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Abstract—Fast varying active transmitter sets are a key
feature of wireless communication networks with very short
transmissions arising in machine-to-machine communications. A
consequence is that the interference is dynamic, leading to non-
Gaussian statistics. In this paper, we study the behavior of large-
scale communication networks in the presence of isotropic α-
stable interference, which forms a model for dynamic interfer-
ence. We first characterize the achievable rate of each link by
considering a non-Gaussian input distribution, which is shown
to outperform a Gaussian input. Moreover, we analyze the area
spectral efficiency, which is the total rate per square meter. Our
analysis suggests that analogously to the common model of slowly
varying active transmitter sets, dense networks maximize the area
spectral efficiency.

I. INTRODUCTION

Modern wireless communication networks are increasingly
heterogeneous. This heterogeneity typically arises from non-
uniform placement of base stations and variations in transmit
power constraints, which is characteristic of networks em-
ploying small-cells and ad hoc networks. Another form of
heterogeneity is due to differences in the services that the
networks provide. For instance, there are key differences in
quantity and type of data, as well as transmission protocols
between networks supporting standard cellular or WLAN com-
munication and machine-to-machine (M2M) communications
[1].

In standard cellular services, data transmissions typically
vary between 1 KB and 2 MB per transmission for text and
image transfers and up to 3 GB for video transfer [2]. On
the other hand, in M2M communications, data transmission is
of the order of 1 MB per month [3]. Transmissions in M2M
networks are therefore very short. As a consequence, the active
set of transmitting devices at each time can change rapidly.

For a fixed active set of transmitting devices, the inter-
ference is well-modeled as Gaussian. This is the basis of
the standard interference modeling methodology in wireless
cellular networking. An important question therefore arises for
M2M networks with a rapidly changing active transmitter set:
can the interference be well-modeled as Gaussian? In fact, if
the interference is non-Gaussian it will impact performance
guarantees and resource allocation, which is often based on
the spectral efficiency of each link.

In this paper, we assess the impact of rapidly changing
active transmitter sets—or dynamic interference—in large-
scale M2M networks. We consider a worst-case scenario
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where the network is interference-limited, uncoordinated, and
the locations of interferers are governed by a homogeneous
Poisson point process. This setup is relevant for networks
supporting the internet of things and in large-scale sensor
networks, where transmitting devices are very simple and have
limited ability to coordinate. We also assume that the active
set of transmitters varies symbol-by-symbol, which contrasts
with the Gaussian model where the active transmitter set is
fixed.

Dynamic interference in wireless networks was introduced
in [4, 5] by considering a fast-varying (symbol-by-symbol) ac-
tive transmitter set, with locations governed by a homogeneous
Poisson point process. In particular, it was shown that the
interfering signal in each time slot is α-stable. The α-stable
interference model is also known to be a good approximation
of the true interference distribution when the radius of the
network is large, there are no guard zones and the active
interferer set changes rapidly [6–8].

The class of α-stable random variables are well-known to
model impulsive signals, having—unlike Gaussian noise—
infinite variance. Although an expression without a closed-
form for the error probability in the presence of α-stable
interference was derived in [4], little is known about the
achievable rates and the optimal density of devices in this
scenario.

To optimize networks with dynamic interference, we es-
tablish a refined interference model which accounts for the
statistics of the baseband signal of each interfering device and
small-scale fading. As in [4], this leads to interference with
isotropic α-stable statistics. Applying our recent characteri-
zation of the achievable rates of additive isotropic α-stable
noise channels in [9], we derive a closed-form expression for
the achievable rate of the typical user. A key observation is
that Gaussian inputs are no longer optimal and that truncated
α-stable inputs in fact yield higher achievable rates.

A characterization of the achievable rate of the typical user
provides a means of establishing the area spectral efficiency
[10] of the network, which is the achievable rate per square
meter. In particular, we establish an accurate approximation
of the area spectral efficiency using truncated α-stable inputs.
Using this approximation, we find that it is highly desirable to
deploy dense networks—consistent with a common strategy in
networks based on Gaussian noise models [11]. This suggests
that although the optimal signaling differs, the basic network



architecture of fixed and dynamic interference scenarios is the
same.

II. SYSTEM MODEL AND INTERFERENCE
CHARACTERIZATION

Consider a large-scale wireless communication network
consisting of devices and access points, where each device
transmits data to a unique access point. The locations of the
devices are governed by a homogeneous Poisson point process
(PPP), denoted by Φ, with intensity λ. We assume that the
network is uncoordinated, which forms a worst case model
for large-scale M2M communication networks.

For an access point at the origin, A0, served by device 0,
the interference at time t from the other devices is given by

It =
∑

k∈Φ\{0}

r
−η/2
k,t hk,txk,t, (1)

where η is the path loss exponent of the interfering links.
The circularly symmetric complex normal distributed random
variable hk,t ∼ CN (0, 1) is the Rayleigh fading coefficient for
the link from device k to the access point A0. The baseband
emission of each interferer k is denoted by xk,t. We assume
that the real and imaginary parts of hk,txk,t are symmetric

and ejφhk,txk,t
(d)
= hk,txk,t for all φ ∈ [0, 2π), which means

that hk,txk,t is isotropic. This is not a strong assumption and
is satisfied, for instance, in the case of Rayleigh fading with
circularly symmetric complex Gaussian baseband emissions.

The distance of the access point A0 from the device at
the origin is denoted by rd, which is assumed to have a
distribution Frd , and the location of A0 is assumed to be
uniformly distributed on the circle of radius rd. The signal
received by the access point A0 at time t is then given by

yt = r
−η/2
d,t hd,txd,t + It +Nt, (2)

where hd,t ∼ CN (0, 1) is the Rayleigh fading coefficient and
xd,t is the baseband emission for the typical user. The additive
white zero-mean Gaussian noise Nt ∼ CN (0, σ2) corresponds
to thermal noise at the access point.

In this paper, we are concerned with the scenario where
the active interferer set changes rapidly, called dynamic inter-
ference. In the worst case scenario, the dynamic interference
is (typically non-Gaussian) noise that affects every symbol,
which we assume to be independent at each time t. There
are two key physical mechanisms that can induce dynamic
interference. The first mechanism is any protocol where data
is transmitted in non-contiguous blocks, which means that
interferers do not transmit data continuously.

The second mechanism arises when there are multiple
coexisting communication systems, such as IEEE 802.11 (Wi-
Fi) and IEEE 802.15 (Zigbee, Bluetooth). The IEEE 802.11
frame is composed of a fixed header of 34 bytes and for
a short payload of 250 bytes and data rate of 54 Mbps
the on-air time is 42.07 microseconds. On the other hand,
the IEEE 802.15 Zigbee frame is 40 bytes with data rate
250 kbps, leading to an on-air time of 1.25 ms. Moreover,

Bluetooth is frequency hopping and is present in a 802.15
band only rarely and for a very short time. The result is that
Bluetooth and Wi-Fi interferers are active for short periods
of time relative to Zigbee transmissions, resulting in dynamic
interference. To illustrate the second mechanism Fig. 1 shows
the result of an experiment (detailed in [12, Section 2.5.2])
with coexisting Wi-Fi, Bluetooth and Zigbee transmissions.
Observe that Bluetooth interference for very short periods of
time is sufficient to corrupt a Zigbee transmission.

Fig. 1. Coexistence of technologies in the 2.4-GHz band. Measurements made
by a National Instruments USRP (detailed in [12, Section 2.5.2]).

Based on these considerations, the received signal by the
access point A0 in the presence of dynamic interference for
the interference-limited setting is the output of a memoryless
additive noise channel. In particular, the output y is given by

y = r
−η/2
d hdxd + I. (3)

Note that we have dropped the time subscript due to the fact
that this channel is memoryless. We also remark that device
heterogeneity can be captured under the assumption that the
probability a device with a given protocol is the same for each
device.

In order to evaluate communication in dynamic interference,
it is necessary to characterize the statistics of I . The basis of
this characterization is the theory of isotropic α-stable random
variables, which we now review.

A. Isotropic α-Stable Random Variables

The α-stable random variables are an important class of
random variables with heavy-tailed probability density func-
tions, which have been widely used to model impulsive signals
[13]. The probability density function of an α-stable random
variable is parameterized by four parameters: the exponent
0 < α ≤ 2; the scale parameter γ ∈ R+; the skew parameter
β ∈ [−1, 1]; and the shift parameter δ ∈ R. As such, a
common notation for an α-stable distributed random variable is
X ∼ Sα(γ, β, δ). In the case β = δ = 0, the random variable
X is said to be a symmetric α-stable random variable.

In general, α-stable random variables do not have closed-
form probability density functions. Instead, they are usually



represented by their characteristic function, given by

E[eiθX ]

=

{
exp

{
−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iδθ
}
, α 6= 1

exp
{
−γ|θ|(1 + iβ 2

π (signθ) log |θ|) + iδθ
}
, α = 1

(4)

The random variable I arising from dynamic interference
is complex, which leads to the concept of isotropic α-stable
random variables. Let N1, N2 be two symmetric α-stable
random variables. An isotropic α-stable random variable N =
N1 + iN2 then satisfies the following two conditions

C1: The random vector N = (N1, N2)T is symmetric
in R2; i.e., Pr(−N ∈ A) = Pr(N ∈ A) for all Borel
set A ∈ R2.
C2: eiφN

(d)
= N for any φ ∈ [0, 2π).

The random vector N is said to be induced by the isotropic
α-stable random variable N .

A key characterization of isotropic α-stable random vari-
ables is in terms of a scale mixture representation.

Theorem 1. Let 0 < α < 2. A complex random variable
Z = Z1 +iZ2 is isotropic if and only if there are two indepen-
dent and identically distributed zero-mean Gaussian random
variables G1, G2 with variance σ2

N and a random variable
A ∼ Sα

2
((cos(πα/4))2/α, 1, 0) independent of (G1, G2)T

such that (Z1, Z2)T = A
1
2 (G1, G2)T .

We also require the characteristic function of random vec-
tors induced by isotropic α-stable random variables. Since
α-stable random variables do not in general have closed-
form probability density functions, the characteristic function
therefore plays a key role.

Property 1. The characteristic function of a random vector
Z induced by an isotropic α-stable random variable Z (0 <
α < 2) is given by

φZ(θ) = E[ei(θ1Z1+θ2Z2)] = e−2−α/2σαZ |θ|
α

, (5)

where σZ corresponds to square root of the variance of the
i.i.d Gaussian random variables in Theorem 1.

B. Interference Characterization

We now turn to characterizing the interference I , which is
in fact an isotropic α-stable random variable. To see this, let
zk = hkxk and denote the real and imaginary parts as zk,r
and zk,i, respectively. The interference can then be written as

I =

∞∑
k=1

r
−η/2
k (zk,r + izk,i), (6)

where each device in Φ is indexed by an integer k = 1, 2, . . .
and we can ignore the effect of the serving device by
Slivnyak’s theorem. Recall that the distances, {rk}∞k=1, are
from points in a PPP to the origin. Using the mapping theorem,
it follows that r2

k is a one-dimensional PPP with intensity
λπ [8, Theorem 1]. By an application of the LePage series
representation of symmetric α-stable random variables [14,

Theorem 1.4.2], it also follows that I converges almost surely
to

I = Zr + iZi, (7)

where Zr and Zi are symmetric 4/η-stable random variables.
By [14, Theorem 2.1.5(b)], the induced random vector I =
(Zr, Zi)

T is a symmetric 4/η-random vector, which implies
that condition C1 holds.

To show that condition C2 holds, recall that eiφhkxk
(d)
=

hkxk for any φ ∈ [0, 2π). This implies that I is isotropic and
hence I is an isotropic 4/η-stable random variable.

In order to characterize the statistics of the interference I ,
all that remains is to obtain the parameter σN in the scale
mixture representation stated in Theorem 1. Again using the
LePage series representation in [14, Theorem 1.4.2], the scale
parameters of the real and imaginary parts of I are equal to
(πλC−1

η
4

E[|Re(hkxk)|
4
η ])

η
4 . Using Property 1, we then have

σN = (πλC−1
η
4

E[|Re(hkxk)|
4
η ])

η
4 , (8)

where C η
4

is given in (10).
In summary, the interference I is characterized as follows.

Proposition 1. The interference I is an isotropic α-stable
random variable, with α = 4

η and parameter

σN =
(
πλC−1

4
η

E[|Re(hkxk)|
4
η ]
) η

4

, (9)

where Γ(·) is the Gamma function and

Cα =

{ 1−α
Γ(2−α) cos(πα/2) , if α 6= 1

2/π, if α = 1.
(10)

The main consequence of Proposition 1 is that the channel in
(3) is a memoryless additive isotropic α-stable noise (AIαSN )
channel. Unlike circularly symmetric complex Gaussian noise,
the real and imaginary parts of I are not independent—
a consequence of Theorem 1. Therefore, it is not possible
to treat an AIαSN channel as parallel real α-stable noise
channels. Instead, it is useful to view the AIαSN channel
as a vector channel, where the real vector-valued noise is the
vector induced by the isotropic α-stable interference I .

III. ACHIEVABLE RATES WITH DYNAMIC INTERFERENCE

In this section, we derive the achievable rate for the access
point at the origin. Unlike the power constrained Gaussian
noise channel, tractable expressions are not known for the
power constrained AIαSN channel. For this reason, it is
desirable to consider alternative constraints.

One choice of constraints is the combination of amplitude
and fractional moment constraints. In particular, the input
signal xd in (3) is required to satisfy

E[|Re(xd)|r] ≤ c
E[|Im(xd)|r] ≤ c
|Re(xd)| ≤ A
|Im(xd)| ≤ A, (11)



where 0 < r < α. Note that the presence of the amplitude
constraint ensures that the input has finite moments, including
power.

To characterize the capacity of the AIαSN channel in (3)
subject to the constraints in (11), we proceed in two steps.
First, we relax the amplitude constraints and consider the
capacity optimization problem given by

maximize
µ∈P

I(X; y)

subject to E[|Re(X)|r] ≤ c,
E[|Im(X)|r] ≤ c,

(12)

where P is the set of probability measures on C and 0 < r <
α. The unique (see [9]) solution to (12) is lower bounded in
the following theorem.

Theorem 2. For fixed rd and hd, the capacity of the additive
isotropic 4

η -stable noise channel in (3) subject to the fractional
moment constraints in (12) is lower bounded by:

CL =
η

4
log

1 +

(√
2|r−

η
2

d hd|2
(

c
C(r, 4η )

) 1
r

) 4
η

σ
4
η

N

 , (13)

where Γ(·) is the Gamma function and

C

(
r,

4

η

)
=

2r+1Γ
(
r+1

2

)
Γ(−ηr/4)

4
η

√
πΓ(−r/2)

. (14)

Proof. We consider the case that xd is an isotropic α-stable
random variable satisfying the constraints in (12). By Theo-
rem 5 in [9], the mutual information of the channel Y = xd+I
is given by

I(xd;Y ) =
η

4
log

1 +

(√
2
(

c
C(r, 4η )

)1/r
) 4
η

σ
4
η

N

 (15)

The result then follows by observing that r−
η
2

d hdxd is also an
isotropic 4

η -stable random variable with parameter |r−
η
2

d hd|σN
using the fact that xd is isotropic and [14, Property 1.2.3].

The achievable rate in Theorem 2 is obtained by using input
signals that are isotropic α-stable random variables, which
does not satisfy the amplitude constraints in (11). The second
step in characterizing the capacity of the AIαSN channel
subject to (11) is therefore to consider a truncated isotropic
α-stable input. This guarantees the amplitude constraints are
satisfied and, as we will show, yields a mutual information in
the AIαSN channel that is well approximated by Theorem 2
for a sufficiently large truncation level T .

The truncated isotropic α-stable random variables are de-
fined as follows. Let X be an isotropic α-stable random

variable, with real part Xr and imaginary part Xi. The
truncation of X , denoted by XT , is given by

XT =


X, |Xr| ≤ T, |Xi| ≤ T
sign(Xr)T + iXi, |Xr| > T, |Xi| ≤ T
Xr + isign(Xi)T, |Xr| ≤ T, |Xi| > T
sign(Xr)T + isign(Xi)T, |Xr| > T, |Xi| > T.

(16)

Using the truncated isotropic α-stable input, an achievable
rate of the amplitude and fractional moment constrained
AIαSN channel is obtained by evaluating the mutual infor-
mation I(y;XT ), where y is the output of the channel in
(3). In fact, using a similar argument to that for the power
constrained Gaussian noise channel [15], it is straightforward
to show that all rates R < I(y;XT ) are achievable by using a
codebook consisting of 2nR codewords Wn(1), . . . ,Wn(2nR)
with Wi(w), i = 1, 2, . . . , n, w = 1, 2, . . . , 2nR independent
truncated isotropic α-stable random variables.

Unfortunately, truncated isotropic α-stable inputs do not
lead to a closed-form mutual information for the channel in (3).
In fact, only scaling laws for the capacity have been recently
derived for real-valued inputs [16]. In order to characterize
the achievable rates in the presence of dynamic interference,
we therefore approximate I(XT ; y) by the lower bound in
Theorem 2.

To verify that this approximation is indeed accurate, we
numerically compute the mutual information I(XT ; y) and
compare it with the result in Theorem 2 in Fig. 2 and Fig. 3
for α = 1.7 and α = 1.3, respectively. Observe that for a
sufficiently large truncation level, the approximation based on
Theorem 2 is in good agreement with I(XT ; y). Moreover,
the achievable rate is significantly larger than the case of a
Gaussian input. This suggests that Gaussian signaling is not
necessarily desirable in the presence of dynamic interference;
however, it is necessary to tune the truncation level numerically
at present.
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Fig. 2. Achievable rates for an AIαSN channel with α = 1.7, σN = 0.1
and a constraint E[|X|] ≤ 1. The curves correspond to a Gaussian input, an
isotropic α-stable input and a truncated isotropic α-stable input (defined in
(16)).

In light of the validity of the achievable rate approximation
based on Theorem 2, we now turn to characterizing the
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Fig. 3. Achievable rates for an AIαSN channel with α = 1.3, σN = 0.5
and a constraint E[|X|] ≤ 1. The curves correspond to a Gaussian input, an
isotropic α-stable input and a truncated isotropic α-stable input (defined in
(16)).

effect of device density in large-scale networks with dynamic
interference.

IV. AREA SPECTRAL EFFICIENCY ANALYSIS

In this section, we investigate the effect of device density
λ on network performance. In particular, we study the area
spectral efficiency, which is defined as the expected total rate
per square meter. The area spectral efficiency captures the
tradeoff between the distance between each device and its base
station as well as the increasing interference as the device
density increases. Formally, let A1 ⊂ A2 ⊂ · · · be a sequence
of discs such that Area(An) → ∞ as n → ∞. The area
spectral efficiency is then given by

ζ = lim
n→∞

1

Area(An)
E

 ∑
i∈Φ(An)

Ri(An)

 , (17)

where Φ(An) is the PPP Φ restricted to the disc An and
Ri(An) corresponds to the achievable rate with a truncated
isotropic α-stable input and devices in Φ(An).

The area spectral efficiency in the large-scale network
detailed in Section II is given in the following theorem.

Theorem 3. The area spectral efficiency with device loca-
tions governed by a PPP, dynamic interference and truncated
isotropic α-stable inputs is given by

ζ = λErd,hd [Ri], (18)

where Ri is the achievable rate with a truncated isotropic
α-stable input and devices in Φ.

Proof. See Appendix A.

As observed in Section III, Ri = I(yi;XT ) does not have
a closed-form expression which makes characterizing the area
spectral efficiency ζ challenging. To proceed, we exploit the
approximation of I(yi;XT ) based on Theorem 2. In particular,

we obtain the following approximation for the area spectral
efficiency

ζ ≈ λErd,hd

η4 log

1 +

(√
2|rdhd|2

(
c

C(r, 4η )

) 1
r

) 4
η

σ
4
η

N




=
λη

4
Erd,hd

log

1 +

(√
2|rdhd|2

(
c

C(r, 4η )

) 1
r

) 4
η

πλC−1
η
4

E[|Re(hkxk)|
4
η ]



(19)

which is tight when the truncation level for the input T is
sufficiently large. Further insight into the approximation error
can be obtained numerically, such as in Fig. 2 and Fig. 3.

The expression in (19) provides insight into the effect of
the device density λ. In particular, consider a function of the
form

f(λ) = λ log

(
1 +

1

λ

)
, (20)

which captures the dependence of the spatial rate density
approximation in (19) on the device density λ. Since we
are interested in studying the impact of device density, an
application of Leibniz’s rule in (19) shows that it is sufficient
to consider (20). Evaluating the derivative yields f ′(λ) =
log
(
1 + 1

λ

)
− 1

1+λ .
Since log x > 1− 1

x for x > 1, it follows that log
(
1 + 1

λ

)
>

1
1+λ and hence for λ > 0, f ′(λ) > 0. This implies that the area
spectral efficiency ζ is an increasing function of the density
λ (illustrated in Fig. 4). We therefore conclude that dense
networks maximize the area spectral efficiency. We remark that
dense networks are also desirable for slowly varying active
interferer sets [11]. This implies that although the optimal
signaling strategy for each link is no longer Gaussian, the basic
network structure is the same both for dynamic interference
and interference arising from a slowly varying active interferer
set.
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Fig. 4. Plot of f(λ) in (20).



V. CONCLUSIONS

Rapid changes in the active transmitter set is a charac-
teristic of wireless communication networks with very short
transmissions, which arises in M2M communications. A con-
sequence of the rapid changes in the active transmitter set
is that the interference is dynamic. We have shown that
dynamic interference is not Gaussian. In fact, the interference
is isotropic α-stable for large scale networks with interferers
located according to a PPP.

A key question is therefore what rates are achievable in the
presence of isotropic α-stable interference. In this paper, we
have derived a closed-form expression for the achievable rate
with an isotropic α-stable input. Moreover, numerical results
suggest that it well approximates the achievable rate when the
input signal is truncated, for sufficiently large truncation levels.

In order to establish the effect of device density in large
scale networks with dynamic interference, the area spectral
efficiency was studied. We showed that dense networks opti-
mize the area spectral efficiency, consistent with analysis for
networks with slowly varying active transmitter sets.

APPENDIX A
PROOF OF THEOREM 3

In order to compute the area spectral efficiency ζ, observe
that the random variables Ri(An) are identically distributed
(but not independent) since the distances rd are independent
and identically distributed, and the locations of the devices are
independently and uniformly distributed in An conditioned on
the number of devices N(An) in An [17]. By the strong law
of large numbers for PPPs [18], N(An)

Area(An)
∼= λ a.s. as n→∞.

Let ε > 0, it then follows that

ζ = lim
n→∞

1

Area(An)
E

Area(An)
N(An)

Area(An)∑
i=1

Ri(An)


= lim
n→∞

1

Area(An)

×

E

bArea(An)λ1c∑
i=1

Ri(An)|λ1 ∈ [λ− ε, λ+ ε]


×Pr(λ1 ∈ [λ− ε, λ+ ε])

+E

bArea(An)λ1c∑
i=1

Ri(An)|λ1 6∈ [λ− ε, λ+ ε]


×Pr(λ1 6∈ [λ− ε, λ+ ε])) (21)

A direct consequence of the strong law of large numbers of
PPPs is that as n→∞, Pr(λ1 ∈ [λ− ε, λ+ ε])→ 1.

Next, for fixed large n select An such that λAn is an integer
and ε > 0 sufficiently small such that λAn is the only integer
in [λ− ε, λ+ ε]. It then follows that

ζ = lim
n→∞

1

Area(An)
Area(An)λE[Ri(An)]

= λ lim
n→∞

E[Ri(An)]. (22)

To evaluate limn→∞ E[Ri(An)], let yi,An be the received
signal at the access point served by the i-th device in Φ(An).
For fixed rd, hd, Ri(An) = I(yi,An ;XT ). From the LePage
series representation of the interference in (6), it follows that
the signal received by the access point served by the i-th device
in Φ satisfies yi

(d)
= r

− η2
d hdXT + I, a.s. as n→∞.

Since the conditions in [19, Theorem 1] hold, it follows
that for fixed rd, hd we have I(yi,An ;XT ) → I(yi;XT ) as
n→∞. As Ri(An) is positive and Ri(An)→ Ri as n→∞,
we then obtain the desired result.
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