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The aim of this paper is to derive a new mechanism for the formation of the galactic spiral patterns. This mechanism is based on the gravitational radiation introduced recently by authors MW-radiation

[7], leading to the introduction of gravitational temperature, called G-temperature. We derive three crucial parameters dictating the formation of different galactic structures: Ra representing the G-temperature difference, a parameter a representing the average velocity of stars in the galaxy, and a parameter representing the relative ratio between the inner and outer radii of galactic disk. We show that if Ra is less than a critical threshold R c or if is small, then the galaxy is elliptic, and if Ra is large then R c and is relatively large, then the galaxy is spiral.

Introduction

The main objective of this paper is to provide a new theory for the formation of the galactic spiral patterns. This is part of the research program initiated recently by the authors on theory and applications of topological phase transitions, including

(1) quantum phase transitions MW-tpt1

[9], (2) electromagnetic eruptions on solar surface, (3) boundary-layer separation of fluid flows, and (4) interior separation of fluid flows. It is clear that there are three types of galactic structures: the spiral, the elliptical, and the irregular. The existing theory of the formation of the spiral galactic structure is the density wave theory by Chia-Ciao Lin and Frank Shu in 1964 lin-shu64 [START_REF] Lin | On the spiral structure of disk galaxies[END_REF]. They proposed that the spiral arms, being non material, are caused by the non-homogeneous velocity of stars and nebulae, similar to a traffic jam in a highway. However, the reasons behind the nonhomogeneous velocity of stars and nebulae are still not clear, and the density wave theory is not completely satisfactory.

The theory presented in this paper is based on three theories developed recently by the authors:

(a) the models for astrophysical fluid dynamics

MPTP

[6], (b) the gravitational radiation MW-radiation [START_REF]Radiations and potentials of four fundamental interactions[END_REF], and (c) the dynamic theory of phase transitions PTD [START_REF]Phase Transition Dynamics[END_REF]. The main ingredients of the paper are as follows.

First, the matter in a galaxy is a non-continuous, discrete field, and therefore the classical fluid dynamical equations are not suitable for the galactic motion. To study galactic dynamics, we introduced in

MPTP

[6] the momentum form of the astrophysical fluid dynamical model. Basically, the momentum density field P (x, t) is now used to replace the velocity field u(x, t) as the state function for galactic objects, because the momentum density field P is the energy flux taking into consideration of the mass, the heat, and all interaction energy fluxes, and consequently can be regarded as a continuous field.

Second, a typical galaxy consists of two main parts: the disc and the halo. The halo is a ball shaped spatial region located in the center of the galaxy, and the disk is composed of stars and nebulae, rotating around the halo. Different galactic patterns are associated with the distribution of stars and nebulae in the disk, which can be viewed as a two-dimensional ring region.

Mathematically, using the dynamical transition theory PTD [START_REF]Phase Transition Dynamics[END_REF] and the geometric theory of incompressible flows amsbook [START_REF] Ma | Geometric theory of incompressible flows with applications to fluid dynamics[END_REF], we can demonstrate that the 2D Boussinesq equations on the ring region undergoes dynamic transition from a basic rotating zonal flow to a spatiotemporal flow, which is superposition of the basic zonal flow and a convective flow with 2m vortices, leading to the formation of a spiral flow structure with m arms.

However, in view of this mathematical theory, one encounters a problem that the temperature is very low in a galaxy, and obviously can not play the role to derive a vortex motion as just described.

Third, the above mentioned problem is resolved by the new gravitational field equations MW12 [START_REF]Gravitational field equations and theory of dark matter and dark energy[END_REF] and the notion of gravitational radiation MW-radiation [START_REF]Radiations and potentials of four fundamental interactions[END_REF] developed recently by the authors.

Due to the presence of dark matter and dark energy, the Einstein general theory of relativity can be uniquely modified using PID to take into account the effect of dark energy and dark matter phenomena, and to preserve the Einstein's two fundamental principles: the principle of equivalence and the principle of general relativity. The gravitational field particle is described by the dual field {Φ µ }, which is a spin-1 massless particle and is regarded as the graviton. This field particle can be regarded as the dark matter, and the energy it carries is the dark energy.

Motivated by the new statistical theory of heat MW-heat [START_REF]Statistical theory of heat[END_REF], the absorption and radiation of gravitons could generate a gravitational temperature field, representing the average energy level of massive matter, reminiscent of the photons yielding the temperature in thermodynamical systems. Also, the gravitational temperature T , which we call Gtemperature, satisfies a diffusion equation given by ( 3.15

3.15).

The new gravitational temperature field provides the needed key source for the formation of different galactic patterns, which was entirely missing in existing theories such as the pioneering work of Lin and Shu lin-shu64 [START_REF] Lin | On the spiral structure of disk galaxies[END_REF].

Fourth, the momentum form of the astrophysical fluid dynamical model and the diffusion equation of G-temperature field provide an astrophysical galactic dynamics model. This is a dissipative system. Hence the mechanism of the formation of different galactic structures is of characteristic for dissipative systems, in contrast with the density wave theory.

Fifth, for this galactic dynamics system, there are three crucial parameters for the formation of different galactic structures: Ra representing the G-temperature difference T 0 -T 1 , a representing the average velocity of stars in the galaxy, representing the ratio (r 1 -r 0 )/r 0 .

Here r 0 and r 1 are the inner and outer radii of the ring region of the galactic disk, T 0 and T 1 are the G-temperatures at the inner and outer boundaries.

Mathematically, we show that for this system, both topological phase transition and dynamic phase transition occur at the same critical control parameters. In particular we derive the following conclusions on the formation of galactic structures, dictated by the parameters Ra, a, :

Ra < R c (a) or is small =⇒ the galaxy is elliptic, Ra > R c (a)
and is relatively large =⇒ the galaxy is spiral.

The paper is organized as follows. Section s2 2 addresses some mathematical insights and two physical problems faced for deriving a pattern formation theory of galactic structures. Section s3 3 introduces the momentum form of an astrophysical dynamics model and gravitational radiation, which give rise to thew notion of gravitational temperature field, the key source for the formation of different galactic structures. The complete set of galactic dynamics model and its basic solutions are derived in Section s4 4. The new theory of the formation of galactic spiral pattern is derived in Section s5 5. 2.1. Galactic structures. A typical galaxy consists of two main parts: the disc and the halo. The halo is a ball shaped spatial region located in the center of the galaxy, and the disk is composed of stars and nebulae, rotating around the halo. A schematic diagram for a galactic section is illustrated in Figure f1 2.1. There are three types of galactic structures: the spiral, the elliptical, and the irregular. Near 83% of galaxies are spiral, 13% -14% are elliptical, and the others are irregular. Figure The spiral structure of galaxies is an important astrophysical phenomenon, which has attracted much attention for a long time. Originally, it was thought that the arms of a spiral galaxy were material. However, this interpretation leads to the winding problem, i.e. the arms would become more and more tightly wound, because the matter near the center of the galaxy moves faster than the matter farther away from the center. Through many years, the arms cannot be distinguished. The density wave theory established by C. C. Lin and Frank Shu in 1964 lin-shu64 [START_REF] Lin | On the spiral structure of disk galaxies[END_REF] proposed that the arms, being non material, are caused by the non-homogeneous velocity of stars and nebulae, similar to a traffic jam in a highway. In a road with the traffic jam, the density of cars is larger than in the open roads. In spiral galaxies, stars and nebulae move through the density waves are compressed, and then go out of them.

Formation Mechanism of Spiral Galaxies

The traffic jam version of the density wave theory has been generally accepted. However, the reasons to cause the nonhomogeneous velocity of stars and nebulae are still not very clear. The density wave theory provided an explanation, but not completely satisfied. In this paper, we propose a different theory to explain the phenomena, based on three theories developed recently by the authors MPTP, MW-radiation, PTD [6, 7, 3]:

(1) the models for astrophysical fluid dynamics, (2) the gravitational radiations, and (3) the dynamic theory of phase transitions.

s2.2 2.2. Spiral pattern formation. First we consider a thermal convection phenomenon in fluid motions, demonstrating the formation mechanism similar to the structure of spiral galaxies.

Let Ω be a two dimensional ring domain:

2.1 2.1 (2.1) Ω = {(r, θ) | 0 ≤ θ ≤ 2π, r 0 < r < r 1 },
where (r, θ) is the polar coordinate system, r 0 , r 1 are the inner and outer radii, as shown in Figure f4 2.4(a). Consider a fluid in Ω coupling heat, with a centripetally gravitational force. The dynamical model for the system is the standard Boussinesq equations

2.2 2.2 (2.2) ∂u ∂t + (u • ∇)u = ν∆u - 1 ρ ∇p -g k(1 -αT ), ∂T ∂t + (u • ∇)T = κ∆T, divu = 0,
where u = (u r , u θ ) is the velocity field, T is the temperature, ν is the viscosity, κ is the diffusion coefficient, ρ is the density, p is the pressure, g is the gravitational constant, α is the expansion coefficient and k = (1, 0) is the unit vector in the r-direction.

On the boundary r = r 0 and r = r 1 , there is a thermal gradient:

2.3 2.3 (2.3) T = T 0 at r = r 0 , T = T 1 at r = r 1 with T 0 > T 1 .
The boundary value problem (

2.2 2.2)-( 2.3 2.
3) has a steady state solution

(U r , U θ ) = (U (r), 0), T = T 0 -β(r -r 0 ), p = P (r),
where β = (T 0 -T 1 )/(r 1 -r 0 ), and the basic solution (U (r), 0) has the flow structure as shown in Figure f4 2.4(a). Take the translation

2.4 2.4 (2.4) u = U (r) + u, T = T + T , p = P (r) + p, then equations ( 2.2 2.2) become 2.5 2.5 (2.5) ∂ u ∂t + ( u • ∇) u = ν∆ u -(U • ∇) u -( u • ∇)U - 1 ρ ∇ p -g kβ T , ∂ T ∂t + ( u • ∇) T = κ∆ T + β u r - a r 2 ∂ T ∂θ , div u = 0,
with a physical boundary condition. Mathematically, we can prove that there exists a critical value

β c > 0, such that if 2.6 2.6 (2.6) β = T 0 -T 1 r 1 -r 0 > β c ,
then equations ( We now see that if the temperature difference T 0 -T 1 > 0 satisfies ( It is clear that the flows of u in regions B and A in Figure The above observation will give rise to a new mechanism for the formation of the spiral galactic structure. However, we are facing the following two basic problems in galactic dynamics: 2.8)are solved in the following section by introducing the 1) momentum fluid equations for galactic dynamics, and 2) the gravitational radiation which leads to the needed force for generating galactic vortex motion. [START_REF]Astrophysical dynamics and cosmology[END_REF]6], the momentum density field P (x, t) was used to replace the velocity field u(x, t) as the state function for galactic objects, because the momentum density field P is the energy flux taking into consideration of the mass, the heat, and all interaction energy fluxes, and consequently can be regarded as a continuous field. In this section, we introduce the momentum form of the astrophysical fluid dynamical model.

Momentum Fluid Model and Gravitational Radiation

The physical law governing the energy flux is the Newtonian Second Law. Namely, for the momentum density P , Hence, we have where ϕ represents the gravitational potential. In view of ( For galactic rotation in the domain ( 

∆P = ∆P r - 2 r 2 ∂P θ ∂θ - P r r 2 , ∆P θ + 2 r 2 ∂P r ∂θ - P θ r 2 , ∆f = ∂ 2 f ∂r 2 + 1 r ∂f ∂r + 1 r 2 ∂ 2 f ∂θ 2 , (P • ∇)P = P r ∂P r ∂r + P θ r ∂P r ∂θ - P 2 θ r , P r ∂P θ ∂r + P θ r ∂P θ ∂θ + P r P θ r , divP = ∂P r ∂r + 1 r ∂P θ ∂θ + P r r , ∇ = ∂ ∂r , 1 r ∂ ∂θ .
s3.2

Statistical theory of heat. In

MW-heat

[8], a statistical theory of heat was derived, and the crucial points of which can be stated as follows.

1). The temperature T is the average energy level for a thermodynamic system, expressed as

kT =                      n 1 - a n N a n ε n N (1 + β n ln ε n ) for classical systems, n 1 + a n g n a n ε n N (1 + β n ln ε n ) for Bose systems, n 1 - a n g n a n ε n N (1 + β n ln ε n ) for Fermi systems,
where k is the Boltzmann constant, ε n are the energy levels of the system particles, g n are the degeneracy factors (allowed quantum states) of the energy levels ε n , a n are the numbers of particles on ε n , and β n are the parameters depending on the material of the system.

2). Entropy is essentially the photon number in the gap of the system particles, expressed as

S = kN 0 1 + 1 kT n a n ε n N 0 ,
where N 0 is the total number of photons in the system, ε n are the energy levels of the photons, and a n are the numbers of photons on the energy levels ε n .

3). Temperature increasing and decreasing are caused by the system particles absorbing and radiating photons respectively. Hence, the photon density and energy levels can characterize the temperature of a system. This is the reason why the temperature diffusion obeys the same law as the particle diffusion does. 4). The equation of state for a thermodynamical system 3.3. Graviton thermodynamics. Based on the statistical theory of heat introduced in the previous section, the photons are the main resource of thermal energy. Hence, the classical thermal physics can also be called as the photon thermodynamics. However, the galactic dynamics can not be established on the photon thermodynamics as stated in (

3.8

3.8), rather on the graviton thermodynamics proposed in this section.

To this end, we recapitulate the gravitational radiation theory derived in MW-radiation [START_REF]Radiations and potentials of four fundamental interactions[END_REF]. First, we recall the PID gravitational field equations MW12, MPTP, MW-radiation [START_REF]Gravitational field equations and theory of dark matter and dark energy[END_REF]6,[START_REF]Radiations and potentials of four fundamental interactions[END_REF]]:

3.9 3.9 (3.9)

R µν - 1 2 g µν R = - 8πG c 4 T µν -∇ µ Φ ν
, where there are three groups of state functions, whose physical meaning are given as follows:

(1) {g µν } is the Riemannian metrics of 4-dimensional space-time, representing the gravitational potential, depicting the curved space-time; (2) {Φ ν } is the dual gravitational potential, representing the gravitational field particle and carrying the field energy, which is similar to the electromagnetic interaction field particle: the photon; (3) {T µν } is the energy-momentum tensor of the visible matter field. It is the dual gravitational potential {Φ ν } that plays the role of the dark matter and dark energy. In galactic dynamics, {Φ ν } plays the same role as the photon in thermodynamics. In fact, as a state function describing the gravitational field particle, 3.10 3.10 (3.10) Φ ν represents the graviton with spin J = 1.

Physically, an interaction field particle must be a massless and electric neutral boson. Hence, as a graviton {Φ ν } has to satisfy the Klein-Gordon type of equations. In fact, by the Bianchi identity,

∇ µ (R µν - 1 2 g µν R) = 0,
we derive from ( 3.9

3.9) that 

3.11) become

3.12 3.12 (3.12)

1 c 2 ∂ 2 ∂t 2 -∇ 2 Φ ν = 0,
which are the gravitational radiation wave equations.

r3.2 Remark 3.2. The gravitational radiation wave is different from the gravitational wave. The radiation wave is about the field particle {Φ ν } in (

3.12 3.12), representing the propagation of gravitational field energy. The gravitational wave is about space metric {g µν }, representing the propagation of space deformation.

We now examine at the analogy to electromagnetic field particle equations ∇ µ ∇ µ A ν = ∇ ν (divA) + eJ ν , and to the wave equations of electromagnetic radiation equations

1 c 2 ∂ 2 ∂t 2 -∇ 2 A ν = 0.
In view of ( 3.11

3.11) and (

3.12 3.12) we can claim that the graviton {Φ ν } in gravitational interaction is the analog of the photon in electromagnetism.

Hence, similar to the photon thermodynamical state equations ( In a nutshell, 3.14 3.14 (3.14) the absorption and radiation of gravitons could generate gravitational temperature, representing the average energy level of massive matter, reminiscent of the photons yielding the temperature in thermodynamical systems. Based on this conclusion, the gravitational temperature T also satisfies the diffusion equation as 

3.15).

Here, we need to make the Boussinesq approximation.

First, the function ϕ in ( 3.4) is the Newton potential:

∇ϕ = - GM r r 2 r,
where r is the unit vector in the r-direction, G is the gravitational constant, M r is the total mass in the ball of radius r. We take approximately ∇ϕ to be a constant vector

4.1 4.1 (4.1) ∇ϕ = -g r, g = M r 0 G r 2 0
, where r 0 is the radius of the halo. We take the standard Boussinesq approximation as follows: First, the equation of state ( 

Q = 0 in Ω,
where Ω is as in ( 2.1). For the polar coordinate (r, θ), we take the transformation 4.7 4.7 (4.7)

x 1 = rθ, x 2 = r -r 0 .

Then the domain Ω becomes 

Ω = {(x 1 , x 2 ) | 0 ≤ x 1 ≤ 2πr 0 , 0 < x 2 < r 1 -r 0 }.
Here, the domain of ( 4.6) are supplemented with the periodic boundary condition in the x 1 -direction:

4.9 4.9 (4.9) (P, T )(x 1 + 2πr 0 , x 2 ) = (P, T )(x 1 , x 2 ), then Ω of ( 4.8

4.8) is still a ring domain. Because the radius r 0 of the halo of a galaxy is very large, usually r 0 ∼ 10 4 ly (1 ly = 9.46 × 10 12 km), we can ignore all terms containing the factor 1 (r 0 +x 2 ) in ( 

∂P 1 ∂t + 1 ρ 0 (P • ∇)P 1 = µ∆P 1 - ∂p ∂x 1 , ∂P 2 ∂t + 1 ρ 0 (P • ∇)P 2 = µ∆P 2 - ∂p ∂x 2 -gρ 0 (1 -αT ), ∂T ∂t + 1 ρ 0 (P • ∇)T = κ∆T , divP = 0,
with the periodic boundary condition (

, where ∆, ∇, div and (P •∇) are the usual differential operators in the orthogonal coordinate system in R 2 .

s4.2 4.2. Basic steady state solution. The steady state solution of ( 4.10 4.10) must be consistent with the physical reality in astronomy. In 1970, V. Rubin and J. W. K. Ford first observed that most stars in a spiral galaxy have the same average orbital velocity; see rubin [START_REF] Rubin | Rotation of the andromeda nebula from a spectroscopic survey of emission regions[END_REF]. Namely, if v(r) represents the velocity of stars with distance r from the galactic center, then v(r) is almost independent of r, i.e. 4.10) should be constant:

4.12 4.12 (4.12) P = (P 1 , P 2 ) = (ρ 0 v 0 , 0), where v 0 is the constant velocity in the Rubin rotational curve. By the gravitational radiation theory, a large amount of gravitons are emitted from the halos of the galaxy, leading to a gravitational temperature gradient:

4.13 4.13 (4.13)

T = T 0 -βx 2 , 0 < x 2 < r 1 -r 0 , where β = (T 0 -T 1 ) (r 1 -r 0 ) with T 0 > T 1 .
Inserting (P , T ) into ( 

p = -ρ 0 g (1 -αT )dx 2 .
The functions (P , T , p) given by ( 4.12 4.12)-( 

∂P 1 ∂t + 1 ρ 0 (P • ∇)P 1 = µ∆P 1 -v 0 ∂P 1 ∂x 1 - ∂p ∂x 1 , ∂P 2 ∂t + 1 ρ 0 (P • ∇)P 2 = µ∆P 2 -v 0 ∂P 2 ∂x 1 - ∂p ∂x 2 + αgρ 0 T , ∂T ∂t + 1 ρ 0 (P • ∇)T = κ∆T , divP = 0, Let 4 
.17 4.17 (4.17)

x = r 0 x , t = r 2 0 t /κ, P = κρ 0 P /r 0 , 

T = βr 0 T / √ Ra, p = ρ 0 κ 2 r 2 0 p ,
, β = T 0 -T 1 r 1 -r 0 .
Then, suppressing the primes again, we deduce the following nondimensional form of ( The non-dimensional domain is

Ω = [0, 2π] × (0, ).
Here Pr is the Prandtl number, a is the Rubin number, and is the ratio between the disk width and the halo radius. These are non-dimensional parameters given by 4.20 4.20 (4.20)

Pr = µ κ , a = r 0 v 0 µ , = r 1 -r 0 r 0 .
The equations ( 4.21), we now establish the dynamical and topological phase transitions for the galactic spiral pattern formation. For the eigenvalue problem ( 

Reβ i (Ra)      < 0 if Ra < R c , = 0 if Ra = R c , > 0 if Ra > R c for 1 ≤ i ≤ m, 5.

5.

2); see also PTD [START_REF]Phase Transition Dynamics[END_REF]. In fact, the eigenvalue equations ( 5.1) are symmetric as a = 0, and the first eigenvalue β 1 satisfies 5.5 5.5 (5.5) β 1 (Ra) (1) if β 1 (Ra) in ( 5.3

     < 0 if Ra < R • c , = 0 if Ra = R • c , > 0 if Ra > R • c , β 1 (Ra) → +∞ as Ra → +∞, for some R • c > 0. Theorem

5.

3) is a real number, then ( P , T ) is an equilibrium state; and

(2) If β 1 (Ra) is an imaginary number, then ( P , T ) is a periodic solution. In particular, the field P has the vortex structure as shown in Figure We can obtain the a-Ra phase diagram in Figure where P is as in ( 4.12 4.12), and P is the transition solution of ( 4.21) from (P , T ) to (P + P , T + T ), and the topological phase transition from the elliptic pattern to the spiral pattern.

Here, we discuss the topological phase transition. In fact, direct numerical computation shows that the dynamic phase transition of ( 4.21) is a Hopf bifurcation for any a > 0, from the equilibrium (P , T ) to a periodic solution (P + P , T + T ). In particular, the flow field of P has convective vortical structure as given by the computer simulation in Figure motion state of P = the 2m vortices form a zonal motion 5.9 5.9 (5.9) in the P direction crossing the entire ring Ω.

Here the ring region Ω is defined by ( The above properties ( In the following, we explain the claim ( 5.10 5.10). Consider the superposition of the constant momentum field P = (ρ 0 v 0 , 0) of ( 4.12 4.12) and the vortex field P as shown in Figure where v is the rotating velocity of vortices. Then, it yields a band in Ω where the velocity of v 0 + v in x 1 -direction is slower then v 0 , as shown in Figure 8(b). Then, 2m vortices generate m bands where the galactic matter will be jammed to form m spiral arms. Besides, the spiral arms also move in the v 0 direction due to ( 5.9 5.9). 3). Relation between the parameters and m. In mathematics, the vortex number 2m of P , corresponding to the arm number m, depends on the parameter = (r 1 -r 0 )/r 0 , and is a decreasing function of :

dm d < 0.
In fact, as is very small, we have the asymptotical relation Hence, we infer from ( 5.11 5.11) the following conclusion:

5.12 5.12 (5.12) = r 1 -r 0 r 0 is small =⇒ the galaxy is elliptical.

The reason is that a small leads to a large arm number m, and it is hard to distinguish the arms from one to another. 4). Summary. By ( 5.7

5.7) and (

5.12 5.12), the parameters Ra, a, determine galactic structure as follows:

Ra < R c (a) or is small =⇒ the galaxy is elliptic, Ra > R c (a) and is relatively large =⇒ the galaxy is spiral.
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 255 bifurcate to a nonzero solution ( u, T ) with u possessing the vortex structure as shown in Figure

Figure 2 . 4 .

 24 Figure 2.4. (a) The basic flow (U (r), 0), and (b) the transition solution u, possessing the vortex structure.
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 44 , then the fluid flow is given by ( 2.as the superposition of the basic flow (U (r), 0) in Figure
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 4 (a) and the bifurcating flow u in Figuref4 2.4(b): 2.7 2.7 (2.7) u = (U (r), 0) + u.
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 2 4(b) are oriented in reversed directions, while (U (r), 0) flows only in one direction. Hence, the superposition ( 2.7 2.7) results in slower fluid motion in region B and faster fluid motion in regions A, and leads to the spiral pattern of the fluid flow.

s3 s3. 1 3. 1 .

 11 Momentum fluid dynamical equations. In MW-cosmology, MPTP

3.1 3

 3 .1 (3.1) dP dt = density of the driving force.This is the original form of the Newtonian Second Law. Let ρ be the energy density. As the momentum is energy flux, we have

3. 5 )

 5 ∇)P = ν∆P + λ∇(divP ) -∇p + ρ∇ϕ. Also, by the conservation of energy, 3.5 3.5 (3.5) ∂ρ ∂t + divP = 0. are the momentum fluid model for astrophysical fluid dynamics, replacing classical fluid dynamical equations. Here, ρ and P stand for ρ = total density of all forms of energy, P = total flux of all form of energy. Remark 3.1. As we take ρ =mass density, and P =particle flux (i.e. P = ρu), then ( are reduced to the classical Navier-Stokes equations.

2 . 1 2. 1 )

 211 , where r 0 > 0 represents the halo radius and r 1 is the galactic radius, the differential operators in (

3.7 3 . 7 7 3. 7 )

 3777 (3.7) ρ s = f (p, T ), ∂ρ s ∂T < 0, provides a relation between the mass density ρ s , the pressure p, and the temperature T . Based on the new theory of heat, T is a function of the photon energy density σ. Hence ( 3.is also equivalent to the form: 3.8 3.8 (3.8) ρ s = F (P, σ) with ∂ρ s ∂σ < 0.

3.11 3 .

 3 11 (3.11) ∇ µ ∇ µ Φ ν = -8πG c 4 ∇ µ T µν, where ∇ µ ∇ µ is the Klein-Gordon operator. Equation ( ). In vacuum, T µν = 0, and (

  we propose that there exists a scalar field T , called the gravitational temperature, such that the energy density ρ in ( satisfy the equation of state: 3.13 3.13 (3.13) ρ = f (p, T ), ∂ρ ∂T < 0.

4 . 1 4. 1 .

 411 ∇)T = κ∆T + Q, where Q represents the gravitational source. Model for Galactic Dynamics s4 s4.Boussinesq approximation. The dynamical equations governing galactic rotation are based on the momentum fluid equations (

4 3. 4 )

 44 ) is taken in the form4.2 4.2 (4.2) ρ = ρ 0 (1 -αT ), ρ 0 = constant,and the momentum density P is divergence-free: ), the term ρ∇ϕ in (3.is then given by 4.5 4.5 (4.4) ρϕ = -ρ 0 g(1 -αT ) r, Also, we set ρ = ρ 0 in other terms of (

4. 1 )

 1 ∇)P = µ∆P -∇p -ρ 0 g(1 -αT ) r, , and the differential operators ∆, ∇, div and (P • ∇)P are as in (

4 .

 4 11 4.11 (4.11) v(r) v 0 a constant. A typical galactic rotation curve is as shown in Figure

  f5

4. 1 .

 1 The Rubin

Figure 4 . 1 .

 41 Figure 4.1. Rubin galactic rotational curve, where the horizontal axis represents the distance from the galactic center, and the vertical axis is the velocity of stars.

  ) obeying the Rubin rotational curve.

s4. 3 4. 3 .

 33 Standard form of model. For the steady state solution (P , T , p) in ( ), we take the translation: 4.15 4.15 (4.15) P = P + P , T = T + T , p = p + p.Then, after suppressing the primes, equations (

4 . 5 .

 45 21 4.21 (4.21) (P, T , p) are periodic in x 1 -direction, P n = 0, ∂P τ ∂n = 0, T = 0 at x 2 = 0, . Theory for Galactic Spiral Structure s5 Based on the galactic dynamical model (

s5. 1 5. 1 .√

 11 Dynamic transitions. First, we introduce the dynamical transition theorems for the model. 1). Critical Rayleigh number. Consider the eigenvalue problem of the linearized equations of ( RaP 2 = β(λ)T , divP = 0, (P, T ) satisfies BC 5.1 5.1 ( 4.21 4.21), where λ represents the control parameters: 5.2 5.2 (5.2) λ = (Ra, a, Pr, ).
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 5111 we have the following theorem, which ensures that the dynamic transition for ( Theorem 5.1. For any given a, Pr, > 0 in ( 4.20 4.20), there exits a critical Rayleigh number R c > 0 such that all eigenvalues β k (k = 1, 2, • • • ) of (

  3 5.3 (5.3)Reβ j | Ra=Rc < 0 for j > m. 5.4 5.4 (5.4)The proof of Theorem t5.1 5.1 relies on the continuity of β(λ) on the parameter λ in ( 5.2

1 5. 1 ,

 11 Transition theorem. Thanks to Theorem t5.by the dynamic transition theorem PTD [3, Theorem 2.1.3], we immediately derive the following result, which is crucial for the theory of the galactic spiral structure. t5.2 Theorem 5.2. For any given λ = (a, Pr, ), there is a critical Rayleigh number R c ( λ) satisfying ( ) undergoes a dynamic transition from the basic state (P, T ) = 0 to a new stable state ( P , T ) at Ra=R c ( λ), and the following statements hold true:

f4 2 .

 2 4(b).
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 221 Galactic pattern formation. Based on Theoremst5.now establish a new topological phase transition theory for the galactic pattern formation. 1). Critical phase diagram. There are four main parameters to influence the galactic pattern formation: Ra, a, and Pr given by ( ). From the mathematical point of view, the Prandtl number Pr plays a less role in both dynamical and topological phase transitions. The other three parameters are very important for the the formation of different galactic structures:Ra representing the G-temperature difference T 0 -T 1 , a representing the average velocity of stars in the galaxy, representing the ratio (r 1 -r 0 )/r 0 .

  given parameters and Pr, and the resulting critical curve R c = R c (a) divides the domain of (a, Ra) into two regions A and B, whose physical meaning is 5.6 5.6 (5.6) (a, Ra) ∈ A ⇒ the galaxy rotates with constant momentum P , (a, Ra) ∈ B ⇒ the galaxy rotates with momentum P + P ,

2 .

 2 Since P possesses vortex pattern as given by Figuref75.2, this state P + P is spiral in its structure. Hence ( 5.6 5.6) can be restated as follows: 5.7 5.7 (5.7) (a, Ra) ∈ A ⇒ the galaxy is elliptic, (a, Ra) ∈ B ⇒ the galaxy is spiral.

Figure 5 . 1 . 2 5

 512 Figure 5.1. Galactic a-Ra phase diagram, where A is the elliptic galaxy region, and B is the spiral galaxy region.
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 2 and the vortices of P move around the center of the ring domain Ω with period τ : topological structure of P = m right-handed vortices 5.8 5.8 (5.8) + m left-handed vortices, m ≥ 1;

Figure 5 . 2

 52 Figure 5.2
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  of P depict the spiral pattern of galactic rotating motion as follows: 5.10 5.10 (5.10) state of P + P = m rotating arms.
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5. 2 .

 2 The local structure of P + P is schematically illustrate in Figure

  f8

5. 3

 3 (a), in which each vortex has a D region and an E region where the horizontal component of the vortex velocity in D region is reversal to v 0 , and in E is the same as v 0 . By the superposition principle of velocity, we have in D :v 0 + v = deceleration in x 1 -direction, in E : v 0 + v = acceleration in x 1 -direction,

Figure 5 . 3 .

 53 Figure 5.3. (a) The superposition of v 0 and two vortex flows can yield a slower speed band as the shadow region in (b).
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  the matter in a galaxy is a non-continuous, discrete field, and therefore the classical fluid dynamical equations are not suitable for the galactic motion; and (b) the temperature is very low in a galaxy, and obviously can not play the role to derive a vortex motion.

	2.8 2.8 (2.8) (a) These two problems in (	2.8

  where Ra is the Rayleigh number defined by

	4.18 4.18 (4.18)	Ra =	gαρ 0 β κµ	r 4 0
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