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Abstract
TheUnidirectional Pulse Propagation Equation (UPPE) is often used to compute the forward
component of ultrashort light pulses in nonlinearmaterials.While its accuracy has frequently been
reported formany applications in ultrafast optics, its validity can be questionable for ionizing pulses,
in particular in the frequency domain below the electron plasma frequency wpe. Inaccuracy of the
UPPEmodel in this frequency rangemay be detrimental to, e.g., a correct description of laser-driven
terahertz emission.Here we demonstrate, analytically and numerically, that over long enough
propagation paths, the one-dimensional solutions of both UPPE and the full wave equationmatch in
the entire spectrum, including the spectral range w wpe. Ourfindings confirm the reliability of the
UPPE solutions for awide class of propagation problems.

1. Introduction

The propagation of a scalar electromagnetic field in +( )1 1 -dimensional geometry obeys thewave equation
(WE) derived fromMaxwellʼs equation [1]:

¶ - ¶ =- ( ) ( )E c E Q E , 1z t
2 2 2

where ( )E z t, represents the electricfield propagating along the z-axis, c is the speed of light in vacuumand
( )Q E is the response function that determines the linear and nonlinear properties of thematerial. In a

centrosymmetricmediumhosting free and bound electrons, this function decomposes as

m m= ¶ + ¶( ) ( )Q E J P, 2t t0 0
2

which involves the plasma current density ( )J z t, and themacroscopic polarization ( )P z t, . The latter quantity
includes the nonlinear polarization,  c= ( )P ENL 0

3 3, with c( )3 representing the third-order susceptibility
assumed to be instantaneous. 0 and m0 are the electric permittivity and themagnetic permeability in vacuum,
respectively. For simplicity, we shall neglect linear gas dispersion in the forthcoming analysis. Atmoderate laser
intensities and on short time scales, ionmotion can be neglected. In the non-relativistic limit the electron current
density reads as

n¶ + = ( )J J
e

m
N E, 3t c

2

e
e

where nc, e, ( )N z t,e andme are a phenomenological collision rate, and the electron charge, density andmass,
respectively. In equation (3) the increase of free electrons is governed by the source equation

¶ = -(∣ ∣)( ) ( )N W E N N , 4t e a e

where (∣ ∣)W E is afield-dependent photoionization rate andNa is the initial density of neutral atoms.
Generally, solving fullMaxwellmodels accounting formultiple ionization processes aswell as optical and

plasma nonlinear effects is computationally expensive when simulating long propagation ranges as, e.g., in the
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context of ultrashort pulsefilamentation. Therefore, reducedmodels such as theUnidirectional Pulse Propagation
Equation (UPPE) [2] are often preferred, assuming that the forwardpropagating component of the laser electric
field conveys themajor part of the energy and its coupling to the backward propagating component is negligible
[3, 4]. TheUPPE then describes the so-called ‘forward’pulse component, propagating alongpositive longitudinal
coordinates ( >z 0). Expressed in +( )1 1 dimensions, it governs the Fourier-transformed electricfield w˜( )E z, as

w w w¶ - =˜( ) ˜( ) ˜( ) ( )E z kE z
k

Q z, i ,
1

2i
, , 5z

where tilde symbol refers to the Fourier transform:

òw = w

-¥

+¥˜ ( ) ( ) ( )f z f z t t, , e d , 6ti

for an integrable function f and w=k c . Equation (5) is used in ultrafast nonlinear optics to describe light
pulses with ultrabroad spectra [5] and in higher dimensions it can describe pulse diffraction associatedwith
transverse wave numbers k⊥ through the formal change  - ^k k k2 2 2 [6].

The solution to the partial differential equation (1) is commonly advanced in time from a couple of initial/
boundary conditions onE and its derivative. In contrast, equation (5) only requires the incident field value

=( )E z t0, and it is solved along the longitudinal direction >z 0. Equation (5)may be refound froman easy
factorization of equation (1), expressed in Fourier domain as [7–9]

¶ - ¶ + =( )( ) ˜ ˜ ( )k k E Qi i . 7z z

Assumingweak enoughnonlinearities, thefield Ẽ is decomposed as the sumof (quasi) linear forward (+) and
backward (−)modes, = ++ -

-˜ ˜ ˜E E Ee ekz kzi i . Substituting the previous quantities into equation (7), applying the
approximationon thebackward propagator: ¶ + »+ +( ) ˜ ˜k E kEi e 2i ez

kz kzi i , and conjecturing that both Ẽ and Q̃
contain essentially the part corresponding to +Ẽ and +Q̃ , we then arrive to equation (5). In this simple derivation,
the amplitude +E is supposed to be slowcompared to e kzi . This assumption is not necessary ifmore involved
projection techniques are employed and if thePDE (1) is treated as an inhomogeneous second-orderODE [3, 4]. A
pending issue about the solutions of equations (5) and (7) is thus their equivalence in thewhole spectrumunder the
formal substitution ¶ + k ki 2iz . This equivalence is implicitly assumed a prioriwhenone uses aUPPEmodel.
Proving this statement a posteriori, by computing explicit solutions of these twomodels, remains to bedone.

Over the past decade, the increasing potential of terahertz (THz) radiation has stimulated intensive efforts to
develop efficient sources basedon the ionization of gases byultrashort laser pulses [10, 11]. In order to properly
calibrate dedicated experiments, nonlinear propagation codes have to beparticularly accurate in assessing the low-
frequencypart of the pulse spectrum.Different experiments andplasma conformations (e.g.,micro-plasmas)have
been recently examined, forwhich relevant THz emissions in frequency ranges below the electronplasma
frequencywere reported [12–14]. So far, however, the validity of theUPPE approachhas received nonumerical
confirmation in this specific spectral range, which is often accessed in laser-drivenTHz experiments [15].

To highlightmore this problematics, let us consider for amoment the elementary situationwhere the
electron density is constant, asmet in a preformed homogeneous plasma.Usually, solving equation (1)needs
both initial and boundary conditions on ( )E z t, , the evolution of which ismonitored by the dielectric function
that characterizes themediumʼs response to the electricfield. In such a plasmawith negligible collisions, the
dielectric function expresses as  w w w= -( ) 1 pe

2 2, where w º ( )e N mpe
2 2

e 0 e is the electron plasma
frequency andω is any Fourier frequency of the electromagnetic wave.When amonochromatic wavewith
frequencyω is incident on a vacuum-plasma boundary, only the fractionwith real wave number

w w w= -( )( )k c 1T pe
2 2 1 2 is transmitted into the plasma [16]. Frequency components with w wpe are

evanescent and vanish over the plasma skin depth. So, for Fourier components w wpe, the incident pulse is
mainly reflected andwe expect this spectral range to damp out in the transmitted pulse along the propagation
path, consistently. In contrast, for the UPPEmodel, plasma opacity is not present. This can be better appreciated
when looking at the linearmodes of the two equations for =Ne const., namely,

w
w

~ -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟˜( ) ( )E z k

c k
z, exp i 1 8

pe
2

2 2

for equation (1), and

w
w

~ -
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥˜( ) ( )E z k

c k
z, exp i 1

2
9

pe
2

2 2

2

J. Phys. Commun. 1 (2017) 055009 JDéchard et al



for equation (5). Obviously these two linear solutions do notmatch, in particular in the domain w wpe. The
WE solution (8) vanishes exponentially as z exceeds about one plasma skin length d wº cpe pe [17]. Accordingly,
the UPPE solution (9) can in principle hold in the frequency range w w pe only. In current applications,
however, inwhich wpe varies through the time variations of the electron density ( )N te , UPPE is supposed to be
valid in the entire frequency range.

Whereas the solving for equation (1) can be performed exactly for a constant plasma frequency [16], the
same problembecomes trickywhenQ is a nonlinear function ofE. This situation applies to a number of
important issues in nonlinear optics and plasma physics [18, 19]. Here, we report that, surprisingly, both
solutions to equations (1) and (5) become generically identical when the plasma is self-generated in time by the
laser pulse. In this paper we indeed show that the THz pulse spectra and fields, when they are described either by
a fullMaxwell-fluidmodel—encompassing both backward and forward propagations—or by its UPPE
approximation—modeling only the forwardwave—match as the pulse propagates over distances larger than the
plasma skin depth and its dynamics ismainly driven by the nonlinearities.

The paper is organized as follows: we derive in section 2 exact analytical solutions for the twoWE andUPPE

1Dmodels describing the secondary fields produced inside a collisionless plasma. In the framework of a
perturbative approach,WE andUPPE solutions are shown to converge for long enough propagation distances. In
section 3we display numerical evidence bymeans of our 1DUPPE andMAXFLU codes that over distances

d>z pe, bothWE forward andUPPE solutions indeedmatch in the THz spectral range and therefore provide
similar THz fields. This statement is established for two-color femtosecond pulses and few-cycle single-color
pulses as well, at intensities privileging Kerr or plasma responses. Section 4 concludes our investigation.
Appendix describes the numerical implementation of the UPPE andMAXFLU codes.

2. The analytical solution

For technical convenience, we ignore collisional effects n ( )0c . Equations (1) and (5) have the plasma
dispersion w w~ pe

2 2 contained in the response functionQ. The input laser profile at z= 0 is a two-color
Gaussian pulse reading in time domain as


w w f= = - + +t t

- -⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )E t z

I

c
r e t r e t, 0

2
1 cos cos 2 , 10

t t

L
0

0

2 ln 2
0

8 ln 2
0

2

L
2

2

L
2

where I0 is themean pump intensity, tL is the full-width-at-half-maximum (FWHM) duration of the
fundamental pulse (the second harmonic has half pumpduration), r denotes the relative intensity ratio of the
second harmonic andf is the relative phase between the two harmonics. One chooses a fundamental wavelength
of l = 10 μmrelated to the carrier wave frequency w pn p lº = c2 20 0 0, and an intensity ratio of =r 0.1
(two-color pulses) or 0 (single-color pulses). The interaction gas is argon at ambient pressure.The ionization rate

(∣ ∣)W E is given by thewell-known quasi-static tunnel (QST) rate

a b
= -

⎡
⎣⎢

⎤
⎦⎥(∣ ( )∣)

∣ ( )∣ ∣ ( )∣
( )W E t

E t E t
exp , 11

where the constantsα andβ depend on the ionization potential of the gas [20, 21].More complex rates
describingmultiple ionization events could be implemented as well [22]. Thesewill be employedwhen
investigating the highest intensity levels.

Because of the complex nonlinearities involved, we apply the same perturbation approach as in [23].We
decompose E into an unperturbed laserfield,EL, and an induced perturbation (secondary field), dE , namely,

d= +E E EL with d E EL, so that the nonlinearityQ reduces to an inhomogeneous source termonly
evaluated on the laserfield.Using equation (1) one obtains

¶ - ¶ =( ) ( )c E 0, 12z t
2 2 2

L

w d¶ + ¶ ¶ - ¶ - =[( )( ) ] ( ) ( )c c E c Q E , 13z t z t pe
2 2

L

w c= + ¶( ) ( )( )c Q E E E . 14t
2

L pe
2

L
3 2

L
3

Here, the perturbation dE contains the THzwavefield, which can be extracted bymeans of a suitable frequency
filtering. The electron plasma frequency wpe is a function of time through its dependency on ( )N z t,e . In the
tunnel ionization regime, the electron density increases steplike and produces THz radiation by couplingwith
the high-frequency field -( )E z ctL [6]. In the framework of UPPE (equation (5)), the perturbation instead obeys

w d- ¶ ¶ + ¶ - =[ ( ) ] ( ) ( )c E c Q E2 . 15t z t pe
2 2

L

Equations (13) and (15)must be solvedwith appropriate initial/boundary conditions. Looking for solutions
propagating forward, it is natural to introduce the change of variables x = -z ct , s=t, transforming thereby

3
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theWE andUPPE for the perturbation dE into

w d¶ ¶ - ¶ - =x[ ( ) ] ( ) ( )c E c Q EWE : 2 , 16s s pe
2 2

L

w d¶ ¶ - ¶ - =x[ ( ) ] ( ) ( )c E c Q EUPPE : 2 2 , 17s s pe
2 2

L

respectively. It is important to notice that EL is only a function of ξ and therebyNe and wpe
2 , computed on the

same laser field, only depend on ξ too.Our initial conditions for theWE read

d x d x= = = =( ) ( ) ( )E s E s, 0 0, 0, 18

yielding no constraint on the spatial derivatives. The pulse is sited in the half-plane <z ct (x < 0 for causality
reasons) and enters the plasma region at time t=0. To satisfy the requirements (18), the input pulse (z=0) is
positioned in the plasma domain at x p t= - c2peak L (see insets offigures 1(d) and (e)). Such boundary
conditions offer flexibility to treat both UPPE andWE solutions in the same analytic framework.However, they
differ from the inputs used in the numerical scheme of the UPPE1D andMAXFLU1D codes discussed in appendix.
Therefore, we shall have to propagate over long enough distances tc 2L , ensuring the full development of the
nonlinearities, in order to performquantitative comparisons between the perturbedfields dE and their
numerical counterparts. These boundary conditions also differ from those used in [23], where the progression of
the laser pulse towards the plasmawas described and the source termQwas tuned to zero for <z 0 in this
reference.

For theWE,we now apply the Laplace transform ò=
+¥ - ( ) ( )f p f s se dps

0
onto equation (16) to get

w x d
x

- + ¶ - =x [ ( )] ( ) ( )p cp E
c Q

p
2 . 192

pe
2

2

After some algebrawefind straightforwardly

òd x x
x x
x x

x x
x x x= ¢

+ - ¢
¢

¢
+ - ¢ ¢

x ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( )

( )E s
c

Q
cs

G
J

G

c
cs,

2

2

,

,
2 d , 20WE

0
1

where J1 is the Bessel function of thefirst kind and

òx x w¢ =
x

x ¢
( ) ( ) ( )G u u, d 21pe

2

is positive (x < 0 and x x¢ ). In the original frame variables, this solution expresses as

ò ò
ò

d x
x

w
w x x= ¢

+ - ¢
+ - ¢ ¢

x

x-

-

¢ -

¢⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( ) ( ) ( )E z t

c
Q

z ct

u u
J

c
u u z ct,

2 d

1
d d , 22

z ct

z ct
z ct

WE
0

pe
2

1 pe
2

and its spectrum is obtained after taking Fourier transform in time t.
Applying the same treatment to equation (17), we get

w x d
x

- + ¶ - =x [ ( )] ( ) ( )p cp E
c Q

p
2 2 , 232

pe
2

2

yielding

ò ò
ò

d x
x

w
w x x= ¢

- ¢
- ¢ ¢

x

x-

-

¢ -

¢⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )
( ) ( ) ( )E z t

c
Q

z

u u
J

c
u u z,

2 d

2
d d . 24

z ct

z ct
z ct

UPPE
0

pe
2

1 pe
2

From afirst glance, equations (22) and (24) only differ by their linear kernel

x
x
x

x x¢ =
+ - ¢
- ¢

- ¢ + - ¢
⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )K

c z ct

G z ct
J

c
G z ct z ct

2 ,

1
, , 25WE 1

1 2

x
x
x

x x¢ =
- ¢
- ¢

- ¢ - ¢
⎡
⎣⎢

⎤
⎦⎥( )

( )
( ) ( )K

c z

G z ct
J

c
G z ct z

2 ,

2
, . 26UPPE 1

1 2

As the UPPE/WEpulses advance in the ( )z t, plane, the integration variable x¢ can cover all values from0 to
x¢ = - ct0min max, tmax beingfixed by the boundary of the timewindow ( =t 3.3max ps here). Both UPPE andWE

solutions converge towards each other at coordinates satisfying x- > ¢ ∣ ∣ ∣ ∣z z ct , as this condition assures
that x x¢  ¢( ) ( )K KUPPE WE . This requirement can indeed be understood fromapplying simple Taylor
expansions in the argument x+ - ¢ » +( ) ( )z ct z z ct z2 2 of theWE solutionwhenever x¢z ,

whereas x- ¢ »z z2 2 in the UPPE solution in the same limit. These behaviors show that the UPPE solution
ismissing a dependency in the +( )z ct propagation variable associatedwith a backward component. Applying

4
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the second inequality - ∣ ∣z z ct in the previous approximations leads to the convergence of the two
solutions.

This property is reflected by figure 1(a), which plots the argument of the Bessel function for a two-color 50 fs
Gaussian pump pulsewith 150 TW cm−2 intensity. Here, the pulse region extends over x¢ <∣ ∣ 100 μmandwe
can observe the convergence of the twoBessel arguments when the distance z is increased from100 to 500 μm.
Concerning their potential discrepancies, one can observe that, at large times ( x¢ >∣ ∣ 100 μm), the plasma
frequency wpe is constant, so that x w x- ¢ = ¢ - +( ) ( )G z ct z ct, pe

2 . The oscillations in theWE/UPPE solutions
are then dictated by those of the Bessel function J1. At times corresponding to x¢ » -600 μmand z=100 μm,
these oscillations relax on the plasma period as w~ -( ) ( )J X t t csin1 WE

1 2
pe in theWE solution. In contrast,

( )J X1 UPPE relaxes to the function w~ - ( )t t csin 21 2
pe , which develops slower oscillations around the

maximumvalues of the Bessel arguments. Figure 1(b) thus displays evidence of aminimum frequency smaller
than wpe in the UPPE solution, whose value increases with zuntil reaching the electron plasma frequency.

To getmore insight into the convergence dynamics, wemay also consider amuch simpler situation by
assuming a constant inhomogeneityQ.With the help of equations (22) and (24), this yields the ratio

d
d

= -
-
+

⎛
⎝⎜

⎞
⎠⎟ ( )E

E

z ct

z ct
1

1

2
, 27WE

UPPE

which can be useful to understand the differences induced by the linear propagators. Figure 1(c) shows
equation (27) as a function of z and t. The lower-right part >( )z ct , inwhich our solutions are not defined, is set
to zero for causality reason. BothWE andUPPE solutions converge as long as - ∣ ∣z z ct , which includes the
laser region. In contrast, the same solutions depart from each other in the sharper limit ct z . Let us now
imagine that, in the vicinity of the pulse head, the source termQhas a certain finite extent, schematically
delimited by the two grey solid lines infigure 1(c). TheWE andUPPE solutions converge near the laser head,
where they are dominated by the nonlinearities computed on the laser profile. In the opposite domain, the

Figure 1. (a)Arguments of the Bessel function J1 for theWE solution (22) (blue curves) and the UPPE solution (24) (red curves) for
different distances z and at the upper bound = =t t 3.3max ps of the temporal window. w ( )tpe increases in time according to theQST
rate (11) for a two-color Gaussian pulse (1 μm+ 0.5μm)with 50 fs FWHMduration and 150 TW cm−2 peak intensity. (b)The
function ( )J X1 for theWE solution (blue curves) and the UPPE solution (red curves) at z=100 μm.The plasma frequency is reached
at x¢ » -600 μm. (c) ( )z t, map of the ratio d dE EWE UPPE as defined by equation (27)with constant source termQ. The grey dotted
line identifies the location of the laser peak at x x= peak and the grey solid lines delimit the domain of the laser pulse. (d and e) ( )z t,
maps of the full analytical solutions (d) equation (22) and (e) equation (24)with a non-constant source termdriven by the same two-
color 50 fs pulse. Insets show the input pulse in the plasma domain x < 0. The black dashed lines delimit the convergence domain of
the UPPE andWE solutions, which increases with the coordinate z.

5
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solutions aremainly driven by their linear propagators that behave differently over large times.However, the
larger the propagated distance z, the broader the convergence domain, which spans a cone in the ( )z t, plane (see
blue area infigure 1(c)). This is confirmed byfigures 1(d) and (e) that detail the field amplitudes in the ( )z t,
plane computed from the complete expressions (22) and (24). One can see that the UPPE field contours differ
from theWE contours in the spatio-temporal domain ct z . In particular, a hyperbolic distribution occurs,
associatedwith the longer periods offigure 1(b) andwith the fact that UPPE does not admit pulse components
varyingwith z+ct. Nevertheless, the solutions achieve the same dominant component near the nonlinearity
region, where theymutually converge andwhose area growswith z (see figures 1(d) and (e)where convergence is
reached inside the cones delimited by black dashed lines).

Figures 2(a) and (b) show some examples of analytical UPPE/WE spectra andfields for a two-colorGaussian
pulsewith FWHMduration of 50 fs, 150 TW cm−2 overall intensity. The nonlinearities consist of plasma
generation alone.Here and in the following the THz fields shown as insets are computed froman inverse Fourier
transformof dẼ in the frequencywindow n w pº 2 90 THz. The plotted propagation distances are
z=100 μmand z=1 mm.One can observe that (i) the spectral region n n w p< º 2pe pe becomes depleted as
z increases, (ii) theminimum frequencymarking the UPPE spectrum, nmin, increases in turn, and (iii) in the rear
part of the pulse (beyond the laser head) the UPPE linearmode consistently develops longer periods (see inset of
figure 2(a)).

At smaller intensity ( =I 500 TW cm−2) andwith zero phase angle (f = 0), the Kerr response is expected to
be a key player [24]; sowe now include it. A typical Kerr-plasma spectrum atweak intensity is illustrated in
figure 2(c), where the low plasma frequency, n = 0.53pe THz, highlights the lesser contribution of
photoionization and a parabolic spectral shape characterizes the Kerr signature in the band of higher THz
frequencies (n » -10 20 THz) [11]. For amean pump intensity =I 10 PW cm−2, in contrast, several electrons
can be extracted from their atom. In this high intensity regime, the ionization of the successive electron shells of
argon is described by themultiple-ionizationmodel built in [22] and based on afield-dependent cycle-averaged
rate computed from the Perelomov–Popov–Terent’ev (PPT) theory [25]. At short propagation distances, unlike
theWE solution, the UPPE spectrum is not peaked at the plasma frequency n » 55pe THz, but it develops spectral
oscillations in the region n n< pe, as expected (figure 2(d)). At larger distances, discrepancies are amplified (not
shown), because dE starts to break the underlying hypothesis of our perturbative approach, d E EL, as the
perturbation itself produces optical frequencies w w( ), 2 , ...0 0 through the nonlinearities, e.g., the
photoionization. Since the optical pumppulse is not depleted along propagation, our formalism cannot assure a
proper conservation of the electromagnetic energy. As a validity criterionwe consider that our analytical
solution stops to holdwhenever the spectral intensity of dE at optical frequencies becomes comparable to~75%
of the laser spectral intensity. Such limitations are of course absent in the results of the full numerical
simulations, as can be inferred from, e.g.,figure 6.

Figure 2. Spectra at (a) z=100 μmand (b) z=1 mmplotted from the analytical solutions (22) (WE, blue curves) and (24) (UPPE, red
curves) for a two-color Gaussian pulsewithmean pump intensity of 150 TW cm−2 and FWHMduration of 50 fs interactingwith
argon. Note the oscillations in the UPPE spectrum for n npe and the growth in nmin as z increases. Same quantities at (c) z=1 mm
for =I 500 TW cm−2 and (d) z=10 μmfor =I 10 PW cm−2. The vertical dashed lines indicate the plasma frequency.
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3.Numerical results

Our theoretical expectations are tested by running theMAXFLU1D andUPPE1D codes, whose respective
numerical schemes are detailed in appendix. For both codes the input condition at z=0 is the two-color
Gaussian pulse defined above by equation (10). The pump intensity is alternatively set to 50, 150 and
1000 TW cm−2 in order to investigate various ionization degrees. The phase anglef is valued as f = 0 to
enhance theKerr effect in the 50 TW cm−2 case and p 2 otherwise [24]. ForGaussian pulses withmoderate
laser intensity, from50 to 150 TW cm−2, and undergoing single ionization, we employ theQST rate (11).
Consistently with section 2, when dealingwith 1 PW cm−2 pulses,multiple ionizationwill be described from the
multi-ionmodel of [22] employing the field-dependent PPT ionization rate.

To start with, only theKerr response is accounted for c= = ´ - -[ ]( )n c3 4 1 10 cm W2
3

0
19 2 1 andwe first

ignore plasma generation ( =N 0e ) and collisions. Figures 3(a) and (b) show the spectra of the THzfields
produced in argon by a 50 fs two-color pulse with 1 μmfundamental pumpwavelength at increasing
propagation distances, when using the UPPE and theMAXFLU codes. Although theWE andUPPE spectramay not
perfectlymatch over the shortest propagation distances, e.g., z=10 μm, an excellent agreement is found at
further distances z 50 μmfor both intensities. These simulations show that, in the absence of plasma
generation, bothWE andUPPE solutionsmatch in thewhole spectral domain over relatively short distances
»10 μm.This property is independent of the pulse duration, which has been counterchecked by another
simulation using longer pumpduration, t = 300L fs (seefigure 3(c)). Here, the twoUPPE andMAXFLU spectra
match again over distances less than the pulse length∼90 μm.Minor early discrepancies are linked to small
differences in the initialization of the numerical codes. The convergence speed between theWE andUPPE spectra
driven by aKerr response alone thus does not depend on the distance propagated over the pulse length tc L. This
behavior is rather logical, as the Kerr nonlinearity is just treated as a perturbation in the source termQ and does
not impact the frequency range of the linearmodes in equations (8) and (9).

Next, infigure 4, only plasma generation is taken into account, similarly tofigures 2(a) and (b). So, the Kerr
response and collisions are set equal to zero. The selected intensity level is =I 1500 TW cm−2.When the
backward-propagation operator is dropped out, the fundamental linearmodes beating at the electron plasma
frequency wpe are lost and no plasma opacity is allowed, which results in the development of oscillatory
components in the frequency range n n< pe of the UPPE spectrum. This is consistent with the linearmode of

equation (9) that admits non-zero frequency components in the range  w w w2pe pe. In contrast, the
MAXFLU spectrum is dominated by plasma current oscillations, which prevail as long as the propagation
distances remain of a few plasma skin depths (here, d m= 3.3 mpe ), as evidenced byfigure 4(b). Over longer
distances, however, both UPPE andMAXFLU spectramerge in the range n n> pe, as photocurrents become the
dominating source in the THz generation process. Out off the laser head, long oscillations over longer times
proceed from the Bessel function discussed above. Besides the good agreement between our analytical solutions
shown infigures 2(a) and (b) and the numerical solutions offigures 4(c) and (d), we can observe that:

• At large times the field oscillations are slower for the UPPE solution than for theWE solution (see insets). The
oscillation frequency increases as the optical path is augmented.

Figure 3.THz spectra at z=10 μm (dotted curves), z=50 μm (dashed curves) and z=1 mm (solid curves) from the UPPE1D code
(red curves) and theMAXFLU1D code (blue curves) for the intensities (a) 50 TW cm−2 and (b) 150 TW cm−2, using a two-color 50 fs
Gaussian pulse with zero phase difference. (c) Same for a 300 fs two-color Gaussian pulse with 150 TW cm−2 intensity. Only the Kerr
effect is taken into account.
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• Whereas, as expected, the spectral region n n< pe isflat in the forwardWE solution from z=3 μm, the UPPE
spectrumdevelops oscillations from aminimum frequency nmin that increases with the propagation
distance z.

• Convergence is almost reached at z=1 mm.The equality n n=min pe (associated to the plasma response of
the inputfield) ismet at z=1 cm and spectramatch for all frequencies (not shown).

For comparison, figures 5(a) and (b) show the same quantities when including theKerr response of argon
and electron-neutral collisions with the averaged rate n = 1 190c fs−1=5.3 ps−1. At 150 TW cm−2 intensity,
one reports a comparablematching rate between the two spectra and fields, being even sped up by the damping
of oscillations at low frequencies<10 THz and the decrease of the current density in time. Indeed the collision
termdamps the free electron current in equation (3) and thus both UPPE andMAXFLU solutions are also damped
to zero over long times (190 fs) beyond the laser head. The green curve shows the backward spectrum
collected at = -z 10 μmfrom the vacuum-plasma interface in theMAXFLU simulation. This spectrumoccupies
the region n npe, as expected [5, 23], since it is emitted by plasma current oscillations over the plasma skin
depth. This backward spectrum remains unchanged over propagation in vacuum.

Similar properties ofmatching can be refound between the solutions of the twomodels for pulse
configurations favoring either aweaker plasma response (thus amore efficient Kerr effect) at smaller intensities
or a stronger plasma response achieved at higher intensities. Figures 5(c) and (d) display the evolution of the
same two-color pulse having an input intensity of 50 TW cm−2. The pulse is undergoing an effective Kerr
response combinedwith plasma generation in argon. The corresponding plasma frequency is veryweak,
n = 0.53pe THz,which is related to a long plasma skin depth d  90pe μm.Even at rather weak spectral
amplitudes, theWE andUPPE spectra andfields approach to each other over distances exceeding far this depth, at
least from1mm,which confirms the important role of the plasma skin depth in thematching process. The
spectral shape follows its analytical counterpart plotted infigure 2(c) for z=1 mm.The numerical UPPE/WE

spectramerge from z=5 mmuntil perfectly overlapping at z=1 cm (figure 5(d)).
In the opposite range of pulse intensities, =I 10 PW cm−2, the peak plasma density increases and amuch

shorter plasma skin depth—d » 0.75pe μmfor n » 65pe THz as imposed by the incident pulse—should lead to
a quickermerging between the UPPE andWE solutions.Matching is indeed achieved at about z=50 μm, i.e.,
over a few tens of dpe (see figures 6(a) and (b)). The optical field distortions induced by self-steepening and
plasma generation are plotted as inset infigure 6(b). They also show a good agreement between theWE andUPPE

models at distances>10 μm.The spectral distributions andTHz field amplitudes (inset offigure 6(a)) still
reasonably agreewith those computed at z= 10 μmfromour analytical solution (figure 2(d)). Besides, for the
same high intensity level, it has been recently shown that photocurrents could be themain player for single-color

Figure 4.THz spectra and fields (see insets) at different propagation distances computed from the UPPE1D code (red curves) and the
MAXFLU1D code (blue curves) for a two-color 50 fsGaussian pulse with 150 TW cm−2 intensity: (a) z=3 μm (corresponding to
almost one plasma skin depth dpe), (b) z=10 μm, (c) z=100 μm, and (d) z=1 mm.Vertical dashed lines indicate n n= pe.
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pulses, provided that the pulse duration be short enough, i.e., few-cycle [13]. For this purpose, figures 6(c)–(e)
show two spectra computed from a 1 μmGaussian pumppulsewith 8 fs FWHMduration at 1 PW cm−2

intensity and evolving from z=8 μm (d » 1pe μm). Again the UPPE andWE spectra nicely approach to each
other in the range n n> pe from »z 100 μm (not shown) and they overlap in thewhole spectral range
at »z 1 mm.

In order to illustrate the influence of the electron dynamics that can vary through laser distortions,
figures 7(a) and (b) finally show the electron density corresponding to figures 5(a), (b) and 6(c). Between the

Figure 5. Same as in figure 4with same color plotstyle but with theKerr term and electron-neutral collisions included for =I 1500

TW cm−2 at (a) z=10 μm, (b) z=1 mmand =I 500 TW cm−2 at (c) z=1 mm, (d) z=1 cm. In (a) the green curve plots the
backward spectrum collected at = -z 10 μm.

Figure 6.THz spectra with 1 PW cm−2 laser intensity at (a) z=10 μmand (b) z=50 μm for a two-color 50 fs Gaussian pulse
computed from the UPPE (red curves) andMAXFLU codes (blue curves). Insets show the THz field at z=10 μmand the overall
laser field at z=50 μm. (c–e)THz spectra and fields for a single-color (1 μm)Gaussian pulse with 8 fs FWHMduration
interacting with Ar at 1 PW cm−2 intensity. (c)THz spectra at z=8 μm (dashed curves) and z=1 mm (solid curves). (d, e)
Corresponding THz fields. Laser field patterns are shown as inset. Vertical lines point out to n n= pe (with corresponding
plotstyles in (c)).
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two plotted distances, one reports for the 8 fs pulse with 1 PW cm−2 peak intensity a decrease by half the
maximum field value resulting in one decade decrease in the electron density. For comparison, the 50 fs
pulse with 150 TW cm−2 peak intensity keeps comparable density levels. Thematching distance of the UPPE/
WE solutions for those two configurations then become similar: at z=1 mm, the 8 fs pulse with 1 PW cm−2

peak intensity has almost the same charge level as the 50 fs pulse with 150 TW cm−2 peak intensity, and has
thus a comparable plasma skin length (d = 3.8pe versus 5.4μm) at this distance. The two skin depths only
differ from each other by a factor~ 2 and, therefore, the two fields display comparable convergence speed
between the twomodels. This justifies that the number of skin depths needed formatching the two solutions
is not universal, as it also depends on the changes in the electron density induced by the distortions of the
laser field along propagation. Similar behaviors could be reported from longer (300 fs) pulses (not shown).

4. Conclusion

In summary, we have derived one-dimensional analytical solutions describing both bidirectional (WE) and
unidirectional (UPPE) propagating light pulses bymeans of a perturbative approach. Structural differences
between theWE and UPPE solutions have been explored thanks to those analytical solutions, especially the
shape of the THz spectra overmm-range propagation distances. The convergence between both solutions in
the ( )z t, plane has been examined from direct numerical computations integratingMaxwell-fluid equations
and the unidirectional pulse propagationmodel. Even if discrepancies in the linear propagators occur at
large times beyond the laser head ( ct z), the UPPE solutionmatches its WE counterpart in the ( )z t, region
where the nonlinearity is effective. The extent of the convergence region increases with the propagation
distance. Numerical simulations covering a wide range of pulse configurations confirm that, over a
propagated distance larger than some plasma skin depths, the UPPE andMaxwell-fluid solutions
superimpose to one another. As a result, WE and UPPE spectramatch remarkably well over all the spectrum,
including the range w wpe.

To conclude, we demonstrated that, in a one-dimensional geometry, the UPPEmodel, which only governs
the forward pulse component, is able to provide similar spectra to a bidirectionalMaxwell-fluidmodel over
distanceswhere Kerr nonlinearities as well as photocurrents drive THz pulse generation. Further studies should
aim at testing this property in full 3D propagation geometries.
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Appendix. The 1DUPPE andMAXFLU codes

TheUPPE1D code solves equation (5) coupledwith the fluid equations (3) and (4) propagating over the optical
axis z. A second-order accurate split-step scheme allows us to separate the linear and the nonlinear parts of the

Figure 7.Electron density computed from the UPPE1D code (red curves) and theMAXFLU1D code (blue curves) for an 8 fs pulse with
1 PW cm−2 peak intensity (solid lines, single color), and a 50 fs pulse with 150 TW cm−2 peak intensity (dashed lines, two colors) at (a)
z=8 μmand z=10 μm, and (b) z=1 mm.
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UPPE equation [26]. The linear part (propagation) is solved exactly in the Fourier space as follows:

w w w+ D = D˜( ) ˜( ) [ ( ) ] ( )E z z E z k z, , exp i , A.1

where w w=( )k c . Then, the nonlinear contribution, including theKerr terms, ionization and absorption
losses, are advanced over one spatial stepDz according to the equation


c m

w w¶ + ¶ = - +-
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ˜( ) ˜ ( )) ( )

( )
E t

c
E t

c
J J

2 2
, A.2z t

3
3 1 0

loss

where -1means inverse Fourier transform, Jloss refers to a loss current due to photoionization, usually
negligible in laser–gas interactions. The left-hand side of equation (A.2), which accounts for Kerr polarization, is
first discretized in time by finite volumes at time step j ( = Dt j t ) as

¶ = -
D

F - F+ -[ ] ( )E
t

1
, A.3z j j j1 2 1 2

where F+j 1 2 refers to the numericalflux between two neighboring cells, j and +j 1, of the grid. Following the
well-knownGodunovʼsmethod [27], the numerical flux is given here by

c
F =+ + ( )

( )

c
E

2
, A.4j j1 2

3

1 2
3

where +Ej 1 2 accounts for the solution to the Riemann problem at the intercell +j 1 2 [28], which aims at
solving the advected solution constrained by two constant states indexed by j and +j 1on both sides of the
intercell. In this case, the solution to theRiemann problem is straightforward: with c( ) 03 , atfirst-order of
accuracy, one has to take simply =+E Ej j1 2 . To achieve second-order accuracy, we do a linear reconstruction
of { }Ej following the EssentiallyNon-Oscillatory technique [28]:

= +
D

+ ( )E E
2

, A.5j j
j

1 2

whereDj compares the downwind difference ( -+E Ej j1 ) and the upwind difference ( - -E Ej j 1) and retains the
lower value inmodulus. Limiting the slope in this way allows us to avoidGibbs oscillations when optical shocks
induced by self-steepening occur [29].With the second-order numerical flux, we can rewrite equation (A.2) as:

m
w w¶ = -

D
F - F - ++ -

-  ⎡
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⎤
⎦⎥[ ] ( ( ) ( )) ( )/ /E

t
F
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J J

1

2
, A.6z j j j

j
1 2 1 2

1 0
loss

which is easily solved by the second-order Runge–Kuttamethod. Using this discretization, provided that c( )3 is
weak enough, themaximum spatial step given by theCourant–Friedrichs–Lewy (CFL) stability condition of
equation (A.3) is cD = D ( )( )z c t E2 3max

3
0
2 , with E0 denoting the input amplitude of the laser field. This step is

much larger than the spatial steps needed to obtain accurate solutions of equation (A.2) as well as those requested
to integrate theWEmodel. Long propagation distances can then be simulated in reasonable amount of
computational timewith theUPPE approach.

TheMaxwell-fluid code, namedMAXFLU1D, is based on afinite volume scheme solving theWE (1) andfluid
equations (3) and (4) in time. This set of equations is re-expressed in the conventional conservative formof a
nonlinear hyperbolic system, e.g., for the transverse (x-polarized)field ºE Ex through the electric displacement
Dx:

m¶ + ¶ = - +- ( ) ( )D B J J , A.7t x z y x x0
1

,loss

 c= +- ( )( )D E E . A.8x x x0
1 3 3

This nonlinear hyperbolic system is treatednumerically by splitting the advectionpart (source terms set equal to
zero) and the evolutionpart (source terms includedbutwith zeroderivative in z) at every time stepDt along an
evolution-advection-evolution algorithm. First, the evolution stage is solvedby using a second-orderRunge–Kutta
scheme.Next, theMaxwell andFluid advective parts,which are independent of eachother, are solvedoverDt . For
the former advection, the Lax–Wendroff scheme is chosen (second-order accurate) [30], even though someGibbs
oscillationsmight appear. For the latter advection stage, instead,we couple a FirstOrderCentered scheme [28],
which isfirst-order accurate, to theLax–Wendroff scheme, following the FluxCorrectedTransport approach [31].
This is necessary for treating thefluid advection; otherwise strongGibbs oscillationsmay occur in the neighborhood
of electrondensity gradients,which can render the codeunstable. The calculationdomain is a slidingwindow that
moves forward at the speedof light c and, evenwhen accounting for theKerr-induced changes in the optical
refractive index, theCFL condition of the ( )t z, grid,D = Dz c t , is the standard requirement.

In the UPPE1D code, the THz field driven by the laser field is 0 at z=0. One spatial step further, the laser
pulse enters themedium and triggers nonlinearities, producing thus a non zero THz field. In the MAXFLU1D
code, the THz field grows from a laser pulse crossing a vacuum-plasma interface and admits backward
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contributions. Since we are interested in THz generation, one should use simultaneously a fine spectral
resolution and a fine time step in order to correctly describe the low frequency spectrum below npe and the
two-color laser pulse components including its higher harmonics generated along propagation. The time
window of our simulations is, therefore, set to 3.33 ps corresponding to a frequency step of nD = 0.3THz.
The time stepDt is tuned from l ( )c1280 down to l ( )c5120 leading to a spatial step of lD =z 1280 resp.

lD =z 5120 for the MAXFLU simulations (CFL condition) and it is fixed to lD =z 250 for the UPPE
simulations. The highest resolutions used in theMAXFLU code have been employed when it was necessary to
decrease the background noise in the lowest parts of the pulse spectrum (e.g., for a Kerr response alone).

Let usfinally notice that, so far, we have neglected linear dispersion  c= *( )P EL 0
1 , with c( )1 representing

thefirst-order susceptibility and * standing for the convolution product in time. Linear gas dispersion can be
accounted for aswell through the pulsewave number w w w=( ) ( )k n c becoming then a function of the

frequency-dependent refractive index w c w= +( ) ( )( )n 1 1 . In that case, the UPPE code iterates the solution by
always using equation (A.1) for solving the linear part and by performing the substitutions c c w ( )( ) ( ) n3 3

0

and m m w ( )c c n0 0 into the left-hand side and the right-hand side of equation (A.2) of the nonlinear
contribution, respectively. In theMAXFLU1D code the only change consists in implementing the convolution
product c *( ) Ex

1 in the right-hand side of the equation (A.8).
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