
HAL Id: hal-01671053
https://hal.science/hal-01671053v2

Submitted on 29 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformation of Rational Curves Along Foliations
Frank Loray, Jorge Vitório Pereira, Frédéric Touzet

To cite this version:
Frank Loray, Jorge Vitório Pereira, Frédéric Touzet. Deformation of Rational Curves Along Foliations.
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2020, 21 (Special issue), pp.1315-
1331. �hal-01671053v2�

https://hal.science/hal-01671053v2
https://hal.archives-ouvertes.fr


DEFORMATION OF RATIONAL CURVES ALONG FOLIATIONS

FRANK LORAY, JORGE VITÓRIO PEREIRA, AND FRÉDÉRIC TOUZET

ABSTRACT. Deformation of morphisms along leaves of foliations define the tangential
foliation on the corresponding space of morphisms. We prove that codimension one fo-
liations having a tangential foliation with at least one non-algebraic leaf are transversely
homogeneous with structure group determined by the codimension of the non-algebraic
leaf in its Zariski closure. As an application, we provide a structure theorem for degree
three foliations on P3.

1. INTRODUCTION

1.1. Motivation. Singular holomorphic codimension one foliations on projective spaces
of dimension at least three have been widely studied in recent years. Much of the recent
activity on the subject was spurred by the classification of irreducible components of the
space of foliations of degree two by Cerveau and Lins Neto [4]. Despite of the growing
literature on the subject, not much of it is devoted to the next simplest case: irreducible
components of the space of foliations of degree three on P3. A notable exception is [3]
where it is proven that they are either transversely affine foliations, or are rational pull-
backs of foliations on surfaces. In this paper we refine [3] by means of the following
result.

Theorem A. If F is a codimension one singular holomorphic foliation on P3 of degree
three then

(1) F is defined by a closed rational 1-form without codimension one zeros; or
(2) there exists a degree one foliation by algebraic curves tangent to F ; or
(3) F is a linear pull-back of a degree 3 foliation on P2; or
(4) F admits a rational first integral.

The foliations defined by closed rational 1-forms without codimension one zeros lie at
the so called logarithmic components of the space of foliations, see [9, Section 2.5] or
[4, Lemma 8]. It is also known the existence of irreducible components, for the space of
codimension one foliations of every degree on projective spaces of any dimension n ≥ 3,
with general element equal to a linear pull-back of a foliation on P2. Theorem A reduces
the problem of determining/classifying the irreducible components of the space of degree
three foliations on P3 to the problem of determining/classifying irreducible components
with general element fitting into the descriptions given by items (2) and (4) of Theorem A.

Theorem A is proved through the study of deformations of morphisms from P1 to P3

along leaves of the codimension one foliation.
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1.2. Tangential foliations. As it was observed in [8], foliations on a given uniruled man-
ifold X naturally induce foliations on the space of morphisms Mor(P1, X), the so called
tangential foliations. A leaf L of a tangential foliation correspond to a maximal analytic
family of morphisms which do not move the points outside the starting leaves. In other
words, if L is a leaf of a tangential foliation and L × P

1 → X is the restriction of the
evaluation morphism then the pull-back of the foliation on X to L × P1 is the foliation
given by the fibers of the projection L × P1 → P1, or the foliation with just one leaf. A
more precise definition of tangential foliation can be found in Section 4.

In this paper, we refine our previous result on the subject [8, Theorem 6.5].

Theorem B. Let X be a uniruled projective manifold and let F be a codimension one
foliation on X . Fix an irreducible component M of the space of morphisms from P

1 to X

containing a free morphism and let Ftang be the tangential foliation of F defined on this
irreducible component M ⊂ Mor(P1, X). Let δ be the codimension of a general leaf L of
Ftang inside its Zariski closure L, i.e. δ = dimL− dimL. Then δ ≤ 3. Furthermore, if L
is not algebraic (i.e. δ > 0), then the following assertions hold true.

(1) δ = 3 if and only if F is transversely projective but not transversely affine; and
(2) δ = 2 if and only if F is transversely affine but not virtually transversely Eu-

clidean; and
(3) δ = 1 if and only if F is virtually transversely Euclidean.

We refer the reader to Section 2 for the definition of transversely projective, transversely
affine, and virtually transversely Euclidean foliations.

Whereas [8, Theorem 6.5] provides necessary conditions for a foliation to be trans-
versely projective/transversely affine/virtually transversely Euclidean; Theorem B above
establishes an equivalence between the codimension δ and the dimension of the corre-
sponding transverse Lie algebra: sl2 for transversely projective, aff for transversely affine,
and C for virtually transversely Euclidean. Even more importantly, Theorem B improves
on the previous result by dropping the hypothesis on the Zariski denseness of the general
leaf of the tangential foliation. This is achieved by means of Theorem 3.1, a result which
might has independent interest.

1.3. Bootstrapping. On simply connected uniruled manifolds carrying rational curves in
general position with respect to the foliation in question, one can push further the analysis
carried out to prove Theorem B in order to achieve the more precise result below. Its
proof consists in successive applications of Theorem B, where in each step one gains more
constraints on the nature of transverse structure.

Theorem C. Let X be a simply connected uniruled projective manifold and let F be a
codimension one foliation on X . Fix an irreducible component M of the space of mor-
phisms Mor(P1, X) containing a free morphism and let Ftang be the tangential foliation
of F defined on M . If the general leaf of Ftang is not algebraic and the general morphism
f : P1 → X in M intersects non-trivially and transversely all the algebraic hypersurfaces
invariant by F then F is defined by a closed rational 1-form without divisorial components
in its zero set.

1.4. Structure of the paper. In Section 2 we recall the basic definitions concerning trans-
verse structure of codimension one foliations and present the key properties which will be
used throughout. Section 3 is devoted to the proof of extension of transverse structures
from fibers of a fibration to the whole ambient manifold. Section 4 studies the tangential
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foliations and contain the proofs of Theorems B and C. Finally, Theorem A is proved in
Section 5.

1.5. Acknowledgements. This work was partially supported by the Brazil-France Agree-
ment in Mathematics. F. Loray and F. Touzet acknowledge the support of ANR-16-CE40-
0008 project Foliage and MATH-AmSud project no88881.117598. J. V. Pereira acknowl-
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The research leading to these results has received funding from the People Programme
(Marie Curie Actions) of the European Union’s Seventh Programme (FP7/2007-2013) un-
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2. TRANSVERSE STRUCTURES FOR CODIMENSION ONE FOLIATIONS

2.1. Transversely affine and virtually transversely Euclidean foliations. Let F be a
codimension one foliation on a projective manifold X . Since any line bundle on X admits
rational sections, we may choose a rational 1-form ω0 defining F . The foliation F is
transversely affine if there exists a rational 1-form ω1 such that

dω0 = ω0 ∧ ω1 and dω1 = 0 .

We say that the pair (ω0, ω1) defines a transverse affine structure for F . Although this
definition is made in terms of a particular 1-form ω0 defining F , if ω′

0 = hω0 is another
rational 1-form defining F then ω′

1 = ω1 − dh
h

is a closed rational 1-form which satisfies
dω′

0 = ω′
0∧ω′

1. It is therefore natural to say that two pairs of rational 1-forms (ω0, ω1) and
(ω′

0, ω
′
1) define the same transverse affine structure for F if there exists a non-zero rational

function h such that (ω′
0, ω

′
1) = (hω0, ω1 − dh

h
).

A transverse affine structure for F determines a local system of first integrals given by
the branches of the multi-valued function

F =

∫
(

exp

∫

ω1

)

ω0 .

Different branches of F at a common domain of definition differ by left composition with
an element of the affine group Aff(C) ≃ C⋊ C

∗.
If ω1 is logarithmic with all its periods integral multiples of 2π

√
−1 then (exp

∫

ω1)ω0

is a closed rational 1-form defining F . In this case we will say that the transverse affine
structure defined by (ω0, ω1) is transversely Euclidean.

Transverse affine structures for which ω1 is logarithmic with all its periods commen-
surable to 2π

√
−1 are called virtually transversely Euclidean structures. In this case, the

1-form (exp
∫

ω1)ω0 is not necessarily a rational 1-form, but after passing to a finite ram-
ified covering of X it becomes one.

2.2. Transversely projective foliations. Similarly, a foliation F on X is called trans-
versely projective if for any rational 1-form ω0 defining F there exists rational 1-forms ω1

and ω2 such that

dω0 = ω0 ∧ ω1

dω1 = ω0 ∧ ω2

dω2 = ω1 ∧ ω2 .

The triple of rational 1-forms (ω0, ω1, ω2) defines a projective structure for F . Two triples
(ω0, ω1, ω2) and (ω′

0, ω
′
1, ω

′
2) define the same projective structure for F if there exists
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rational functions f, g ∈ C(X) such that

ω′
0 = fω0

ω′
1 = ω1 −

df

f
+ gω0

ω′
2 = f−1ω2 + gω1 + g2ω0 − dg .

As in the case of transversely affine foliations, the transversely projective foliations admit
a canonical collection of local holomorphic first integrals defined on the complement of
the polar set of ω0, ω1, ω2, see for instance [2].

For a thorough discussion about transversely affine and transversely projective folia-
tions of codimension one on projective manifolds including a description of their global
structure we invite the reader to consult [6] and [10] respectively. Here we will review
two important features of transversely homogeneous foliations/structures of codimension
one in a formulation slightly more general than what is currently available in the literature.
These two features play an essential role in this paper.

2.3. Behaviour under dominant rational maps. Transversely homogenous structures
for codimension one foliations behave rather well with respect to dominant rational maps
as the result below shows.

Lemma 2.1. Let G be a codimension one foliation on a projective manifold Y , F a codi-
mension one foliation on a projective manifold X , and F : Y 99K X a dominant rational
map such that G = F ∗F . If G is transversely projective, transversely affine, virtually
transversely Euclidean then F is, respectively, transversely projective, transversely affine,
virtually transversely Euclidean.

Proof. This is essentially the content of [8, Lemma 6.2], a geometric translation of [2,
Lemma 2.1 and Lemma 3.1]. The only part of the statement not explicit proved there is
that when G is virtually transversely Euclidean then the same holds true for F . For the
sake of completeness let us present a proof of this implication.

Notice that we can assume from the beginning that F does not admit a rational first
integral, as otherwise there would be nothing to prove. After cutting Y with hyperplane
sections we can assume that Y and X have the same dimension. We can further assume
that G is transversely Euclidean and that the generically finite rational map F : Y 99K X

is Galois. Let ω be a rational 1-form defining F . Let η be a closed rational 1-form defining
G. If ϕ is one of the deck transformation of F then ϕ∗η = λη for some root of the unity
λ. Since η and F ∗ω define the same foliation, there exists a rational function h such that
F ∗ω = hη. Of course ϕ∗h = λ−1h and consequently ϕ∗ dh

h
= dh

h
. The closedness of η

implies

dF ∗ω =
dh

h
∧ F ∗ω.

The invariance of dh
h

under the deck transformations allows us to find a logaritmic 1-form
β on X with rational residues such that dh

h
= F ∗β. Hence dω = β ∧ ω and F is virtually

transversely Euclidean. �

The converse statement is trivially true: if F is transversely projective, transversely
affine, or virtually transversely Euclidean, then the same holds true for G. Indeed, it suffices
to pull-back the 1-forms ωi defining the structure by F .
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2.4. Uniqueness of tranversely homogeneous structures. Transversely homogeneous
structures for codimension one foliations are unique except for very special exceptions
which are described by the next result.

Lemma 2.2. Let F be a codimension one foliation on a projective manifold. The following
assertions hold true.

(1) If F admits two non-equivalent transversely projective structures then F admits a
virtually transversely Euclidean structure.

(2) If F admits two non-equivalent transversely affine structures then F is defined by
a closed rational 1-form, i.e. F admits a transversely Euclidean structure.

(3) If F admits two non-equivalent virtually transversely Euclidean structure then F
admits a rational first integral.

Proof. The first two possibilities are described in [5, Lemma 2.20]. For describing the last
possibility, assume that F is defined a rational 1-form ω0 and observe that the existence of
two non-equivalent virtually transversely Euclidean structures is equivalent to the existence
of two linearly independent logarithmic 1-forms ω1, ω

′
1, both with periods commensurable

to πi and satisfying

dω0 = ω0 ∧ ω1 = ω0 ∧ ω′
1 .

Their difference ω1 − ω′
1 is non-zero, proportional to ω0, and a suitable complex multiple

of it has all its periods in 2πiZ. In other words, there exists a constant λ ∈ C∗ such that

exp

(
∫

λ(ω1 − ω′
1)

)

is a rational function constant along the leaves of F . �

3. EXTENSION OF TRANSVERSE STRUCTURES

The purpose of this section is to prove the following result.

Theorem 3.1. Let F be a codimension one foliation on a projective manifold X . Suppose
there exists a projective variety B and a morphism f : X → B with general fiber irre-
ducible such that the F is transversely projective/transversely affine/virtually transversely
Euclidean when restricted to a very general fiber of f . If the restriction of F to the very
general fiber does not admit a rational first integral then F is, respectively, transversely
projective/transversely affine/virtually transversely Euclidean.

In the statement of Theorem 3.1 one can replace the existence of the morphism f by the
existence of a covering family Z of subvarieties of X such that F is transversely projec-
tive/transversely affine/virtually transversely Euclidean when restricted to a very general
element of the family in order to achieve the same conclusion. One reduces to the state-
ment above by pulling back the foliation to the total space of the family of cycles, applying
Theorem 3.1 to this pull-back foliation, and descending the conclusion to X using Lemma
2.1.

Before proceeding to the proof of Theorem 3.1 we point out that the projectiveness of
X is essential for the validity of the Lemma 3.5 as the example below shows.

Example 3.2. Let F = E × E be the square of an elliptic curve and consider the au-
tomorphism of it defined by ϕ(x, y) = (2x + y, x + y). This is the standard example
of an hyperbolic automorphism. It leaves invariant two linear foliations on E × E, say
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F+,F−, defined by closed holomorphic 1-forms ω+, ω− respectively. As can be easily
seen ϕ∗ω± = λ±ω± where λ± are the eigenvalues of the matrix

(

2 1
1 1

)

.

If we now consider a projective curve B and a suspension of a representation π1(B) →
Aut(F±), containing ϕ in its image, we get a genuinely transversely affine foliation on
compact complex manifold X fibering over B with fibers F such that the restriction to any
fiber is transversely Euclidean and without rational first integral. The ambient manifold X

is not Kähler. Indeed, aiming at a contradicition, suppose that X is Kähler. Then ϕ has to
preserve a Kähler class and [7, Proposition 2.2] implies that some non trivial power of ϕ is
a translation. This gives the sought contradiction.

3.1. Proof of Theorem 3.1. Theorem 3.1 follows from the next three results combined.

Lemma 3.3. Let F be a codimension one foliation on a projective manifold X . Assume
that X is endowed with a fibration f : X → B such that the restriction of F to the very
general fiber of f is transversely projective. Then there exists rational 1-forms ω0, ω1, ω2

and ω3 with the following properties.

(1) The 1-forms ω0, . . . , ω3 satisfy the system of equations

(3.1)







dω0 = ω0 ∧ ω1

dω1 = ω0 ∧ ω2

dω2 = ω0 ∧ ω3 + ω1 ∧ ω2

(2) The foliation F is defined by ω0.
(3) The restriction of 1-form ω3 to a general fiber of f is zero.
(4) If we further assume that the restriction of F to a very general fiber of f is trans-

versely affine then we have that both ω2 and ω3 restrict to zero at a general fiber
of f .

Proof. We start by choosing α0, α1, α2, α3 rational 1-forms on X such that α0 defines F
and which satisfy the system equations (3.1). The existence of such 1-forms is well-known
and can be traced back to Godbillon-Vey, see [5, Section 2.1].

Let G be the restriction of F to the (schematic) generic fiber X of f . Hence X is a
projective manifold defined over the function field C(B) of the basis of the fibration and G
is a codimension one foliation on X . The algebraic nature of transversely projective struc-
tures implies that G is transversely projective. If we denote by β0, . . . , β3 the restrictions
of α0, . . . , α3 to X then, according to [5, Section 2.3], we can replace β2 by β2 + fβ0

where f is a rational function on X in such a way that they now satisfy






dβ0 = β0 ∧ β1

dβ1 = β0 ∧ β2

dβ2 = β1 ∧ β2

Consider a lift of f to a rational function on X (still denoted by f ) and set ω0 = α0,
ω1 = α1, ω2 = α2 + fα0. According to [5, Corollary 2.4] there exists a unique ω3 such
that the system of equations (3.1) is satisfied. Moreover, the uniqueness of ω3 implies that
its restriction to the generic fiber of f must be zero. This is sufficient to prove item (3) of
the lemma. The proof if item (4) is completely similar. �

Proposition 3.4. Let F be a codimension one foliation on a projective manifold X . As-
sume that X is endowed with a fibration f : X → B and that the restriction of F to a gen-
eral fiber of f does not admit a rational first integral. If there exists 1-forms ω0, ω1, ω2, ω3
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satisfying item (3) of Lemma 3.3 then F is transversely projective. Similarly, if there exists
1-forms ω0, ω1, ω2, ω3 satisfying item (4) of Lemma 3.3 then F is transversely affine.

Proof. Assume that the dimension of B is q and let f1, . . . , fq be algebraically independent
rational functions in f∗C(B) ⊂ C(X). Notice that item (3) of Lemma 3.3 guarantees that
ω3∧df1∧. . .∧dfq = 0. Assume that the foliationω0∧df1∧· · ·∧dfq has some transcendental
leaf. We want to prove that F is transversely projective. The proof is recursive on q: we
first prove that, on each fixed codimension q − 1 subvariety defined by (an irreducible
component of ) f2, . . . , fq = constant, the restriction of F is transversely projective. Note
that this later foliation must have transcendental leaves also so that we can go on with
codimension q − 2 subvarieties defined by f3, . . . , fq = constant. It is thus enough to
consider the case q = 1.

We start with the easier case where F restricts as a transversely Euclidean foliation on
the level sets. In other words, assume that

ω1 ∧ df = 0.

Then we can write ω1 = gdf for some rational function g and derivating dω0 = ω0 ∧ ω1,
we get

ω0 ∧ df ∧ dg = 0.

If df ∧ dg = 0, then dω1 = 0 so that F is transversely affine. If df ∧ dg 6= 0, then g is a
rational first integral for F|f=constant.

Before proceeding to the next case, note that our assumption in the previous case is
equivalent to dω0 ∧ df = 0. Indeed, this means that ω0 ∧ ω1 ∧ df = 0 and by division
(recall that ω0∧df 6= 0) ω1 = gdf+hω0 for rational functions g and h. But (see [5, Section
2.1]) we can then replace ω1 by ω1 − hω0 without changing the equality dω0 = ω0 ∧ ω1.

We will treat the affine case, now assuming

ω2 ∧ df = 0.

One can write ω2 = gdf as before and we get dω1 = gω0 ∧ df . If g = 0 then dω1 = 0 and
F is transversely affine. If g 6= 0, by derivation we get

(

ω1 −
dg

g

)

∧ ω0 ∧ df = 0.

Substituting ω0 = g · ω̃0 and ω1 = ω̃1 +
dg
g

, we get (the same conclusion with g = 1)

ω̃1 ∧ ω̃0 ∧ df = 0

and thus dω̃0 ∧ df = 0 and we are back to the Euclidean case.
We finally end with the general projective case, assuming

ω3 ∧ df = 0.

Writing ω3 = gdf , we get dω2 = gω0 ∧ df + ω1 ∧ ω2. If g = 0, then F is transversely
projective; if not, after derivation we get

(ω1 −
1

2

dg

g
) ∧ ω0 ∧ df = 0.

After division, we find

ω1 =
1

2

dg

g
+ hdf + kω0
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for rational functions h and k. In fact, we can replace ω1 by ω1−kω0 thus assuming k = 0

(we now forget ω2). If dh ∧ df = 0, then ω1 = 1
2
dg
g
+ hdf is closed and F is transversely

affine. If dh ∧ df 6= 0, then

ω0 ∧ dh ∧ df = ω0 ∧ dω1 = 0

and h is a first integral for F|f=constant. �

Lemma 3.5. Let F be a transversely affine foliation of codimension one on a projective
manifold X . Assume there exists a projective surface Σ ⊂ X for which the restriction of F
to Σ is virtually transversely Euclidean and admits no rational first integral then the same
holds true for F .

Proof. This is a consequence of the structure theorem for transversely affine foliations,
see [6] and [10, Theorem D], which says that transversely affine foliations on projective
manifolds which are not virtually transversely Euclidean are pull-backs of Riccati folia-
tions on surfaces. Aiming at a contradiction, assume that F is transversely affine but not
transversely Euclidean. Thus there exists a rational map ϕ : X 99K S to a ruled surface,
and a Riccati foliation on S such that ϕ∗R = F . The restriction of ϕ to Σ must be dom-
inant as otherwise F|Σ would admit a rational first integral. Thus, if we assume that F|Σ

is virtually transversely Euclidean then Lemma 2.1 implies that the same holds true for R.
But this would imply that F = ϕ∗R is also virtually transversely Euclidean contrary to
our assumptions. This gives the sought contradiction which proves the lemma. �

4. TANGENTIAL FOLIATION

This section is devoted to the proof of Theorem B. We start by recalling the definition
of the tangential foliation. For a more detailed account, we invite the reader to consult [8,
Section 6].

4.1. Tangential foliation. Let X be a uniruled projective manifold. These are character-
ized by the existence of non-constant morphisms f : P1 → X such that f∗TF is generated
by global sections, the so called free morphisms. At a neighborhood of a free morphism
the scheme Mor(P1, X) is smooth and the tangent space of Mor(P1, X) at the point f is
naturally isomorphic to H0(P1, f∗TX).

Let us fix a foliation F on X and an irreducible component M ⊂ Mor(P1, X) of
the space of morphism from P1 to X containing a free morphism f . Recall from [8,
Section 6] that F induces a natural foliation on M , called the tangential foliation of F and
denoted by Ftang, with tangent space at a general free morphism f given by H0(P1, TF) ⊂
H0(P1, TX).

The tangential foliation admits the following alternative description. If ev : M × P1 →
X is the evaluation morphism, p : M × P1 → M is the natural projection, and H is the
foliation on M × P1 defined by the projection to P1 then Ftang coincides with p∗(H ∩
ev∗ F).

4.2. Foliations on B × P1. Let L be a leaf of Ftang and L its Zariski closure. We recall
below [8, Theorem 6.5] which describes the foliation G = ev∗ F|L×P1 .

Theorem 4.1. Let B be an algebraic manifold, let G be a codimension one foliation on
B × P1, let π : B × P1 → B be the natural projection, and let H be the codimension
one foliation defined by the fibers of the other natural projection ρ : B × P1 → P1. If the
general fiber of π is generically transverse to G and the general leaf of the direct image
T = π∗(G ∩ H) is Zariski dense then the codimension of T is at most three. Moreover,
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(1) If codimT = 1 then G is defined by a closed rational 1-form;
(2) If codimT = 2 then G is transversely affine;
(3) If codimT = 3 then G is transversely projective.

Remark 4.2. The proof presented in [8] gives more information as we now proceed to
recall. It starts by showing that the foliation G is defined by a rational 1-form which can be
written as

ω = dz + a(z)α+ b(z)β + c(z)γ

where α, β, γ are rational 1-forms on B; a, b, c are rational functions on P1; and z is a
coordinate on P1. To avoid overburdening the notation, we identify 1-forms on B with
their pull-backs through π to B × P1, and we also identify 1-forms on P1 with their pull-
backs through ρ : B × P1 → P1 . Furthermore, the codimension of T coincides with the
dimension of the C-vector space generated by α, β, γ.

When codim T = 1 then the foliation G is induced by the sum of pull-backs under
the natural projections of closed rational 1-form on B and on P1. To wit, G is defined by
dz
f(z) + η, where f is rational function on P

1 and η is closed rational 1-form on B. Notice
that the zero set of this closed rational 1-form ω has no divisorial components.

If instead codim T ≥ 2 then the proof of [8, Theorem 6.5] establishes the existence of
a rational map ϕ : P1 → P

1 and a Riccati foliation R on the manifold B × P
1 such that

G = (idB ×ϕ)∗R. The case where codim T = 3 is distinguished from the case where
codim T = 2 by the existence of fibers of the projection ρ : B × P1 → P1 invariant by
G. When codim T = 3 none of the ρ-fibers are invariant. When codim T = 2 the Riccati
foliation R has exactly one invariant ρ-fiber and, consequently, the foliation G has at least
one invariant ρ-fiber.

We proceed to investigate the converse of Theorem 4.1. We start with a simple obser-
vation.

Lemma 4.3. Notation and assumptions as in Theorem 4.1. If Y is an algebraic leaf of G
generically transverse to the fibers of π then Y is contained in a fiber of ρ.

Proof. By the definition of Ftang the restriction of Y to L × P1 is horizontal. Therefore
the restriction to Y ∩ (L×P1) of the projection L×P1 → P1 is locally constant. Since L
is Zariski dense L = B the same holds true over Y itself. Therefore Y is horizontal. �

Proposition 4.4. Notation and assumptions as in Theorem 4.1. If G is virtually trans-
versely Euclidean then codim T = 1.

Proof. Aiming at a contradiction, let us assume that G is virtually transversely Euclidean
but δ = codim T ≥ 2. According to Remark 4.2 we can assume that G is the pull-back of
a Riccati foliation R on B × P1 through a rational map of the form idB ×ϕ : B × P1

99K

B × P1. In particular, R is defined by a rational 1-form which can be written as

ω = dz + α+ zβ + z2γ

where α, β, γ are rational 1-forms on B which define the foliation T and z is a coordinate
on P1. The integrability condition ω ∧ dω = 0 implies that

dα = α ∧ β

dβ = 2α ∧ γ

dγ = β ∧ γ .

In particular, the assumption codim T ≥ 2 implies dω 6= 0.
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Since we are assuming that G is virtually transversely Euclidean, the same holds true for
R according to Lemma 2.1. Therefore there exists a non-zero closed logarithmic 1-form
ω1 on B × P1 with periods commensurable to

√
−1π such that dω = ω ∧ ω1. Since any

holomorphic function on P1 is constant, the canonical multi-valued first integral

F =

∫
(

exp

∫

ω1

)

ω0

must have a hypersurface contained in its singular set dominating the basis of the fibration
π : B× P1 → B. As this hypersurface is clearly invariant by R, we can apply Lemma 4.3
to guarantee that, after a change of coordinates on P1, the section {z = ∞} is invariant by
R. In these new coordinates, γ = 0, i.e. R is defined by ω = dz + α+ zβ. This already
shows that codim T ≤ 2, since T is the foliation defined by α and β.

The integrability condition implies that (ω, β) is a transverse affine structure for R.
Therefore both (ω, β) and (ω, ω1) are transverse structures for R. If they are the same
then ω1 = β and exp(n

∫

β) is a rational function constant along the leaves of T for any
sufficiently divisible integer n (ω1 is logarithmic with periods commensurable to

√
−1π).

As we are assuming that the leaves of T are Zariski dense, we deduce that β = 0 and,
consequently, codim T = 1 contrary to our assumptions.

We can assume that ω1 and β are distinct closed rational 1-forms. Their difference is a
non-zero closed rational 1-form defining R. Therefore we can write β − ω1 = hω for a
certain non-constant rational h ∈ C(B × P1). The irreducible components of the divisor
of zeros and poles of h, according to Lemma 4.3, are either fibers of π : B × P1 → B

or fibers of ρ : B × P1 → P1. Therefore we can write h as a product of a ∈ C(B) with
b ∈ C(P1).

We claim that the function a ∈ C(B) is constant. Indeed, from the equalities d(hω) = 0
and dz ∧ db = 0 we deduce that

dz ∧ d(aω) = 0 =⇒ dz ∧ da ∧ ω + adz ∧ dω = 0 .

Using that dβ = 0 we can writing

dz ∧ da ∧ (α+ zβ) + adz ∧ dα = 0 .

Finally, taking the wedge product of this last identity with β we conclude that dz ∧ da ∧
α ∧ β = 0. It follows that a is a first integral for T , and as such must be constant.

Now from d(bω) = 0 for b ∈ C(P1), we deduce the identity db ∧ α + bdα + d(zb) ∧
β + zhdβ = 0. After taking the wedge product with α and using the vanishing of dβ and
of α ∧ dα, we conclude that α ∧ β = 0. This implies codim T ≤ 1. The proposition
follows. �

Arguing as in the beginning of the proof above, one also obtains the following result.

Corollary 4.5. Notation and assumptions as in Theorem 4.1. If G is transversely affine
then codim T ≤ 2.

4.3. Synthesis (Proof of Theorem B). Let X be a uniruled projective manifold and F be
a codimension one foliation on X . We fix an irreducible component M of the space of
morphisms from P1 to X containing a free morphism and let Ftang stand for the tangential
foliation of F defined on this irreducible component M . We denote by Ftang the foliation
on M with general leaf given by the Zariski closure of a leaf of Ftang. The existence of a
foliation with these properties follows from [1].
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Theorem 4.6 (Theorem B of the Introduction). Let δ = dimFtang − dimFtang. If the
general leaf of Ftang is not algebraic (i.e. δ > 0) then δ ≤ 3. Furthermore the following
assertions hold true.

(1) δ = 3 if and only if F is transversely projective but not transversely affine; and
(2) δ = 2 if and only if F is transversely affine but not virtually transversely Eu-

clidean; and
(3) δ = 1 if and only if F is virtually transversely Euclidean.

Proof. Let L be a general leaf of Ftang which we will assume not algebraic. If L is
the Zariski closure of L and U is the smooth locus of L then we are in position to ap-
ply Theorem 4.1 to G = (ev∗ F)|U×P1 and deduce that G is transversely projective and
dimL − dimL = δ ∈ {1, 2, 3}. Theorem 3.1 implies that ev∗ F is also transversely
projective.

If the general leaf of Ftang is not algebraic then combining Theorem 4.1 with Theorem
3.1 one deduces that F is transversely projective.

Let us first prove assertion (3). If δ = 1 then G is defined by a closed rational 1-form, see
Remark 4.2. Theorem 3.1 implies that ev∗ F is virtually transversely Euclidean. Lemma
2.1 implies that the same holds true for F . Reciprocally, if F is virtually transversely
Euclidean then the same holds true for G. We apply Proposition 4.4 to deduce that δ = 1.
Assertion (3) follows.

The proof of assertion (2) is similar. If δ = 2 then G is transversely affine. Theorem 3.1
implies that ev∗ F is transversely affine and Lemma 2.1 implies that the same holds true
for F . Reciprocally, if F is transversely affine then Corollary 4.5 implies δ ≤ 2. Assertion
(3) implies δ ≥ 2 and assertion (2) follows.

As before, Theorem 3.1 combined with Lemma 2.1 imply that F is transversely projec-
tive. Reciprocally, as we already know that δ ≤ 3, assertions (2) and (3) imply assertion
(1). �

4.4. Bootstrapping (Proof of Theorem C). We proceed to prove Theorem C. We keep
the notations from Section 4.3.

Lemma 4.7. Assume that the general leaf of Ftang is not algebraic. If F has an alge-
braic leaf Y ⊂ X which intersects the image of a general morphism f ∈ M then F is
transversely affine.

Proof. Let L be a general leaf of Ftang; L be its Zariski closure; and U ⊂ L be the smooth
locus of the Zariski closure. Lemma 4.3 implies that G = ev∗ F|U×P1 has a horizontal
leaf. Since G = (idU ×ϕ)∗R it follows that the Riccati foliation R also has a horizontal
leaf. Thus, in a suitable coordinate system where the horizontal is at {z = ∞}, the Riccati
foliation R is defined by

dz + ω0 + zω1 .

Hence the restriction of Ftang to L is defined by ω0 and ω1 and therefore dimFtang −
dimFtang ≤ 2. We apply Theorem 4.6 to conclude that F is transversely affine. �

Lemma 4.8. Assume X is simply connected and that the general leaf of Ftang is not alge-
braic. If the image of a general morphism f ∈ M intersects non-trivially every algebraic
leaf of F then F is virtually transversely Euclidean.

Proof. We keep the notation from Lemma 4.7. According to Theorem 4.6 it suffices to
show that G = ev∗ F|U×P1 is defined by a closed rational 1-form.
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First notice that F must have some algebraic leaf. Otherwise the existence of a trans-
verse structure for F given by Theorem 4.6 and the simple connectedness of X would give
rise to the existence of a rational first integral for F . It follows that the leaves of Ftang

are algebraic contradicting our initial assumption. Therefore we can apply Lemma 4.7 to
deduce that F is a transversely affine foliation. Fix rational 1-forms ω0 and ω1 on X such
that dω0 = ω0 ∧ ω1, dω1 = 0, and ω0 defines F .

If F is virtually transversely Euclidean then the result follows from Theorem 4.6. As-
sume from now on that F is not virtually transversely Euclidean. Since X is simply con-
nected, this implies that ω1 is not a logarithmic differential with rational residues. Notice
that ω0 and ω1 are not uniquely defined, but any different pair (ω′

0, ω
′
1) satisfying the con-

ditions above will satisfy ω0 = hω′
0 and ω1 = ω′

1+d logh. In particular, the fact that ω1 is
not a logarithmic 1-form with rational residues does not depend on the choice of the pair.

Aiming at a contradiction assume that dimL − dimL ≥ 2. According to Remark 4.2,
the foliation G is the pull-back of a Riccati foliation on U×P1 leaving invariant the section
at infinity. A simple computation shows that this implies the existence of a transverse affine
structure for G defined by a pair (α0, α1) such that the restriction of α1 at a general fiber
P1 is logarithmic with integral residues. But the pull-back of ω1 under the evaluation
morphism is not of this form since the image of f intersects all components of the polar
divisor of ω1. Hence G admits two non-equivalent transversely affine structures. Lemma
2.2 implies that G is transversely Euclidean. The lemma follows from Theorem 3.1. �

Theorem 4.9 (Theorem C of the Introduction). If X is simply connected, the general leaf
of Ftang is not algebraic, and the general morphism f ∈ M intersects non-trivially and
transversely every algebraic hypersurface invariant by F then F is defined by a closed
rational 1-form without divisorial components in its zero set.

Proof. We start by showing that F is defined by a closed rational 1-form. Lemma 4.8
implies that F is virtually transversely Euclidean. Therefore the transverse structure for
F is defined by a pair (ω0, ω1) where ω1 is a closed logarithmic 1-form with periods
commensurable to π

√
−1. If the periods of ω1 are integral multiples of 2π

√
−1 then

exp

(
∫

ω1

)

ω0

is the sought closed rational 1-form. Assume from now on that the periods of ω1 are not
integral multiples of 2π

√
−1.

Let L be a general leaf of Ftang and U ⊂ L be the smooth locus of its Zariski closure.
Let G = ev∗ F|U×P1 be the pull-back of F to M × P1 under the evaluation morphism.
On the one hand, according to Remark 4.2, G is defined by a closed rational 1-form. On
the other hand, the transversality of the general f ∈ M with the F -invariant algebraic
hypersurfaces imply that the periods of ev∗ ω1 are also not integral multiples of 2π

√
−1.

Hence G admits two non-equivalent virtually transversely Euclidean structures. Lemma
2.2 implies that all the leaves of G are algebraic. It follows that all leaves of Ftang are
algebraic contrary to our assumptions. This concludes the proof that F is defined by a
closed rational 1-form ω.

To verify that ω does not have divisorial components in its zero set, we proceed simi-
larly. Pull-back ω to U × P1 using the evaluation morphism. Any irreducible divisorial
component of the zero set of ω is a F -invariant algebraic hypersurface. Therefore, by
assumption, the restriction of the 1-form ev∗ ω on U × P1 will have an irreducible com-
ponent in its zero set which dominates U . This is only possible if ev∗ ω does not depend
on the variables of U , i.e. ev∗ ω = a(z)dz where z is a coordinate on P

1 and a ∈ C(P1)
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is a rational function. It follows that L and L have the same dimension, contrary to our
assumptions. Theorem C follows. �

4.5. Tangential foliation with algebraic leaves. When Ftang is a foliation by algebraic
leaves, the original foliation F inherits a subfoliation by algebraic leaves. We keep the
notation settled at the beginning of Section 4.3.

Proposition 4.10. If all the leaves of Ftang are algebraic, then there exists a foliation by
algebraic leaves A contained in F such that H0(P1, f∗TA) = H0(P1, f∗TF) for any
sufficiently general morphism f ∈ M . In particular, F is the pull-back under a rational
map of a foliation on a lower dimensional manifold.

Proof. Let A be the maximal foliation by algebraic leaves contained in F . The existence
of such A is assured by [8, Lemma 2.4]. If L is a general leaf of Ftang then the image
of L × {z} (for any fixed z ∈ P

1) under the evaluation morphism ev : M × P
1 → X is

contained in a leaf of F . Moreover, it is also contained in a leaf of A. This makes clear
that Atang contains Ftang. But since A is contained in F , we must have Atang contained
in Ftang. Hence Ftang = Atang and the equality H0(P1, f∗TA) = H0(P1, f∗TF ) holds
true for any sufficiently general morphism f ∈ M . �

5. FOLIATIONS OF DEGREE THREE

5.1. Proof of Theorem A. Let F be a codimension one foliation of degree three on P3.
The canonical bundle of F is KF = OP3(1). Therefore, if f : P1 → P3 is the parametriza-
tion of a general line then h0(P1, f∗TF) 6= 0. If M ⊂ Mor(P1,P3) is the irreducible
component containing f , then Ftang is a foliation of positive dimension on M .

If the general leaf of Ftang is not algebraic then Theorem C guarantees that F is de-
fined by a closed rational 1-form without divisorial components in its zero set. Thus F is
described by item (1).

If the general leaf of Ftang is algebraic then let A ⊂ F be the foliation by algebraic
leaves given by Proposition 4.10. In particular, h0(P1, f∗TA) = h0(P1, f∗TF) 6= 0.

If dimA = 2 then all the leaves of F are algebraic and Darboux-Jouanolou Theorem
guarantees that F admits a rational first integral. The foliation F fits into the description
given by item (4).

If instead dimA = 1 then TA is a line bundle and h0(P1, f∗TA) 6= 0 implies that
TA = OP3 or TA = OP3(1). In the first case, A has degree one and F is described by
item (2). In the second case, A has degree zero and its leaves are lines through a unique
point of P3. The foliation F is described by item (3). �
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