N

N

mSAT:An OCaml SAT Solver

Guillaume Bury

» To cite this version:

Guillaume Bury. mSAT:An OCaml SAT Solver. OCaml Users and Developers Workshop, Sep 2017,
Oxford, United Kingdom. hal-01670765

HAL Id: hal-01670765
https://inria.hal.science/hal-01670765
Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01670765
https://hal.archives-ouvertes.fr

I /e MSAT : AnOCamlSAT Solver

Guillaume Bury
DEDUCHEAM (INRIA)-LSV / CNRS

guillaume.bury@inria.fr

\ y
Introduction Problem Example
mSAT : a SAT solving library in OCaml. It solves the satisfibility of pro- Are the following Hl: aq=17 H2 b=cVDb=d

positional clauses. It is Modular : the user provides the theory. And it

produces formal proofs. hypotheses satisfiable? H3:a<>d H4: a<>c

o - . [b!=d], [b!=a], [a ==d] W: [b!=c], [b!=a], [a==c] [a!= c]
lemma lemma
Conflict Driven Clause Learning “ L m L
Propagation If there exists a clause C' = C’V a, where C’ is false in the (la==cl >
partial model, then add a — T to the partial model, and record C as the
[b!=a], [b'!=d] [b == a] [b!=a], [b'!=Cc]
reason for a. Resolution | R3 H1 Resolution | R4

Decision Take an atom a that is not yet in the partial model, and add
a — T to the model. [b == a]

Conflict A conflict is a clause C' that is false in the current partial model.

[b!=c]
Resolution|C1

Analyze Perform resolution between the analyzed clause and the reason

behind the propagation of its most recently assigned litteral, until the v
. . . [b = d]
analyzed clause is suitable for backumping. Resolution|C2 @
Backjump A clause is suitable for backjumping if its most recently assi- o
. . . . [b==d]
gned litteral a is a decision. We can then backtrack to before the decision, Resolution|R1

and add the analyzed clause to the solver, which will then enable to pro-
pagate a — _L.

SMT Formulas using first-order theories can be handled using a theory.
1
Each formula propagated or decided is sent to the theory, which then has _@
the duty to check whether the conjunction of all formulas seen so far is
satisfiable, if not, it should return a theory tautology (as a clause), that

is not satisfied in the current partial model.

Theory Interface

g type ('f, 'p) res = Sat | Unsat of 'f list * 'p
Implementatlon type 'f slice = { start:int; length:int; get:int -> 'f }
» Imperative design module type 5 = sig

v 2-watch litteral val backtrack : level —> unit

val current_level : unit -> level
v" Backtrackable theories (less demanding than immutable theories) val assume : formula slice -> (formula, proof) res

» Features end

v’ Functorized design, using generative functors

v Local assumptions Proof Generation
v"Model output and proof output (Coq, dot) v' Each clause records its "history” which is the clauses used during analyzing
v Minimal impact on proof search (already done to compute unsat-core)
S()l\[er |nterface v Sufficient to rebuild the whole resolution tree
module Make(Th: Theory_intf.S)() : sig v" A proof is a clause and proof nodes are expanded on demand
type 'f sat_state = { eval : 'f -> bool; ... } — NO memory Issue
type ('c,'p) unsat_state = v’ Enables various proof outputs :

{ conflict: unit -> 'c; proof : unit -> 'p } e Dot /Graphviz (see example above)

type res = Sat of formula sat_state

| Unsat of (clause, proof) unsat_state e Coq (and soon Dedukti) formal proofs

val assume : 7tag:int -> atom list list -> unit

val solve : 7assumptions:atom list —-> unit —-> res Performances
end

solver Alt-ergo-zero mSAT minisat cryptominisat

(package) aez msat (minisat/sattools) (sattools)

Other Solvers Gufl00 (1000 pbs) 0.125 0012 0.004 0.006

regstab SAT binary only | only pure SAT uufl25 (100 pbs) 2.217 0.030 0.006 0.013

minisat uufl50 (100 pbs) 67.563 0.087 0.017 0.045

sattools SAT C bindings only pure SAT vigeon /holeb 0.120 0.018 0.006 0.006

ocaml-sat-solvers vigeon /hole7? 4.257 0.213 0.015 0.073

Alt-ergo SMT binary only Fixed theory vigeon /hole8 31.450 0.941 0.096 2.488

Alt-ergo-zero SMT OCaml lib Fixed theory vigeon /hole9 'timeout (600) 8.886 0.634 4.075

oc;a/irlglzces SMT C bindings Fixed theory pigeon /holel0 timeout (600) 161.478 12(-)2?6(2::;5) 72.050

