Constrained L2-approximation by polynomials on subsets of the circle - Archive ouverte HAL Access content directly
Book Sections Year : 2018

Constrained L2-approximation by polynomials on subsets of the circle

Abstract

We study best approximation to a given function, in the least square sense on a subset of the unit circle, by polynomials of given degree which are pointwise bounded on the complementary subset. We show that the solution to this problem, as the degree goes large, converges to the solution of a bounded extremal problem for analytic functions which is instrumental in system identification. We provide a numerical example on real data from a hyperfrequency filter.
Fichier principal
Vignette du fichier
BLSFields2017.pdf (336.23 Ko) Télécharger le fichier
L2LinftCnesFilterDeg400.jpg (25.31 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01671183 , version 2 (29-10-2017)
hal-01671183 , version 1 (22-12-2017)

Identifiers

Cite

Laurent Baratchart, Juliette Leblond, Fabien Seyfert. Constrained L2-approximation by polynomials on subsets of the circle. Mashreghi, Javad; Manolaki, Myrto; Gauthier, Paul M. New Trends in Approximation Theory. In Memory of André Boivin, 81, Springer, pp.151-171, 2018, Fields Institute Communications, 978-1-4939-7543-3. ⟨10.1007/978-1-4939-7543-3_8⟩. ⟨hal-01671183v2⟩

Collections

INRIA INRIA2
401 View
747 Download

Altmetric

Share

Gmail Facebook X LinkedIn More