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a b s t r a c t

The influence of the electrochemical double layer (EDL) structure on the electrochemical processes in ionic liq-

uids is an intriguing subject. The complex layered structure of the EDL and its restructuring have been shown

to strongly affect metal deposit morphology and electrochemical reaction kinetics. In this work, we demonstrate

that the breakdown of an ionic liquid containing TFSI anions can be catalyzed through the addition of Li+ cations.

We ascribe this catalytic effect to the change in the EDL structure: the Li+ cations preferentially adsorb on the

electrode surface and drag the TFSI anions with them, facilitating their reduction. The decomposition of the

ionic liquid leads to the formation of an SEI layer, which is studied using an electrochemical quartz crystal

microbalance.
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1. Introduction

The electrochemical stability of ionic liquid (IL) electrolytes is a cru-

cial factor for their application in electrochemical devices [1]. In general,

they are considered to be extremely stable, reaching stability windows

of 3–5 V depending on the IL composition [2]. These attractive proper-

ties are being widely exploited in high-energy electrochemical devices

such as lithium-based batteries [1]. Reversible plating/stripping of Li

has been reported for various ionic liquids [3–5]. In addition, cycling of

different electroactive materials has recently been presented [6–8].

The performance of Li-based batteries is mostly determined by the

stability and cyclability of Li metal. These features are strongly affected

by the existence and properties of the solid electrolyte interface (SEI)

that is formed from decomposition products of the electrolyte [9]. De-

spite the high electrochemical stability of ILs, SEI formation has also

been shown to be present in ILs [10]. Howlett et al. [11] investigated

in detail the formation of an SEI layer in ILs containing TFSI anions.

They found that the resulting SEI is composed mostly of the native

Li2O layer and decomposition products of the TFSI anion, such as LiF,

Li2S2O4, LiSO3CF3, Li2NSO2CF3. On the other hand, some reports state

that no SEI is formed in ultra-pure ionic liquids [12] and that impurities

are responsible for triggering the decomposition of ILs [12,13].

Another important issue in electrochemical devices is the structure

of the electrochemical double layer (EDL). It has been proven both the-

oretically [14,15] and experimentally [16–18] that the IL ions are highly

structured and form a layered EDL on electrodes [17,18] which can un-

dergo rearrangement under imposed polarization [16,19–21]. When

polarized, the biggest changes within the EDL are observed in the first

adjacent layer; the strength of the ion–electrode interactions [16], com-

pactness [18,22], and conformational changes of ions [19] vary greatly

within this particular layer. The influence of the EDL structure on the de-

composition of the IL and SEI formation has only beenmentioned briefly

in a few reports [10,23]. Consequently, the electrochemical double layer

structure effect is notwell understood and further research is needed, as

stated in a recent review [1]. In this communication, we report the cat-

alytic reduction of TFSI anions caused by the presence of Li+ cations in

EMImTFSI ionic liquid. We correlate this effect to the change in the

EDL structure upon the addition of Li+ cations.
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2. Experimental

1-Ethyl-3-methylimidazolium bis(trifluoromethane)sulfonimide

(EMImTFSI), N-buthyl-N-methylpyrrolidinium

bis(trifluoromethane)sulfonimide (BMPTFSI) ILs (99.9% pure, H2O b

0.005%) and the LiTFSI salt used in this study were purchased from

Solvionic. The ILs were purified under vacuum at 75 °C for 2 days prior

to being used, so that the final water content was ~6–20 ppm (Karl Fi-

scher measurement). The LiTFSI and LiClO4 salts were dried at 125 °C

under high vacuum for 2 days. All chemicals were handled and stored

in an argon-filled glove box (O2 and H2O b 0.1 ppm).

A three-electrode set-up was used for all electrochemical measure-

ments. Four different substrates, a planar platinum electrode (Ptp) S =

0.020 cm2, platinum wires (Ptw), stainless steel wires (SSw) and planar

glassy carbon (GC) S = 0.071 cm2 were used as working electrodes

(WE). The surface area of the wire-type electrodes was estimated

from the length of the submerged fraction of the electrode (surface

ranging from 0.017 to 0.033 cm2). A platinum grid with high surface

area (S ≈ 2 cm2) was used as the counter electrode (CE) and Li metal

inside a tube with frit as the reference electrode (RE). All potentials

are given versus the Li+|Li redox couple.

EQCM measurements were conducted using a commercial SEIKO

microbalance (SEIKO QCA 922) with AT-cut 9 MHz quartz covered

with platinum on both sides. The electroactive geometric surface area

was S = 0.196 cm2. The EQCM was calibrated with a CV measurement

in 0.05 M solution of AgTFSI in EMImTFSI, at 100 °C, with a 2 mV·s−1

scanning rate.

The XPS measurements were conducted on a K-Alpha from Thermo

Fisher Scientific with Al Kα radiation (1486.7 eV) and a dwell time of

50ms (high-resolution). The sample waswashed copiously with aceto-

nitrile and dried under vacuum at RT prior to the experiment.

The electron affinity (EA) calculations were performed using the

Gaussian 09 computational package [24]. The adiabatic calculations of

EAs allowed for geometry optimization of the reduced states. Geome-

tries were optimized at the B3LYP/6-31G(d,p) level of theory [25,26],

and the ground stateswere verifiedby the absence of any imaginary fre-

quencies. Single point energy calculationswere performed using B3LYP/

6–311++G(d,p). The solvation effects were captured using an implicit

solvation model, CPCM [27,28], where pyridine (dielectric constant =

13) was chosen as the solvent.

3. Results and discussion

Fig. 1a represents the electrochemical response of 0.12 M LiTFSI so-

lution in EMImTFSI under Ar atmosphere at room temperature (RT)

and at 100 °C. In both cases a reduction signal is observed, at 1.4 V at

RT and 1.7 V at 100 °C (red lines), which was not present in the pure

ionic liquid (dashed lines). Similar behavior was found on Pt and Au

electrodes in 0.5 M LiTFSI solution by Gasparotto et al. [29]. They attrib-

uted the extra peak mainly to the under-potential deposition of Li+,

with additional speculation on the possible formation of Li–Au alloys.

Other reports claimed that an additional reduction process could origi-

nate from impurities in the LiTFSI salt which could trigger SEI formation

[30,31]. However, to the best of our knowledge, the exact nature of this

phenomenon is not well understood.

To investigate the origin of the extra reduction peak, we examined

the effect of different electrochemical bath components on the shape

of the CV curve (Fig. 1). The general shape of the CV curve is not affected

by either the concentration of Li+ ions (0.012–1.0M) or a change in lith-

iumsalt composition (LiTFSI, LiClO4) (Fig. 1b). These results suggest that

impurities related to the LiTFSI salt are not responsible for the reduction

peak. On the other hand, on changing the ionic liquid cation from

EMIm+ to BMP+, the reduction at 1.4 V appearedwith a current density

5 times lower than before (Fig. 1c). Furthermore, changing theWE sub-

strate from Pt to SSw caused the reduction peak to shift to lower poten-

tials (1.1 V), while on the GC electrode, the reduction was not visible

within the chosen potential range (Fig. 1d). The strong dependence on

the electrode material and the ionic liquid cation suggests either an

alloying reaction or ionic liquid decomposition (SEI formation).

To probe the nature of the reduction process, EQCM studies were

performed in 0.12 M LiTFSI solution at 100 °C under Ar atmosphere on

platinum-covered quartz. The experiment was performed at a high

temperature in order to decrease frequency noise (due to high viscosity

at RT) and to increase the reduction rate. A chronoamperometric exper-

iment at a fixed potential of 1.6 Vwas carried out to probe the nature of

the electrochemical process and its evolution with time; current and

quartz crystal frequency and motional resistance were recorded simul-

taneously (Fig. 2). At the beginning of the reduction process, a signifi-

cant decrease in frequency was observed (Fig. 2a) followed by

stabilization after 4000 s. In contrast, the motional resistance remained

unchanged (Fig. 2b), indicating that the frequency decrease can be at-

tributed to a mass increase at the electrode surface. Based on

Sauerbrey's eq. [32] and Faraday's law of electrolysis we calculated the

equivalent weight of the deposited compound (M/z) (Fig. 2b). The cal-

culatedM/z values stabilized at around 15 g·mol−1 after 600 s of the re-

duction process. The obtained M/z is twice the theoretical value for all

possible products of Li–Pt alloy formation [29] or UPD of lithium [29],

Fig. 1. a) The CV of pure EMImTFSI and 0.12M LiTFSI solutions at RT (top curves) and 100 °C

(bottom curves). The CVs of electrolyte containing Li+ cations at RT b) different salt

concentrations and salt anion WE - Ptp c) 0.12 M LiTFSI solution in different ILs, WE -

Ptw d) 0.12 M LiTFSI solution in EMImTFSI on different electrodes. CE – Pt, RE –

Ag|Ag2O, sr= 50 mV·s−1.



see Table 1. Additionally, considering that the Pt electrochemical

alloying process takes place at potentials lower than 0.5 V vs Li |Li+

[33] and that the total frequency change of 4 kHz would result in

multi-layer Li deposition, alloying and UPD processes are highly unlike-

ly. The formation of LiOH and Li2O due to O2 reduction can also be ruled

out, as our ionic liquid was highly pure and the measurement was

carried under a protective argon atmosphere. The remaining possibility

is decomposition of the ionic liquid. Indeed, SEM image revealed the

presence of an irregular SEI layer (Fig. 2a inset). The XPS spectra (Fig.

2c) indicate that the layer was composed mainly of Li2CO3, lithium

alkyl carbonates and LiF. The presence of fluorine implies the break-

down of TFSI anions, which has previously been reported on a Li surface

in contact with TFSI-based ILs [10]. Indeed, the N 1 s spectra showed

small quantities of compounds containing negatively charged nitrogen

atoms (N− and N3−), while the S 2p spectra (not shown here) revealed

the existence of sulfur compounds at different oxidation states, in agree-

ment with previous studies [10]. TheM/z values of possible decomposi-

tion products of the TFSI anion are listed in Table 1. Assuming a one-

electron process, the M/z values are very high compared to the mea-

sured values, suggesting amulti-electron process (z N 1) [10]. Neverthe-

less, the very small value of M/z indicates that the deposit is mostly

composed of light compounds such as LiF, Li2CO3, Li2S, which is consis-

tent with the XPS spectra. The scenario of TFSI anion decomposition is

supported by the CV curves in BMPTFSI and EMImTFSI baths (i.e. con-

taining the same anion), where the reduction signal at 1.4 V was pres-

ent. The difference in reduction peak intensity (very low for BMPTFSI)

could be due to stronger adsorption of pyrrolidinium cations at the elec-

trode surface, which diminishes the access of the TFSI anions [34,35].

The stronger BMP cation adsorption may be due either to its greater

flexibility, which allows the cation to adopt a flatter surface conforma-

tion, and/or to the longer alkyl groups that may favor structuring of

the IL, as suggested by Atkin et al. [34]. Moreover, in the case of the

BMP cation, the positive charge is more localized than in the EMIm cat-

ion, where the charge is delocalized over the aromatic ring. The

resulting SEI layer seems to be stable at low potentials, preventing fur-

ther IL decomposition, as indicated by stabilization of the frequency

after 4000 s (Fig. 2a).

Combined EQCMand CV experiments suggest that the reduction sig-

nal in the presence of lithium salt is due to TFSI anion decomposition.

However, the role of the lithium salt in this process is not clear. It was

recently reported by Lahiri et al. [36] that the addition of Li+ to ionic liq-

uids drastically changes the structure of the electrochemical double

layer. They suggested that Li+, as a very small cationwith a highly local-

ized charge, can adsorb at the electrode in its complexed form

[Li(TFSI)x]
1-x to efficiently counter the electrode's negative charge (re-

duction sweep). A schematic representation of the EDL structure is

Fig. 2. Potentiostatic EQCMmeasurements at 1.6 V vs Li|Li+ a) current density and quartz

frequency change versus time, the inset represents the SEM images of the deposit. b)

quartz motional resistance and calculated M/z values versus time. 0.12 M LiTFSI, T =

100 °C, WE – Pt mirror polished on quartz, CE – Pt, RE - Ag|Ag2O. c) C 1 s, O 1 s, F 1 s, N

1 s XPS spectra of the SEI layer obtained by potentiostatic deposition at 1.6 V vs Li|Li+

for 1 h over Ptw electrode. The deposit was washed copiously with dry acetonitrile and

dried under vacuum prior to measurement. T= 100 °C, CE – Pt, RE – Ag|Ag2O, WE – Ptw.

Table 1

TheM/z values of the possible deposition products, the first column specifies the reduced

compound.

Reduced

species

UPD

Li

Pt-Li LiOH Li2O2 Li2O LiF Li2S Li2CO3 Li2S2O4

Li+ reduction 7 7 – – – – – – –

H2Oimpurity – – 24 – – – – – –

O2impurity – – – 23 15 – – – –

TFSI−a
– – – – 30/z 25/z 46/z 74/z 142/z

a The z value of the compounds coming from the IL degradation (SEI formation) is

unknown.

Fig. 3. The proposed schematic of EDL structure at negative polarization in pure ILs and

after the addition of Li+ cations.



shown in Fig. 3. As Li+ is coordinated by two TFSI anions, [Li(TFSI)2]
−

[37], the adsorption of coordinated Li+ (either with two anions or par-

tially dissociated with one TFSI anion) causes an increase in TFSI anion

concentration at the electrode surface that may facilitate its breakdown

(reduction). In the case of a pure ionic liquid, the adjacent layer is com-

posed almost solely of large cations [38] which block access to the elec-

trode for the TFSI anions. The reduction process is thus suppressed and

no reduction peak is visible.

The enhanced reduction of the TFSI anion has not been reported in

organic electrolytes with a low concentration of LiTFSI, where instead

a severe solvent decomposition usually occurs [39]. However, the situa-

tion drastically changes when highly concentrated electrolytes are uti-

lized [39–47]. In such cases, the formation of a structured network of

Li+ and TFSI anions has been reported [41,46,47], which facilitates re-

duction of the TFSI anion due to the lower energy of the TFSI LUMO

levels. Additionally, an extra reduction signal is generally observed at

around 1.5 V vs Li|Li+ due to TFSI anion decomposition, leading to the

formation of a stable SEI [39,40,42–45], as in our case. We think that,

in ionic liquids where a structured network of anions and cations exists,

the reduction of TFSI anions can be facilitated as well. Additionally, the

stability of the TFSI anion could be potentially altered by complexation

with Li+ [47]. Our preliminary DFT adiabatic and vertical electron affin-

ity calculations suggested that the TFSI anion in its complexed form

(EAadiabatic =−3.52 eV, EAvertical =−0.58 eV) is more prone to reduc-

tion than the naked TFSI anion (EAadiabatic = −2.91 eV, EAvertical =

−0.09 eV) in amediumwith a low dielectric constant (ε=13), as indi-

cated by its lower electron affinity. Nevertheless, despite the higher re-

activity of TFSI in ionic liquids, the access of TFSI anions to an electrode

can be restricted by strongly adsorbed cations which limit their reduc-

tion. The situation changes when Li+ cations are introduced as this

leads to EDL reconstruction and enhanced TFSI anion decomposition.

4. Conclusions

In summary, we have probed the electrochemical behavior of a

LiTFSI solution in EMImTFSI-based ionic liquid. An extra reduction

peak was found at a potential of 1.4 V vs Li |Li+ when lithium cations

were present in the solution. Based on the CV, EQCM and EDX data,

we ascribe the extra peak to the breakdown of TFSI anions. This reaction

is catalyzed by Li+ cations due to induced changes within the double

layer. Decomposition of the TFSI anion led to the formation of a stable

SEI layer – such layers are crucial for a long cycle life in Li-ion and Li-

metal based batteries. Our findings give a better understanding of how

a SEI layer is formed in TFSI-based ionic liquid solutions. We believe

that this new concept of SEI formation will be useful in designing new

systems with improved SEI properties and battery performance, by tai-

loring the Li+–anion interactions.
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