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ABSTRACT: Maturation of mRNA in eukaryotes is a very complex process that 
includes exon recognition through specific elements such as branch point mo-
tifs, 5’ and 3’ splice sites and splicing regulators. Mutations may affect these 
signals either directly by disrupting constitutive splice sites or indirectly by 
creating cryptic splice sites. We thus evaluated the prediction efficiency of 
nine software programs based on Position Weight Matrices, Markov Models, 
Maximal Dependence Decomposition, Neural Networks or Feature Generation 
Algorithms using 623 mutations for which the consequence on mRNA has 
been demonstrated in vitro. Position Weight Matrix-based tools were the most 
efficient in predicting the impact of a given mutation. Overall, at least one sys-
tem correctly predicted 100% of mutations affecting invariant positions as well 
as -1, +3 and +5 positions of the 5’ss. Deep intronic mutations resulting in the 
activation of cryptic exons were almost all correctly predicted (92.31%), while 
other intronic mutations were less efficiently (70-80%). Exonic mutations that 
create cryptic splice sites were also efficiently detected (70%). Because of the 
prediction heterogeneity and specificity, a single tool could not be used for all 
predictions. Moreover, since these systems are all based on text analysis an in 
vitro validation step is still required. 
 

INTRODUCTION 
With the recent breakthroughs in sequenc-
ing and genotyping, millions of single nu-
cleotide polymorphisms (SNPs) have 
been characterized in the human genome. 
Among the 7,736,157 SNPs reported in 
genes at NCBI (dbSNP build 130; 
http://www.ncbi.nlm.nih.gov/SNP/), 86.20 
% are localized in introns, 2.74% in exons 
and the others at 5’ and 3’ regions (1). 
Among the exonic variations, 52.19% are 
missense and 36.86% synonymous sub-
stitutions and may represent either neutral 
variations or pathogenic mutations. A re-
view of data available from the Human 
Gene Mutation Database (http://www. 

hgmd.cf.ac.uk/ac/index.php) confirms the-
se findings with 61.10% of disease-
causing mutations being missense muta-
tions (2). Concomitantly, 1610 mutations 
(2.55%) have also been reported that af-
fect the invariant positions +1, +2, -1 or -2 
of donor (5’ss) and acceptor (3’ss) splice 
sites, which delineate the limits of exons. 
These data are nevertheless far from real-
ity as it is now recognized that many mis-
sense variations (up to 50% of disease-
causing single nucleotide variations) could 
indeed have a critical impact on mRNA 
maturation through disruption or creation 
of splice sites. It has also been shown that 
these variations can affect other splicing 
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motifs such as auxiliary sequences also 
known as splicing regulators (Exonic 
Splicing Enhancers (ESE) or Exonic Splic-
ing Silencer (ESS)) (3-5). In parallel, other 
intronic variations affect donor and accep-
tor splice sites although they do not con-
cern the invariant positions. The prediction 
of the consequences of a nucleotide varia-
tion on mRNA is thus of major interest for 
molecular diagnosis not only of intronic 
mutations but also of exonic mutations. As 
the majority of disease-causing mutations 
that affect mRNA maturation modify donor 
or acceptor splices sites, many tools have 
been designed to predict the consequence 
of nucleotide substitutions on these motifs. 
Two types of introns have been described 
(6,7). U2 snRNP-dependent introns repre-
sent more than 99.9% of all introns (7) 
and are excised by a spliceosome con-
taining the U1, U2, U4, U5 and U6 
snRNPs. U12 snRNP-dependent introns 
are the minor class of introns and are ex-
cised by a spliceosome containing U11, 
U12, U4atac, U6atac and U5 snRNPs (10) 
and are usually shorter than U2 introns. 
Both U2 and U12 snRNP-dependent in-
trons are recognized by the cellular ma-
chinery through consensus motifs called 
donor (5’ss) and acceptor (3’ss) splice 
sites (11). These motifs are characterized 
by their terminal dinucleotides GT-AG, 
GC-AG and AT-AC, the vast majority 
(>98%) being of the GT-AG subtype (12). 
If these 4 bases are very conserved 
among genes, adjacent positions around 
the splice sites may vary, leading to short 
degenerated consensus sequences: usu-
ally 9 bp for the 5’ss and 14 bp for the 
3’ss. Since these motifs are small, the 
probability to find them by chance within 
an intron is high thus creating pseudo-
exons or decoy sites. Pseudo-exons are 
intronic sequences that match the exon 
requirements, but are not selected as ex-
ons by the spliceosome. This is usually 
related to the splice site motifs themselves 
but also to the RNA structure that impacts 
the motif accessibility (13) and/or other 
splicing signals. Indeed, three types of 
sequences are involved in splicing (14): 
constitutive splice sites, branch point se-

quences (15) and splicing regulators (ESE 
and ESS), which are important for dis-
criminating real exons from pseudo-exons 
(4,16,17). Today, research for detecting 
real exons and splice sites also takes into 
account the link between chromatin and 
gene structure (18,19) as well as hydro-
phobicity profiles (10). If the splicing proc-
ess is complex and much work has to be 
done yet to fully understand it, various 
software and web applications are already 
available on Internet to detect splicing sig-
nals, at the forefront of which stands do-
nor and acceptor splice site predictions 
(20).  
To detect 5’ss and 3’ss, six methods have 
been developed (21) and implemented in 
various software (22). The most frequently 
used relies on Position Weighted Matrices 
(PWM) and Position Specific Score Matri-
ces (PSSM). Senapathy and Shapiro 
(23,24) defined PWM, which are based 
upon sequence alignments (25,26). PWM 
have subsequently been refined and the 
weight of each position has been modu-
lated to underline their respective biologi-
cal importance (27). Application software 
based on PWM processes a given se-
quence into short sequences (whose 
length is equal to that of the 5’ or the 3’ 
splice site). A weight is then attributed to 
each nucleotide according to its position 
within the PWM. If the sum of the con-
secutive nucleotides weights is superior or 
equal to a specific threshold (28), a motif 
is consequently detected. In order to in-
crease the efficiency of 5’ss detection, 
Carmel et al. proposed to combine a 
Delta-G (DG), which predicts the variation 
of free energy that comes from the base-
pairing of the 5’ss and U1 snRNP (29).  
The Maximal Dependence Decomposition 
(MDD) tool relies on the assumption that 
splice site positions are not independent 
and that conditional probabilities can be 
determined between adjacent and non-
adjacent positions. First, the algorithm 
calculates the amount of dependence be-
tween the consensus indicator variable 
and a nucleotide indicator at the position i. 
This value is then used to separate the 
dataset (constituted of aligned sequences) 
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in two subsets: sequences with and se-
quences without consensus nucleotide at 
the given position i. This is repeated for all 
positions to create a tree in which each 
subset will be used to generate separate 
weight matrix models that are then com-
bined in a composite model (30). 
The third approach uses Markov models 
(MM). The main advantage of this tech-
nique is that it takes into account bases 
dependencies. A Markov model (31-33) is 
defined as a suite of states (for example 
exon, 5’ splice site, intron, 3’ splice site, 
exon). Each state is associated to prob-
abilities to evolve (stay in the current state 
or move to another one). After sequence 
reading, the algorithm computes the most 
likely suite of states (and corresponding 
sequences) that fulfills the various prob-
abilities. 
Support Vector Machines (SVM) are clas-
sifiers that help to take a decision (34). 
These classifiers need first to be trained 
using a set that contains both positive and 
negative data to efficiently assign the SVM 
parameters. Once the SVM is trained, it 
can be used to classify sequences. The 
efficiency of such algorithms is directly 
linked to the quality and the number of 
sequences used as positive and negative 
controls. The Feature Generation Algo-
rithm (FGA) is an SVM derivative with an 
initial step to generate features. These 
features are groups of nucleotides (adja-
cent or not) that share a particular position 
or a range of positions. The obtained fea-
tures are then used as input for a learning 
algorithm similar to that of SVM. Donor 
and acceptor sites use separate classifi-
ers. Once the training is finished, each 
feature is weighted. When a sequence is 
processed for splice site prediction, the 
classifier checks if the sequence contains 
any feature according to the considered 
candidate (acceptor or donor) (35). Neural 
Networks (NN) use artificial neuron net-
works that mimic the function of real neu-
ron networks (36). As for SVM, a training 
(learning) period to set up thresholds and 
weights is required for the network to work 
efficiently. Each artificial neuron will input 
new pieces of information (coming from 

external sources or other neurons) and 
weight them. Once a defined threshold is 
reached the sequence is considered as 
being identified and the output will be set 
to 1 (0 otherwise). 
The last approach relies on Hybrid mod-
els. It has been shown that, in many 
cases, before processing data using an 
SVM-based approach, it could be more 
efficient to first sift data with Markov Mod-
els. This has been applied to splice site 
recognitions by Ho and Rajapakse (37), 
who created an hybrid approach consist-
ing of two first- and two second-order 
Markov chain models followed by a three-
layer neural network. 
Because of the strong needs to efficiently 
predict the effects of sequence variations 
on splice site recognition, not only for mo-
lecular diagnosis of human genetic dis-
eases but also for various therapeutic ap-
proaches, a comparison of the various 
methods and associated algorithms/ soft-
ware was necessary. In this review we 
evaluated various available tools/methods 
to predict the impact of mutations on 
splice site recognition using a large set of 
validated mutations. 
 
MATERIAL & METHODS 
Method 
We mined the literature for mutations af-
fecting splicing and selected 623 muta-
tions, using data from UMD locus-specific 
databases (38-41), the Human Gene Mu-
tation Database (2) and other previously 
used datasets (42,43). Mutations were 
divided in four datasets (Figure 1): i) 72 
mutations that affect the four invariant po-
sitions of 5’ (n=49) and 3’ splice sites 
(n=23) (positions +1, +2 and -2, -1,) (posi-
tive control); ii) 178 mutations that include 
intronic mutations either localized at splice 
sites in non-canonical positions (n=148), 
distant intronic mutations also known as 
“deep” intronic mutations (n=13) and short 
distance mutations (n=17); iii) 288 exonic 
mutations reported to affect splicing, in-
cluding 10 exonic mutations that activate a 
cryptic splice site; and iv) 85 mutations 
that do not affect splice sites (negative 
control). These mutations have been re-
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ported to modify branch points (9 muta-
tions), splicing regulators (72 mutations) 
or have been identified as polymorphisms 
in splice sites (4 mutations) during diag-
nosis procedures. 
For each set, both reference and mutant 
sequences were extracted from the En-
sembl database version 44 (44) using 
Human Splicing Finder (27). As some 
prediction programs require long intronic 
sequences, 200 nucleotides-long intronic 
sequences were added to each exon ex-
tremity. In order to facilitate data process-
ing all sequences were stored as FASTA 
file (one file per set, cf. Supplementary 
Materials). 
When possible, stand-alone versions of 
programs were preferred because they 
allowed the automation of the various pre-
diction steps. As most tools have been 
designed to predict the position of splice 
sites within a sequence mainly to detect 
exons, they do not allow an easy compari-
son of a set of mutant sequences with the 
corresponding reference sequences. We 
thus developed a Java application that 
combines all results in a single file and 
outlines the differences between se-
quences (reference vs. mutant) for each 

mutation. When thresholds had to be set, 
we chose to use default thresholds and 
parameters except for the MaxEntScan 
software for which the analysis was proc-
essed with two different thresholds: 0 (de-
fault threshold) and 2 as suggested by 
Coutinho et al. (45). As the data obtained 
with the second threshold were more ac-
curate (data not shown), these were sub-
sequently used for all analyses. Note that 
data from MaxEntScan were extracted 
from the Human Splicing Finder website 
and not directly from MaxEntScan. Finally, 
when the downloaded software needed 
training, we used the included training 
sets. 
 
Selected software programs 
In order to evaluate all prediction meth-
ods, we selected the nine most widely 
used and freely available software pro-
grams: GenScan (30), GeneSplicer (46), 
Human Splicing Finder (HSF) (27), Max-
EntScan (47), NNSplice (48), SplicePort 
(49), SplicePredictor (50), SpliceView (51) 
and Sroogle (52). Three use only PWM 
(Table 1), two combine PWM with MM or 
DG, two apply a MDD approach, in one 
case combined with MM, one NN and the 

 
Figure 1: Distribution of mutation sets according to splicing motifs: 5’ss (donor splice 
site); 3’ss (acceptor splice site); branch point and splicing regulators (ESE, ESS). 
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last uses an original approach called Fea-
ture Generation Algorithm (FGA). 
 
Data management 
In order to simplify interpretation of data 
from the three sets of mutations known to 
disrupt a wild type splice site, we con-
verted all numerical information into a 
simple binary status: “broken” or not. The 
“broken” status was assigned when the 
software predicted that the mutation dis-
rupted the natural splice site. This could 
be achieved either when the mutant splice 
site value was below the specific detection 
threshold or when the absolute variation 
between the reference and the mutant 
values was 10% higher than a specific 
variation that was set as previously de-
scribed for HSF (27). Similarly, for muta-
tions known to create a cryptic splice site 
(datasets 2 and 3), we converted all nu-
merical information into a simple binary 
state: “new” or not. The “new” status was 
assigned when the program predicted that 
the mutation created a splice site. This 
new splice site could either be near the 

natural splice site itself or in a deeper in-
tronic region of the sequence, depending 
on the mutation localization. 
For dataset 4 (negative controls), both 
“broken” and “new” status were evaluated 
when a mutation was localized within a 
splice site or elsewhere. 
 
RESULTS 
The 72 mutations affecting the 3'ss and 
5'ss invariant positions (Figure 1) were 
predicted to impact splice site motifs with 
a high accuracy (>95%) by four programs: 
HSF (100%), MaxEntScan (100%), 
SpliceView (100%), Sroogle (100%) and 
NNSplice (97.22%). Unexpectedly two 
software programs gave poor results: 
GenScan (45.83%) and GeneSplicer 
(63.89%). Overall results were more effi-
cient for 3’ss than for 5’ss (93.72% vs. 
83.90%) as reported in Table 2. 
Among the 148 mutations from the second 
dataset localized in splice site motifs, 24 
affected the +3 position and 55 the +5 po-
sition, which are frequently involved in 
human diseases. Because these positions 

 
Table 1: Selected software programs to predict splice sites. PWM = Position Weight Matrix; MDD = 
Maximal Dependence Decomposition; MM = Markov Model; NN = Neural Network; FGA = Feature 
Generation Algorithm; DG = Delta-G 

 
Table 2: Prediction of mutations affecting the invariant positions -2, -1, +1 and +2 of 3’ss (n=23) 
and 5’ss (n=49). 
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are degenerated and dependent on the 
sequence context, splice site prediction is 
more difficult. This was confirmed by the 
overall lower prediction efficiency (76.97% 
for the +5 position and 68.06% for the +3 
position) and its heterogeneity (from 
20.83% to 100% for the +3 position and 
from 14.55% to 100% for the +5 position) 
(Table 3). In addition to these two intronic 
key positions, position -1 (last base of the 
exon) also plays a major role in 5’ss rec-
ognition. Once again, the overall predic-
tion efficiency was around 75% with high 
heterogeneity (from 38.10% to 100%) 
among tools. Only four software programs 
gave homogeneous results with efficiency 
higher than 80% for these 3 positions 
(HSF, MaxEntScan, NNSplice and 
SplicePort). 
For the mutations involving the other 3’ss 
(n=44) and 5’ss (n=25) positions, overall 
predictions were poorer (49.33% for 5’ss 
and 44.95% for 3’ss) (Table 3) and indi-
vidual prediction efficiencies were even 
more scattered  (from 4.55% to 77.27%). 
MaxEntScan and SplicePort gave the 
most accurate predictions. 
Then 17 intronic mutations localized at a 
short distance (<100 bp) and 13 deep in-
tronic mutations (>100 bp) from the sec-

ond dataset were tested. Since these mu-
tations create cryptic splice sites, only 
data from the “New” status were taken into 
account. For the short distance mutations, 
results were unsatisfactory with a mean 
prediction efficiency of 27.45% and only 
Human Splicing Finder showed a detec-
tion rate higher than 70% (Table 4). With 
deep intronic mutations, which activate 
cryptic splice sites leading to cryptic exon 
inclusions, the efficiency increased to 
60.68% and three prediction tools (Human 
Splicing Finder, MaxEntScan and Splice-
View) displayed efficiencies higher than 
80%. 
Concomitantly to these intronic mutations 
localized at a distance from constitutive 
splice sites, we also evaluated exonic mu-
tations that do not directly affect constitu-
tive splice sites but rather activate a cryp-
tic splice site. As only few of such muta-
tions have been studied experimentally 
(53-57), we collected a small set of 10 
mutations belonging to this category. Hu-
man Splicing Finder, MaxEntScan and 
SplicePort predicted the activation of cryp-
tic splice sites with good accuracy (70%), 
while the overall prediction was poor with 
only 44.44% accuracy (Table 5). 

 
Table 3: Prediction of mutations affecting the last base of the exons as well as positions +3 and 
+5 of the 5’ss and of mutations affecting other positions of 3’ss and 5’ss. 
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Finally, to evaluate the proportion of exo-
nic mutations that can affect splicing 
through the activation of a cryptic splice 
site, we selected a set of 267 mutations 
for which an effect on splicing has been 
demonstrated experimentally but without 
clues about the involved mechanisms. In 
this context, the average prediction was 
23.01% with a heterogeneity ranging from 
7.49% to 50.94% (Table 5).  
To evaluate the specificity of the various 
tools, we collected a set of 85 negative 
controls. Among them 4 polymorphisms 
were localized within constitutive splice 
sites at not highly conserved positions (-
12 and +6). Five tools (GenScan, Human 
Slicing Finder, SplicePredictor, SpliceView 
and Sroogle) did not detect any impact on 
the corresponding splice sites as ex-
pected, while the others reported false 
positive predictions for 1 to 4 of these 
sites (Table 5). The analysis of the other 
81 negative controls led to prediction of 

cryptic splice site activation in 17.86% of 
the cases with a heterogeneity ranging 
from 4.94% to 30.86% (Table 6). 
 
DISCUSSION 
Splice sites are key elements for exon 
recognition and therefore mutations lead-
ing to alteration of these signals have a 
strong impact on mRNA maturation and 
protein synthesis. It is now recognized that 
a wide range of mutations, which can be 
localized in introns but also in exons, may 
affect these signals either directly (disrup-
tion of constitutive splice sites) or indi-
rectly (creation of cryptic splice sites). In 
order to evaluate the efficiency of predic-
tion tools, we only evaluated the impact of 
mutations on splice sites discarding any 
effect on splicing regulators and branch 
points. For this purpose, we selected three 
sets of mutations for which the conse-
quence on mRNA has been demonstrated 
in vitro and that encompass all situations: 

 
Table 4: Prediction of intronic mutations localized at a distance from splice sites. 

 
Table 5: Exonic mutations known to result in splice defects. 
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disruption of constitutive splice sites by 
affecting invariant or variable positions, 
activation of a cryptic exon by intronic mu-
tations and exonic mutations. 
We anticipated that all prediction tools and 
methods could efficiently predict the effect 
of mutations involving the four invariant 
positions. Overall predictions were in 
agreement with these expectations and 
four software programs (Human Splicing 
Finder, MaxEntScan, SpliceView and 
Sroogle) showed an accuracy of 100%. 
Unexpectedly, GeneSplicer and Genscan 
gave poor results especially for 5’ss. 
Three other positions play an important 
role in 5’ss recognition: the -1, +3 and +5 
positions. It has been recently demon-
strated that the +3 position is intrinsically 
linked to sequence contexts leading to 
difficult predictions (58), while the +5 posi-
tion is less influenced (59). Interestingly, 
despite these limitations MaxEntScan 
could accurately predict all pathogenic 
mutations affecting these positions. HSF, 
NNSplice and SplicePort tools also gave 
very accurate results. Like for the “invari-
ant” positions, GenScan gave poor predic-
tions while GeneSplicer, SplicePredictor 
and SpliceView showed intermediate ac-
curacy. Sroogle was very efficient for the -
1 and +5 position (100%), but performed 
less efficiently for the +3 position 
(54.17%). This is probably due to the use 
of a PWM that does not take into account 
the sequence context, this limit not being 

compensated by the addition of the DG 
algorithm. 
Besides these mutations that disrupt a 
constitutive splice site, other mutations 
can activate a cryptic splice site that will 
either be in competition with the constitu-
tive site for recognition by the cellular ma-
chinery or lead to the inclusion of a 
pseudo exon (60,61). Since these sites 
are localized in introns at short or long 
distance from the constitutive splice sites, 
they are usually harder to predict, as 
pseudo exons do not match criteria for 
exon recognition by Markov Models and 
Neural Networks. On the other hand, 
PWM-based tools should accurately iden-
tify them because they analyze only splice 
sites motifs. As expected PWM tools gave 
the best results especially for the deep 
intronic mutations (average of 73.85%), 
but performed less well in the identification 
of intronic mutations localized at a short 
distance from constitutive splice sites (av-
erage 30.59%). Only HSF gave accurate 
results in both situations (92.31% and 
70.59%). Programs based on Markov 
Models and Neural Networks were less 
efficient with a detection rate ranging from 
0 to 69.23% with poor results for short 
distance cryptic sites (5.88 to 41.18%).  
Exonic mutations can also result in cryptic 
splice site activation. Because these sites 
are localized in a favorable context for 
recognition by Markov Models and Neural 
Networks, we expected them to be as effi-
cient as PWM. Indeed, the best NN- and 

 
Table 6: Prediction of intronic and exonic mutations that do not affect splicing. ss 
polymorphism = mutations localized in constitutive splice sites; other positions = 
intronic or exonic mutations not localized in constitutive splice sites. 
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PWM-based tools gave similar results with 
a detection rate of 70% (HSF, Max-
EntScan and SplicePort) while the other 
three PWM-based tools gave unexpect-
edly low predictions, especially Sroogle 
(0%). MDD-based tools were less efficient 
as for previous situations. 
In order to evaluate the proportion of exo-
nic mutations that affect splicing and are 
associated with splice site modifications 
(disruption of the constitutive splice site or 
creation of a cryptic splice site) we se-
lected a series of 267 exonic mutations 
belonging to this category. If we consider 
that only 70% of exonic mutations that 
result in the activation of a cryptic exon 
are correctly predicted by the most effi-
cient tools (HSF, MaxEntScan and 
SplicePort) and we remove tools for which 
a false positive prediction rate is high 
(SplicePort, MaxEntScan) we can predict 
that between 31 to 44% of exonic muta-
tions may alter splicing by involving a 
splice site. 
Finally, to evaluate the specificity of pre-
dictions we selected 85 intronic and exo-
nic mutations for which it has been dem-
onstrated that they do not affect constitu-
tive or cryptic splice sites (negative con-
trol). Four of them were localized in consti-
tutive splice sites and therefore directly 
reflected false positive predictions for the 
inactivation of these sites. Five tools 
(GenScan, HSF, SplicePredictor, Splice-
View and Sroogle) did not predict any 
consequence for these mutations. Con-
versely, NNSplice predicted the disruption 
of one of the constitutive splices sites, 
GeneSplicer and MaxEntScan of two and 
SplicePort of all. If these results are not 
significant due to the small number of mu-
tations, they question the specificity of 
these last three tools. The evaluation of 
predictions for the other exonic and in-
tronic mutations revealed a low rate 
(17.86%) of positive predictions. Because 
the creation of a cryptic splice site is not 
sufficient to activate a cryptic exon, these 
results could not be considered as false 
positive. In fact, two main situations could 
be encountered. The cryptic splice site is 
in the vicinity of the constitutive splice site 

and therefore is in competition for recogni-
tion by the cellular machinery. The 
strength of this new site, its localization in 
relation to the branch point for 3’ss as well 
as the sequence context (splice regula-
tors) should all be taken into account be-
fore predicting if this splice site will be 
recognized by the cellular machinery. To 
our knowledge, today no tool can handle 
such information and a manual analysis 
has to be performed. In the second situa-
tion, the cryptic splice site is at a distance 
from an exon. In this context a cryptic 
exon can be recognized only if the com-
plementary splice site (3’ss for a 5’ cryptic 
ss and vice versa) is present at a short 
distance. In addition, other criteria should 
also be satisfied: presence of a branch 
point and a favorable splice regulator con-
text. Once again, the tools tested in this 
study can not handle such information. 
GeneSplicer and GenScan were expected 
to perform better but cryptic exons are 
usually different from natural exons (no 
selection for codons and presence of stop 
codons), reducing their ability to recognize 
the cryptic exons. 
 
Predictions limitations  
Several limitations should be taken into 
account when interpreting the predictions 
of the tools used for this analysis. The first 
is related to the intron type. Although two 
types of introns have been described 
(6,7), only the GT-AG subtype of U2 
snRNP-dependent intron model is used 
for predictions as it accounts for more 
than 98% of the cases. Consequently, a 
specific attention should be paid to wild 
type splice sites to confirm that they be-
long to this category before performing 
prediction analyses. The second limit is 
associated with the algorithms. They are 
all based on a text analysis (search or 
comparison) without addition of other pa-
rameters such as accessibility of the motif 
based on 2D or 3D structures as well as 
DNA-protein interactions that could mask 
a site. Thus strong splice sites could be 
predicted but not used in vivo because 
they are not accessible to the spli-
ceosome. Moreover, the splicing process 
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is complex and involves many signals 
(branch point, splicing signals, splice regu-
lators) and proteins, which are not taken 
into account for predictions (8). The soft-
ware programs we tested in this study use 
different methods to achieve splice site 
recognition. They all rely on the quality of 
their respective training/building sets. With 
the completion of the Human Genome 
Project, many exons have been identified 
and are available to build positive sets of 
5’ and 3’ss. This is particularly useful for 
PWM-based tools that only require a posi-
tive control set. On the contrary, for SVM 
methods, both positive and negative con-
trol sets are required. In addition, some 
software programs need to know where 
the exon-intron boundaries are while oth-
ers make ab initio prediction. In this re-
view, we tested both splice site detectors 
and gene/exon annotation programs. The 
best results were obtained with PWM-
based software. Gene/exon annotation 
programs (GenScan, GeneSplicer) have a 
global approach and need a longer se-
quence to detect splice sites (ranging from 
80 to 200 intronic nucleotides) and evalu-
ate splice regulators to efficiently detect 
true exons. This additional step is critical 
and thus led to a reduced efficiency of 
such tools in this analysis. For instance, 
GenScan had first to detect exon bounda-
ries, which was not possible for all refer-
ence sequences. This does not impair 
their ability to predict exons in a large-
scale genomic analysis. 
 
Which software for which situation? 
To decide which is the most appropriate 
software, the user has to consider not only 
its efficiency, but also additional character-
istics such as its availability, amount of 
data to be processed (batch analysis or 
multiple query option), interface, etc. In 
this review we have tested the nine most 
frequently used tools. Only Human Splic-
ing Finder was created to compare a mu-
tant sequence with a reference sequence, 
while the other tools were designed to 
identify splice sites within a sequence 
(MaxEntScan, Sroogle, SplicePort, 
SplicePredictor and SpliceView) or to de-

tect exons (GeneSplicer and GenScan). 
Because of these different designs and 
underlying algorithms, they displayed dif-
ferent efficiencies. To evaluate a mutation 
involving invariant positions most tools 
may be used with a preference for Human 
Splicing Finder, MaxEntScan, NNSplice, 
SpliceView and Sroogle, the last two be-
ing less efficient when positions -1, +3 and 
+5 of 5’ss need to be evaluated. When 
other less conserved positions have to be 
investigated, users may prefer Max-
EntScan, NNSplice or SplicePort. Never-
theless, it is also critical to evaluate the 
specificity of the different prediction tools 
as MaxEntScan, NNSplice or SplicePort  
seem to have a reduced specificity com-
pared to Human Splicing Finder, 
SplicePredictor, SpliceView and Sroogle. 
When searching for a cryptic splice site, 
Human Splicing Finder is the most effi-
cient, but MaxEntScan and SpliceView 
also are very efficient for deep intronic 
mutations. Finally, for exonic mutations 
Human Splicing Finder, MaxEntScan, 
SplicePort and NNSplice are the most ef-
ficient. 
In this study, we focused on splice site 
detection, one of the many features of the 
complex mechanism of splicing. In diag-
nostic and research situations, geneticists 
have to address all aspects of splicing 
defects including alteration of branch 
points and the effect of splicing regulators 
since they modulate splicing by allowing 
fixation of proteins/complexes on the pre-
mRNA, thus enhancing weak splice site 
signals or decreasing strong splice site 
signals. The user should thus combine the 
tools presented here with other sys-
tems/approaches to evaluate these many 
situations (3,5,27,62-66). Although Human 
Splicing Finder is not the most efficient 
tool for all situations, it is the first that can 
address all splicing aspects (branch 
points, splice sites and splicing regula-
tors). Users can thus include in their tool-
box Human Splicing Finder, MaxEntScan 
and Sroogle. Finally, since all in silico pre-
dictions are based only on statistics, an in 
vitro validation step is still required. 
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