Mg, (a) and Mg, (b) are closed
disjoints sets containing respectively g and yo. Their intersections with [xg, yo] are then closed
disjoints and non empty whose union cannot be equal to [xg,yo]. Consequently, there exists a
point x € [zg, yo] which is not in Mg, (a) U Mg, (b) and hence satisfies Property (32).

Let us now fix such a point z € [xo,yo] (given by Property (32)). The fact that ¢ Mg, (a),
that z¢ is a projection of x on M,,(a), that a?zo € M,,(a), and Lemma 8.33 imply that

1
Vp € Z* d(z,aPxg) > d(z,z0) > §(R0 —7r) = gé +é. (33)

We choose p and ¢ in Z*. We denote by [z, 2] the segment of the geodesic [zg, yo] between z
and xg and we call [aPx, aPx] the image of this geodesic by a”. Let us choose arbitrary geodesics
[z, aPx], [x0,aPxo] and [x,aPxo]. Inequalities (32) and (33), show that there exist points u, u’
and u”, respectively on the geodesics [z, aPz|, [z, aPxg] and [z, 2], such that d(z,u) = d(z,u’) =
d(z,u") =56 +¢.

“In this Proposition, the hypothesis L(a,b) — Max[{(a),£(b)] > 106, can be replaced by: there does not
exist points z € X and integers p,q € N* which satisfies simultaneously d(z,aPz) < 10§ + Max[¢(a), £(b)] and
d(z,bz) < 106 + Max[£(a), £(b)]. The equivalence between this new statement and Proposition 4.21 follows from
Lemma 4.19 and the beginning of the proof of Proposition 4.21.
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We now consider the triangles A = [z, a?z, aPzg] and A’ = [z, aPx, x0] defined by the above
geodesics and their approximations by the associated tripods fa : (A,d) = (Ta,dr) and fas :
(A’,d) — (Tas,dg) (see Sub-section 8.1); the branching points of these tripods are respectively
denoted by ¢ and ¢’. The length of the sides of the tripod (Ta,dr) (resp. (Tas,drs)) whose ends
are fa(x), fa(aPx) and fa(aPxg) (resp. far(x), far(aPxg) and far(zp)) are denoted by «, 8 and
v (resp. o, 8" and 4'). Finally we denote by ¢} the inverse image in [z, a?(z¢)] by fas of the
branching point ¢’ of the tripod Tas. Lemma 8.35 (iii) ensures that ¢ € M, t25(a) and, as x
belongs to the closure of X \ Mg, (a), one has (from Lemma 8.33)

o =dp (far(x),c) = d(z,ch) — 6 > d(x, Myy426(a)) =6 > = (Ro — 19 — 20) — 0 = 2(5 +¢,

N |

where the last equality follows from the choice of Ry and ry. It then follows that the points
far(u') and fas(u”) both belong to the side [¢/, far(x)] of the tripod (Tas,dr/) and hence that
far(u') = far(u”). The approximation lemma 8.3 (i) then yields d(u/,u") <.

On the other hand, the map fa being an isometry in restriction to each side of A (cf. Lemma
8.1), one has
a+v = d(z,d"v0) > d(z,20) = d(a"z,a’xo) = B + 1,

which ensures that « > ; since we also have a + 8 = d(x, a’z) > Ry, Inequality (32) implies
that

o> s 55 e > daw) = dw) = dr(fa (), fa(w) = dr(fa (o), Ta(u)).

This shows that the points fa(u) and fa(u') are on the side [e, fa(z)] of the tripod Ta and
satisfy fa(u) = fa(u'); from Lemma 8.3 (i) we get that d(u,u’) < §. This last inequality
together with d(u’,u”") < 6 previously proved show that d(u,u”) < 26, by the triangle inequality.
We denote by [z, yo] the segment of the geodesic [z, yo] between x and yy. Replacing a by b and
p by ¢ in the previous argument, we construct geodesics [z, b%z] and [z, b%y,] and points v, v’
and v”, respectively on the geodesics [z, b%x], [z, b%yo] and [z, yo], such that d(x,v) = d(x,v") =
d(z,v") = 26 +¢’. As before we prove that d(v,v”) < 26.

This last estimate, the inequality d(u,u”) < 2§, the triangle inequality and the fact that u”, z
and v” belong to the same minimizing geodesic [zg, yo| yield

d(u,v) > d(u",z) + d(z,v") — d(u,u") — d(v,0") > 56 + 2" — 46 = 6 + 2¢’. (34)
Let us now consider the triangle A = [z,aPz, b%z] and the associated tripod fa : (A,d) —
(Ta,dr), whose sides with ends fa(aPx), fa(b%x) and fa(x) have length denoted by «, 5 and

~ respectively, and we denote by ¢ the branching point of the tripod Ta. From Inequality (34)
and Lemma 8.3 (i), we deduce that

dr (fa(u), fa(v)) >2¢ > 0. (35)

The application fa restricted to each side of A is an isometry (cf. Lemma 8.1), we then obtain:
5
dr (fa(@), fa(w)) = d(w,u) = S0+ &' = d(z,0) = dr (fa(2), fa(v)) -

o If v > 25 +¢/, then fa(u) and fa(v) both belong to the same side [c, fa(z)] of the tripod
T, and hence satisfy fa(u) = fa(v), which contradicts Inequality (35).

o If 36 <y < 30+¢, then fa(u) and fa(v) respectively belong to the sides [c, fa(a’)] and
[e, fa(b9x)] of the tripod Ta, and then

dr (¢, fa(v)) = dr (¢, fa(w)) = dr (fa(2), fa(u)) — dr (fa(2),c) = 25 tel—y<e,

which implies that dr (fa(u), fa(v)) < 2¢’, in contradiction with Inequality (35).
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The only possibility is then that

5
v< =4. (36)

2

On the other hand we have Min(«, 8) = Min [d(z, aPx); d(z, b%x)] — v > Ry — ~, which yields

d(az, b12) = o+ § = Max(a, §) + Min(a, §) > Max(a +7, 8+ ) + Ko — 27,
which, using the definition of Ry and Inequality (36), shows
d(aPz,blz) — Max [d(z, aPz);d(z,b%x)] > Ry — 2y > 106 + € + 2 — 55 > 54.

This last inequality being valid for all (p, q) € Z* x Z*, we conclude by applying Proposition 4.6
(i)- O

End of the proof of Theorem 4.20. We now have the following alternatives:

If ¢(a), £(b) < 136, as L(a,b) > 234, we have L(a,b) —Max[{(a), £(b)] > 106 and Proposition
4.21 implies that the subgroup generated by {a,b} is free.

If ¢(a),£(b) > 130, Lemma 8.23 (i) ensures that s(a),s(b) > 136 and Proposition 4.9 (i)
then implies that one of the two semi-groups generated by {a,b} or by {a,b~!} is free.

If ¢(a) < 136 and £(b) > 138, then f(aba—t) = ¢(b) > 13§ and Lemma 8.23 (i) ensures
that s(b), s(aba~') > 135. Proposition 4.9 (i) then implies that one of the two semi-groups
generated by {b,aba='} or by {b,ab=ta"1} is free.

If ¢(a) > 130 and ¢(b) < 135, exchanging the roles of a and b, the same proof shows that
one of the two semi-groups generated by {a,bab=!'} or by {a,ba='b"1} is free.

O

4.4 Free semi-groups for convex distances

In this subsection we fix § > 0, H > 0 and D > 0 and we study the d-hyperbolic spaces (X, d)
which are Busemann spaces (i. e. the distance d is convex in the sense of Definition 8.36)
endowed with a proper action by isometries of a group I'. We assume that the entropy of (X, d)
and the diameter of '\ X are bounded above by H and D respectively. To these parameters J,
H and D, we associate a function so(d, H, D) > 0 defined by Equality (60).

Contrarily to Subsection 4.3, the goal of the present subsection is to state a result which apply
to every pairs of elements of I" without any restriction on £(a), £(b) or on the Margulis constants
L(a,b) or L*(a,b). The price to pay is a slightly stronger hypothesis on the geometry of the
metric space under consideration.

Theorem 4.22. Let (X,d) be any connected, geodesically complete, Busemann, non elementary
d-hyperbolic space. Let T' be any group acting properly by isometries on (X, d) such that the
diameter of T\X and the entropy of (X,d) are respectively bounded above by D and H. For
every pair a,b of torsion-free elements of I' which generates a non virtually cyclic subgroup, for

136

every integers p,q > m

one of the two semi-groups generated by {a?,b?} or by {a?, b~}

is free.

The proof of this theorem follows from a uniform lower bound of the asymptotic displacement,

whose proof will be given in Theorem 5.26, that we assume here:

Proof. For sake of simplicity, define sg := so(d, H, D). Theorem 5.26 (i) shows that every pair
136

of torsion-free elements a,b € I'* verifies £(a),£(b) > sp; for every p,q > ——, Corollary 4.10
S0

then allows to deduce that one of the two semi-groups generated by {aP,b?} or by {aP, b9} is
free. O
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5 Co-compact actions on Gromov-hyperbolic spaces

In this section, for any fixed positive constants 6, H and D, we are concerned by all the §-hyperbolic
spaces (X, d) (which are geodesic and proper spaces by Definition 8.2) and by every proper action (by
isometries) of a group T on (X, d) such that the entropy of (X, d) and the diameter of '\ X are respectively
bounded above by H and D. Let us recall that T\X is then compact (by Lemma 8.13 (ii)) and that, if T
is torsion-free, its action on X is faithful and fized point free (by Lemma 8.13 (iv)).

Let us recall that 3r(x) := {y € T : d(x,yx) < r} and that I'7(z) is the subgroup generated by 3, (x)
(see Definitions 2.4). When the action of I' on (X, d) is co-compact, we recall that the entropy of (X, d)
can be computed for any Borel I'-invariant measure and is independent of this measure.

5.1 A Bishop-Gromov inequality for Gromov-hyperbolic spaces

By Definitions 3.7, a doubling property concerns balls whose radius lies in a given interval and
whose doubling amplitude Cj is constant. On a general n-dimensional Riemannian manifold, the
classical Bishop-Gromov inequality is a doubling property (for balls whose radius lies in |0, +oo[)
whose doubling amplitude depends on the radius of the balls and on a lower bound Ricp;, of
the Ricci curvature: if one is not aiming for a sharp inequality, when the Ricci curvature is not
supposed to be nonnegative, it can be rewritten:

Vol B(z,2R) -
— Lo - min .
Vol Bz, R) 2" exp (\/(n 1)|Ric |R)

For this reason, in the sequel, for any nonnegative measure u, a doubling property of the kind
p(B(z,2R))
M( B(z, R))
ture, will be called a (generalized) “Bishop-Gromov inequality” (instead of “doubling property”).
The following Theorem proves such a Bishop-Gromov inequality in the case of Gromov-hyperbolic
metric spaces, where the hypothesis “Ricci curvature bounded from below” is replaced by the
much weaker (see subsection 3.3) hypothesis “Entropy bounded from above”.

< Oy e HE where H is a parameter which replaces the lower bound of the curva-

Theorem 5.1. Let (X,d) be any §-hyperbolic metric space, for every proper action (by isome-
tries) of a group T' on (X,d) such that the diameter of T\X and the entropy of (X,d) are
respectively bounded by D and H, then, for every x € X

(i) for every I'-invariant measure p on X, for every r > 3(7D + 46),

n(Bx(z, 5 7))

<14 2eHD s HT and 7#(3)((1‘,27“)) < g 4HD JEHT
p(Bx(x,r)) ~ u(Bx(z,r)) ~
B R 25/4 6HD
and VRZT MS:&GHD <R) (R> EGH(R*%T).
1(Bx (z,7)) r T
(ii) for every r > 10 (D + §), the counting measure jul = Zvel“ 0yg Of the orbit Tz verifies the

inequalities :

put (Bx (z,S1)) 4ol #(Bx(x,2r) NTz) _ s (Bx (z,27))
W (Bx(w,r) " #Bx@nnTy) | w(Bx@r)

L' (B 25/4
and YR >r M <3 (R> eSH(R—3r)
/1’1:; (BX(‘T,T')) r

If one wants to revisit this Bishop-Gromov-like inequality (i) (resp. (ii)) in terms of doubling
(see Definitions 3.7), the second inequality of (i) (resp. of (ii)) says that the measure p (resp.
the counting measure of any orbit of the action of I') satisfies the C'r-doubling property, where
Cp =34 €D ¢ ZHR (rogp. where C = 3%e 2 HR) for all the balls of radius r € [2(7D + 80), R]
(resp. of radius r € [10 (D + §), R)]).

13
< 3teTHT

The first step of the proof of Theorem 5.1 is the following
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Lemma 5.2. On any §-hyperbolic space (X,d), for every R, R’ €]0,+00[, and for any pair of
points z, y such that d(x,y) < R+ R/, there exists a point y' € X such that

1
Bx(z,R)NBx(y,R') C Bx(y',r) , where r = Min (R, R, 3 (R+ R —d(z,y)) +§) .

Proof. As Bx(z,R) N Bx(y,R’) = 0 when d(z,y) > R+ R/, we shall only study the case where
d(z,y) < R+ R'. Even if this means exchanging the names of the points and of the radii, we
may suppose that R’ < R.

— If d(z,y) < R — R’ + 24, the lemma is trivially verified when choosing y' = y, because
r = Min (R, R, LR+ R —dy) + 5) is then equal to R’ and Bx(z, R) N Bx(y, R') C
BX(%R/) = BX(ylar)'

~-If R— R 426 <d(z,y) < R+ R/, let us denote by ¢ = [z, y] any geodesic such that ¢(0) = x
and c(d(z,y)) = y. Let y' := ¢(5 (R— R’ +d(z,y))). For any point z € Bx(z, R) N Bx(y, R'),
Lemma 8.4 gives

d(y', 2) + d(z,y) < Max [d(z, z) + d(y,y) , d(y, z) + d(x,y")] + 6
1 1
< Max |R+ d(x,y) — 3 (R—R’—i—d(m,y)) , R+ 3 (R—R’—i—d(ac,y))} +9;
this implies that d(y,2) < § (R+R'—d(x,y)) +8 = Min (R, R, } (R+ R —d(z,9)) +5). O

The second step of the proof of Theorem 5.1 is the

Lemma 5.3. Under the hypotheses of Theorem 5.1, for every I'-invariant measure p on X, for
every R', R such that 46 < R’ < R, we have

fBX(m,R)\Bx(x,R—%R’) 1(Bx (y, R')) du(y)
u(Bx(z, 3R +6+D))

< p(Bx(w, R+ R)\ Bx(a, R - %R’>)

Proof. In this proof we shall write B(z,r) instead of Bx(z,r) for sake of simplicity. Equation
(1) gives

/ u(B(y,R)) du(y)=/ (B(y, R)NB(z, R)) du(y) S/ 1(B(y, R)) du(y)+
B(z,R) X B(z,R—LR")

+f w(B(y, B)) 1 B(z, R)) du(y) - (37)
B(x,R+R')\B(z,R—3 R’)

For every y € B(z,R+ R') \ B(z,R — 1R’), we have R — R' + 20 < d(z,y) < R+ R and

Min (R, R, L(R+ R —d(z,y) + 5) =1(R+ R —d(z,y)) + 6 < 2 R' + §; then, applying

Lemma 5.2, there exists a point y’ such that

1 3
Bly, R) N B, k) C B(y . 5 (R+ K —d(x,y) +0) < By, TR +9) :
as there exists v € T such that d(y’,~7'x) < D, the triangle inequality gives:

u(Bly, B) N B, R)) < pu(B(y', %R/—‘r&)) <u(B('a, %R’+6+D)) = n(Ba, %R’+6+D))

where the last equality follows from the invariance of the measure and of the distance under the
action of I'. Plugging this estimate in (37), we obtain

1(B(y, R)) du(y) < u(B(:c,ZR’+5+D))/ du(y)

/B(z,R)\B(m,R;Rf) B(z,R+R)\B(z,R— 5 R)

and this ends the proof. O
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The third step of the proof of Theorem 5.1 is the

Lemma 5.4. Under the hypotheses of Theorem 5.1, for every x € X, one has:
(i) for every R', R such that 12(D + §) < R’ < R, we have
P Bx ) _H(Bx(o R+ R)) - (Bx(o R - )
pE (Bx (, %R’)> m (Bx(r,R)> P (BX v, R~ )

(i) for every R', R such that 3(7TD + 40) < R’ < R — D, we have

p(Bx(z, R)) ) § ,u(BX(:c,R+R' +D)) f,u(Bx(x,Rf R/TJFD))
w(Bx(e, 3R)) ~ p(Bx(eR) - p(Bx(e, R BEL))

Proof. In this proof we shall write B(z,r) instead of Bx(x,r) for sake of simplicity.
The measure pL and the distance being T-invariant, we have ul (B(y, R')) = pk (B(z, R')) for
every y € I'z; from this and from the fact that the support of b is I' z, we deduce that

pa (B, R)) - iy (B(2, R) \ B(z, R — ,R,)) pa (B(z, R)) du (y)

/B(z,R)\B(m,R;R/)

1
/ W (Bly R) dpl(y) < b (B, R+ R)\ B(r, R~ JR)).
B(z,R)\B(z,R—%R’)

NE(B(x,%R'+5+D)>épE(B(m,R—kR’)\B( R—fR’)) ( (ﬂc,gR’))

and this proves (i).

Let R” := R’ + D and let y be any point of Bx(z, R) \ Bx(z, R — 3R"); as d(y,T'z) < D, there
exists some v € I such that v (B(z,R” — D)) = B(yxz,R" — D) C B(y',R"), and thus (as the
measure £ is [-invariant), it yields u[B(z, R')] = p[B(z,R” — D)] = (v (B(z,R’ — D))) <
M(B(y, R”)). From this and from Lemma 5.3, we get:

p(Bla, R) - p(Blr, R)\ B, R~ R")) <

/ 1 (Bx (v, B")) du(y)
B(z,R)\B(z,R—1R")

< (B, R+ R")\ Bz, R - 1R”)) u(B

(z, —R”+5+D));
as SR'+6+D=2R +6+ 1D < 3R (because 5 R’ > 1D +4), it comes:

#(B(a, R)) - u(B(x, R)\ Bla, R — 3 Lrn) < u(B(a;, R+R")\B(z,R— % R”)) ~u(B(a:, 5 R’)) ,
and this proves (ii). O

End of the proof of Theorem 5.1. In this proof we shall write B(x, r) instead of Bx (z, ) for sake
of simplicity; when p is any T-invariant measure (resp. when pu = ul), for every R’ > 3(7D + 46)
(resp. for every R’ > 12(D + ¢)), we shall define R” as R’ + D (resp. R” as R’). In both cases,
the result of Lemma 5.4 then writes:

p(Ba.R)) _#(BE R+ ) — (Bl k- 5))
w(B(z 3R))  u(BaR) - p(BaR- %)
p(B(z,R) )

uw(B(z. 3 R))

replace R by k RT”) is that, for every k > 2, one has agy2 —ag—1 > (C+1) (ax — ag—1), and thus

(38)

Let us put C := —1 and ay = p(B(z, k %”) ), a consequence of (38) (where we
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a2 — ar > C (ar, — ap—1). Making the sum of this last inequality for all the integers k € [2,n],
we obtain

2(ant2 — a1) 2 Gpy2 — a3+ apy1 —az > C(an —ar) ,
from which comes that as,, > (%)n_l (ag —ay1) + a1 and, as as — a; > 0 (for the annulus

B(z,k R")\B(z, k RT”) contains a ball B(z, D) of radius D and p(B(z, D)) cannot vanish because
the measure of X = U ery (B(z, D)) is not trivial), a consequence of this is

. 1 , . 1 1 c
H > Ent(X,d) = lim (nR” In (u(B(z,n R )))) = lim <nR” ln(agn)) > = In <2) .

n—-+oo n—-+oo

B(z, R
pB@R)) .,
w(B(z. 3 R))

B(zx, 8 " 5
; making r := R it follows thaut'u (z 5r)) < 142eHE" for everyr23-6(7D+45)

,u(B (33, T))

In the case of the measure ul, as R = R’ =S r we get:

py (B, 7))

i (B(a% 7“))

In the case of any other I'-invariant measure pu, as R = R’ + D = gr + D, we obtain:

For every R’ > 3(7D + 49) (resp. for every R’ > 12(D + §)), this yields

2€HR

)
(resp. for every R’ > 12- 5 (D +9)).

vr > 10(D + )

ot

6
M(B z,37) ) <142HD (8 Hr < 3 HD (S HT

()

This proves the first inequalities in (i) and (ii).

Vr > 2(7D + 45)

=

By iteration, replacing in succession r by r, gr,..., (2)37‘ in these two last inequalities we
finish by proving that the measure pl verifies

1o (B(z, 2r)) 4 (§+4(8)" )
W (Bn) =

and that any other I'-invariant measure p satisfies:

vr > 10(D + 0) < 3te? Hr

Vr (7D + 45) ( (,2r)) < 34 AHD ( +...+(§)4)Hr§34€4HDe§Hr.

w(B(z,7))

This proves the second inequalities in (i) and (ii).

l\D\U‘

Let us now prove the third inequality of (ii): given r, R such that 10 (D+6) <r < R, choosep € N
such that ( ) < E < ( )]DJr ; if p =0, then the third inequality of (ii) is a trivial consequence

of the first inequahty of (i) and of the fact that, in this case, Bx (ac, R) C Bx (m, %r), let us now

. . R+ 6\p+1
suppose that p > 1 and choose ¢ > 0 sufficiently small in order that == < (7)

E , applying the
first of the inequalities (ii) to each term of the following product, we get:

i (Bx(e ) (Bx(eRve)) 'y k(B (o (3) R+€>>) i (Bx (2, (3)" (R +9)))
pe(Bx(wr) = pr(Bx(er) g b (B (e, (3)™

< 3exp <§Hr> ~p1:[13€Xp ((Z)iH(RJﬂs)) <3-3exp (6H(R+ €) (1 - <Z)p> + gHT> .
1=0
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3. (9 it GH(R j— 6 ) <3 (B)"" ommee—tn)
(6 A e - 5
<o () e (otrea (1o gt ) e gar) <s () e '

Now, making ¢ — 0, we get

- 25/4
w (Bx(x.R)) _ (R> (SH(R=37)

ph (Bx (w,7)) "

Let us now prove the third inequality of (i): given r, R such that g(?D +46) < r < R, choose
p € N such that (§)” < & < (%)pﬂ; if p = 0, then (ii) is a trivial consequence of the first
inequality of (i) and of the fact that, in this case, Bx (x, R) C Bx (x, gr), let us now suppose

that p > 1 and choose € > 0 sufficiently small in order that R:‘E < (g)pﬂ, applying the first of

the inequalities (i) to each term of the following product, we get:

p(Bx(@R) _p(Bx(R+e) (B () R+9) (B () (B +9)
w(Bx(z,7)) —  p(Bx(z,r)) o (BX (a, (%)i+1(R+ 5))) 1 (Bx (z,7))
< 3€HDegHr.1.i_[1 3cHD exp ((2)2 H(R+ E)) < 3.3Pe(P+1)HD exp (GH(R +e) (1 - <2>P> + gHT> .

HD 6 plnl(ré?S) 6 plnﬁ}?S) r 6
25/4 6HD
<o ()7 ()" s,
r T

Now, making ¢ — 0, we get

r r

O

Considering any given co-compact action of a group I' on a d-hyperbolic space (X, d) and any
cyclic subgroup I of T', a consequence of revisiting Theorem 5.1 (ii) as a doubling property (see
the few lines after Theorem 5.1) is a universal upper bound N (R) for the number of points of the
orbit IV x which are contained in the ball Bx(x, R) (see Lemma 5.5). The fact that the bound
N(R) grows exponentially with R may look strange for cyclic groups, but the Lemma 8.20 (iii)
proves that, for intermediate values of R, N(R) must depend exponentially on R, and this will
be a fundamental tool in the proofs of the quantitative Tits’ alternative (Theorem 5.6) and of
the lower bound of the systole given by Theorem 5.26.

Let us recall that, to each hyperbolic isometry v and to each point = of a é-hyperbolic space
(X,d), one associates its “displacement radius at 2”7, i. e. R,(x) := Mingen- d(z,7* x) (see
Definition 8.26).

Lemma 5.5. Let (X,d) be any d-hyperbolic (non elementary) space, for any proper action (by
isometries) of a group T on (X,d) such that the diameter of T\X is bounded above by D, for
every torsion-free element v € I'* and for every xo € X such that R,(x¢) > 20(D + §), then

(i) for every p € N*
# {k e€Z:d (xo,’yk 330) < 2P R,Y(JJQ)} < 312 16 Ent(X,d)(2"—1) Ry (z0)

(i1) at any point x € X and for every R > R+ (x)

12 {23
#{keZ:d (x,'yk x) <R} < 312 w " o % Ent(X,d) (R+2d(zo,z))
Ry (o)
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Proof. First notice that, by Lemma 5.8 (i), v being torsion-free, the action of () on X is faithful.
Let Ry := 20(D + 6). For sake of simplicity, let us write H instead of Ent(X,d). Theorem 5.1

fiy, (Bx (0,2 R))

2 <3P HR < el where C = 3*
/j’zo (BX(:EO’R))

(ii) proves that, for every R > %RO,

andazl—;’H.

Proof of (i). As the inequality (i) is trivially verified when p = 0, we shall suppose that p > 1.
For every ¢ € N, one has 2'R+(z¢) > Ry, we may thus apply the proposition 3.19 (ii) in the case
where I" is the cyclic subgroup generated by «y, which implies that, for every ¢ € N,

#{k € Z:d (wo,v" o) < 27T R, (20)}
#{k € Z: d(zo,7* z0) < 2Ry (z0)}

< 036% a2'R. (z0) )

Making the product for all the integers i € [0,p — 1], we infer that

#{keZ:d (mo,vk a:o) < 2PR.(x0)}
#{k € Z:d(xo,7v* x0) < Ry(x0)}

< o3 e B a2’ —1)Ry(z0) _ g12p o3 H(2"—1) R (w0) , (39)

#{k €Z:d (0,7 m9) <2°R, ()} <

where the first inequality is deduced from the fact that {k € Z : d (z¢, 7" x0) < Ry(z0)} = {0}.

Proof of (ii). For every k € Z*, the triangle inequality and the invariance by 7 of the distance give
d (:ro, 7k zo) <d (a:, vk 1}) + 2d(xo,x), this has two consequences: the first one is the inequality
R+2d(xo,z) > Ry(z)+2d(z0, ) > R,(x0), the second one is the fact that {k € Z : d (z,7* z) <
R} is included in {k € Z : d(w0,7*20) < R+ 2d(zo,2)}; let p be the integer such that
2P71R. (z0) < R+ 2d(zo,x) < 2PR,(z0), from what precede and from (39), we deduce:

#{keZ:d (.Z‘,’}/k ) <R}y <#{keZ:d (Jjo,'yk z9) < 2PR(z0)} < (2”)12% 6 H(2P=1) Ry (o)
The inequality (ii) then comes from this and from the choice of p which implies that 27 <

2R+2d(:170,z)' 0
Ry (o)

5.2 A Tits alternative and lower bounds for the entropies

To each isometry v and to each point x of a §-hyperbolic space (X,d), one associates its displacement
radius at x, i. e. Ry(x) := Mingen~ d(z,v* ) (see Definition 8.26), its minimal displacement s(v) :=
infrex d(z,y x) and its asymptotic displacement £(v) := limp— oo d(z,¥" x)/n (see Definitions 8.18).
Let us also recall that the Margulis domain Mg(y) is the set {x € X : Ry(z) < R} (see Definition 8.29
and Remark 8.30), that v~ and v denote the fived points of vy, that G(7y) is the set of the geodesics
c such that c(—o0) = v~ and c(+o0) = 1, that M(y) is the union of the images of these geodesics,
and that Mmin(7y) is the set of the points where the function x — d(z,vyx) attains its minimum (see
Definitions 8.25).

5.2.1 The alternative: entropy vs asymptotic displacement

Theorem 5.6. For any proper action (by isometries) of any group T' on any (non elementary)
d-hyperbolic space (X, d), if the diameter of the quotient T\X is bounded above by D, let K :=

Min ((15, 1>, then

K
;) either Ent(X,d) > —
(i) either Ent(X,d) > 0’

K 4
(i) or Ent(X,d) < 50 and then £(y) > 3734 Ry e™ 29 KBo for every torsion-free v € T'* (where
Ry :=Max[20 (D + ) , 7204]).
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Example 5.7. Let X be the Cayley graph of the free group I" with 2 generators a, b, endowed
with the following length-structure : any path in the Cayley graph being a concatenation of edges
of types [g,ga™!] or [g, gb™!], its length is computed by deciding that the length of the edges
[9,ga*!] is a and that the length of the edges [g,gb*'] is 8. Let us suppose that 0 < a < 3.
The corresponding length-distance dq g(x,y) between x and y is the minimal length of the paths
joining x to y. As the Cayley graph is a tree, it is clear that (X, da,g) is 0-hyperbolic.

The action of " on the Cayley graph X is the canonical one, by left-translations. The quotient
(T\X, Jaﬁ) being a union of two circles, of respective lengths « and g, its diameter is D =
F(a+p).

When o goes to 0 and f is fixed, then Ent(X,d, g) goes to 400 and we are in the case (i) of

Theorem 5.6 1
When a goes to 0 and § = —, then Ent(X, dn g) goes to 0 and we are in the case (i¢) of Theorem
e

5.6. Moreover, as ¢(a) = a goes to 0, it is coherent that the lower bound given by (i¢) should go

to zero when 2D = « + — goes to infinity. This proves that any lower bound of the ¢(v)’s must
«

depend on a geometric invariant such as the diameter of the quotient.

The following Lemma, though trivial, is often used in the sequel, it is thus necessary for the
sake of clarity and to avoid repetitions. The aim is to prove that, when a group acts properly
on a Gromov-hyperbolic space, most of the properties of this action deduce from the analogous
properties of its image by the representation into the isometry group of (X, d).

Lemma 5.8. On every Gromou-hyperbolic space (X,d), every proper action of a group I" is via
a representation o : I' — Isom(X,d) which enjoys the following properties:

(i) Ker o is a finite normal subgroup of T, consequently all its elements have torsion,
(ii) o(T') is a discrete subgroup of Isom(X,d),

(iii) if the diameter of T\X is bounded, as o(T')\X = T'\X, for the quotient metric, o(T)\X s
compact with the same diameter as '\ X,

(iv) when T\ X is compact, a measure p on X is o(T')-invariant if and only if it is T-invariant;
as a consequence, its entropy is unmoved when the action of I' via o is replaced by the
canonical action of o(T),

(v) for every v € T'*, o(7y) is torsion-free if and only if v is torsion-free; v is hyperbolic if and
only if o(7) is an hyperbolic isometry,

(vi) for every v € T*, £(o(7)) =£(7).

(vii) for every subgroup G of T, if o(G) is virtually cyclic, then G is virtually cyclic.

Proof. (i) is an immediate consequence of the definition 2.1 (ii) of a proper action, which implies
that {y € T : d(z,vyz) = 0} is a finite set. (ii) is directly deduced from Lemma 8.12 and from
the fact that the canonical action of o(I") is faithful and proper.

If '\ X has bounded diameter, it is compact by Lemma 8.13 (ii), properties (iii) and (iv) then
follow immediately. (vi) is derived from the fact that every v € I acts as the isometry o(y). If
" = e then p(y)"™ = idx; conversely o(7)" = idx if and only if 4™ € Ker g, consequently "
(and thus 7) has torsion by (i). As £(o(v)) > 0iff £(y) > 0 by (vi), v is hyperbolic if and only if
o(7) is an hyperbolic isometry by Lemma 8.19; this proves (v).

Proof of (vii): If o(G) is finite, as Kerp is a finite normal subgroup of G by (i), then G is
finite and (vii) is proved in this case. If o(G) is infinite virtually cyclic, there exists an infinite
cyclic subgroup Z with finite index in o(G) (i. e. o(G)/Z is finite); then the subgroup o~ !(2)
is a subgroup of finite index in G (because ¢ induces a one to one map between the quotients
G/o Y(Z) and o(G)/Z). By restriction g : 0~(Z) — Z is a homomorphism whose kernel is the
finite normal subgroup o~!(Z)NKer o = Ker p, in other words, o~ !(Z) is a finite-by-cyclic group,
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and it is a classical result that “finite-by-cyclic” implies “cyclic-by-finite”, i. e. that o~!(Z) is
virtually cyclic®. As G/o~1(Z) is finite, it follows that G is virtually cyclic. O

Lemma 5.9. Under the assumptions and notations of Theorem 5.6, for every torsion-free ~ €
I*, for every xo € X such that R,(xo) > Ry,

(i) there exists a positive integer ko such that R (zo) = d(xo,v" x0) and then

1
Ent(X,d) < —— = kol(y) > 3*12R7(z0) ¢~ 16 Ent(X,d) Ry (o)

— 7500
1
(i1) for every z € X, if Ent(X,d) < 7505’ then
. —20
() - 3712 <5d(3«“072) +3d(2,y Z)) o= %L Ent(X,d) [5d(20,2)+3d(2,y 2)]
Ry(zo) = 2 Ry (o)

Proof. Let ¢ be the representation from T' to Isom(X,d) associated to the action under con-
sideration, Lemma 5.8 proves that the action of o(I') on (X,d) also verifies the assumptions
of Theorem 5.6, in particular o(7) is torsion-free when -~ is torsion-free, E(g(y)) = 6(7) and
R,y (x) = R, (x) for every x € X; therefore, if the conclusions of Lemma 5.9 are satisfied when
the group is o(T"), they are also satisfied when the group is I'. To prove Lemma 5.9, it is thus
sufficient to prove it when I' is a subgroup of Isom(X,d); this is what we shall suppose in the
sequel of this proof.

From Lemma 8.13 (ii), I'\ X is then compact and « cannot be a parabolic isometry by the propo-
sition 8.44 (ii); as v is torsion-free, it is not elliptic (by Remark 8.16 (i)) and therefore is an
hyperbolic isometry by Theorem 8.15.

By Lemma 8.31, there exists points « € X such that R, (z) > Ro. As the action is proper, there
exists an integer ko > 0 such that d(zg,7 2¢) = R, (z0); as the lemma 8.20 (iii) gives, for any
n € N

1
de0r " a0) < R (a0) + (0= 1 ™) 4 5 ) 1o
we get
#{n € N" : d(z0,7"" 20) < 2 Ry(z0)} > # { nEN s (n—1hot(r) < 20 and 45 ﬁ((gg = RW;%)
Ry (z0)In2 R, (z0)
, Ry(z0)] e [ Ry(x0)
sz(lerkoé(fy)} e 80 1) >Mm<2koﬁ(7) ;e 126 ) ; (41)

where the last inequality follows from the fact that, as R, (zg9) > Ry > 7204, one has

}

B (20) In2/(88) _ (Ro(20)/(126) _ Ry (z0)/(126) (ew% - %)_1) > (60 (6720(% ~ 1) _ 1) 1.

On the other hand, property (i) of Lemma 5.5 gives
44k € Z: d(w0,7" w0) < 2R, (zp)} < 312 16 Put(Xd) Ry (@)

Frow this last inequality and from (41) follows:

. [ Ry (z0) Ry (20)
" . - . 1 12 16 Ent(X,d) R+ (z0) 42
in (ko 0) exp ( 125 +1<3 e ) (42)

8The proof of the fact that g’l(Z) is virtually cyclic is direct: indeed, there exists a splitting, i. e. a map
o : 7 — 0~ 1(Z) such that po o =idz (you just have to map the unique generator 7 of Z on any 7' € o~ ({7}).
For every g € 0~ (Z), as (g. Kerg) No(Z) = {a(g(g))}, then g € a(g(g)).Kerg and 971(Z) = 0(Z).Kero =
Ker 0.0(Z), thus the quotient o~ 1(Z)/o(Z)is finite, for it is in one to one correspondence with the finite set Ker p,
consequently o~1(Z) is virtually cyclic.
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1
Proof of (i) : If Ent(X,d) < recalling the existence of a point zp € X such that R, (x¢) >

— 7506’
Ry and that the inequalities Rgﬁ‘)) > 2}% > 30 > 12 In3 are valid in this case, the inequality
(42) gives:
R (o) R, (o) 2Ry(z0)  Ry(z0)
Min [ 70700 5 2¢ 126 | 41 < 31210 Bnt(XdRs(@0) <312, 935 < 126

ko l(y)

R
This proves that k”éfo)) < 31216 Ent(X.d) Ry (20) and ends the proof of (i).
oty

Proof of (ii) : For the sake of simplicity, in this proof, we shall set H := Ent(X,d), R’ := d(x, 2),
A:=d(z,7v z) and R:=3(R' + A) = 3(d(w0,2) + d(z,7 2)).
By Lemma 8.20 (iii), for every k € N*, we have:

d(z,9" 2) < d(z,72) + (k= 1) (7) +49 m <A+ (k—1)£(y)+46 In(k)

In(2) ’

and consequently:

R—-2R —2A
24(v)

1
+1 and -
In

#UCEN*:d(277k3)<R}2#{keN:k< (k)<R+2R'}7

(2) — 8¢

it follows that

R—-2R —2A
((v)

By the definition of R, one has R > d(z,7z) > R,(z), and we are authorized to apply the
inequality (ii) of Lemma 5.5 which (related to the previous inequality, noticing that 2 > 1),

provides:

#{kelZ: d(z,wkz) < R} >Min< , 2.2(R+2R/)/85_1> .

1223
Min (B22B =24 oriaryss) o g2 (BE2RN 02 s pniary (43)
((v) ’ Ry (o)

By the triangle inequality R, (zo) < 2R’ + A thus, by the definition of R, one has 2(R+2R') >

R, (o) 2R+2R)\  In5 ,
22 From th
2R+2R) ( Rz ) = 5 rromtms

and R, (z9) > Rog > 7200 by assumption, we infer the two

10R"+6A > 5R,(x0), and consequently

and from the fact that H <

. o 7500
inequalities:
66 R+2R 65 32 R+2R In3 2(R+2R)
— ———— In2 — H(R+2R — —— In2>12 — In| ————=
128 80 2> HEHIR) . e 2> 1205 n( R, (z0)
which imply that
12 In3
2(R+2R/)/8§>312 <R+(2‘R)I) In2 G%H(R+2R/)
R’Y ZTo
and, putting this estimate in (43), we get that
R—2R =24 _ .y (R+2R\"W opnon
() R“/(xO) 7
as we have seen that R, (zg) < 2R’ + A, this proves (ii) because it proves that
460) > () S 3712 (R+2R\ ™" o~ H(R+2R')
Ro(zo) ~2(R—2R —24) ~ 2 \ R, (z0) '
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Proof of Theorem 5.6. Let o be the representation from I' to Isom(X, d) associated to the action
under consideration, we have already seen (see the beginning of the proof of Lemma 5.9) that, if
the assumptions of Theorem 5.6 are verified when the group is I', they are also verified when the
group is o(T") and that, if the conclusions of Theorem 5.6 are valid when the group is o(T"), they
are also valid when the group is I'. In order to prove Theorem 5.6, it is thus sufficient to prove
it when I is a subgroup of Isom(X, d); this is what we shall suppose in the sequel of this proof.
'\ X is then compact by Lemma 8.13 (ii). For the sake of simplicity, let H := Ent(X, d).

1 1 0 —12
IftH > =0 Min <5, 1) or if £(y) > Max <2500, 105D> > 3T Ry for every torsion-free

element v € I'*) then the theorem 5.6 is trivially proved, this is the reason why, from now on,

1 1
(arguing by contradiction) we shall suppose that H < = Min <(5’ 1) and that there exist

torsion-free elements v € T'* such that £(y) < Max (25600, 10_5D); let us fix any of these
elements, denoted by . By Proposition 8.44 (ii), v cannot be parabolic and, as + is torsion-free,
it is not elliptic by Remark 8.16 (i), thus v is an hyperbolic isometry (by Theorem 8.15) satisfying
¢(y) > 0 (by Lemma 8.19).

As Ry := Max [20 (D +0), 7200], the lemma 8.23 (i) and the upper bound of ¢(y) which has
just been assumed give

B

44
19 ° (44)

1)
= inf d <) +0 <0+ Max (o, 107°D
s(7) nf (z,vx) < €(y)+0 <6+ Max <2500 , 10 > =

Applying Lemmas 8.32 (ii) and 8.31 to the Margulis domain Mg, (), we know that Mg, (v) # 0
and X \ Mg, (7) # 0, a consequence (using the intermediate value Theorem) is the existence of
some point z1 € X and of some kg € N* such that R,(z1) := Mingen- d(z1,7* 1) = R and
d(x1,v* 21) = Ro; Lemma 5.9 (i) then implies that

kol(y) > e, where ¢} :=3712Rye 16H o (45)
Let us denote by k; the smallest integer such that kiko £(y) > 35, (45) implies that

/

1<k1<[35
0

} +1 and (k1 — 1) kot(y) <36. (46)

Let g := y*1%0  the inequality (40) guarantees that

lﬁl(él)) < QTfO + (k1 — 1) ko £(y) + 456 , (47)

d(xy,921) < Ro + (ky — 1) ko £(y) + 46

where the last inequality is deduced from the fact that, by a direct computation using (46) and
the inequalities Ry > 7209 and In(1 +¢) <Int+ 1/¢ when ¢ > 0, one has:

2 Ry
5 PR—
In(k;) <In (1438 ——!0H o) <qn [ 1438 €936
RO RO
5 o R Ry [ 2 In2 R
<In |38 —¢939 371320 93103 720+ 2 (£ 43713) < 2 (4554 20
= Ro € + g Sioms— il o | ge =4 g

As v is hyperbolic, the action of v on X U 8X has exactly two fixed points v~ ,vT € 9X; as
M(g) = M(~) (because v~ and v are also the fixed points of g), and as £(g) = k1 ko £(y) > 34,
Lemmas 8.28 and (47) give:

dlor, M) = dler, (o) < g (dargan) — 1) +36 < 3 (P50 kot ) + 5. a9

For any € > 0, let us fix any geodesic ¢ € G(7) such that the distance from z; to the image of
c is smaller than d(z1, M (7)) + €, let us denote by c(t) a projection of g¥x; onto the geodesic
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line ¢; for every k € Z such that d(c(tk) , c(tk+1)) > 30, a consequence of the inequality (47), of
the lemma 8.9, and of the fact that ¢g=% o ¢ and g~ **1 o ¢ are both geodesics of G(7) is that

L?J + (k1 — 1) kol(y)+516 >d(z1,921) +60 = d(gkxl,gkﬂml) +66

> d(g"xr, e(ty)) + d(c(ty) , eltipr)) +d(e(tier), 6" o) > 2d(@r, M (7)) + d(e(tr) s e(tir1)) -
From this, from (48) and from the definition of k;, we infer that, for every k € Z,

d(c(tr), c(tps1)) < Max (950 + (k1 — 1) ko £(y) + 518 — 2d(x1, M(y)) , 35) =

on 9R
= S50+ (b — D ko £(7) + 516 = 2d(, M()) < = + 548 — 2d(w1, M(7))

the last inequality being deduced from (46). This implies:
VteR Jk €Z suchthat d(c(t), c(ty)) < % Ro+ 276 —d(xzy, M(%)) . (49)

Let us denote by c(#}) a projection of gFoc(ty) onto the geodesic line ¢, as the geodesics ¢ and g*o ¢
both admit v~ and v as endpoints, the proposition 8.10 (i) implies that d(gk oc(tp), c(t%)) <20
and thus that

VkeZ d(g"zi,c(ty)) < d(gFz1,c(ty)) < d(gFzi, " o clto)) + d(g" o clto), c(t},))
< d(z1,c(to)) +26 < d(x1, M(7))+25+¢ .
From this and from (49), we deduce that, for every ¢t € R,

9 8

. k . k

Iglel%d(c(t), g xl) < Iknel%d(c(t),c(tk)) —I—Iilea%d(c(tk), g xl) < T Ry +290+e< ERQ +e .
(50)

Let us now notice that, as « is hyperbolic, Myin(7) is closed and non empty set by Lemma 8.34
(iv). Let us fix any point y € Muyin(y) and projections ¢(t) and ¢(t’) of y and vy (respectively)
onto the geodesic line ¢; applying (50), let us fix ks € Z such that d(c(t), g*? 21) < % Ro+29 6+¢;
we have only two possible cases:

e Case 1: If d(c(t),c(t')) > 39, the triangle inequality and the lemma 8.9 give:

d(y, c(t))+30+d(y, c(t') —d(y, v y) < d(y, c(t))+d(c(t), c(t')+d(y y, c(t') < d(y,vy)+6;

noticing that d(y, c(t')) > d(y, c(t))+d(c(t),c(t')) — 28 > d(y,c(t))+6 (by Lemma 8.8) and
that d(y,vy) = s(y) < % (by (44)) and plugging these two estimates into the previous
inequality, we obtain that d(y, c(t)) < s(v) +6 < 2% + 4. From this, from the definition of
ko and from the fact that 296 + § < % (by definition), we deduce, when ¢ is sufficiently
small, that

- 25
d(z1,97 " y) = d(g" z1,y) < d(g" z1,c(t)) + d(c(t),y) < 1 fo -

As Myin(y) is invariant by 4* for any k € Z, it is invariant by g=*2 and thus g~ %2y €
25
Min (77); a consequence of the last inequality is that d(xl, Mmin('y)) < i Ry and thus

25
Jr € Mpmin(y)  such that  d(z1,2) < a Ry (51)

Let us fix such a point z € Myin(7y) and let us define R := 5d(z1,x) + 3d(z,v x); the
estimates (51) and (44) lead to

125 3 7
= = < _ e R .
R=5d(z1,2) +3d(z,y ) = 5d(z1,2) + 3s(y) < (41 —|—719> R0<25R0
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1
Noticing that R,(x1) = Ry and that (by assumption) H := Ent(X,d) < Teog e may
apply Lemma 5.9 (ii) to the points z; and x, which gives:

¢ 3712 / g\ % 3712 /9o5\ 20
](;O)> 5 (RO> 6—62—5HR> 5 (77) o101 HRy (52)

Case 2: If d(c(t),c(t’)) < 30, let us denote by ¢ (¢”) a projection of yoc(t) onto the
geodesic line ¢, the triangle inequality then gives:

d(c(t),yoc(t)) <|t—t|+|t' =t |+d(c(t”),yoc(t)) (53)

— If |t — 17| < 34, as the geodesics ¢ and o c both admit v~ and v as endpoints, the
proposition 8.10 (i) implies that d(yoc(t),c(t”)) < 26; from this, from (53), and from
the assumptions on d(c(t), c(t')) and on |t' — ¢”|, we get that d(c(t),yoc(t)) < 84.

— If |t/ —¢"| > 34, the lemma 8.9 gives:
d(y,c(t)) +65=d(yy,yoc(t) +65>d(vy,c(t') +|t' —t"[+d(c(t"),yoc(t))

>d(y,c(t) —dly,yy) + |t' —"[+d(c(t"),voc(t)
>d(y,c(t) +t—t'| =25 —s(y) + [t —¢"| +d(c(t”),yoc(t)),
the last inequality being a consequence of Lemma 8.8. Transferring this last estimate

in (53), we obtain d(c(t),yoc(t)) <86+ s(v) < % +86.

In case 2, we therefore always have

Ry Ry

Let us now redefine R := 5d(g"2z1,c(t)) + 3d(c(t),yoc(t)); from the definition of ko
(justified by (50)) and from (54), if ¢ is sufficiently small, we infer the estimate:

40 3 78
- ko —_
R:=5d(g"xy1,c(t)) +3d(c(t),yoc(t)) < 13 Ro+ 9 Ry < 5% Ry . (55)

As g := ~F1ko for every p € Z* we have d(vp(g]” z1), g xl) = (71’ xl,xl), and conse-

1
quently R, (g*? z1) = R,(21) = Ro; as moreover H = Ent(X,d) <

703 by assumption,

we may apply Lemma 5.9 (ii) to the points ¢*2 z; and c(t) and get:

((y) 32 (R - _esgp . 37 (T8 - _102 HRo —34 _102HR
2y = L 3 0 56
e > 5 e e 2 > 5 o e > e ,  (56)

where the second inequality comes from (55) and (as R depends on ¢) is valid because &
has been chosen sufficiently small.

We can now summarize all the cases that we have considered in the whole of this proof : if

— 750

H< ! Min ! 1), either £(7) > Ma 0 105D | > 3" Ry or
— Z e °
5) v 2500’ 5o

Y ] 4 1
](%70) > 3734 o102 HRy 5 3=34 o (_29 . min <(5’ 1) 'Ro) ,

this last inequality being a consequence of the union of (56) and (52). This ends the proof. O
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5.2.2 Explicit universal lower bounds for the exponential growth

In the case where the quotient space I'\ X has bounded diameter, we have the:

Proposition 5.10. For every non elementary §-hyperbolic metric space (X,d), for every proper
action (by isometries) of a group T' on (X,d), if the quotient T\X has diameter bounded above
by D, then

In2

Ent(X.d) > — 2=
(X, d) > oo 0p

On Riemannian manifolds, we noticed (in the subsection 3.3) that the assumption Ricci curvature
bounded from below is much stronger than the assumption entropy bounded from above; hence
Proposition 5.10, being an obstruction to the smallness of the entropy, can be viewed as a
generalised version of the classical obstructions for the Ricci curvature to be almost nonnegative.

Example 5.7 proves that, in Proposition 5.10, the assumption on the diameter is necessary : in
fact let us consider the free group I' with 2 generators a,b and its Cayley graph X endowed
with the length distance dq g defined (in Example 5.7) by deciding that the length of the edges
[g, ga™] (vesp. [g, gb*']) is  (resp.B). If 3 goes to +oo and if « is fixed, we have seen in Example
5.7 that Ent(X, dq, g) goes to 0 and that diam(I"\ X') goes to 400, while (X, d,,g) is O-hyperbolic.

The following lower bound of the Entropy is valid in the case where I'\ X is non compact and in
the case where it is compact with unbounded diameter. However, Example 5.7 proves that one
needs to replace the bound on the diameter by the bound on another geometric invariant, as can
be seen in the next proposition.

Proposition 5.11. For every §-hyperbolic, non elementary, metric space (X, d), for every proper
action (by isometries) of a group T' on (X, d), if there exists L,C > 0 and two hyperbolic elements
a,b e I'™ such that

e (a,b) is not virtually cyclic,
e /(a),l(b) <L,
e d(M(a),M(b)) <C,

In2
then, for any T'- invariant Borel measure p on X, Ent(X, d, ) > mjlﬁ

Corollary 5.12. For every d-hyperbolic, non elementary, metric space (X, d), for every proper
action (by isometries) of a group T on (X, d), if there exists L, R > 0 and an hyperbolic element
a € I'* such that

e V(a) <L,

o there exists x € M(a) such that T'r(z) is not virtually cyclic,

In2
th - jant Borel X, Ent(X.d, ) > ———m8m8M8—.
en, for any I'- invariant Borel measure p on X, Ent(X, d, u) > TS

Theorem 6.35 (ii) allows to re-interpret the parameter R which appears in the assumptions of
Corollary 5.12 as an upper bound of the length of a thin tubular neighbourhood (in I'\ X) of the
image of M (a) by the quotient map X — I'\ X. Thus the geometric meaning of the assumptions

of Corollary 5.12 is that there exists at least one of these thin tubes whose length is bounded
from above.

The lower bound of Ent(X,d) given by Corollary 5.12 must depend on the infimum R of the r’s
such that Ty (x) is not virtually cyclic and must go to 0 when R — +o00.

In fact, revisiting the example 5.7, let us consider the free group I' with 2 generators a,b and
its Cayley graph X endowed with the length distance do s defined (in the example 5.7) by
deciding that the length of the edges [g, g a™!] (resp. [g,gb™?]) is a (vesp.B3). Let us recall that
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(X,dq,p) is O-hyperbolic, and moreover CAT(K) for any K < 0; the a-invariant geodesic ¢, is the
concatenation of the edges ...U[a ¥~ Y a *]Ula% a * 1] ... U[a* !, d¥]U[a¥, o] U... (and
the same for the b-invariant geodesic ¢;), and these two invariant geodesics ¢, and ¢, both contain
the identity element e. We consequently have £(a) = «, £(b) = 8. Notice that e € M(a) = ¢,
and let us fix g = e. If § — 400 and if « is fixed then, on (X, dn g), the infimum R of the r’s
such that I',.(x) is not virtually cyclic is equal to §: in fact I'g(z) is equal to I" and is thus not
virtually cyclic and I',(z¢) = (a) is cyclic for every r € [a, B[. It follows that, for this value of
R = (3, all the assumptions of Corollary 5.12 are fulfilled on (X, d,,g) (except the fact that R
is bounded), in spite of this the entropy is not bounded from below because Ent(X,dq ) — 0
when R := 8 — +o0.

The entropy of a group with respect to a given system of generators being defined in Subsection
3.1, we obtain the

Corollary 5.13. For every non elementary group I', endowed with a finite generator system %
with respect to which T is d-hyperbolic, we have

In2
Ent(T,%) > ——2
nt(l2) 2 57510

Previous estimates in the case of groups acting on Cartan-Hadamard spaces were given in

[ ] and [ ]. In | ], E. Breuillard and K. Fujiwara independently obtained, under
In2
th ti d when § > 1, the i lity Ent(I',%¥) > —————
e same assumptions and when § > 1, the inequality Ent(I',X) > 1001500003 (see | 1,

Corollary 13.2). However, this estimate and our Corollary 5.13 do not provide any lower bound
of the algebraic entropy of the group I'. Indeed, if (X;);en is an entropy-minimizing sequence of
generating systems, the corresponding sequence of hyperbolicity constants of (T, 3;) may go to
infinity. See Corollary 5.17 and Theorem 5.16 (iii) for lower bounds of the algebraic entropy.

Proof of Proposition 5.11. As £(a),£(b) > 0, let N, N’ be the smallest integers such that
(N —1)¢(a) <135 < Nl(a), (N'—1)¢(b) <135 < N'4(b),
we have:
136 < £(a™) <135+ £(a) <136+ L, 135 <L(bN')<136+£(b) <135+L.  (57)

Let us denote by F the subgroup generated by {a’v,b" ,}, it is not virtually cyclic by the propo-
sition 8.42 (vi); applying the corollary 4.10, we get that one of the two semi-groups generated
by {a,bN"} or by {a™,b=N'} is a free one, and thus that the entropy of F' with respect to the
complete system of generators S := {a’¥,a™ ¥, bN/,b_N/} is at least In 2.

For any ¢ > 0, let 29 € M(a) = M(a") and z; € M(b) = M(bN/)) be two points which satisfy
d(xg,x1) < C +¢; let us fix some geodesic [xg, 21] connecting xg and z; and the middle-point m
of this geodesic. As d(zo,aNxo) < (a™N)+46 <176+ L and d(z1,bN 21) < £(bN')+46 <176+ L
by Lemma 4.11 (i) and the estimates (57), the triangle inequality gives:

d(m,a=Nm) = d(m,a¥m) < d(m, xo) + d(zo,aNxo) + d(aNzg,a"m) < C+ 176 + L+ ¢ ;

by a similar proof we get d(m, b_N,m) = d(m, bN,m) < C 4170 + L + . Using Lemma 3.6, we
obtain, for any I'- invariant Borel measure p on X,

Ent(X,d,pn) - (176 + L+ C 4+ ¢) > Ent(X, d, u) - Max [d(m, a*Nm); d(m, b= 'm)

> Ent(F,S) > 1n2

and, when € — 0, this proves Proposition 5.11. O

Proof of Corollary 5.12. Choosing o € M (a) such that T'r(z¢) = (Xr(x0)) is not virtually
cyclic, Corollary 8.43 (iii) then implies the existence of some b € ¥ (z¢) such that (a,b) is not
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virtually cyclic, and Corollary 8.43 (i) then guarantees that (a,bab™!) is not virtually cyclic.
Moreover one has d(M(a), M (bab™')) = d (M(a),b(M(a))) < d(z,b(z¢) < R. Because of this
and of the fact that £(bab=1) = ¢(a) < L, we may apply Proposition 5.11 (where we replace C
by R) to the two hyperbolic isometries a and bab~!, which concludes. O

Before proving Proposition 5.10, let us first prove the

Lemma 5.14. For every Gromouv-hyperbolic space (X, d), every infinite, discrete and co-compact
subgroup T' of the group of isometries of (X,d) contains at least one hyperbolic element v such
that there exists x € X satisfying d(z,~vx) < 8D+105, where D is an upper bound of the diameter
of T\X. A consequence is that the ideal boundary of (X,d) contains at least 2 points.

Proof. The action of I" on (X, d) being proper (by Proposition 8.12), every sequence (7,,),cy
of distinct elements of T' verifies d(z,7,, ) — 400 when n — 4oo (for every € X). This
proves that (X, d) is a unbounded, geodesic and proper space, thus that its ideal boundary 90X
is non empty. Let xy be any fixed origin, § be any point of 0X, and ¢ a geodesic ray such that
¢(0) = zg and ¢(400) = 0. Let us fix € such that 3¢ is the infimum of d(z, gx) — (8D +105) when
g runs in the set {g : d(x,gx) > 8D + 104}; as the action of T is proper (by Proposition 8.12),
this infimum is attained and thus € > 0; moreover, by the choice of ¢, every v € T" such that
d(z,vx) < 8D+100+2 ¢ satisfies automatically d(z, v x) < 8D+100. Let us define R = 3D+5+¢
and denote by x and y (respectively) the points ¢(R) and ¢(2R) of the geodesic ray c¢. As
d(y,Tz) and d(zo,T'z) are bounded above by D, there exists g,h € T" such that d(zg,g9z) < D
and d(y,hx) < D. The triangle inequality then implies that R — D < d(z,gx) < R+ D,
R—D <d(z,hz) < R+ D and 2R — 2D < d(gx, hx) < 2R + 2D; we then have

d(gz,hz) > 2R —2D = R+ D +56 + ¢ > Max [d(z, gz) ; d(z,hz)] + 55+ ¢ .

Lemma 8.24 (which is a variation of the lemma 9.2.3 page 98 of | ]) then implies that either
l(g) >304+¢e€>0,or l(h) >3+ >0,or {(gh) ={(hg) > 2 e >0, which implies (by Lemma
8.19) that (at least) one of the three isometries g, h or gh is hyperbolic; hence there exists an
hyperbolic isometry « (equal to g, h or gh) such that d(xz,vz) < 2R+ 2D = 8D + 10§ + 2¢, and
then we have d(z,vyxz) < 8D + 10§ as proved above. A consequence is that the ideal boundary
contains the two fixed point of this hyperbolic isometry and this ends the proof O

Proof of Proposition 5.10. Lemma 5.14 guarantees that one can fix an element a € I'* such that
a acts as an hyperbolic isometry and that 0 < £(a) < 8D+100. Choose some point xg € M (a). A
result of M. Gromov ([ | Proposition 3.22, whose proof is written for Riemannian manifolds,
but is still valid on path-connected metric spaces”) proves that $op(z0) := {0 € I'* : d(xg, 0x0) <
2D} is a complete system of generators of T', the properness of the action implying the finiteness
of Yop(xg). This proves the existence of some b € Xaop(xg) (possibly elliptic !) such that
(a,b) is not virtually cyclic (otherwise I' would be virtually cyclic by the corollary 8.43 (iii)
and (X,d) would then be elementary by Propositions 8.44 (iii) and 8.44 (iv)). By Corollary
8.43 (i) (a,bab™1)) is not virtually cyclic too; as moreover £(bab=') = f(a) < 8D + 106 and
d(M(a), M(bab™')) = d (M(a),b(M(a))) < d(zo,b(zo) < 2D, we may apply the proposition
5.11 (where L and C are replaced by 8D + 105 and 2D respectively) to the two hyperbolic
isometries a and bab~!, which ends the proof. O

Remark 5.15. Proposition 5.10 could also be deduced from Theorem 5.6, but the proof given

above is much more simple. This stresses the fact that Theorem 5.6 is a more powerful result:
1 1

in fact, if we suppose that the entropy of (X,d) is smaller than 750 Min (5, 1), Proposition

5.10 is a consequence of the fact that there exists a torsion-free v € I'* such that ¢(y) < C(6, D)

while the Theorem 5.6 implies that every torsion-free v € T'* verifies £(vy) > C'(, D).

9n fact, the path-connectedness implies that, for every v € T and every & > 0, there exists a finite set
{yo,y1,.-.,yn} C X such that yo = y, yv = vy and d(yi—1,vi) < € for every i € {1,...,N}. Let us choose
Y0,V1s--->YN € I such that v = e, vy = v and d(y;,7v;y) < D, we then get v = o1 - ... on, where
o; = 71.__11 v; € Xap+e(y) and the finiteness of Y3p(y) proves that Zopy.(y) = X2p(y) when € is sufficiently
small.
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Proof of Corollary 5.13. As seen in the sections 2 and 3.1, the §-hyperbolicity of the group I
(when endowed with the generator system X)) means that its Cayley graph Gx(T'), endowed with
the algebraic distance ds, (defined in the section 2) is a d-hyperbolic metric space. The action
(by left-translations) of T on Gx(T) is isometric and proper, because the balls of (G, dyx) are finite
sets. As X is finite, (Gx(T'), dx) is a proper space and the quotient I'\Gx(T") is a union of a finite
number of circles whose diameter is bounded by D = 1. As I' is non elementary, its Cayley graph
is non elementary too. We can thus apply the Proposition 5.10, which implies that

In2 In2
I = > = .
Ent(I', 30) = Bt (G(D), ds) 2 105505 = 107975

5.2.3 Implicit universal lower bounds for the exponential growth

The results of this subsection are in some sense stronger than the results of the previous subsection
5.2.2 because they provide lower bounds for the algebraic entropy of any non virtually cyclic (eventually
non cocompact) group acting properly on a d-hyperbolic space, in particular they bound from below the
algebraic entropy of any non virtually cyclic subgroup of a §-hyperbolic group (independently of its system
of generators). On the other hand, the results of this subsection are in some sense weaker: in fact, the
lower bounds given in the previous subsection 5.2.2 are explicit while the bounds which will be established
in the present subsection, though universal, cannot be specified, because they all depend on the non explicit
function p — N (p) which appears in the theorem 5.19 of E. Breuillard, B. Green and T. Tao. From this
function, for every values of Co > 1 and of H, D,d > 0, we define the two following universal constants:

Ni(Co) = 3N ([C3] +1) 5 No(& H,D) =N ([32°#P+0] 11) (58)

Let us furthermore recall that, for every A, B C G, we denote by A - B the image of A x B by the map
(v,9) = v-g and define (by induction) S* as S¥~1 . S.

Theorem 5.16. Let (X, d) be any d-hyperbolic (non elementary) metric space, for every proper
action (by isometries) of a group T' on (X,d) such that the diameter of T\X and the entropy of
(X,d) are respectively bounded by D and H, then (denoting by Ny the above universal constant
No(6,H,D))

(i) for any finite symmetric subset S of T' which generates a mon virtually cyclic subgroup,
there exists at least one v, € SN0 such that (v,) > & and there exists o € S such that
one of the two semi-groups generated by {v4*, oyt o™} or by {v{t, oy ot} s free.

(ii) The algebraic entropy'’ of any finitely generated and non virtually cyclic subgroup T’ of T

In2
s bounded from below by ﬁo_’_z.
(i) The algebraic entropy of T is bounded from below b 2
g Py Y BN T3

Given a finitely generated group I', let us recall that, to any choice of a finite system S of
generators of ' corresponds a Cayley graph, which is a metric space when endowed with the
algebraic distance dg. When I' is Gromov-hyperbolic, this metric space is Gromov-hyperbolic
too and we shall denote by §(T', S) its hyperbolicity constant''. We then have

Corollary 5.17. Let T be a non virtually cyclic Gromouv-hyperbolic group then, for every positive
constant M, if there exists a finite system Sy of generators of T such that Ent(T', Sp) (6(T, Sp) +

1) < M, then the algebraic entropy of T' and of any finitely generated and non virtually cyclic
In2

42N ([312 190 M] 1 1) + 2

subgroup T of T is bounded from below by where p — N(p) is the

function which appears in Theorem 5.19.

10Recall that, in the absence of additional specification, the algebraic entropy of a group G is the infimum (with
respect to every finite system S of generators of G) of Ent(G, S).
M'When T is Gromov-hyperbolic, for every finite system S of generators, §(T', S) < +oco.
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Note that E. Breuillard and K. Fujiwara also give a lower bound of the algebraic entropy of an
hyperbolic group and of its non virtually cyclic subgroups, their estimate also depends on the
existence of a generating system Sy of I', however they suppose that §(T', Sg) and the cardinality
|So| of this generating system are bounded above. They can then replace our use of the Bishop-
% < 24(S) — 1, which clearly
implies that Ent(I', Sp) < In (2#(Sp) — 1) (see [ ], Corollary 13.4).

Gromov inequality (Theorem 5.1) by the fact that

Theorem 5.16 is in fact a corollary of the following proposition, which is also valid in the non
cocompact case:

Proposition 5.18. Let (X,d) be any d-hyperbolic (non elementary) metric space, for every
proper action (by isometries) of a group T' on (X,d) if, for every point x € X, the counting
measure pk of the orbit Tz satisfies the Co-doubling condition for all the balls (centered at z) of
radius r € [é To, 7 ro] (where ro > 3L 5 and Cy > 1 are arbitrary constants) then (denoting by
N; the above universal constant Nl(Co))

(i) for any finite symmetric subset S of T' which generates a non virtually nilpotent subgroup,
there exists at least one v, € SN such that Z(WO) > 6 and there exists ’ € S such that one
of the two semi-groups generated by {7§*, ot o1} or by {7t oy oY} s free.

(i) The algebraic entropy of any finitely generated and non virtually nilpotent subgroup T’ of T,
In2

with respect to any finite system of generators of I, is bounded from below by N 12
1

Proof. Let Ny = %Nl =N ([CS’] + 1); let us denote by G = (S) the subgroup generated by S
and by A the set {v € G : d(z,yx) < ro}. By the proposition 3.19, the Cy-doubling condition
assumed for the counting measure pL of the orbit I'z implies that the counting measure u& of
the orbit of G satisfies the condition

#(A-4) _ 18 (Bx(a.20))

c3 .
FA = 1G(Bx(wir) -0

As G := (S) is not virtually nilpotent, the theorem 5.19 then proves that S~ 1 is not contained
in A; there consequently exists some v € SN1 such that d(z,vx) >ro> % é.

If ¢ is the representation I' — Isom(X,d) associated to the action of T' on (X,d), there exists
o(y) € o(SN1) = o(S)M such that d(z, o(y)z ) > ro > 25, As this is valid for every z € X,
we obtain the estimate: L* (Q(S)N{) > rg > 31§, and the theorem 4.17 (where we replace S
by 0(S)N1) then implies that there exists g € p(S)3N1 = p(SN1) such that £(g) > §; there thus
exists v, € St such that o(y,) = g and thus (by Lemma 5.8 (vi)) £(vo) = £(g) > 9.

Now, as (S) is not virtually cyclic, by Corollary 8.43 (iii), there exists o € S such that the
subgroup generated by {v,,0} is not virtually cyclic and, by Corollary 8.43 (i), {7y, cvo0 '}
generates a non virtually cyclic subgroup of I'. Hence we may apply Corollary 4.10 to the pair
{Yo, 0700 1} which proves that one of the two semi-groups generated by {v{*, cv{*o~1} or
by {76, o vg ** 0~} is free. This proves (i).

This also implies that the (algebraic) entropy of the subgroup G’ generated by " := {7{*, o v¢t o
(with respect to the generator system S’) is bounded from below by In2. Let us consider the
metric space G, endowed with the algebraic distance dg associated to the generator system S,
and the faithful action (by left translations) of G’ on G, as this action is proper and dg-isometric,
we can apply the lemma 3.6, which gives

Ent(G, ') In?
> .
Max [ds (e,7$*) 5 ds (e,0v3to=1)] = 14Ny + 2

Ent(G, S) := Ent(G, dg, #) >

Let us now consider any finitely generated and non virtually cyclic subgroup IV of I, and any
finite system of generators X of I, let us denote by S the symmetrized of X, as TV = (S), we
can apply the previous inequality (replacing G by I''), which ends the proof of the proposition
5.18. O
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End of the proof of Theorem 5.16. Theorem 5.1 (ii) proves that, for every point z € X, the
counting measure ul of the orbit I'z satisfies the Cp-doubling condition (with Cp := 3% e's H(D +9))
for all the balls (centered at z) of radius r € [$ Ry, 2 Ry| (where Ry = 20 (D + ) > 21 5). We
may therefore apply Proposition 5.18, while replacing N7 by 3 Ny because

Ni = Ni(Co) = 3N ([CF] +1) =3 N ([312e*0HP] 1) =3 N .

This proves the properties (i) and (ii) of Theorem 5.16. Moreover, if g is the representation
I' — Isom(X,d) associated to the action of I' on (X, d), o(I") is not virtually cyclic, otherwise
(X, d) would be elementary by Propositions 8.44 (iii) and (iv); this implies that I" is not virtually
cyclic and thus that (1) = (44i). O

End of the proof of Corollary 5.17. We apply Theorem 5.16 to the d-hyperbolic space (X,d),
where X is the Cayley graph of T' (associated to the system of generators Sy) and where d is the
canonical extension to this Cayley graph of the word-distance dg, on I" (hence on the vertices of
the Cayley graph). Notice that, in this case, the diameter of I'\ X is equal to 1, the hyperbolicity
constant of (X,d) is §(T, Sp), the entropy of (X,d) is equal to the entropy of (I',.Sp) and is

thus bounded above by . As I is not virtually cyclic, (X,d) is non elementary by

1+ 4(T, So)
Proposition 8.44 (iv) and (iii). Let us consider the action (by left translations) of I" on its Cayley
graph (X, d); as this action is proper, co-compact and d-isometric, we can apply Theorem 5.16 (ii)
M
and (iii), replacing (in this Theorem) D by 1 and Ny(d, H, D) by Ny | 6(T', So), ———=——=~,1 ).
1+0(T, Sy)
The corollary 5.17 then follows.

5.3 Margulis Lemmas for group actions on Gromov-hyperbolic spaces

For every group G and every A, B C G, we shall still denote by A - B the image of A X B by the map
(v,9) — 7 -g and define (by induction) S* as S*7'- 8.

Let us recall that we consider any proper action (by isometries) of any group I' on any J-hyperbolic
(and thus geodesic and proper) space (X, d) such that the Entropy of (X,d) (with respect to at least one
T-invariant measure) and the diameter of T\X are respectively bounded above by H and D. For any
z € X and any r > 0, let us also recall that the subgroup generated by ¥, (x) := {y € I'" : d(z,vz) < r}
s denoted by I'y(x).In the following subsections, making use of the function N(e) which will be defined
in the following Theorem 5.19, given any §, H, D > 0, we shall consider the universal constants

Ro:=20(D+68) , No:=N ([312 e‘“’oH(D“)] + 1) . eo(6,H, D)= 10 (59)
No
s0(8,H,D) =23 2Ry e 3 (No+10) 1BH Ro+6) (60)
5.3.1 A first Margulis Lemma for é-hyperbolic spaces
Theorem 5.19. (E. Breuillard, B. Green, T. Tao, | ] Corollary 11.2) For every p € N*,

there exists N = N(p) € N* (only depending on p) such that the following property holds for
every group G and any finite symmetric system S of generators of G: if there exists some A C G
which contains SNP) and satisfies #(A - A) < p#(A), then G is virtually nilpotent.

The following corollary settles a first Margulis property under a weak doubling assumption at
some scale; it improves a previous corollary of Breuillard, Green and Tao in | ]: in fact
the “packing” hypothesis of | ] (see Definition 3.8) is replaced here by a weak doubling
condition on the counting measure of an orbit of the action of a given group I', this last hypothesis
being weaker than the packing one, as proved in Lemma 3.12, because of the fact that, when
counting the maximal number of disjoint balls Bx (x;, ) included in a bigger one, this number is
greater when we put no condition on the centers x; than when we compel the x;’s to be located
on the same orbit of T'.
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Corollary 5.20. For every data ro > 0 and Cy > 1, on every proper metric space (X,d), for
every proper action (by isometries) of any group I' on this space, and for every xo € X, if the
counting measure ugo of the orbit T'-xzq verifies the Cy-doubling condition for all the balls of radius
r e [%ro, %7"0] centered at the same point o, then the subgroup T ,(z¢) is virtually nilpotent for

0 . .
every 0 < ———=——— (where N(-) is defined in Theorem 5.19).
N (G5 +1)

In the d-hyperbolic case, we deduce the following Margulis Lemma

Theorem 5.21. On any é-hyperbolic space (X, d), for every proper action (by isometries) of any
group T' on this space such that the diameter of T\X and the Entropy of (X,d) are respectively
bounded above by D and H, for every x € X and every r < e9(0, H, D), the subgroup T'.(x) is
virtually cyclic.

Notice that the celebrated original Margulis Lemma was settled for Riemannian manifolds whose sectional
curvature and dimension are bounded; a more recent celebrated result was proved by V. Kapovitch and
B. Wilking ([ ]), in which the above universal constant o of Theorem 5.21 is replaced by another
universal constant depending on a lower bound of Ricci curvature, on an upper bound of the diameter
and on the dimension). With respect to this last result, in Theorem 5.21, we have replaced the bounds on
Ricci curvature and on the dimension by an upper bound of the Entropy (see section 3.3 for a comparison
between all these hypotheses).

In the proof of these two last results, the key role is played first by Theorems 5.1 and 5.19, and
secondly by Proposition 3.19 (i).

Proof of Corollary 5.20. Once admitted Proposition 3.19 (i), the proof follows the one of the
corollary 11.17 of | ]. In fact, let G :=T',(z¢) and S := ¥,(z0), according to Proposition
3.19 (i), the doubling condition assumed on the counting measure of the orbit I' - 2y of I" implies
that the counting measure ufa of the orbit G - z( of the subgroup G verifies

Mfo Bx(l‘oﬂro)] < Mfa [Ex(xo,Qro)] <3 (61)
uS [Bx(zo,ro)] — nS, [Bx(x0,m0)] ~ 0
We then apply Theorem 5.19, where we put p = [C§] + 1 and A := {y € G : d(zg,y20) < 10 };

in fact, taking e} := N"&), the triangle inequality and the hypothesis ¢ < ¢f, guarantees that

SN ey (z0)N®) C A;as A- A C {y € G :d(xo,vzo) < 270}, inequality (61) implies

#(A-A) _ #({yeG:d(xg,yxo) <270}) uSO Ex(xo,Qro)] 5 .
#(A) < # ({v € G:d(xg,vxo) <T0}) - ’ugo Bx(woﬂ"o)] <Cy<p;

Theorem 5.19 then implies that the subgroup G = T',(z¢) generated by S := X, (z0) is virtually
nilpotent. O

End of the proof of Theorem 5.21. T\X is compact by Lemma 8.13 (ii). Let Ry := 20(D + §)
and Cp = 3* e'st H(D +9). under the hypotheses of Theorem 5.21, a consequence of revisiting
Theorem 5.1 (ii) as a doubling property (see comments after this Theorem) is that, for every

b (Bx(z,2 1)
measure pl of the orbit T'z verifies the Cp-doubling condition for all the balls centered at x,
of radius R € [4Ry,2Rg]. As Ny = N ([C§] +1) and £y(6, H,D) = Ro/Ny by (59), the
corollary 5.20 then implies that, for every r < g¢(d, H, D), I'.(x) is virtually nilpotent. If ¢ is the
representation I' — Isom(X, d) associated to the action of I' on (X, d), it follows that o(T'(z))
is virtually nilpotent too, and thus virtually cyclic according to Proposition 8.44 (v); Lemma 5.8
(vii) then guarantees that I'.(z) is virtually cyclic. O

z € X and every R > %RO, one has < 3ev H R hence that the counting

This leads to the following lower bound of the Margulis constant L(a,b) (see Definition 4.12):
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Corollary 5.22. On any 0-hyperbolic space (X, d), for every proper action (by isometries) of any
group T' on this space such that the diameter of T\X and the Entropy of (X,d) are respectively
bounded above by D and H, every pair {a,b} of torsion-free elements of T which does not
generate a virtually cyclic subgroup verifies L(a,b) > o(6, H, D).

Proof. a and b cannot act as parabolic isometries by the proposition 8.44 (ii); as a and b are
torsion-free, they are not elliptic (by Remark 8.16 (1)), they therefore act as hyperbolic isometries
by Theorem 8.15.

For sake of simplicity, let eg := €q(8, H, D); if L(a,b) < &g, there exists € X and (p, q) € Z* x Z*
such that Max[d(z, a?z) ; d(x,blz)] < €9, hence such that (a?,b?) C T'.,(x). As T, (z) is virtually
cyclic by Theorem 5.21, (a?, b?) is virtually cyclic too, and Corollary 8.43 (ii) then implies that
{a, b) is virtually cyclic, in contradiction with the hypothesis. O

5.3.2 A lower bound of the diastole

Definitions 5.23. In any metric space (X,d), for every proper action (by isometries) of any
group T on this space,

e at any point x € X, sysp(z) is the minimum of d(xz,v x) when v runs through the elements
of T* (sysp(x) > 0 when no element v € T* fizes x),

e the r-thin subset'? of X is the open set X, := {x € X : sysp(z) < 1},

e at any point x € X, sysp(x) is the minimum of d(x,~yx) when v runs through the torsion-
free elements of T,

e the torsion-free r-thin subset of X is the open set X = {z € X :sysi(z) <r},

e the r-thick subset of X is the complement of X, in X.

Proposition 5.24. On any connected non elementary 6-hyperbolic space (X, d), for every proper
action (by isometries) of any group T’ on this space such that the diameter of T\ X and the Entropy
of (X, d) are respectively bounded above by D and H, for everyr < eo(d, H, D) (where eo(d, H, D)
is defined at (59)), the (torsion-free) r-thin subset X2 of X is either empty or not connected; in
particular there exists a point © € X such that sysY(z) > €o(6, H, D).

If moreover T is torsion-free, then Diasp(X) > eo(d, H, D).

This Proposition will be generalized to actions on metric measured spaces by Theorem 6.21.
However the present Proposition is more direct and the lower bound it provides is greater than
the one given in Theorem 6.21. This two results are both based on the same Proposition 6.23,
whose statement and proof are given in section 6.

Remark 5.25. When torsion elements are admitted in I', there is no possible universal lower
bound of the diastole (and a fortiori of the pointwise or global systole) under the hypotheses of
Proposition 5.24, as proved by the following example: given any non elementary d-hyperbolic
space (Xg, dp) and any proper action (by isometries) of any group I'g on this space such that the
diameter of T'g\ X and the Entropy of (X, dy) are respectively bounded above by D and H, we
construct the metric space (X, d) as the product of (Xo, dy) with the circle (T, . can) and the

2
group I' as the product of I'y with the group R, of the rotations whose angles are i} (where

k € {0,1,...,n — 1}). For sufficiently small values of ¢, (X, d) is a non elementary 215 + 2me)-
hyperbolic space and the canonical product-action of T on (X, d) verifies all the assumptions of
Proposition 5.24. However, we have Vx sysp(z) = 2w e /n, which goes to zero when € goes to
zero or when n goes to +oo.

12The use of the word “thin” is justified by the results of the section 6.5.
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Proof of Proposition 5.24. By Lemma 8.13 (ii), as the diameter of I'\ X is finite, the action of I'
on (X,dp) is co-compact. Under the assumptions of Theorem 5.24, we may apply Theorem 5.21,
which proves that the subgroup I',-(z) is virtually cyclic for every « € X and every r < e¢(d, H, D).
We may thus apply Proposition 6.23 (ii), where we identify the two spaces (Y, d) and (X, dy) with
(X, d) and the two actions of I' on these two spaces with the action of I' on (X, d) considered here;
Proposition 6.23 (ii) then guarantees that X7 is disconnected or empty for every r < e¢(d, H, D).
Hence X is disconnected or empty and X \ X is not empty, consequently every z € X \ X
verifies sys%(z) > .

If T' is torsion-free, every x € X \ X satisfies sysp(z) = sysp(x) > €9, so Diasp(X) > €. O

5.3.3 A lower bound of the global systole for Busemann spaces

Theorem 5.26. On any non elementary, geodesically complete, 6-hyperbolic, Busemann space
(in the sense of Definition 8.36) (X,d), for every proper action (by isometries) of any group T
on this space such that the diameter of T\X and the Entropy of (X,d) are respectively bounded
above by D and H, one has

(i) £(y) > so(0, H, D) for every torsion-free v € T'*,
(ii) Sysp(X) > so(0, H, D) if T is torsion-free,

where so(3, H, D) is the universal constant defined at (60).

In this Theorem the hypotheses “torsion-free” are necessary, as proved by Remark 5.25.

The hypothesis “6-hyperbolic” is also necessary: in fact, let us consider the Riemannian product
of a fixed compact Riemannian manifold (Y, g) of sectional curvature o < —1 by a circle of length
27 ¢, the systole of the action of its fundamental group I' on its Riemannian universal covering
(Y xR, §g® (dt)z) goes to zero with e, though (Y xR, §g® (dt)z) verifies all the assumptions
of Theorem 5.26 (except the d-hyperbolicity) and though T is a torsion-free subgroup of the
isometry group of (17 xR, g (dt)?).

The hypothesis “diam(I'\X) < D7 is also necessary: in fact let (X, g,,) be a sequence of hyperbolic
surfaces whose diameter goes to 4+oo with n, then their injectivity radius goes to zero and
consequently the systole of the action of their fundamental group I' on their Riemannian cover
(H2, can.) goes to zero, though (H?, can.) verifies all the assumptions of Theorem 5.26 (except
the upper bound of the diameter) and though T is torsion-free.

The hypothesis “Ent(X,d) < H” is also necessary: in fact, let us consider any surface ¥ obtained

by connected sum from two compact pointed hyperbolic surfaces (X1,g1,21) and (X2, g2, x2)

whose injectivity radii at x; and x5 are larger than some fixed 1 > 0: more precisely, for every

positive e << g1 we glue ¥ \ By, (x1,¢) and Xg \ By, (x2,¢) at the two ends of the cylinder

[—1,1] xS', identifying respectively OBy, (z1,¢) and By, (72, ) with {—1} xSt and {1} xS'; we

endow X1\ By, (z1,€) and X5\ By, (72, €) with their hyperbolic metrics g; and go, and [—1,1] xS*
sinh e

with the metric he := (dt)? + be(t)?(df)?, where b.(t) := ——— - cosh(K. t) and where K. is
cosh K,

chosen in order that K. tanh K. = tT; the metric g. on X is obtained by gluing these three
anh e

metrics (this gluing is C! because b.(—1) = b.(1) = sinhe and —b.(—1) = b.(1) = coshe).
Then the surfaces (X, g-) have bounded diameters, sectional curvature ¢ < —1, and injectivity

sinh(e)
di b:(0) < m—F—FF—
radius 7 b (0) Wcosh(l/g)
Riemannian universal coverings (%, §.) is equal to 7 b.(0)) and goes to zero with e, despite the
facts that I is torsion-free, that the diameters of '\ (%, §.) = (%, g-) are uniformly bounded, that

(ENJ, Je) is a CAT(—1) space and is therefore a Busemann space and a dg-hyperbolic space (with

13 the systole of the action of their fundamental group I' on their

1 1 inh inh
> —, we have b.(0) = Smae sinh(e)

13In fact, as K > <
°7 tanhe ~ ¢ coshK.  cosh(1l/¢)

, which goes to zero with e.

56



do = In 3, by Corollary 1.4.2 page 12 of | ]). Hence all the hypotheses of Theorem 5.26 are
verified by the actions of I'" on the spaces (X, §.), except the “Entropy bounded” one. In fact
Ent(%, ) — +oo when € — 0 by Theorem 6.26 (ii)).

However, deciding if the hypothesis “(X, d) is a Busemann space” is necessary in Theorem 5.26
is an open problem.

Before proving Theorem 5.26, we shall provide (in Lemmas 5.27 and 5.28) lower bounds of the
distance between the boundary of a Margulis domain Mg(v) and every Margulis domain M, (7y)
such that ¢(7) < e < R. The first Lemma investigate the case where R = Ry := 20 (D + 0), the
second Lemma, using the convexity of the distance, is concerned by the case where ¢ = ¢(v) and
£(y) < R < Ry. These two Lemmas are the keys of the proof of Theorem 5.26: in fact, if € = £(7)
and if g¢ is the lower bound of the Margulis constant given by the corollary 5.22, these Lemmas
provide a lower bound of the distance between M, () and the boundary of M, () which goes to
400 when € — 0 and, as this distance is bounded from above in terms of the diameter, it comes
that e = £(g) cannot be small.

Lemma 5.27. On any non elementary d-hyperbolic space (X,d), for every proper action (by
isometries) of any group T' on this space such that the diameter of T\ X is bounded above by D,
for every torsion-free v € T'*, for every (xo,x) € X X X such that Ry(zo) > 20(D + 0) and
R, (z) < Ry(x), one has

o " C[ R ) o
R (z0) — 65 Ent(X,d)- Ry (o) +14 2

Proof. For the sake of simplicity, let N’ :=

and H := Ent(X,d). By definition of

R, (z), there exists p € N* such that d(z,7” x) = R,(x) and the triangle inequality then gives
d(z,v*P 2) < R, (z¢) + ¢ for every k € Z such that |k| < N’ and for any £ > 0; applying Lemma
5.5 (ii) (which is a corollary of the Bishop-Gromov-like inequality of Theorem 5.1 (ii)) in the case
where R = R, (x) + €, we obtain

sia3
IN' +1< # {k €Z:d(z,v" z) < Ry(z0) + a} <3 (1 +2 d(J:%EOEI))+ Ej Ce T H(Ry(@o)+2d(zo.2)te)
~(Zo

when £ — 0, noticing that Max;cr+ (tﬁ e_(ﬁ/e)t) = 1, we infer the inequalities

12n3 . N .
ON' 4 1< 312 (1 n 2;(52073)5)) T H(Ry (o) t2d(m0,m) < 12 (T HA oIS (142 FEE) ’
v {(Zo

which implies that
d(z,x)

Ry(wo) = g5 R, (z0) +

In(372(2N'+1)) 1

v

24In3 2
eln?2

O

Let us recall that the universal constants €o(d, H, D), Ny and Ry are defined in (59) and that
so(0,H,D) is defined in (60). For the sake of simplicity, we shall use the notations sy for
s0(8, H, D) and g for €q(d, H, D) in the sequel. Though the final aim of Theorem 5.26 is to
prove that the hypothesis £(y) < so(d, H, D) of the following Lemma is false, it is interesting to
investigate what would be the consequences of such an hypothesis when arguing by contradiction.

Lemma 5.28. Under the hypotheses of Theorem 5.206, every hyperbolic element v € T'* such
that ¢(y) < so(6, H, D) admits a y-invariant geodesic line ¢, on which 7y acts by translation of
length £(vy) and, for every r such that €9 /2 < r < Ry and for every x € X such that R (z) >,

— 2 (3 N
the distance from x to the geodesic line c., is bounded from below by Roﬂ 2420,
RO — &0 /2 2 5
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Proof. Let v~ and v be the two points of the ideal boundary which are fixed by . From
Lemma 8.41 follows the existence of a geodesic line ¢, joining v~ to 4* such that, for every
t €R, v (cy(t)) = cy(t+£(7)). A first consequence is that the Margulis domain M, (7) is non
empty for every p > £(7), a second one is that M(,(7) coincides with My, (7y) and contains c..
Let us consider any z such that R,(z) > r and denote by Z a projection of z on the geodesic
line ¢, the geodesic completeness and the lemma 8.39 then prove that the geodesic segment
[Z, 2] can be extended as a geodesic ray (denoted by ¢) whose origin is  and which contains z.
Lemma 8.38 asserts that the function f : ¢ — d(c(t), ¢,) is convex; as f(0) = 0 and as there exists
to = d(Z,x) > 0 such that f(t) =t for every t € [0,to], we have f(t) >t for every t € [tg, +00],
therefore d(c(t), ¢,) = t for every ¢ > 0, and thus ¢(+00) is a point of the ideal boundary which is
different from v~ = ¢y (—00) and from v = ¢, (+00); it then follows from this and from Lemma
8.34 (ii) that c(t) ¢ Mg, () when ¢ is great enough and, by the Intermediate Value Theorem,
there exists a point zo on the geodesic ray ¢ such that R,(xz¢) = Ro. As R,(xz¢) = Ry and
R, (z) = £(7), Lemma 5.27 gives:

Ry
1 3-12 (9| 2 1
d(0, 7) ( ([M]* )) 13 N
> s>+,
Ry 65 H Ry + 14 2 2 5

(62)

where the last inequality is a corollary of the following inequality, which is a consequence of the
assumption £(7) < s, of the definition (60) of sg and of the following direct computation:

Ry
In|3712(2|——"— 1
[ (2] +1) 1Mo +10)(IBH Ro+28/5) _, N
65 H Ry + 14 2 65 H Ry + 14 - 5

When zg € [z, ], the inequality (62) implies that d(z,z) > d(zo,Z) > Ry (3 + %) and proves
the lemma in this case.

From now on we shall therefore suppose that x € [T, x).

By the properness of the action and the definition of R.(zo), there exists kg € N* such that
d(z0,7" 2¢) = Mingez- d(zo,v* 19) = Ro. We shall now prove the inequality:

k‘() ((7) S %Eo . (63)

Arguing by contradiction, let us suppose that ko £(v) > %80 and let us denote by k7 the smallest
element of N* such that kikq £(y) > 36, then

0

where the first property comes from the assumption kg £(vy) > %50 and the second one (which
remains valid when kg £(y) > 39) from the definition of k1. Let h := v*1%0 according to (40) we
have

Ink 46 69
d(wo, hwg) < Ro + (ky — 1) £(y™) + 46 -1 < Ro+ (k1 —1)kol(y)+—5 In{1+— ), (65)
In2 In2 €0

where the last inequality is deduced from (64). As d(Z,hZ) = k1 ko £(7) > 30, Lemma 8.9 gives:
d(ﬂjo, hdfo) > d(xo, i‘) + d(.f, hf) + d(hil?o, hf) —66>2 d(xo, CE) + k1 ko f(’}/) —69;

joining this last inequality to (65) and (62), it comes

1 46 66 3 N
(R()-F1H<1+>+6(5>>d(1}0,x)>(+0) Ro.
2 n €0 2 5

As /Ry < 1/20, as 6/ 9 = Nod/Rp and as Ry > 205, we deduce that

31 3 ) 66 5 No
S m(1r 2N e L (14 22) 13 sy D
20 " T0mn2 n<+1o O)_ln2R0 n<—|—50>—|— Ro T
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this last inequality being false because Ny > 1, the assumption kg £(y) > %50 is false and this
proves (63).

The distance between the two geodesic segments [Z,zo] and [y*0 Z, v¥0 4] being convex (see

Definition 8.36), as © € [Z, zo], we get:

. d(z, ) ) d(z, ) ko -
< Ry(0) < dloi o) < 0D a0 + (1= FED Y atabo)

and, as d(zo, 7" o) = Ry and d(Z,y" &) = ko () < 1 €0 by (63), we infer that

_ 7”—60/2 _ T—€0/2 3 N()
d > —d > Y Sl B (T I
(@2) 2 g =27 (x’xO)—R()(RO—gO/z) <2+ 5

O

Proof of Theorem 5.26. As (i) evidently implies (ii), we only prove (i). If p is the representation
I' — Isom(X,d) associated to the action of I' on (X,d), Lemma 5.8 proves that the canonical
action of o(T") on (X, d) also verifies the hypotheses of Theorem 5.26, in particular (see Lemma
5.8 (v) and (vi)) v is torsion-free if and only if si o(y) is torsion-free and then ¢(o(y)) = £(7).
Therefore, in order to prove Theorem 5.26, it is sufficient to prove it when I' is a subgroup of
Isom(X, d) acting properly, this is what we shall suppose in the whole of this proof.

According to Lemma 8.13 (ii), '\ X is compact and Proposition 8.44 (ii) then implies that every
torsion-free element of I" is an hyperbolic isometry. Arguing by contradiction, let us suppose that
there exists at least one hyperbolic element v € T such that () < sg; let us fix this element.
Proposition 8.42 (ii) proves that, if v~ and 4™ are the points of the ideal boundary which are

fixed by 7, the subgroup I';, := {g el :g({yv ,7v} = {’y_,v‘*‘}} is the maximal virtually

cyclic subgroup containing y. By Lemma 5.28, we can fix a y-invariant geodesic line ¢, which
joins v~ and 4T, on which « acts by translation of length £().

For every € €0, 15551, let us fix any point x such that R, (x) = g9 —¢ (such a point exists because
U(y) < 59 < g9 — € and thus M,_.(y) and X \ M,,_-(v) are both non empty closed subsets of
the connected space X). Let Z be a projection of z onto c,.

For every g € I'y, let us denote by Z, a projection of gz on the geodesic line cy; as g ¥ is located
on the geodesic line g o ¢, which also joins v~ and 7+, we have d(gz, Z,) < 26 according to
Proposition 8.10 (i), which leads to d(z,¢9 %) > d(x,Z4) — d(9Z, Z4) > d(z,T) — 2. Using this
last inequality and the lower bound of d(x,Z) (in terms of r := gy — ) given by Lemma 5.28, we
get

2 5

For any g € I'\ T, Proposition 8.42 (ii) implies that the subgroup generated by v and g is not
virtually cyclic and Proposition 8.42 (v) asserts that the subgroup generated by v and gy g~ *
is not virtually cyclic. Corollary 5.22 then implies that L(y,gvg~') > ¢ — € hence, by Lemma
4.19, the Margulis domains verify M., _.(y) N Me,—(gvg™') = 0. As 2 € M.,_.(y), then
x ¢ Mc,—(gvg~") and we thus have R, ,-1(x) > g9 —e. As 7 acts by translation of length
{(7y) on the geodesic line c., then gy g~! acts by translation of length ¢(v) = ¢(gyg~') < s on
the geodesic line g o ¢,, we can thus apply Lemma 5.28 (where we replace r by €9 — ¢) to the
hyperbolic isometry gvg~! and we get:

Vg €T, d(z,go‘:)Zd(:c,:E)fQ(SZ%(50726) <3+NO)25, (66)

1 3 N,
VgeI'\T, d(z,gz) > d(z,g0cy) > 3 (e0—2¢) (2 + 50) , (67)

By definition of the diameter of I'\ X, one has D > minger d(x, ¢ Z); using inequalities (66) and
(67) (when € — 0) this gives

€0 3 No Ro 3 No RO
D>D (2400 g5 fo (2 N0 o550 50 95 _9p
—2<2+5> o 2N0<2+5) 0> 70 % ’

this contradiction proves that the hypothesis ¢(vy) < so(d, H, D) is never verified, which ends the
proof. O
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6 Transplantation of Margulis’ Properties

In contrast with the statements of section 5, the results of the present section concern the actions of
groups I' on measured metric spaces (Y, d, u) which are no longer supposed to be Gromov-hyperbolic; the
only geometric hypothesis which will be assumed on (Y, d, 1) is the “bounded entropy” one'*. The other
hypotheses are algebraic intrinsic conditions on the groups I', these conditions being inherited from the
existence of a system of generators which endows I' with a structure of hyperbolic group or from the
existence of an action of I" on an hyperbolic metric space admitting some geometric bounds. The aim
of this section is to prove that the actions of such groups on any measured metric space (Y, d, 1) (with
bounded entropy) verify several of the aforementioned Margulis’properties: see Theorems 6.19, 6.21, 6.26,
6.32 and 6.35 for precise statements: roughly speaking the Margulis’properties that we already proved
(in section 5) for the actions of these groups on Gromov-hyperbolic spaces are still valid for the actions
of these groups on any measured metric space. A first version of these ideas was introduced in | ]
but, in [ ] the class of groups I' under consideration was more limited: they were fundamental
groups of manifolds with sectional curvature o < —1 and with injectivity radius > i > 0 and of groups
such that any non abelian subgroup with two generators admits an injective homomorphism into such a
fundamental group.

Notations: Let us denote by I'® the subset of I'* =T\ {e} whose elements are the torsion-free
elements of I (I'® is not a group). For any y € Y and any r > 0, recall that ¥, (y) :== {y € I'"* :
d(y,vy) < r}, (I')(y) being the subgroup generated by X, (y)), that sysp(y) (resp. sysi(y)) is
the minimum of d(y,~yy) when 7 runs through the elements of I'* (resp. through the elements of
I'*); denote by Y, (resp. by Y,°) the set of the y’s in Y satisfying sysp(y) < r (resp. sysp(y) < r).
recall also that Diasp(Y) (resp. Sysp(Y)) is the supremum (resp. the infimum) on Y of the
function y — sysp(y).

For every subsets A and B of a given group I', recall that A - B is the set of the products ab,
where (a,b) € A x B and that A" is defined (from A% = A - A) by iteration of the equality
Ar = AnL. A,

For sake of simplicity, given a co-compact action of a group I' on a metric space (X, dp), we call
“co-diameter of this action” the diameter of I'\X for the quotient-metric dy (see definition in
Lemma 8.13).

Given the positive constants dg, Hy, Do, (), recalling the definition (58) of the universal constant
Ny := Ny(do, Ho, Dy), let us define

In2
My = Mo (60, Ho, Do) :=42Ng+3 ;  ap = ao(do, Ho, Do) := Moo, Ho Do) (68)
M(/) = ]\46((507 HO) = N0(607H07 1) ] Oz6 = Oé6((50, HQ) = 050(50, HQ, 1) ; (69)

ehln?2 136¢ + €/
o = TO(&O,EIO) = m ] nNg = n0(50,€6) = |:560:| (70)

6.1 The classes of groups which are considered here
When a metric space (X,d) is endowed with a proper, co-compact action by isometries of a

group I, recall that its entropy may be computed with respect to any I-invariant measure (see
Proposition 3.3) and is independent of the choice of this measure.

6.1.1 Definitions and first properties

Definition 6.1. Given any real parameters 6o, Hy, Dy > 0, we denote by

14This upper bound on the entropy is a way to fix a limit to the scale: indeed, in the absence of such a rescaling,
it would be impossible to bound from below distances, displacements or systole, for these invariants go to zero
when multiplying the distance d by a factor € going to zero. Among all the hypotheses limiting the scale, the
“bounded entropy one” is the weakest possible, as proved in subsection 3.3 (devoted to comparing the possible
hypotheses).
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o Hypl.iion (00, Ho, Do) the set of groups G which admit a proper action by isometries on some
connected, non elementary, dg-hyperbolic metric space whose entropy and co-diameter are
bounded from above by Hy and Dy respectively,

e Hyp, iion (90, Ho, Do) the set of all non virtually cyclic subgroups T' of groups G belonging
to the set Hypx iion (00, Ho, Do).

Notice that a group G € Hyp) ;o0 (00, Ho, Do) acts co-compactly on some §p-hyperbolic metric
space but that the induced action of a subgroup I' of G is in general not cocompact.

Definition 6.2. Given any real parameters dy, Hy, Do > 0, we denote by

e Hyp .vex (90, Ho, Do) the set of groups G which admit a proper action by isometries on
some connected, non elementary, geodesically complete, Busemann, dg-hyperbolic metric
space whose entropy and co-diameter are bounded from above by Hy and Dqy respectively,

e Hyp.onvex (90, Ho, Do) the set of all non virtually cyclic subgroups T’ of groups G belonging
to the set Hypiovex (005 Ho, Do)-

Definition 6.3. Given any real parameters dg, Hy > 0, we denote by

e Hyp(do, Ho) the set of non virtually cyclic groups G which admit a finite system of gen-
erators So such that G is dg-hyperbolic (with respect the associated algebraic distance dg,)
and such that Ent(G, Sp) < Ho,

e Hyp.,, (00, Ho) the set of all non virtually cyclic subgroups T of groups G belonging to the
set Hyp(do, Ho)-

Notice that subgroups of hyperbolic groups are in general not hyperbolic.

Definition 6.4. Given any parameters oo, ey > 0, we denote by Hypipnia(00,€0) the set of non
virtually cyclic groups T which admit a proper (possibly non co-compact) action by isometries on
some 0g-hyperbolic metric space (X,dy) such that every torsion-free v € T'* verifies £(7y) > €.

To these definitions, for convenience, we add the following one.

Definition 6.5. We define

Hypinick = U HYDipie (90, €0) -
002>0,e,>0

The idea for this definition is to consider groups I' which belong to some Hyp,p;cx (00, £() without
specifying the parameters §y and e, see, for example, Corollary 6.25, Theorem 7.37 and its
Corollaries 7.38, 7.40, 7.41 and Proposition 7.47.

Let us remark that the set of all non virtually cyclic subgroups I' of groups G belonging to
Hypipiek (60, €5) (resp. to Hyppiae) coincides™ with Hyppiac (0o, €6) (resp. with Hypepic)-

Let us now list some properties of the above defined sets of groups:

Lemma 6.6. Given any parameters dg,c( > 0, introduce ng = no(do,ep) as in (70). In every
group T' € Hypyiac (00, €0), for every pair of torsion-free elements a,b € T’ which generates a non
virtually cyclic subgroup, for every integers p,q > ng, one of the two semi-groups generated by
{a?,b?} or by {aP, b~} is free.

Proof. By definition of Hyp,,;. (90,20, there exists some dg-hyperbolic metric space (X, dy) and
a proper action (by isometries) of T' on (X, dp) such that every pair of torsion-free elements
a,b € T verifies £(a), ¢(b) > €f. Corollary 4.10 then implies that, for every integers p,q > ng, one
of the two semi-groups generated by {aP,b?} or by {a?,b~?} is free. O

15The proof is as follows: let G be any non virtually cyclic group which admits a proper action by isometries
on some do-hyperbolic metric space (X, dp) such that every torsion-free g € G* verifies £(g) > €, then, for every
(non virtually cyclic) subgroup I' of G, the induced action of I on (X, dp) satisfies the same properties.
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Lemma 6.7. For every do, Hy >