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Abstract

The Unidirectional Pulse Propagation Equation (UPPE) is often used to compute the forward
component of ultrashort light pulses in nonlinear materials. While its accuracy has frequently been
reported for many applications in ultrafast optics, its validity can be questionable for ionizing pulses,
in particular in the frequency domain below the electron plasma frequency wy,. Inaccuracy of the
UPPE model in this frequency range may be detrimental to, e.g., a correct description of laser-driven
terahertz emission. Here we demonstrate, analytically and numerically, that over long enough
propagation paths, the one-dimensional solutions of both UPPE and the full wave equation match in
the entire spectrum, including the spectral range w < wy.. Our findings confirm the reliability of the
UPPE solutions for a wide class of propagation problems.

1. Introduction

The propagation of a scalar electromagnetic fieldin (1 + 1)-dimensional geometry obeys the wave equation
(WE) derived from Maxwell’s equation [1]:

OZE — ¢ 20}E = Q(E), (¢Y)

where E(z, t) represents the electric field propagating along the z-axis, cis the speed of light in vacuum and
Q(E) is the response function that determines the linear and nonlinear properties of the material. Ina
centrosymmetric medium hosting free and bound electrons, this function decomposes as

Q(E) = 1150 + py0;P, )

which involves the plasma current density J (z, t) and the macroscopic polarization P (z, t). The latter quantity
includes the nonlinear polarization, Py; = €, xY® E?, with x® representing the third-order susceptibility
assumed to be instantaneous. €, and i, are the electric permittivity and the magnetic permeability in vacuum,
respectively. For simplicity, we shall neglect linear gas dispersion in the forthcoming analysis. At moderate laser
intensities and on short time scales, ion motion can be neglected. In the non-relativistic limit the electron current
density reads as

2
e
0 + v] = —NL.E, 3)
Me
where 1, e, N, (z, t) and m, are a phenomenological collision rate, and the electron charge, density and mass,
respectively. In equation (3) the increase of free electrons is governed by the source equation

atZ\,e = W(|E|)(Na - Ne)y (4)

where W (|E|) is a field-dependent photoionization rate and N, is the initial density of neutral atoms.
Generally, solving full Maxwell models accounting for multiple ionization processes as well as optical and
plasma nonlinear effects is computationally expensive when simulating long propagation ranges as, e.g., in the

©2017 The Author(s). Published by IOP Publishing Ltd
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context of ultrashort pulse filamentation. Therefore, reduced models such as the Unidirectional Pulse Propagation
Equation (UPPE) [2] are often preferred, assuming that the forward propagating component of the laser electric
field conveys the major part of the energy and its coupling to the backward propagating component is negligible
[3,4]. The UPPE then describes the so-called ‘forward’ pulse component, propagating along positive longitudinal
coordinates (z > 0). Expressedin (1 + 1) dimensions, it governs the Fourier-transformed electric field E(z, w) as

0,E(z, w) — ikE(z, w) = #Q(z, w), (5)
2ik

where tilde symbol refers to the Fourier transform:

~ +00 .
Flz, w) = [ £z, tedt, 6)

for an integrable function fand k = w/c. Equation (5) is used in ultrafast nonlinear optics to describe light
pulses with ultrabroad spectra [5] and in higher dimensions it can describe pulse diffraction associated with
transverse wave numbers k | through the formal change k> — k* — k? [6].

The solution to the partial differential equation (1) is commonly advanced in time from a couple of initial /
boundary conditions on E and its derivative. In contrast, equation (5) only requires the incident field value
E(z = 0, t) and itis solved along the longitudinal direction z > 0. Equation (5) may be refound from an easy
factorization of equation (1), expressed in Fourier domain as [7-9]

(0, — ik) (0, + ik E = Q. 7)

Assuming weak enough nonlinearities, the field E is decomposed as the sum of (quasi) linear forward (+) and
backward (—) modes, E = E e + E_e~*2, Substituting the previous quantities into equation (7), applying the
approximation on the backward propagator: (9, + ik) E. e** ~ 2ikE, e, and conjecturing that both E and Q
contain essentially the part corresponding to £, and Q,, we then arrive to equation (5). In this simple derivation,
the amplitude E is supposed to be slow compared to e!¥?. This assumption is not necessary if more involved
projection techniques are employed and if the PDE (1) is treated as an inhomogeneous second-order ODE [3,4]. A
pending issue about the solutions of equations (5) and (7) is thus their equivalence in the whole spectrum under the
formal substitution 0, 4+ ik — 2ik. This equivalence is implicitly assumed a priori when one uses a UPPE model.
Proving this statement a posteriori, by computing explicit solutions of these two models, remains to be done.

Opver the past decade, the increasing potential of terahertz (THz) radiation has stimulated intensive efforts to
develop efficient sources based on the ionization of gases by ultrashort laser pulses [10, 11]. In order to properly
calibrate dedicated experiments, nonlinear propagation codes have to be particularly accurate in assessing the low-
frequency part of the pulse spectrum. Different experiments and plasma conformations (e.g., micro-plasmas) have
been recently examined, for which relevant THz emissions in frequency ranges below the electron plasma
frequency were reported [12—14]. So far, however, the validity of the UPPE approach has received no numerical
confirmation in this specific spectral range, which is often accessed in laser-driven THz experiments [15].

To highlight more this problematics, let us consider for a moment the elementary situation where the
electron density is constant, as met in a preformed homogeneous plasma. Usually, solving equation (1) needs
both initial and boundary conditions on E(z, t), the evolution of which is monitored by the dielectric function
that characterizes the medium’s response to the electric field. In such a plasma with negligible collisions, the
dielectric function expresses as € (W) = 1 — wf,e /w?, where wf,e = e2N,/(eym,) is the electron plasma
frequency and wis any Fourier frequency of the electromagnetic wave. When a monochromatic wave with
frequency wis incident on a vacuum-plasma boundary, only the fraction with real wave number
kr = (w/0)d — wf)e / w?)!/2is transmitted into the plasma [ 16]. Frequency components with w < Wpe aT€
evanescent and vanish over the plasma skin depth. So, for Fourier components w < wy., the incident pulse is
mainly reflected and we expect this spectral range to damp out in the transmitted pulse along the propagation
path, consistently. In contrast, for the UPPE model, plasma opacity is not present. This can be better appreciated
when looking at the linear modes of the two equations for N, = const., namely,

i . Whe
E(z, w) ~ exp|ik,|1 — 2 (8

W2
E(z, w) ~ exp [ik[l - ZC;I;]Z] 9

for equation (1), and
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for equation (5). Obviously these two linear solutions do not match, in particular in the domain w < wp.. The
WE solution (8) vanishes exponentially as z exceeds about one plasma skin length 6, = ¢/wp. [17]. Accordingly,
the UPPE solution (9) can in principle hold in the frequency range w >> wy, only. In current applications,
however, in which wy, varies through the time variations of the electron density N (¢), UPPE is supposed to be
valid in the entire frequency range.

Whereas the solving for equation (1) can be performed exactly for a constant plasma frequency [16], the
same problem becomes tricky when Q is a nonlinear function of E. This situation applies to a number of
important issues in nonlinear optics and plasma physics [18, 19]. Here, we report that, surprisingly, both
solutions to equations (1) and (5) become generically identical when the plasma is self-generated in time by the
laser pulse. In this paper we indeed show that the THz pulse spectra and fields, when they are described either by
a full Maxwell-fluid model—encompassing both backward and forward propagations—or by its UPPE
approximation—modeling only the forward wave—match as the pulse propagates over distances larger than the
plasma skin depth and its dynamics is mainly driven by the nonlinearities.

The paper is organized as follows: we derive in section 2 exact analytical solutions for the two WE and UPPE
1D models describing the secondary fields produced inside a collisionless plasma. In the framework of a
perturbative approach, WE and UPPE solutions are shown to converge for long enough propagation distances. In
section 3 we display numerical evidence by means of our 1D UPPE and MAXFLU codes that over distances
z > Ope, both WE forward and UPPE solutions indeed match in the THz spectral range and therefore provide
similar THz fields. This statement is established for two-color femtosecond pulses and few-cycle single-color
pulses as well, at intensities privileging Kerr or plasma responses. Section 4 concludes our investigation.
Appendix describes the numerical implementation of the UPPE and MAXFLU codes.

2. The analytical solution

For technical convenience, we ignore collisional effects (1. — 0). Equations (1) and (5) have the plasma
dispersion Nwlzje /w? contained in the response function Q. The input laser profile at z = 0 is a two-color
Gaussian pulse reading in time domain as

21 22t —8ln2t2
E(t,z=0)= |=2 [\/1 “re o n cos(wgt) + Jre " cosQuwpt + ¢) |, (10)

C€p

where I, is the mean pump intensity, 71, is the full-width-at-half-maximum (FWHM) duration of the
fundamental pulse (the second harmonic has half pump duration), r denotes the relative intensity ratio of the
second harmonic and ¢ is the relative phase between the two harmonics. One chooses a fundamental wavelength
of A\g = 1 um related to the carrier wave frequency wy = 27y = 2mc/ A\, and an intensity ratio of r = 0.1
(two-color pulses) or 0 (single-color pulses). The interaction gas is argon at ambient pressure.The ionization rate
W (|E]) is given by the well-known quasi-static tunnel (QST) rate

W(E(H)]) = —— ex —ﬂ], 11
POV =5 p[ ECO] .
where the constants o and [ depend on the ionization potential of the gas [20, 21]. More complex rates
describing multiple ionization events could be implemented as well [22]. These will be employed when
investigating the highest intensity levels.

Because of the complex nonlinearities involved, we apply the same perturbation approach as in [23]. We
decompose E into an unperturbed laser field, Er, and an induced perturbation (secondary field), 6E, namely,
E = Ep + OE with 0E < Ep, so that the nonlinearity Q reduces to an inhomogeneous source term only
evaluated on the laser field. Using equation (1) one obtains

(c?02 — 0HEL = 0, (12)
[(cdz 4+ 9)(cD. — ) — wi]SE = c*Q(Ey), (13)
2Q(EL) = wp EL + XPOIE;. (14)

Here, the perturbation 6E contains the THz wave field, which can be extracted by means of a suitable frequency
filtering. The electron plasma frequency wy. is a function of time through its dependency on N (z, t).Inthe
tunnel ionization regime, the electron density increases steplike and produces THz radiation by coupling with
the high-frequency field E; (z — ct) [6]. In the framework of UPPE (equation (5)), the perturbation instead obeys

[—20:(cO. + O)) — wpJ6E = *Q(Ey). (15)

Equations (13) and (15) must be solved with appropriate initial/boundary conditions. Looking for solutions
propagating forward, it is natural to introduce the change of variables £ = z — ct, s = t, transforming thereby

3
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the WE and UPPE for the perturbation 0E into
WE: [0,(2c0¢ — 0y — wpJ6E = 2Q(Ey), (16)
UPPE: [0y(2¢0¢ — 20,) — wf,e] OE = c®Q(EL), (17)

respectively. It is important to notice that Ey is only a function of £ and thereby N, and wf,e, computed on the
same laser field, only depend on £ too. Our initial conditions for the WE read

SE(s, €= 0) = 6E(s = 0, £) = 0, (18)

yielding no constraint on the spatial derivatives. The pulse is sited in the half-plane z < ¢t (£ < 0 for causality
reasons) and enters the plasma region at time t = 0. To satisfy the requirements (18), the input pulse (z = 0) is
positioned in the plasma domain at fpeak = —2mcr (see insets of figures 1(d) and (e)). Such boundary
conditions offer flexibility to treat both UPPE and WE solutions in the same analytic framework. However, they
differ from the inputs used in the numerical scheme of the UPPE1D and MAXFLU1D codes discussed in appendix.
Therefore, we shall have to propagate over long enough distances >c7j /2, ensuring the full development of the
nonlinearities, in order to perform quantitative comparisons between the perturbed fields 0E and their
numerical counterparts. These boundary conditions also differ from those used in [23], where the progression of
the laser pulse towards the plasma was described and the source term Q was tuned to zero for z < 0 in this
reference.

For the WE, we now apply the Laplace transform f (p) = fo e f (s)e P*ds onto equation (16) to get

czQ(f)'
p

[—p? + 2cpDe — wf)e(g)]&?? = (19)

After some algebra we find straightforwardly

/ G
(s, © = < [ Q) /2“(;;5)5 [“ &8 peve- 5']@/ 20)

where J; is the Bessel function of the first kind and

EI
G, &) = f5 Wl (u)du @1

is positive (¢ < Oand &’ > £). In the original frame variables, this solution expresses as

Bwe(z == [7 7 Q) \/;L [ \/ I whdueta- s>]d§' 22)

2 (w)du

and its spectrum is obtained after taking Fourier transform in time .
Applying the same treatment to equation (17), we get

2
[~20% + 26p0 — Wi (E)13E i@ (23)
yielding
! fl
6Euppe(2, 1) = N f Q) 76]1l£Jf we(uw)du (z — 5/)}15/- (24)
f e(u)du Cc z—ct

From a first glance, equations (22) and (24) only differ by their linear kernel

Kwe(€) = = ”"'—“5’1[ G\/2(z — c, §'>\/z+ct—§'], (25)
2\ Gz — o, &)
KUPPE(ﬁ)—\/— G(Z_;jg)][\/—@ﬂ(z ct, §/)w125/]_ (26)

As the UPPE/WE pulses advance in the (z, t) plane, the integration variable £’ can cover all values from 0 to

& inin = 0 — Ctmax> tmax Deing fixed by the boundary of the time window (tma.x = 3.3 ps here). Both UPPE and WE
solutions converge towards each other at coordinates satisfying z > |z — ct| > |£’|, as this condition assures
that Kyppg (§') — Kywg (€'). This requirement can indeed be understood from applying simple Taylor

expansions in the argument \/z + ¢t — & =~ 2z./(z + ct)/(2z) of the WE solution whenever z > ¢/,

whereas 2 \/z — & & +/2z in the UPPE solution in the same limit. These behaviors show that the UPPE solution
is missing a dependency in the (z + ct) propagation variable associated with a backward component. Applying

4
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Figure 1. (a) Arguments of the Bessel function J; for the WE solution (22) (blue curves) and the UPPE solution (24) (red curves) for
different distances zand at the upper bound t = #,,,x = 3.3 ps of the temporal window. wy,(t) increases in time according to the QST
rate (11) for a two-color Gaussian pulse (1 zm + 0.5 ym) with 50 fs FWHM duration and 150 TW cm 2 peak intensity. (b) The
function J; (X) for the WE solution (blue curves) and the UPPE solution (red curves) atz = 100 pm. The plasma frequency is reached
at &’ ~ —600 pm. (¢) (z, t) map of the ratio §Ewg /8Eypp as defined by equation (27) with constant source term Q. The grey dotted
line identifies the location of the laser peak at § = £, and the grey solid lines delimit the domain of the laser pulse. (dand e) (z, t)
maps of the full analytical solutions (d) equation (22) and (e) equation (24) with a non-constant source term driven by the same two-
color 50 fs pulse. Insets show the input pulse in the plasma domain £ < 0. The black dashed lines delimit the convergence domain of
the UPPE and WE solutions, which increases with the coordinate z.

1000

the second inequality z > |z — ct|in the previous approximations leads to the convergence of the two

solutions.

This property is reflected by figure 1(a), which plots the argument of the Bessel function for a two-color 50 fs
Gaussian pump pulse with 150 TW ¢cm ™~ intensity. Here, the pulse region extends over [¢/] < 100 m and we
can observe the convergence of the two Bessel arguments when the distance zis increased from 100 to 500 pm.
Concerning their potential discrepancies, one can observe that, at large times (¢’| > 100 pum), the plasma
frequency wy. is constant, so that G(z — ct, {) = wf,e(§ " — z + ct). The oscillations in the WE/UPPE solutions
are then dictated by those of the Bessel function J;. At times corresponding to £’ ~ —600 pmand z = 100 pm,
these oscillations relax on the plasma period as J; (Xyg) ~ t~1/2 sin(wpe t / ¢) in the WE solution. In contrast,

J; (Xuppr) relaxes to the function ~¢~1/2 sin (Wpe \/T/c ), which develops slower oscillations around the
maximum values of the Bessel arguments. Figure 1(b) thus displays evidence of a minimum frequency smaller
than wy, in the UPPE solution, whose value increases with z until reaching the electron plasma frequency.

To get more insight into the convergence dynamics, we may also consider a much simpler situation by

assuming a constant inhomogeneity Q. With the help of equations (22) and (24), this yields the ratio

6EwE —1_ l(Z — Cl’)

6EUPPE B 2\z + ¢t

(27)

which can be useful to understand the differences induced by the linear propagators. Figure 1(c) shows
equation (27) as a function of zand t. The lower-right part (z > ct), in which our solutions are not defined, is set
to zero for causality reason. Both WE and UPPE solutions converge as longas z > |z — ct|, which includes the
laser region. In contrast, the same solutions depart from each other in the sharper limit ¢t > z. Let us now
imagine that, in the vicinity of the pulse head, the source term Q has a certain finite extent, schematically
delimited by the two grey solid lines in figure 1(c). The WE and UPPE solutions converge near the laser head,
where they are dominated by the nonlinearities computed on the laser profile. In the opposite domain, the
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Figure 2. Spectraat(a)z = 100 yumand (b) z = 1 mm plotted from the analytical solutions (22) (WE, blue curves) and (24) (UPPE, red
curves) for a two-color Gaussian pulse with mean pump intensity of 150 TW cm ™2 and FWHM duration of 50 fs interacting with
argon. Note the oscillations in the UPPE spectrum for v < 7, and the growth in 24y, as zincreases. Same quantities at (c) z = 1 mm
for Iy = 50 TW cm 2and (d) z = 10 pm for Iy = 1 PW cm ™ 2 The vertical dashed lines indicate the plasma frequency.

solutions are mainly driven by their linear propagators that behave differently over large times. However, the
larger the propagated distance z, the broader the convergence domain, which spans a cone in the (z, ) plane (see
blue area in figure 1(c)). This is confirmed by figures 1(d) and (e) that detail the field amplitudes in the (z, t)
plane computed from the complete expressions (22) and (24). One can see that the UPPE field contours differ
from the WE contours in the spatio-temporal domain ct >> z. In particular, a hyperbolic distribution occurs,
associated with the longer periods of figure 1(b) and with the fact that UPPE does not admit pulse components
varying with z + ct. Nevertheless, the solutions achieve the same dominant component near the nonlinearity
region, where they mutually converge and whose area grows with z (see figures 1(d) and (e) where convergence is
reached inside the cones delimited by black dashed lines).

Figures 2(a) and (b) show some examples of analytical UPPE/WE spectra and fields for a two-color Gaussian
pulse with FWHM duration of 50 fs, 150 TW cm ™2 overall intensity. The nonlinearities consist of plasma
generation alone. Here and in the following the THz fields shown as insets are computed from an inverse Fourier
transform of F in the frequency window v = w/27 < 90 THz. The plotted propagation distances are
z = 100 yumand z = 1 mm. One can observe that (i) the spectral region v < 1}, = wpe /27 becomes depleted as
zincreases, (ii) the minimum frequency marking the UPPE spectrum, v/,;,, increases in turn, and (iii) in the rear
part of the pulse (beyond the laser head) the UPPE linear mode consistently develops longer periods (see inset of
figure 2(a)).

At smaller intensity () = 50 TW cm™ %) and with zero phase angle (¢ = 0), the Kerr response is expected to
be a key player [24]; so we now include it. A typical Kerr-plasma spectrum at weak intensity is illustrated in
figure 2(c), where the low plasma frequency, 1, = 0.53 THz, highlights the lesser contribution of
photoionization and a parabolic spectral shape characterizes the Kerr signature in the band of higher THz
frequencies (v ~ 10 — 20 THz) [11]. For amean pump intensity Iy = 1 PW cm ™7, in contrast, several electrons
can be extracted from their atom. In this high intensity regime, the ionization of the successive electron shells of
argon is described by the multiple-ionization model built in [22] and based on a field-dependent cycle-averaged
rate computed from the Perelomov—Popov—Terent’ev (PPT) theory [25]. At short propagation distances, unlike
the WE solution, the UPPE spectrum is not peaked at the plasma frequency ;. = 55 THz, but it develops spectral
oscillations in the region v/ < 1., as expected (figure 2(d)). At larger distances, discrepancies are amplified (not
shown), because O starts to break the underlying hypothesis of our perturbative approach, 6E < Ep, as the
perturbation itself produces optical frequencies (wg, 2wy, ...) through the nonlinearities, e.g., the
photoionization. Since the optical pump pulse is not depleted along propagation, our formalism cannot assure a
proper conservation of the electromagnetic energy. As a validity criterion we consider that our analytical
solution stops to hold whenever the spectral intensity of 4E at optical frequencies becomes comparable to ~75%
of the laser spectral intensity. Such limitations are of course absent in the results of the full numerical
simulations, as can be inferred from, e.g., figure 6.

6
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Figure 3. THz spectraatz = 10 um (dotted curves), z = 50 pm (dashed curves) and z = 1 mm (solid curves) from the UPPE1D code
(red curves) and the MAXFLU1ID code (blue curves) for the intensities (a) 50 TW cm ™~ 2and (b) 150 TW cm ™, using a two-color 50 fs
Gaussian pulse with zero phase difference. (c) Same for a 300 fs two-color Gaussian pulse with 150 TW c¢m ™2 intensity. Only the Kerr
effect is taken into account.

3. Numerical results

Our theoretical expectations are tested by running the MAXFLU1D and UPPE1D codes, whose respective
numerical schemes are detailed in appendix. For both codes the input condition at z = 0 is the two-color
Gaussian pulse defined above by equation (10). The pump intensity is alternatively set to 50, 150 and

1000 TW cm ™2 in order to investigate various ionization degrees. The phase angle ¢ is valued as ¢ = 0 to
enhance the Kerr effect in the 50 TW cm > case and 7 /2 otherwise [24]. For Gaussian pulses with moderate
laser intensity, from 50 to 150 TW cm ™2, and undergoing single ionization, we employ the QST rate (11).
Consistently with section 2, when dealing with 1 PW cm 2 pulses, multiple ionization will be described from the
multi-ion model of [22] employing the field-dependent PPT ionization rate.

To start with, only the Kerr response is accounted for [, = 3x® /4¢oc = 1 x 10712 cm? W] and we first
ignore plasma generation (N, = 0) and collisions. Figures 3(a) and (b) show the spectra of the THz fields
produced in argon by a 50 fs two-color pulse with 1 m fundamental pump wavelength at increasing
propagation distances, when using the UPPE and the MAXFLU codes. Although the WE and UPPE spectra may not
perfectly match over the shortest propagation distances, e.g., z = 10 um, an excellent agreement is found at
further distances z > 50 pm for both intensities. These simulations show that, in the absence of plasma
generation, both WE and UPPE solutions match in the whole spectral domain over relatively short distances
~10 pm. This property is independent of the pulse duration, which has been counterchecked by another
simulation using longer pump duration, 73, = 300 fs (see figure 3(c)). Here, the two UPPE and MAXFLU spectra
match again over distances less than the pulse length ~90 ym. Minor early discrepancies are linked to small
differences in the initialization of the numerical codes. The convergence speed between the WE and UPPE spectra
driven by a Kerr response alone thus does not depend on the distance propagated over the pulse length cr.. This
behavior is rather logical, as the Kerr nonlinearity is just treated as a perturbation in the source term Q and does
not impact the frequency range of the linear modes in equations (8) and (9).

Next, in figure 4, only plasma generation is taken into account, similarly to figures 2(a) and (b). So, the Kerr
response and collisions are set equal to zero. The selected intensity level is I, = 150 TW cm ™ >. When the
backward-propagation operator is dropped out, the fundamental linear modes beating at the electron plasma
frequency wy. arelost and no plasma opacity is allowed, which results in the development of oscillatory
components in the frequency range v < 14, of the UPPE spectrum. This is consistent with the linear mode of
equation (9) that admits non-zero frequency components in the range wy, / V2 <w< Wpe- In contrast, the
MAXFLU spectrum is dominated by plasma current oscillations, which prevail as long as the propagation
distances remain of a few plasma skin depths (here, 6, = 3.3 um), as evidenced by figure 4(b). Over longer
distances, however, both UPPE and MAXFLU spectra merge in the range v/ > 14, as photocurrents become the
dominating source in the THz generation process. Out off the laser head, long oscillations over longer times
proceed from the Bessel function discussed above. Besides the good agreement between our analytical solutions
shown in figures 2(a) and (b) and the numerical solutions of figures 4(c) and (d), we can observe that:

+ Atlarge times the field oscillations are slower for the UPPE solution than for the WE solution (see insets). The
oscillation frequency increases as the optical path is augmented.
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Figure 4. THz spectra and fields (see insets) at different propagation distances computed from the UPPE1D code (red curves) and the
MAXFLU1D code (blue curves) for a two-color 50 fs Gaussian pulse with 150 TW cm ™2 intensity: (a) z = 3 m (corresponding to
almost one plasma skin depth 6,,.), (b) z = 10 um, (c) z = 100 ym, and (d) z = 1 mm. Vertical dashed lines indicate v = v,..

* Whereas, as expected, the spectral region v/ < 1, is flat in the forward WE solution from z = 3 ym, the UPPE
spectrum develops oscillations from a minimum frequency 24y, that increases with the propagation
distance z.

+ Convergence is almost reached at z = 1 mm. The equality v;;, = 14, (associated to the plasma response of
the input field) is met atz = 1 cm and spectra match for all frequencies (not shown).

For comparison, figures 5(a) and (b) show the same quantities when including the Kerr response of argon
and electron-neutral collisions with the averaged rate . = 1/190fs ' = 5.3 ps~'. At 150 TW cm ™ * intensity,
one reports a comparable matching rate between the two spectra and fields, being even sped up by the damping
of oscillations at low frequencies < 10 THz and the decrease of the current density in time. Indeed the collision
term damps the free electron current in equation (3) and thus both UPPE and MAXFLU solutions are also damped
to zero over long times (>190 fs) beyond the laser head. The green curve shows the backward spectrum
collected at z = —10 pum from the vacuum-plasma interface in the MAXFLU simulation. This spectrum occupies
the region v < 14, as expected [5, 23], since it is emitted by plasma current oscillations over the plasma skin
depth. This backward spectrum remains unchanged over propagation in vacuum.

Similar properties of matching can be refound between the solutions of the two models for pulse
configurations favoring either a weaker plasma response (thus a more efficient Kerr effect) at smaller intensities
or a stronger plasma response achieved at higher intensities. Figures 5(c) and (d) display the evolution of the
same two-color pulse having an input intensity of 50 TW ¢cm 2. The pulse is undergoing an effective Kerr
response combined with plasma generation in argon. The corresponding plasma frequency is very weak,

Vpe = 0.53 THz, which is related to a long plasma skin depth 6, =~ 90 pzm. Even at rather weak spectral
amplitudes, the WE and UPPE spectra and fields approach to each other over distances exceeding far this depth, at
least from 1 mm, which confirms the important role of the plasma skin depth in the matching process. The
spectral shape follows its analytical counterpart plotted in figure 2(c) for z = 1 mm. The numerical UPPE/WE
spectramerge from z = 5 mm until perfectly overlapping atz = 1 cm (figure 5(d)).

In the opposite range of pulse intensities, Iy = 1 PW cm ™2, the peak plasma density increases and a much
shorter plasma skin depth—é,,. ~ 0.75 pm for v, ~ 65 THz as imposed by the incident pulse—should lead to
a quicker merging between the UPPE and WE solutions. Matching is indeed achieved at about z = 50 um, i.e.,
over a few tens of ¢, (see figures 6(a) and (b)). The optical field distortions induced by self-steepening and
plasma generation are plotted as inset in figure 6(b). They also show a good agreement between the WE and UPPE
models at distances > 10 pm. The spectral distributions and THz field amplitudes (inset of figure 6(a)) still
reasonably agree with those computed atz = 10 um from our analytical solution (figure 2(d)). Besides, for the
same high intensity level, it has been recently shown that photocurrents could be the main player for single-color
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Figure 6. THz spectrawith 1 PW cm 2 laser intensityat(a) z = 10 pumand (b) z = 50 um for a two-color 50 fs Gaussian pulse
computed from the UPPE (red curves) and MAXFLU codes (blue curves). Insets show the THz field atz = 10 pm and the overall
laser field atz = 50 pum. (c—e) THz spectra and fields for a single-color (1 m) Gaussian pulse with 8 fs FWHM duration
interacting with Arat 1 PW cm~? intensity. (c) THz spectraatz = 8 um (dashed curves)and z = 1 mm (solid curves). (d, e)
Corresponding THz fields. Laser field patterns are shown as inset. Vertical lines point out to v = 1, (with corresponding
plotstyles in (c)).

pulses, provided that the pulse duration be short enough, i.e., few-cycle [13]. For this purpose, figures 6(c)—(e)
show two spectra computed from a 1 zm Gaussian pump pulse with 8 fs FWHM duration at 1 PW cm 2
intensity and evolving from z = 8 pum (pe & 1 um). Again the UPPE and WE spectra nicely approach to each
otherintherange v > 14, from z & 100 zm (not shown) and they overlap in the whole spectral range
atz ~ 1 mm.

In order to illustrate the influence of the electron dynamics that can vary through laser distortions,
figures 7(a) and (b) finally show the electron density corresponding to figures 5(a), (b) and 6(c). Between the
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z=8 pmandz = 10 ym,and (b)z = 1 mm.

two plotted distances, one reports for the 8 fs pulse with 1 PW cm ™2 peak intensity a decrease by half the
maximum field value resulting in one decade decrease in the electron density. For comparison, the 50 fs
pulse with 150 TW cm ™ ? peak intensity keeps comparable density levels. The matching distance of the UPPE/
WE solutions for those two configurations then become similar: at z = 1 mm, the 8 fs pulse with 1 PW cm 2
peak intensity has almost the same charge level as the 50 fs pulse with 150 TW cm ™ * peak intensity, and has
thus a comparable plasma skin length (6pe = 3.8 versus 5.4 um) at this distance. The two skin depths only
differ from each other by a factor ~+/2 and, therefore, the two fields display comparable convergence speed
between the two models. This justifies that the number of skin depths needed for matching the two solutions
is not universal, as it also depends on the changes in the electron density induced by the distortions of the
laser field along propagation. Similar behaviors could be reported from longer (300 fs) pulses (not shown).

4, Conclusion

In summary, we have derived one-dimensional analytical solutions describing both bidirectional (WE) and
unidirectional (UPPE) propagating light pulses by means of a perturbative approach. Structural differences
between the WE and UPPE solutions have been explored thanks to those analytical solutions, especially the
shape of the THz spectra over mm-range propagation distances. The convergence between both solutions in
the (z, t) plane has been examined from direct numerical computations integrating Maxwell-fluid equations
and the unidirectional pulse propagation model. Even if discrepancies in the linear propagators occur at
large times beyond the laser head (ct > z), the UPPE solution matches its WE counterpart in the (z, ¢) region
where the nonlinearity is effective. The extent of the convergence region increases with the propagation
distance. Numerical simulations covering a wide range of pulse configurations confirm that, over a
propagated distance larger than some plasma skin depths, the UPPE and Maxwell-fluid solutions
superimpose to one another. As a result, WE and UPPE spectra match remarkably well over all the spectrum,
including the range w < wye.

To conclude, we demonstrated that, in a one-dimensional geometry, the UPPE model, which only governs
the forward pulse component, is able to provide similar spectra to a bidirectional Maxwell-fluid model over
distances where Kerr nonlinearities as well as photocurrents drive THz pulse generation. Further studies should
aim at testing this property in full 3D propagation geometries.
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Appendix. The 1D UPPE and MAXFLU codes

The UPPELD code solves equation (5) coupled with the fluid equations (3) and (4) propagating over the optical
axis z. A second-order accurate split-step scheme allows us to separate the linear and the nonlinear parts of the
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UPPE equation [26]. The linear part (propagation) is solved exactly in the Fourier space as follows:
E(z + Az, w) = E(z, w)explik(w) Az], (A.1)

where k(w) = w/c. Then, the nonlinear contribution, including the Kerr terms, ionization and absorption
losses, are advanced over one spatial step Az according to the equation

c

x® 3 —1| o 5 7
OE(t) + 0 5 E@y||=—-F TU(w) + Jioss (@) |» (A.2)
where F ! means inverse Fourier transform, Jjo, refers to aloss current due to photoionization, usually
negligible in laser—gas interactions. The left-hand side of equation (A.2), which accounts for Kerr polarization, is
first discretized in time by finite volumes at time step j (t = jAt)as

1
0.E; = —A—t[q>j+1/z - & 1], (A.3)

where @, /, refers to the numerical flux between two neighboring cells, jand j + 1, of the grid. Following the
well-known Godunov’s method [27], the numerical flux is given here by

X(3) 3
Djt12 = _2c E 1) (A.4)

where Ej | /, accounts for the solution to the Riemann problem at the intercell j + 1/2 [28], which aims at
solving the advected solution constrained by two constant states indexed by jand j + 1 onboth sides of the
intercell. In this case, the solution to the Riemann problem is straightforward: with x® > 0, at first-order of
accuracy, one has to take simply Ej,,/, = E;. To achieve second-order accuracy, we do a linear reconstruction
of { Ej} following the Essentially Non-Oscillatory technique [28]:

Aj
Ej+1/2 - EJ + 7: (AS)
where A; compares the downwind difference (Ej;; — E;) and the upwind difference (E; — E;_;) and retains the
lower value in modulus. Limiting the slope in this way allows us to avoid Gibbs oscillations when optical shocks
induced by self-steepening occur [29]. With the second-order numerical flux, we can rewrite equation (A.2) as:

azE] = - L [q)jJrl/Z - @]7 1/2] - F71|:CIU’_O(]~(W) + jloss(w)):l > (A.6)
At 2 j

which is easily solved by the second-order Runge—Kutta method. Using this discretization, provided that x® is
weak enough, the maximum spatial step given by the Courant—Friedrichs—Lewy (CFL) stability condition of
equation (A.3)is Az = 2cAt/(3Y® EF), with E, denoting the input amplitude of the laser field. This step is
much larger than the spatial steps needed to obtain accurate solutions of equation (A.2) as well as those requested
to integrate the WE model. Long propagation distances can then be simulated in reasonable amount of
computational time with the UPPE approach.

The Maxwell-fluid code, named MAXFLU1D, is based on a finite volume scheme solving the WE (1) and fluid
equations (3) and (4) in time. This set of equations is re-expressed in the conventional conservative form of a
nonlinear hyperbolic system, e.g., for the transverse (x-polarized) field E = E, through the electric displacement
D,:

0D, + ﬂalasz = —Ux + Jeloss)» (A.7)
€' Dy = E, + XPE.. (A.8)

This nonlinear hyperbolic system is treated numerically by splitting the advection part (source terms set equal to
zero) and the evolution part (source terms included but with zero derivative in z) at every time step At alongan
evolution-advection-evolution algorithm. First, the evolution stage is solved by using a second-order Runge—Kutta
scheme. Next, the Maxwell and Fluid advective parts, which are independent of each other, are solved over At. For
the former advection, the Lax—Wendroff scheme is chosen (second-order accurate) [30], even though some Gibbs
oscillations might appear. For the latter advection stage, instead, we couple a First Order Centered scheme [28],
which is first-order accurate, to the Lax—Wendroft scheme, following the Flux Corrected Transport approach [31].
This is necessary for treating the fluid advection; otherwise strong Gibbs oscillations may occur in the neighborhood
of electron density gradients, which can render the code unstable. The calculation domain is a sliding window that
moves forward at the speed of light c and, even when accounting for the Kerr-induced changes in the optical
refractive index, the CFL condition of the (¢, z) grid, Az = cAt, is the standard requirement.

In the UPPELD code, the THz field driven by the laser field is 0 at z = 0. One spatial step further, the laser
pulse enters the medium and triggers nonlinearities, producing thus a non zero THz field. In the MAXFLU1D
code, the THz field grows from a laser pulse crossing a vacuum-plasma interface and admits backward
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contributions. Since we are interested in THz generation, one should use simultaneously a fine spectral
resolution and a fine time step in order to correctly describe the low frequency spectrum below .. and the
two-color laser pulse components including its higher harmonics generated along propagation. The time
window of our simulations is, therefore, set to 3.33 ps corresponding to a frequency step of Av = 0.3 THz.
The time step At is tuned from Ay /(128¢) down to Ay /(512¢) leading to a spatial step of Az = Ay /128 resp.
Az = )y /512 for the MAXFLU simulations (CFL condition) and itis fixed to Az = )\, /25 for the UPPE
simulations. The highest resolutions used in the MAXFLU code have been employed when it was necessary to
decrease the background noise in the lowest parts of the pulse spectrum (e.g., for a Kerr response alone).

Let us finally notice that, so far, we have neglected linear dispersion Py = ¢, " * E,with xV representing
the first-order susceptibility and * standing for the convolution product in time. Linear gas dispersion can be
accounted for as well through the pulse wave number k(w) = n(w)w/c becoming then a function of the
frequency-dependent refractive index n(w) = /1 + x(w). In that case, the UPPE code iterates the solution by
always using equation (A.1) for solving the linear part and by performing the substitutions x® — y® /n(wy)
and cp, — cpiy/n(w) into the left-hand side and the right-hand side of equation (A.2) of the nonlinear
contribution, respectively. In the MAXFLU1D code the only change consists in implementing the convolution
product YV * E, in the right-hand side of the equation (A.8).
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