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BILINEAR RUBIO DE FRANCIA INEQUALITIES FOR
COLLECTIONS OF NON-SMOOTH SQUARES

FREDERIC BERNICOT AND MARCO VITTURI

ABSTRACT. Let © be a collection of disjoint dyadic squares w, let 7, denote
the non-smooth bilinear projection onto w

7w (f,9)(x) = // 1u(&n)f ) (n)e 27W(§+7i)ﬂﬂd£d77

and let » > 2. We show that the bilinear Rubio de Francia operator

(3 o)

we)
is LP x LY — L*® bounded with constant at most O¢(#Q°) for any € > 0
whenever 1/p+1/qg=1/s, 7 <p,g<r,7'/2 <s<r/2.

1. INTRODUCTION

Classical Littlewood-Paley theory on the real line is a staple of linear harmonic
analysis and has proven vastly important in its development. It encodes a principle
of orthogonality in LP spaces even when p # 2 for dyadically separated frequencies,
and can thus be seen as a substitute for Plancherel’s identity; this usually allows
one to decouple the action of a multiplier on each dyadic frequency and deal with
them separately. Generalizations of the linear Littlewood-Paley inequalities were
first considered by Carleson in [8] (later reproved in a different way by Cordoba in
[9]) for the special case where one replaces the Littlewood-Paley dyadic intervals
[2F,28+1] k € Z by the intervals [n,n + 1],n € Z. Later, Rubio de Francia in
[18] extended Carleson’s result to arbitrary collections of disjoint intervals. In
particular, he proved the following: let Z = {I,}; be a collection of disjoint intervals
and define the Rubio de Francia square function

RAFZ f(x (Z e f@)?)

where 77 is the frequency projection operator defined by

T (€) == 1) F(©);
then for all 2 < p < o it holds that for all f € LP(R)

IRAFZ flemy <p If e ) 1)

(with constant independent of 7). The inequality is false in general for p < 2, as
was known since [8] - this corresponds to a failure of orthogonality in L? spaces for
small p’s. More in general, by the same methods one can prove for a generic! r > 2
that the Rubio de Francia r-function

RAF™ f (= (Z 1, ()] v

LThe condition r > 2 is necessary, as can be seen for example by considering the collection of
Littlewood-Paley intervals.
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2 FREDERIC BERNICOT AND MARCO VITTURI

is bounded on L? for all 7’ < p < oo (the lowerbound being sharp; see [10] for a
proof). Known proofs of (1) (see [12], [20], [21], [14]) rely on an interpolation be-
tween the trivial L? case and (a substitute for) the L® endpoint (or dually between
L? and H?, as in [6]). See also [3] about an alternative proof for such inequalities
as well as for a bilinear generalization, involving a collection of paraproducts-type
operators. Higher dimensional versions of the inequalities have been first shown in
[12].

A natural question is whether similar orthogonality principles exist in the bilinear
setting and to what extent. That is, given bilinear multiplier operators T; with

disjoint frequency supports in the frequency plane @2, under what conditions does
it hold that, say, the square function

(Smor)”

is bounded from LP x L7 to L*? Some results are known for special collections of
supports. Perhaps the first one is to be found in Lacey’s [13], where he proves the
LP x L? — L? boundedness of the bilinear square function

fa= (2] / / X(€ ~n - 20 fl@gmem € azan|)
nez

for p,q = 2 such that 1/p + 1/¢ = 1/2 (later extended to any 1/p+ 1/¢ = 1/s in
[15],[5]), where x is a C'* function that is identically 1 in [—1/2,1/2] and vanishes
outside [—1,1]. Thus here the frequency supports consist of (smoothened) diago-
nal strips of roughly unit width and unit separation. This was later extended by
the first author in [4] to the case of non-smooth diagonal strips, that is where one
replaces the smooth function y above by the non-smooth 1_;/51/2). The disconti-
nuity at the boundary of the strip makes the analysis inherently more complicated
(the same phenomenon that arises in the study of, for example, the Bilinear Hilbert
transform).

In this paper we are interested in bilinear operators built out of bilineag\ projec-
tions whose frequency supports consist of squares in the frequency plane R2. Here
the reference we have in mind is [2] by Benea and the first author, in which the
following bilinear versions of Rubio de Francia r-functions are considered: let 2 be

a collection of disjoint squares in R2 and let 7 be fixed, then define the operator

50w = (3| [ [reeni@amecaza) ",

weN

where y,, is a C® function that is identically 1 on %w and vanishes outside w. In
[2] the authors prove the following theorem:

Theorem 1.1 ([2]). Let Q be a collection of disjoint squares in R2 and let r > 2.
Then

1S6.(fs Dl Ls®) Spa 1 flLelglza ()
for all p,q,s such that 1/p+1/q = 1/s, v’ <p,q < 0, /2 < s < r. In particular,
the constant is independent of ).

This result is to be thought of as a bilinear orthogonality principle for collections
of (smoothened) frequency squares in the same way as the Rubio de Francia theorem
is for the linear case. Observe however that the square function case r = 2 is not
covered by the theorem - its boundedness is currently an open problem. We remark
that the condition 7’ < p, q is necessary (to see why it suffices to consider a collection
of squares like the one given in Example 1 below).
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Our interest here is to extend the results of [2] to the case where the smooth
characteristic function y,, above is replaced by the non-smooth characteristic fun/c\—
tion 1. In particular, let © be a collection of disjoint squares w = w; x wy in R2
and denote by 7, the non-smooth bilinear frequency projection onto the square w,
that is

ro(f.9) () = / / 1, (€, 0) F(©)3(m) ™ €= dgdn,

which in particular factorizes as m,, = 7, ® 7m.,. We are interested in the bilinear
operator
1/r

g Tl 9)@) = (X Imlf0)@l) 5 r=2,

we2

and specifically in proving bounds of the form

ITo(f: 9l < ClflLelglea; 3)

we denote by C) 45,0 the best constant C such that the above inequality holds for
all f e LP g e LY (we consider r fixed). The usual scaling argument shows that a
necessary condition is that the exponents p, ¢, s satisfy Holder’s relationship, that

is it must be
1 1 1
— J’_ - = —
p q S
(and therefore Cp 45,0 = Cp.q.0)-
We consider some examples in order to get acquainted with the problem at hand.

Example 1. Let r > 2. Suppose i consists of an arbitrary number of disjoint
squares that all intersect a given vertical line, that is there exists a frequency &
such that for every w € Qne we have &y € wi. Observe that the frequency intervals
wo must be all disjoint. We can bound pointwise

T (F0)@) < (2 Iraag@l) - sup |m f(2)] < RAF (9)(x) - 6 £ ().

wWEine WEine

where ¢ denotes the Carleson operator, which is bounded on LP for all 1 < p < o
(by the Carleson-Hunt theorem, [7], [11]), and therefore we get that for p > 1 and
g>r1' (or g =2if r > 2) we can estimate for this particular collection

1760, (f5 9) ()]

or in other words Cp, ; 0. Sp,q 1 in the stated range.

Lo Spaq [ fleelgles,

Example 2. Let 7 > 2 be fixed and consider now a collection of N2 % N1/2 points
in R? arranged in a rectangular grid with large spacing, and suppose that each point
labeled by (i, j) is the center of a square w® and furthermore that the squares are
all disjoint (their sidelengths can be all distinct). We let Qgyiq := {w"}; ;< n1/2 and
we try to bound Tg’;gm in some range. Observe that since a priori

7o (f,9)(@)] < €f(x) - Cg(x)

we always have the trivial bound
176,00 (f5 9)

for p,q > 1. We can beat this trivial bound of C,, ; o

Lo Spg NV f gl ze

N'/" by the following
argument: since for a fixed i the squares w% are such that w;’ all contain a same

grid s10#1
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frequency as in the example above, we can bound pointwise

(3 mtraer) =(X % Il mper)

weQgria i<N1/2 j<N1/2

<tf@-( Y Y Impe@l)

iSNl/Q j<N1/2

<t (Y varggy)”

i<N1/2
—NY2g f(x)Var, € g(x),

where Var,% is the Variational Carleson operator
M

—1
Var, € f(z) :==sup sup ( |7r[€j)5j+l]f(x)\r>
M &i<-<€m j=1

1/r

1/r

It is known from [17] that this operator is L? — L? bounded for ' < p < w0 if r > 2,
as is the case, and therefore we get for the range p > 1, ¢ > r’ an improvement in the
dependence of the constant on the cardinality of Q (specifically, Cy .00 Sp,q NV 1/2r
instead of N/7),

It is natural to conjecture that for some range of exponents (possibly as large
as® p,q > 7', like in [2]) one should have Cp 40 <pq 1 for every admissible 2, or
in other words that inequality (3) should hold with constant C) 4 independent of
), and specifically independent of its cardinality #£2. Simple pointwise arguments
like the one given in Example 2 are unlikely to give such a result. However, by
combining similar observations with the time-frequency analysis of [2] and some
further ideas from [1], [3] (as for example the consideration in the time-frequency
analysis of an exceptional subset built from non-local operators), we are able to
reduce the dependence of the constant C, ;o to be at most of logarithmic type in
#0 and otherwise independent of the specific collection®. More precisely, we show
that

Theorem 1.2. Let r > 2 be fized. Then for all p,q,s such that
1 1 1

p q S
and
v <pg<r, 1/2<s<r/2

it holds that for every arbitrary finite collection Q of disjoint dyadic squares in R?
and for every € > 0 the estimate

(S et )@ )| Separ #9°1 fluslglse ()

we

holds true for every f e LP ge L4.

Remark 1.3. In Theorem 1.1 (from [2]) above, the statement encompasses arbi-
trary non-dyadic squares; this is because of the flexibility provided by the smooth-
ness of the y,, functions. However, in the non-smooth case things are not as simple.
One can replace the assumption that the squares are dyadic with a well-separation

2The p,q > r’ range is achieved by product-like collections of rectangles, that is collections of
the form Q = {I x J s.t. I €Z,J € J}, where Z, J are collections of disjoint intervals; this can be
readily seen by a factorization of the operator and an application of Rubio de Francia’s theorem.

3See Lemma 2.7 and Proposition 2.12 for the sources of this logarithmic-type loss in the
argument.
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assumption: namely, Theorem 1.2 still holds if we assume that 2 is a finite collection
of arbitrary squares such that 4w n 4w’ = & whenever w # ’. In the linear case
it’s always possible to reduce to a well-separated case (see [18]) by means of clas-
sical Littlewood-Paley theory, but in the bilinear case such tools are not currently
available.

Remark 1.4. The condition 7 > 2 is a shortcoming we inherit from [2]. However,
for the r = 2 case, one can deduce from the above theorem and Holder’s inequality
that T3 is L? x L? — L' bounded with constant at most O (#Q¢) for any & > 0.
Indeed, we can bound pointwise T3(f, g) < #Q°T5(f, g), where 1/2 = 1/r + ¢, and
conclude using Theorem 1.2 for exponents p = g = 2.

This result can be thought of as evidence in favor of the natural conjecture stated

above. Observe the range of boundedness provided by Theorem 1.2 is smaller than
the corresponding one in Theorem 1.1 above. We explain the reason why in Remark
2.22. Figure 1 in section §2.7 provides a graphical illustration of the range obtained
in Theorem 1.2.
The proof of Theorem 1.2 is presented in section §2, and is split into a number of
steps. The result is obtained by interpolation between a boundedness result for T
(a trivial consequence of the Carleson-Hunt theorem) and a partial boundedness
result for T, when r is close to 2. The latter is obtained by adapting the time-
frequency methods of [2] to our setup, but using non-local operators to construct the
exceptional set as in [1], [3]. The necessary preliminaries are carried out in sections
§2.1 - §2.6. The proof is concluded in §2.7, where the particular interpolation result
we will use (Lemma 2.21) is also presented. Finally, we present a simple application
in §3.

Acknowledgements. Both authors are supported by ERC project FAnFArE no.
637510. The authors are also very grateful to Cristina Benea for many useful
comments/discussions and in particular for having shared with us a preprint of [3].

2. PROOF OF THEOREM 1.2

We let in the following N := #€). We can reduce the problem by linearization
of the " norm and duality to the following: given f e LP, g€ LY, h e L define the
trilinear form

A(frg.h) = /ZmJ Vng (@) (), (5)

R e

where hy,(z) = h(z)e,(z) and {e,(2)}wen satisfies |{ey,(z)}u],~ < 1 for every
x € R; then it suffices to prove that

A (£5.9, )| Sepair NENFlzollglzallel o

uniformly in {e,,(2)}weq. Thus we can further reduce the problem to that of bound-
ing the trilinear form

A(f,g.b) = /ZmJ Vrng(2)he(2) e, (6)

R ,eq
where h = {h,,}.eq is a generic element of LY (Er/).
2.1. Discretization of the trilinear form. We perform the usual discretization

procedure on the trilinear form A, except this time we will not resolve the singu-
larities using Whitney cubes. We have (using Radon duality, with do the induced
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Lebesgue measure on the plane & + & + &3 = 0)

A(f,g,h /Zf*nm )9+ T, (0)h (a)da

R ,eq

= Z /5 ease Of(fl)llwl(&)@(fg) wl(fz) w(&3)do(&y, €2, &3)

weN
-5 FUE) e (€))L (€2) o (€)Xes (650 (61 2. 65)
weQ Y E1+82+83=0
Z/f*ﬂwl )9+ T () * X, (),
weN

where we have denoted w3 := 2(—w; —w2) and X, is a smoothed out characteristic
function, identically equal to 1 on —w; — wo and identically vanishing outside ws.
Now, although the kernels decay very slowly, the functions f = ]T; are morally still
roughly constant in modulus at scale |w;|™' =: |w|™!, and therefore it makes sense
to do the following changes of variable:

S [ 1+ T @ s T@he « @)

we

= Dl [ Tl g ol )b+ Tl 9)d

we)

=3 S el / £ o T (o]~ + 2))g » T (ol ™ (4 2))

we nez
“hy ® Xw3(|w\_1(n + 2))dz.

In classical time-frequency analysis one rewrites the above form as an average over
z of discrete sums of coefficients, each given by an inner product against suitably
defined wavepackets associated to tiles in the time-frequency plane, and then pro-
ceeds to bound the discrete sums uniformly in z; the approach we will take however
is different and will involve allowing only a single scale for each square w, roughly
speaking - a choice reflected in our definition of tri-tiles given below. This will allow
us to do a time-frequency analysis of the trilinear form A free from wavepackets
(although wavepackets are intrinsically present in some strong results that we will
use off-the-shelf). Define then the tri-tiles as follows:

Definition 2.1. A tri-tile P is a triple of sets of the form
P=(P,P,P3) = (I xwiy, I xws, IXuws)

where w = w1 X wy € Q, w3 = 2(—w; — wsy) as before and I is a dyadic interval of
length? |w|™! . Sets P; for j = 1,2,3 are referred to as tiles. Given a tri-tile P
we denote by Ip the interval I above; we also denote by w(P) = wi(P) x ws(P)
the frequency square associated to the tri-tile P. Finally, given a collection of tiles
P we denote by () the collection of frequency squares on which P is supported,
namely

Q(P) := {w e N s.t. w=w(P) for some P € P}.

Using Hélder’s inequality on each summand above, we have
1
ol [ Tl 04 ) 2 (il 0+ 2 T (] 0+ 2))d5
0
<|f # Lo ln2 ey 19 * Lws L2 1p) 1P * Xaos |20 (155

430 that it’s always [I]wj| ~ 1 for j =1,2,3.
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where the tri-tile P is given by
Ip = [l ™', Jw| 7 (n + 1)]
and
P=(Ip xwy,Ip xws,Ip X ws).

We introduce the shorthand notation

FPY) o= | f * Loy 22,
9(P2) =g * 1y, ||L2(Ip)7
h(P3) := |hu(py * Xas |2 (15)-
We have therefore that, if P denotes the collection of all possible tri-tiles (obtained

by letting w range in 2 and n € Z, in the above notation), the trilinear form A is
bounded by the discretized sum

IA(f,9.0)| < D) F(P)g(Po)h(Ps) =: Ap(f,g,h).
PeP

The reason for this unusual choice of coefficients will become clear later in light of
Lemma 2.7 and Proposition 2.12 below (see particularly Remark 2.13). In the rest
of the section we will concentrate on bounding the discretized sum.

2.2. Columns and rows. We introduce here some structured collections of tri-
tiles, originating from [2], that will be fundamental to our analysis of the trilinear
form A. They are to be thought of as the analogue for our setup of trees, in the
language of classical time-frequency analysis.

Definition 2.2. A collection of tri-tiles C is a column if there exists a tri-tile T € C,
referred to as the top of C, such that for every P € C

wl(P) le(T)
and
Ip € Ir.

Analogously, a collection of tri-tiles R is a row if there exists a tri-tile T € R,
referred to as the top of R, such that for every P e R

wa(P) 2 wa(T)
and
Ip C Ir.
Given a column or row 7 we will use Top(7) to denote its top.

Remark 2.3. Observe that if C is a column then the collection of tiles {P; s.t. P €
C} is overlapping, while the collection of tiles { P, s.t. P € C} is lacunary (because
the frequency squares w are disjoint). The reverse holds for a row. This will be
important later on.

We show below that when C is a column we can give a good bound on A¢ (and
similarly for rows). In particular, we argue almost exactly as in [2] and bound the
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discretized sum restricted to C as follows:

5% S(Poa(P(Py) <(sup TED Y S5 g(Pm(Ry 1]
PeC

PeC ‘IP|1/2
P,

:(sup f( 11/)2) Z Q(P2)|IP| (1/2— 1/r)h( )|IP‘1 1/r

pec |Ip| e

f(7) 22\ /"

<|( su Ip|= 0

(Perg IP|1/2)(PZ€C g(Po)"|Ip |~ )

, 1/’
< (X ner)el)
PeC

Then, for the term in g we bound

(S oterite o)™ = (St (550 )

PeC PeC
< () (o)

PeC

(notice we have introduced the same type of quantity that controls the contribution
of f in here). As for the term in h, we observe that

r

IIPIh(Ps)T'ZIIplsup oo # X ()| < || ( Sup/lh )IXen (y = 2)|dz)"

yelp yelp
_ | M dz r
< | su /h 7)
¢l (s | RO
|y—z| -M dz |+
< el [ Ihate)] sup L
s AT R

< / ()" @1, ()

where M > 0 is a large number and ®; denotes some rapidly decaying function
concentrated in the interval I. Now observe that for each fixed w the tiles P which
have w as their frequency support have space support of fixed size |Ip| = |w|7!,
hence the intervals Ip are all disjoint. Define then for an interval I of length greater
or equal to |w|~! the function

7 (x) := >, @ (2);
J dyadic s.t.J<SI,
[T]|w|=1

notice ®% is essentially ~ 1 inside I and decays like (1 + |w|dist(Z, x)) "1 outside

of it (see remark 2.11 for why we need to introduce such functions). We can thus
bound

th3 \IP|<Z/|h 2" @5, (2)dz

PeC PeC
SZ/‘|h“’|w iedz
w

To summarize, we introduce sizes:
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Definition 2.4 (Sizes). For any collection of tri-tiles P define

. P, 1/2
SIZG}(P) 1= sup il 11)2 = sup (]€ |7rw1(p)f|2dx) ,
P

per [Ip|Y?  pep

P 1/2
Sizeg(IP’) 1= sup M = sup (][ |7er(p)g|2dx) ,
Ip

per [Ip|Y?  pep

1 ’ 1/"'/
Size (P) := sup | — / ho|" ®% _dz ,

TcP

where the last supremum is taken over sub-collections 7 of P which are either rows
or columns.

With this notation, what has been shown in this section can be summarized as

Proposition 2.5. Let C be a column of tri-tiles, then
1 1/r . . r—2)/1 ~.
[Ac(f.9.h)] < (W > 9(P)?)  Sizef(©)[Size(0)] " iz (Ol el
PeC
and similarly, if R is a row of tri-tiles, we have

[A=(f,g,h) (u | 2 f(Pr) )1 Slzef( )](T 2/TSIZG( R)Sizej (R)|Ir]|.

PeR

2.3. Size bounds. We have the following immediate bounds for the sizes intro-
duced above:

Proposition 2.6. Let j = 1,2 and let P be a collection of tri-tiles, then
4 1/2
Size}(P) < sup (][ \%f\zdx> )
PeP \J T
P

where € is the Carleson operator.
Proof. Obvious. O

We do not state an analogous proposition for Size® since this size is already in a
convenient form.
Later on we will also need the following simple bound (notice the appearance of a
logarithmic type loss in the constant):

Lemma 2.7. Let #Q = N. Let C be a column of tri-tiles and let € > 0. Then

Z (P2) \N‘E][ |Var,, % g|*dx,
Ic

|I | PeC
where qo = qo(g) > 2 is given by

1 1 €

2 qo 2 ’
Clearly, an analogous statement holds for rows.

Proof. Observe that by unwrapping the definitions we have

T Do = 3 gL @)

PeC Ie pec
thus by Holder’s inequality we can bound the above by

€

F (Z mslmin @) (3 1 @) a

PeC PeC
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Since C is a column, the tiles P, are disjoint in the time-frequency space, and
therefore we have the trivial bound

H Z ]IIPHLvC <N
PeC

for the same reason, given z, the frequency intervals wy(P) such that z € Ip are
disjoint, so that we can bound pointwise

(3 Fanma@ 11, @) " < Var, €(o)@).

PeC

and the claim follows. O

2.4. Energies and energy estimates. In this subsection we introduce the ener-
gies that will allow us to run a time-frequency argument for the trilinear form A.

Definition 2.8 (Energies). We denote

1/2
Energy}([?’) := sup sup 2”( Z |ITOp(c) \) ,
nezZ ¢ cee
where the inner supremum runs over the collections € of disjoint columns in P such
that for any column C € € it is

F(Top(©) _
[ rop(c)] /2

Define analogously Energyz (P) with respect to rows of tri-tiles in the obvious way.
Finally, we denote

1/’
Bnergy},(P) = supsup2” (3 [Fropr)])
neZ % Tex
where the inner supremum runs over the collections ¥ of disjoint rows and columns
in P such that for every 7 € T it is

1 'I”l w 1/7‘, n

weT

Remark 2.9. Our definition of Energy” is slightly different from the corresponding
one of [2] (in particular it’s somewhat relaxed) because in our arguments we won’t
have to resort to Bessel-type inequalities.

We must show that these quantities are well behaved in order for the machinery
of time-frequency analysis to work. In particular, we ought to show that the energies
can be controlled in terms of LP norms of the functions. This is what we do next.
First of all, we have the simple

Proposition 2.10. For any collection of tri-tiles P and for any h € L (f’",) we
have

Energyy, (P) < [ v -

Proof. We may assume for simplicity that the collection P is finite, since our argu-
ment will not depend on its cardinality. Let n € Z and ¥ be a collection of disjoint
maximal rows and columns that realize the supremum in the definition of Energy?®,
that is
Energyp (P)" = 2" Y [Fop(7)|-
Tex
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By definition we then have

Energyh Z 2 /‘h " ® ITopm

TeT weT

=3 [t ¥ 0, do
Tes

but the collection ¥ is maximal with respect to inclusion and therefore for a fixed
w the intervals Ito¢7) are disjoint, hence by the rapid decay of the functions &

we)

we have
w
Z (I)ITopm <1
Tex:
Tow
and this concludes the proof. O

Remark 2.11. Two things should be noticed. Firstly, that in the last lines of the
above proof we crucially needed the decay of the functions ®4 away from I to be
controlled by |w|~! rather than by the larger |I|, which justifies their introduction
and the subsequent definition of Size®.

Secondly, the maximality we appealed to above means the following: given a column
(or row) C such that

IITop(c>|/ Z ol @y > 277,

we(C

we can enlarge C by adjoining all trl—tlles P € P such that w(P) € Q(C) and Ip =
Itop(c), and doing so will not change the left hand side of the inequality at all.
In other words, the only information Sizef’1 is sensitive to is the space support of
columns or rows 7 and the squares w € Q(T).

Next we look at a bound for Energy’ for j = 1, 2. Here our method necessarily
introduces an unfortunate logarithmic loss (already encountered in Lemma 2.7; the
proofs indeed rely on the same idea).

Proposition 2.12. Let 2 be a collection of disjoint dyadic squares with #£ = N.
Then for any € > 0, for any collection of tri-tiles P and for any f € L? we have
that

Energy}(P) <. N¥|flzz  j= 1,2,

Proof. We let j = 1 in here, the proof for j = 2 being identical. Let n € Z and €
be a collection of disjoint columns that realize the supremum in the definition of
Energy}(]}”) within a factor of 2, that is

Energy }(P)* ~ 27" ) [Itop(c)|-
Ce¢

Then by definition of energy this implies
Energy;(P)* < Z [7eon ) 72 (10
Ced

where we have abused notation by writing C in place of Top(C) to ease readability.
We rewrite the latter quantity as

| 3 o)L @)de

Ce€
observe that we have the trivial bound

H Z L1 L
Ce¢

<#Q=N.
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Let then ¢o(g) = go > 2 be such that
1 1

and bound by Holder’s inequality

/2 Terie)f () Lie (2)de < NQE/ ( Z 1T () f ()| L1, (x))Q/qodx.
Cec

Cec

Since by definition of Energy' the tops Top(C) are disjoint as tiles, we have that
pointwise

/40
(3 e @) L)) ™ < Var, € (a),

Cec
where Var,,% denotes the go-variational Carleson operator. We know from [17]
that this operator is LP — LP bounded for p > ¢, and therefore our quantity
above is bounded by

2 [ [Vary @ 1Pde <. N[ ]2
which finishes the proof. O

Remark 2.13. Lemma 2.7 and the above proposition are the reason for our choice
of working with the coefficients f(Py), g(Ps), h(Ps). Indeed, it is their form and pre-
cise localization (that is, the L? norms don’t involve weights supported everywhere
on R) that allow us to introduce pointwise estimates of the relevant quantities in
terms of Variational Carleson operators.

2.5. Decomposition lemmas. The decomposition lemma for Size' is well known
and perhaps immediate. An identical result holds for Size® by replacing columns
with rows.

Lemma 2.14 (Decomposition lemma for Size'). Let P be a collection of tiles and
let n be such that
Size}(]P’) < 2*"Energy} (P).
Then we can decompose P = Pioy L Ppign such that
Size} (Prow) < 2*”*1Energy}(]P’)

and Prignh can be organized into a collection € of mutually disjoint columns C such

that
D] £ 2%
CeC

Proof. The proof is well known. We select the maximal tiles P in P such that

§(P1)
e[

and start from the leftmost, higher one, denoted Ppax. Let Pgock := P and € := &
at the start and let C; be the maximal column in Pyiocc with top Ppax; then update
¢ to €U {C1}, and update Psock t0 Pstock\ UPGC1 {P}. Repeat the process until the
algorithm stops. Define Pioy = Pgpock and Phign := Uj UPecj {P}. Then the size
property is immediate, and as for the bound on the measure of the tops notice that
we have for each j

> 2*”*1Energy}(IF’),

f(Top(C;)1)

1/2

> 27" 'Energyl (P
ey |V 1"
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and therefore by definition of energy (and its monotonicity)
1/2
2—n—1Energy} (P) (Z I Top(c;) |) < Energy} (Phigh) < Energy}(]P’)7
J

which proves the claim. O

The decomposition lemma for Size® is entirely similar (we have replaced the
constant 2 with + in view of its application to the proof of Lemma 2.16 below).

Lemma 2.15 (Decomposition lemma for Size®). Lety = 22" Let P be a collection
of tiles and let n be such that

Size} (P) < vy "Energy’ (P).
Then we can decompose P = Poy, L1 Ppign such that
Size} (Piow) < ¥~ " 'Energy? (P)

and Ppigh can be organized into a collection T of disjoint columns and rows T such
that

D sy =2
Tex

The proof is essentially identical to the one given above for Size!, and is thus
omitted.
Finally, by applying the decomposition lemmas simultaneously and then iterating
one can achieve a global decomposition of a given collection P with good control of
the sizes of the sub-collections. In particular

Lemma 2.16 (global decomposition). Let P be a collection of tri-tiles. Then there
exists a partition P = | |, (P! L PrY) with the properties:
i) Size}c (Peelrowy < min(Z_"EHergy;(]P’)7 Size} (P)),
ii) Sizel (PM%) < min(2-"Energy, (P), Size (P)),
iii) Sizej (PLro) < min(2-2%/" Energy; (P), Sizej. (P)),
iv) Pl is organized into a collection €, of disjoint columns,
v) PV 4s organized into a collection Ry, of disjoint rows,
vi) Dece, el S 22n
Vit) Dipem, IR < 22n,

The collection P! is empty if n is such that

soal . 3
-n > Slzef(lp) and 272" > Slzehgp) :
Energy;(P) Energyy, (P)
and similarly the collection PV is empty if n is such that
.2 .
g > Slzeg(]P’) ond 9=/ > Slzefl(P) .
Energyi (P) Energy;. (P)

Proof. Initialize Pgocr := P and apply iteratively the decomposition Lemmas 2.14
and 2.15, in the order given by whichever of the quantities

Size}f (Pstock) Sizez (Pstock) ( Sizefl (Pstock) ) /2
Energy}(]P’) ’ EnergyE(P) ’ Energy; (P)
is largest, sorting columns and rows into the current P! PV respectively and

updating Pgock at the end of each step to be the collection (Psiock)iow resulting
from the last application of a decomposition lemma. We omit the details. O
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2.6. General estimate for Ap. In this section we prove the following general
estimate, which will then be the main ingredient in the proof of Proposition 2.19
in §2.7.

Lemma 2.17. Let Q, A be as above, with #8 = N, let P be a collection of tri-tiles
and let e > 0. Let o = ’";2 and denote for shortness

Size}(]P’) =: 851, Energy}(P) =: &,
Sizez (P) =: Ss, EnergyE(P) =: &,
Sizej (P) =: Ss, Energy; (P) =: &3.

Then if we let go(e) = qo > 2 be given by

1_1_ ¢
2 g 2
we have
. 9 (1—0)/2
[Ap(f,g. 1) SN“sup | [Vary, €[]
peP L J)1p

x 8120'01 511720918220'9255720028;’" 00353177“ o3
](170)/2 (7)

+ N°®sup [][ |Var,, € f|?
PeP Ip

% 812051 55—2051 822052521_2052S§IU£3(€§_T/053

for any 0;,&; such that 01 + 02 + 03 = 1 and respectively & + &2 + &3 =1, and

0 < 91 g min(la (20)_1)’ 0 < 51 < 1

1 2’
0<6; <3, 0 < & < min(1, (20)7Y),
0<6y<1, 0<&<1

Proof. Apply the global decomposition lemma (Lemma 2.16) to the collection P,
thus obtaining a partition P = | | P! L Prev. It suffices to consider the collections
Peo! (which correspond to the first term in (7)), the proof for the collections Pro™
being entirely analogous. Since P! is organized into a collection €, of disjoint
columns, using Proposition 2.5 we can bound

Apeor(f.9.0)[ < ) |Ac(f.g. D)
Cec€,,

1 1/r pu
= g(P2)2) Size} (C)[Size2(C)]” Sized (C) | Ic |
|IC| PeC

1 2 1/r . —n . —n g
— Z g(P) ) min(27"&;,S1)[ min(27"E;, S0) |
|IC| PeC

=P
Ce¢,

SN
Ceg,

X min(2_2n/T/53,33)|[C|5

1/r
by Lemma 2.7 term (ﬁ > pec Q(PQ)Q) can be replaced with
1/r
N°¢ sup [][ |Varq0<€g|2] ,
pep L1,

which then factors out of the sum (notice (1 — ¢)/2 = 1/r). By definition of P!,
what remains is controlled by

min(27"&1, S;)[ min(27"E, S2)]” min (2727 &5, 85)2%",
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and therefore it suffices to show that the sum over n of all these contributions is
controlled by the corresponding product of sizes and energies in the first term of
the right hand side of (7). This requires a tedious but easy case by case analysis.
Assume that

So% (B (5)

?1<?2< Es

the other cases being similar and thus omitted. We have

’

r'/2
1) case 27" < ‘% < ‘2—5 < (%) : in this case the sum we have to bound becomes

Z 277151277105527271/7"'532271

n:2 <S5 &

—8g5g ), 2y,

n:2-n<S &t
and since o + 2/r’ — 1 = 20 the above evaluates to
sirel ese,
which by assumption (8) is clearly controlled by the desired

2001 01—2001 02005 pco—2005 o1’ 003 c1—1"003
§2001 g1-2001 G200 go 200> Grloty gl =100,

r'/2
2) case % <27 < ‘;—; < (‘;—g’) : in this case the sum becomes
’
Z 8127110'52027271/7" 5322n
n:S1E <2 <867 "
’
:815583 Z 2—n(¢7+2/r —2)’

n:81E <2 <86, "

and o + 2/r" —2 = 20 — 1. Thus we have further sub-cases:
i) subcase 20 — 1 < 0: in this case the sum is controlled by

S 20—1 9% oo
515553(5%) — S¥gl-rgre,

which we have already established is fine;
ii) subcase 20 — 1 > 0: in this case the sum is controlled by

sers (2 - () ers(2) " (2)"
and since by assumption 1 — 2060; > 0 we can further bound this by
& (%) 20915553 (%) 1-206, (%) 20—1 ¢ (1%) 209155’83 (%)2002+2093’

which is clearly controlled by the desired quantity;
iii) subcase 20 — 1 = 0: in this case the sum is controlled by

8152”53 log (% . %) $S152053<% . %)20(«92-&-03)
g (%> 1—20(024—93)55 (%)20(92+03)53’

which is again the desired quantity since for this value of o it is 1 —20(05 +
93) = 20’91 .
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’

'/
3) case % < ‘g—g <27 < (‘;—2) : in this case the sum becomes

> 8185272/ g39%n
n:SyEy <2-n<8y Pey
=85187&; Z 22n/r.
n:SyE5 <2-n<sSy Py
since 2/r = 1 — o, this is controlled by
82 o—1 82 20—1
sisse(2) =si(2) s,
199 €3 52 1 52 2 ¢3
which we have encountered in the previous case and is therefore fine too.
Thus the proof is concluded. O
2.7. Proof of the main theorem. We are now ready to prove the main theorem
(Theorem 1.2). It will be obtained by interpolation between the two extreme situ-
ations, namely r = o0 and r close to 2.

For the first case, we only use the Carleson operator which is bounded on all L”
spaces for p € (1,00) to deduce the following:

Proposition 2.18. The bilinear operator TS given by

T3 (£,9)() = sup |mo(f, 9) ()]
is bounded from LP x L9 to L® for all 1 < p,q < oo, where 1/p+ 1/q =1/s.
Proof. As observed in Example 2, the operator T is bounded pointwise by

T3 (f,9)(x) < € f(x) - Cg(x),
and the result then follows from the Carleson-Hunt theorem. O
For the second case, we will prove the following proposition, whose statement is

identical to that of Theorem 1.2 except for the smaller range of p, ¢ (namely p, ¢ > 2
here, and hence s > 1 too).

Proposition 2.19. Let r > 2 be fized °. Then for all p,q,s such that
1 1
+

[t

and
2<pg<r, l<s<r'/2

it holds that for every arbitrary finite collection Q) of disjoint squares in R? and for
every € > 0 the estimate

[( 3 metr. @) $ea #9151 elglse (9)
we)

holds true for every f e LP ge L9.

Theorem 1.2 follows from Proposition 2.18 and 2.19 by multilinear interpolation
of vector-valued operators. More precisely, it will follow from a straightforward
application of the next lemma (originating from [19]), which we state after a defi-
nition.

5For interpolation purposes, r should be thought of as being very close to 2.
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Definition 2.20. Let A(f, g,h) be a trilinear form and let (a1, as,as;r) be such
that 0 < aj,0 < 1, a3 <1, a1 +as+a3 =1 and r > 1. We say that A is
of generalized restricted weak type (o, g, as;r) if for every measurable subsets
F,G,H of R of finite measure there exists a subset H' € H, called major subset,
such that |H'| ~ |H| and for all functions f, g, h such that

1/r
fl<te <o, (Nl)" <t
k

the inequality
|A(f,9,b)| < |F|*|G|*2|H[*
holds true.
Lemma 2.21 ([19]). Let A be a trilinear form of generalized restricted weak type

(a1, a9, a3;10) and (51, B2, B3;71), with the property that the major subset doesn’t
depend on the a’s or 5°s. Then for all 6 such that 0 < 0 < 1, with

of = (1-0)a; +68;, j=1,2,3

and

To To 1
it holds that A is of generalized restricted weak type (af, a8, a8, rp).

Proof. The lemma is a particular case of a more general interpolation lemma origi-
nating from [19] (specifically Lemma 4.3). We sketch the proof here for the reader’s
convenience.

We argue by complex interpolation. Let F, G, H, H', f,g,6 be given and let h be

such that
1/T9
(Xthale) " < 1
k

For z € C with Rez € [0, 1] define h® by
hi (@) == [hy,(a)]"®)

for every k, where
Ty To
=1-2z)—+2z—.
) = (1= 22 2
When Rez = 0 we have |h}|™ = |hi|™, and when Rez = 1 we have |hf|™ = |hg|™;
hence by assumption we have for Rez = 0

IA(f, g, 0%)| < |F|*|G|*[H|*,
and for Rez = 1 we have
IA(f,9,0%)| < |F|?"|G|P2| H|P.

Since the function ®(z) := A(f, g,h*) is easily seen to be holomorphic in the open
strip S = {z € C s.t. 0 < Rez < 1}, continuous in its closure and bounded, we can
apply to it Hadamard’s three-lines-lemma and conclude that since h?** = h we
have

A(f,9.h)| < |F|*Y|G|°% | H|S,
as desired. O

Theorem 1.2 follows by taking r1 = o0 and r( sufficiently close to 2 and applying
Lemma 2.21 above to the trilinear form A in (6). The hypotheses are verified by
Propositions 2.18 and 2.19, and we thus get that for a given r > 2 the trilinear form
A in (6) is of generalized restricted weak type (a1, ag, as;r) for all 1/r < oy, e <
1/r"; hence the trilinear form A, in (5) is of generalized restricted weak type (in
the classical sense) (a1, s, as) for the same range of o’s. Finally, the strong type
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estimates for T¢; follow by classical multilinear interpolation.

1/q
1k

1/r'

1/2

1

1r 12 1}# T

FIGURE 1. The darker square corresponds to the p, g range given by Propo-
sition 2.19; interpolation with Proposition 2.18 extends the range to that cor-
responding to the additional lighter area.

We end the proof of Theorem 1.2 by proving the last remaining proposition.

Proof of Proposition 2.19. The proof follows a standard argument originating from
[16] (although implicitly present in previous work).

By multilinear interpolation, it suffices to prove restricted weak type estimates, that
is it suffices to prove that if F, G, H are measurable subsets of R of finite measure,
then there exists a subset H' of H such that |H'| ~ |H| and if

,1/7"/
<te l<ta, (X)) <t

we

then it holds that for any collection of tri-tiles P it is
|Ap(f, 9. 1)| Sepg NYIFIVPIGI9 HIYY (10)

for any € > 0.
Given sets F, G, H and functions f, g as above, we fix two large numbers p,q > 2,
and we define the exceptional set E to be

_IF]

E ::{x eRst. M(|CfIP)(z) 2 ﬁ}

U {w eR s.t. M(|%g|")(z) 2 |g||}
|F|

O {r e Rt M([Var, € f12)(x) 2 ﬁ}

v {x e R s.t. M(|Var,,€g|*)(z) 2 ||§||},
where M is the dyadic Hardy-Littlewood maximal function. Define H' := H\FE;
we claim that if we choose the implicit constants in the definition of E to be large
enough, we have |H'| ~ |H|. Indeed, this follows from the L' — L%* boundedness
of M and the boundedness of the relevant operators for the given exponents, for
example

F| € £7] s
p > L S — =
erRs.t. M€ fP)(x) 2 |H|H~ |F| &l
P p
NI gy <) W 1y,

- |H| <
|| P IF
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where we have used the Carleson-Hunt theorem in the second to last inequality.
The same holds for the other terms in the definition of E, where in particular one
also has to invoke the L? — L? boundedness of Var, % proven in [17].

Now, we partition the collection P into

]Psmall Z:{P e P s.t. Ip ¢ E},
HJ)lbxrge ::P\]Psmalla

and will estimate separately the trilinear forms Ap
We start with Pgypay. Since p > 2 we have

(f 1e02) < (f 1es)”

so given P € Pgyan we observe that since Ip ¢ E we must have (see Proposition
2.6)

and A]plarge .

small

. F|\Up
Slze}f(]P)small) Sp (|I{|)

Similarly, we see that

F
sup ][ |Varq0<€f\2 <. u,
PePsman J Ip |H|
. G|\ 1/a
Slze?](Psmall) sq <|I{||) 9
G
sup ][ |Varq0‘5g\2 < u;
PePsman J Ip |H|

moreover, we have trivially

Sizefl(Psman) S 1.
Combining this information with the general estimate in Lemma 2.17 (for which
we set 0; = &; for j = 1,2, 3, thus forcing the condition 0 < 61,&1, 02,82 < 1/2) and
the energy estimates in Propositions 2.10, 2.12, we obtain after some algebra®

G| (1—0)/2 ‘F‘ 2001 /p B
< O(e) | 1/2—06,
|A]}Dsmall(f7g’h)| NE,PMN [|H|] (|H|) |F|

2002/q ’
" <||G||) 2 |G|g/2—092 1. |H|1/r —0b3
|F|1(=0)/2 /|F|\2000/p o
gl ) e
2002/q ’
:NO(E) ‘F‘ 1/2—0(1—2/p)61 |G|1/270(172/q)92 ‘H|0709372001/p72002/q'

(11)
By choosing p, g large enough, we obtain (10) for any choice of exponents in the
stated range’.
Now we are left with showing that (11) holds for Ap,, . as well. In order to do so,
we decompose Piarge into | Jen Pa Where '

1 (&3
P, = {P € Plarge S-t. 1+ dist(Ip, B%) 2d};
[p|

6Notice 1/7' — 1/r = 0.

"In order to prove Theorem 1.2 by interpolation we don’t need the full range of exponents
provided by Proposition 2.19; it suffices to take p, q large but fixed for all r, so that the hypotheses
of the interpolation lemma 2.21 apply, to conclude Theorem 1.2.
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it then suffices to prove that the contribution of Ap, is summable in d and the
sum is bounded by (11). Let then d be fixed and observe that if P € Py then
24+OM T, ¢ E, thus as seen above we must have®

F|
ErfIP < —‘ ,
]édwunp 7 |H |

||
[CfIP <29,
vf;p |H|
and hence by Proposition 2.6 and Holder’s inequality
|F| )1/1J
=/

and therefore

Size}(Py) <, Qd/”(

Similarly we have

IF|

H|’
i1y

\H|)

G
sup ][ |Var,, €g|* <. 2du.
PePy Ip |H|

sup ][ |Varq0‘€f\2 <. 2¢
Ip

PGPd

Sizei(]P’d) <q 2d/q(

However, for Sizej we now have a better estimate, namely for any P € Py it must

be? )

we
for a large M > 0 of our choice thanks to the fast decay of the functions ®7 , and
this estimate in turn implies the bound

Size} (P4) < 279M/""

If we apply the general estimate of Proposition 2.17 to P; as done before we then
get

|A]P’d (fv g, h)| ss,p,q 27MldN0(5) |F|1/2*‘7(1*2/P)91

% |G|1/2—<7(1—2/q)92 |H|a—093—2091/p—2092/q

for some large M’ > 0 depending on M,r. As this is summable in d, the proof is
concluded. (]

Remark 2.22. We comment here on why, aside from the logarithmic loss, we
cannot recover the same range for A as in Theorem 1.1 ([2]), in which the bilinear
frequency projections onto the w’s are taken to be smooth. If one uses the appropri-
ate version of the above argument in that context, the range obtained is symmetric
with respect to 2, that is one gets estimates for all 7’ < p,q < r directly, without
the need to appeal to interpolation results like Lemma 2.21. The reason behind this
is two-fold: firstly there’s the fact that in that case all sizes satisfy Size’(P) < 1
a priori for j = 1,2,3 (and with this information alone one already obtains the
range 2 < p,q < r); and secondly the sizes are controlled by L!-averages instead of
L2-averages as in our case (see Proposition 2.6). Thus in the smooth case of [2] one
can effectively bound Size}(]Psman) < min(1,|F|/|H|) and similarly for Size®, which
then yields the wider range described above. Our use of the p, q powers essentially
amounts to a substitute for the condition Size’ (P) < 1, hence the smaller range.

8Technically, one needs to find a dyadic interval I that contains 2¢+°(M1) Jp and has comparable
length to claim so, but this is always possible.
9Here for convenience we are writing % for @1 even when |I| < |w|71.
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Finally, the full range p,q > ' in [2] is obtained by a further argument involving
the localization of sizes and energies; alternatively, one can obtain it by consid-
ering the formal adjoints of the bilinear operator. In the non-smooth case both
approaches fail: our sizes and energies don’t localize well, since we are controlling
them with non-local operators; and the formal adjoints cannot be simply reduced
to the original operator, so that the analysis developed in here doesn’t extend to
them automatically.

3. APPLICATION TO BILINEAR MULTIPLIERS

Let €2 be a collection of dyadic frequency squares, not necessarily finite and not
necessarily disjoint, and let a = {a,, }weq be a sequence of complex coefficients; form
then the bilinear multiplier T' given by

Ta(fv g)(IL') = Z awﬂ—w(fv g)(m)
we
We are interested in finding conditions on Q and {a, },eq which ensure the LP x
L% — L? boundedness of T' in some range of exponents p, q, s.
Consider the following situation: assume that for some 3 € (0,2) we have |a|,s < 0,
and moreover the coefficients a,, satisfy the Carleson Condition

Z law | < Clagy,|®, Yw e Q. (12)
UJ/IEQ7
w Cw
Then we argue that the bilinear multiplier T, is bounded from L? x L? into L® with
1/p+1/q=1/s for 8 < p,q < ', where ' is replaced by o« if 8 < 1. Indeed, we
partition the collection €) as follows: let n € N and define the sub-collection

Q= {we Qst. |ay| ~27"|a|em};

then clearly

#Q, < 2°" (13)
and moreover every collection 2, is the union of O(1) collections of disjoint dyadic
squares. This last fact is due to the Carleson Condition, since for every wq € €, it
must be by definition

Clag,|? = Z aw|? ~ |au, |P#{w € Qp s.t. w < wol;

wey,
wCwo

thus if we do a generational decomposition of €, (starting from the collection of
maximal elements with respect to inclusion and so on), we will encounter at most
O(1) generations, which proves the claim.

Assume henceforth for the sake of clarity that for each n the collection §2,, consists
of disjoint dyadic squares only. If we take r € (2, 8") we can bound

Y amtro@ <X (2 )" (2 mso@r)”
weN neN  wel, WEN,
~ ST 2 al s # QY TS (£.9) ().
neN

By Theorem 1.2 and triangle inequality we then have that
ITa(f 9)lLs Scpq lalles | Flrlglne Y, 27 #Q0

neN

but by (13) the sum is bounded by
Z 27n2ﬁ(1/r/+5)n <. 1

neN
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a sufficiently small € > 0, thanks to our choice of r.

Remark 3.1. The Carleson condition (12) is introduced to enforce the fact that
the collections €2, are made of essentially disjoint squares, and in particular they
can be decomposed into at most O(1) collections of disjoint squares. But actually,
if we had that for some § < 1 each €2, can be decomposed into at most O(#?)

collections of disjoint squares, we could still bound the multiplier in a (smaller)
range.
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