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ABSTRACT
In this paper, we explain how, under the one-sided Lipschitz (OSL)

hypothesis, one can find an error bound for a variant of the Euler-

Maruyama approximation method for stochastic switched systems.

We then explain how this bound can be used to control stochastic

switched switched system in order to stabilize them in a given re-

gion. The method is illustrated on several examples of the literature.

1 INTRODUCTION
Control synthesis for stochastic switched systems has been recently

explored using the construction of approximately bisimilar sym-
bolic models. This approach relies on the hypothesis of incremental
stability of the stochastic switched system (or existence of a com-

mon/multiple Lyapunov function) [8–10], which concerns only a

small part of the real systems.

Here we address the problem of control synthesis in a more

general setting. We do not use the construction of approximatively

bisimilar symbolic models, but the (tamed) Euler method [3] for

stochastic switched systems. We thus follow the lines of previous

work on control synthesis for deterministic switched systems [1].

Unlike [8–10], the Euler-based method requires neither state-space

discretization nor input set discretization, thus avoiding a source

of combinatorial explosion.

The correctness of these Euler-based methods does not rely on

the hypothesis of incremental stability as in [8, 10], but on the

hypothesis of ‘one-sided Lipschitz (OSL)’ condition with constant

λ P Rd (also called ‘monotonicity’/‘dissipativity’, see [7]). It can

be seen that if a stochastic switched system satisfies an OSL con-

dition with λ ă 0, then the function V px ,x 1q “ }x ´ x 1}2 is a

common incremental Lyapunov function in the sense of [9], from

which it follows that the switched system is incrementally stable,

and can be treated by approximate bisimulation. However, Euler-

based methods also apply when the system is not incrementally

stable, in which case the constant λ is necessarily positive.

The plan of the paper is as follows: In Section 2, we give an

explicit upper bound on the mean square error of the tamed Euler

method for SDEs under OSL condition. We apply the result in order

to ensure properties of stochastic switched systems, such as “pR, Sq-

stability” (Section 3). We conclude in Section 4.

2 BOUNDING THE ERROR OF THE TAMED
EULER METHOD

2.1 Assumptions
The symbol } ¨ } denotes the Euclidean norm on Rd .The symbol

x¨, ¨y denotes the scalar product of two vectors of Rd . Given a point

x P Rd and a positive real r ą 0, the ball Bpx , rq of centre x and

radius r is the set ty P Rd | }x ´ y} ď ru.

Let τ P p0,8q be a fixed real number, let pΩ,F ,Pq be a prob-
ability space with normal filtration pFt qtPr0,τ s, let d,m P N :“

t1, 2, . . . u letW “ pW p1q, . . . ,W pmqq : r0,Rs ˆ Ω Ñ Rm be an

m-dimensional standard pWt qtPr0,τ s-Brownian motion and let x0 :

Ω Ñ Rd be an F0{BpRd q-measurable mapping with Er}x0}p s ă

8 for all p P r1,8q. Moreover, let f : Rd Ñ Rd be a continu-

ously differentiable and globally one-sided Lipschitz continuous

function whose derivative grows at most polynomially and let

д “ pдi, j qiPt1, ...,du, jPt1, ...,mu : Rd Ñ Rdˆm
be a globally Lips-

chitz continuous function.

Then consider the Stochastic Differential Equations (SDE):

dXt “ f pXt qdt ` дpXt qdWt , X0 “ x0 (1)

for t P r0,τ s. The drift coefficient f is the infinitesimal mean of the

process X and the diffusion coefficient д is the infinitesimal stan-

dard deviation of the process X . Under the above assumptions, the

SDE (1) is known to have a unique strong solution. More formally,

there exists an adapted stochastic process X : r0,τ s ˆ Ω Ñ Rd

with continuous sample paths fulfilling

Xt,x0 “ x0 `

ż t

0

f pXs qds `

ż t

0

дpXs qdWs

for all t P r0,τ s P-a.s. (see, e.g., [6]).
We denote by Xt,x0 the solution of Equation (1) at time t from

initial condition X0,x0 “ x0 P-a.s., in which x0 is a random variable

that is measurable in F0.

We suppose that f behaves polynomially and д is Lipschitz, i.e.:

there exist constants D P Rě0, q P N and Lд P Rě0 such that, for

all x ,y P Rd

}f pxq ´ f pyq}2 ď D}x ´ y}2p1 ` }x}q ` }y}qq (H1)

}дpxq ´ дpyq} ď Lд}x ´ y} (H2)

We also assume that the SDE (1) satisfies the following one-sided

Lipschitz (OSL) condition with constant λ P R:

Dλ P R @x ,y P Rd : xf pyq ´ f pxq,y ´ xy ď λ }y ´ x}2 (H3)

Remark 1. Constants λ, Lд and D can be computed using (con-
strained) optimization algorithms (see [1]).

2.2 Tamed Euler approximation
The standard way to extend the classical Euler method for ordi-

nary differential equations to the SDE (1) is the Euler-Maruyama

scheme [4]. More precisely, given z : Ω Ñ Rd an F0{BpRd q-

measurable mapping with Er}z}p s ă 8 for all p P r1,8q, the

explicit Euler-Maruyama (EM) method for the SDE (1) is given by

the mappings YN
n,z : Ω Ñ Rd , n P t0, 1, . . . ,N u, which satisfy

YN
0,z “ z and

YN
n`1,z “ YN

n,z `
τ

N
¨ f pYN

n,zq ` дpYN
n,zqpWpn`1qτ {N ´Wnτ {N q



for all n P t0, 1, . . . ,N ´ 1u and all N P N. See [4]. Unfortunately,
the convergence results for the EM scheme does not hold when

the drift function f of the SDE (1) behaves polynomially (and not

linearly). For the sake of generality, we will now adopt a refined

scheme, which has been proposed recently in order to overcome

this difficulty [3]. Let XN
n,z : Ω Ñ Rd ,

XN
n`1,z “ XN

n,z `

τ
N ¨ f pXN

n,zq

1 ` τ
N ¨ }f pXN

n,zq}
`дpXN

n,zqpW pn`1qτ
N

´W nτ
N

q

(2)

for alln P t0, 1, . . . ,N ´1u and allN P N. We refer to the numerical

method (2) as a tamed Euler scheme [3]. In this method the drift

term
τ
n ¨ f pXN

n,zq is “tamed” by the factor 1{p1 ` τ
N ¨ }f pXN

n,zq}q

for n P t0, 1, . . . ,N ´ 1u and N P N in (2).

A time continuous interpolation of the time discrete numerical

approximations (2) is also introduced in [3] as follows. Let X̃N
z :

r0,τ s ˆ Ω Ñ Rd , N P N, be a sequence of stochastic processes

given by

X̃N
t,z “ X̃N

n,z `
pt ´ nτ {N q ¨ f pX̃N

n,zq

1 ` τ {N ¨ }f pX̃N
n,zq}

` дpX̃N
n,zqpWt ´W nτ

N
q

for all t P rnτN ,
pn`1qτ

N s, n P t0, 1 . . . ,N ´ 1u and all N P N. Note

that X̃N
t,z : r0,τ s ˆ Ω Ñ Rd is an adapted stochastic process with

continuous sample paths for every N P N.

Let us define XN
t,z by

XN
t,z :“ XN

n,z for t P r
nτ

N
,

pn ` 1qτ

N
q.

Note that X̃N
t,z “ XN

t,z “ XN
n,z at time t “ nτ

N for n P t0, 1, . . . ,N u.

The following theorem is proven in [3]:

Theorem 1. [3] Suppose pH1qpH2qpH3q. Let the setting in this
section be fulfilled, and z : Ω Ñ Rd be an F0{BpRd q-measurable
mapping with Er}z}p s ă 8 for all p P r1,8q. Then, for all p P

r1,8q

sup

NPN
sup

nPt0,1, ...,N u

Er}XN
n,z}p s ă 8

For the sake of simplicity, the number N of subsampling steps is

now left implicit. From Theorem 1, it follows (cf. Lemma 4.3, [2]):

Lemma 2. Suppose pH1qpH2qpH3q. Let the setting in this section
be fulfilled, and z : Ω Ñ Rd be an F0{BpRd q-measurable mapping
withEr}z}p s ă 8 for allp P r1,8q. Then, for any even integer r ě 2,
there exist two constants Er,z and Fr,z such that

sup

0ďtďτ
E}X t,z ´ X̃t,z}r ď p∆t q

r
2 pEr,zp∆t q

r
2 ` Fr,zdq.

with ∆t “ τ {N and:
Er,z “ 2

r p}f p0q}r ` D2
r`1

2

p1 ` E sup
0ďtďτ }X t,z}qr q

1

2 pE sup
0ďtďτ }X t,z}2r q

1

2 q,

Fr,z “ 2
r p}дp0q}2r ` LrдE sup0ďtďτ }X t,z}

r
2 q.

Proof. see Appendix.

□

Remark 2. Constants Er,z and Fr,z are computed using the con-
stants λ and Lд (see Remark 1), and the expected values of X t,z at
each time t “ 0,∆t , 2∆t , . . . ,N∆t . These expected values are com-
puted using a Monte Carlo method (by averaging here the value of 104

samplings).

2.3 Mean square error bounding
The following Theorem holds for SDE (1). This corresponds to a

stochastic version of Theorem 1 of [1], showing that a similar result

holds on average, using the tamed Euler method of [3]. It is an

adaptation of Theorem 4.4 in [2].

Theorem 3. Given the SDE system (1) satisfying (H1)-(H2)-(H3).
Let δ0 P Rě0. Suppose that z is a random variable on Rd such that

Er}x0 ´ z}2s ď δ2
0
.

Then, we have, for all τ ě 0:

Er sup

0ďtďτ
}Xt,x0 ´ X̃t,z}2s ď δ2τ ,δ0

,

with δ2τ ,δ0 :“ βpτ qeγ τ , where:

γ “ 2p
?
∆t ` 2λ ` L2д ` 128L4дq, and

βpτ q “ 2δ2
0

` 2τ∆tL
2

дp1 ` 128L2дqpF2,zd ` E2,z∆t q

` 4τ
a

∆tDpF4,zd ` E4,z∆
2

t q
1

2

p1 ` 4E sup

0ďtďτ
}X t,z}2q ` 4E sup

0ďtďτ
}X̃t,z}2qq

1

2 .

(3)

with ∆t “ τ {N .

Proof. The proof closely follows the proof of Theorem 4.4 in [2].

Let et “ Xt,x0 ´ X̃t,z . We have, for all 0 ď t ď τ :

det “ pf pXt,x0q ´ f pzqqdt ` pдpXt,x0q ´ дpzqqdWt . (4)

Then, by using Equation (4) and the integral version of Itô formula

applied to function x ÞÑ }x}2 we obtain

}et }2 “

}e0}2 `

ż t

0

2xes , f pXs,x0q ´ f pX s,zqyds

`

ż t

0

}дpXs,x0q ´ дpX s,zq}2ds ` Mptq,

(5)

where e0 “ x0 ´ z, and

Mptq “

ż t

0

2xes , дpXs,x0q ´ дpX s,zqydWs .

So we have using (H2):

2



}et }2 ď

}e0}2 `

ż t

0

2xes , f pXs,x0q ´ f pX̃s,zqyds

` L2д

ż t

0

}Xs,x0 ´ X s,z}2ds

`

ż t

0

2xes , f pX̃s,zq ´ f pX s,zqyds ` Mptq.

(6)

So we have using (H3) and Young’s inequality:

}et }2 ď

}e0}2 `

ż t

0

p2λ}es }2 ` L2д}es }2qds

` L2д

ż t

0

}X s,z ´ X̃s,z}2ds

`

ż t

0

p
1

?
∆t

}f pX̃s,zq ´ f pX s,zq}2 `
a

∆t }es }2qds

` Mptq.
(7)

So we have using (H1), for all 0 ď t ď τ :

}et }2 ď

}e0}2 ` p
a

∆t ` 2λ ` L2дq

ż t

0

}es }2ds

` L2д

ż t

0

}X s,z ´ X̃s,z}2ds

`
D

?
∆t

ż t

0

p1 ` }X s,z}q ` }X̃s,z}qq}X s,z ´ X̃s,z}2ds

` Mptq.
(8)

It follows using Lemma 2 for r “ 2, and Cauchy-Schwarz in-

equality:

Er sup

0ďsďt
}es }2s ď

E}e0}2 ` p
a

∆t ` 2λ ` L2дq

ż t

0

E}es }2ds

` L2дτ∆t pE2,z∆t ` F2,zdq

`
D

?
∆t

ż t

0

pEp1 ` }X s,z}q ` }X̃s,z}qq2q
1

2 pE}X s,z ´ X̃s,z}4q
1

2 ds

`mptq,
(9)

where

mptq “ Er sup

0ďsďt
}Mpsq}s.

Hence, using using Lemma 2 for r “ 4, and inequality pa ` bqr ď

2
r par ` br q:

Er sup

0ďsďt
}es }2s ď

E}e0}2 ` p
a

∆t ` 2λ ` L2дqq

ż t

0

E}es }2ds

` L2дτ∆t pE2,z∆t ` F2,zdq

` 2Dτ
a

∆t pE4,z∆
2

t ` F4,zdq
1

2

p1 ` 4E sup

0ďtďτ
}X t,z}2q ` 4E sup

0ďtďτ
}X̃t,z}2qq

1

2

`mptq.
(10)

On the other hand, from the Burkholder-Davis-Gundy inequality,

we get:

mptq ď 16Er

ż t

0

}es }2}дpXs,x0q ´ дpX s,zq}2dss
1

2

Hence, using (H2):

mptq ď 16L2дEr sup

0ďsďt
}es }2

ż t

0

}Xs,x0 ´ X s,z}2dss
1

2

Then, using Young’s inequality (for any α ą 0):

mptq ď 8L2дpαEr sup

0ďsďt
}es }2s `

1

α
Er

ż t

0

}Xs,x0 ´ X s,z}2dssq.

Hence, by using Lemma 2 for r “ 2:

mptq ď 8αL2дEr sup

0ďsďt
}es }2s

`
8L2д

α

ż t

0

Er sup

0ďrďs
}er }2sds

`
8L2д

α
τ∆t pE2,z∆t ` F2,zdq.

(11)

Hence, letting α “ 1

16L2д
, we have by replacing in (10):

1

2

Er sup

0ďsďt
}es }2s ď

δ2
0

` p
a

∆t ` 2λ ` L2д ` 128L4дq
ż t

0

Er sup

0ďrďs
}er }2sds

` τ pL2д ` 128L4дq∆t pE2,z∆t ` F2,zdq

` τ2D
a

∆t pE4,z∆
2

t ` F4,zdq
1

2

p1 ` 4E sup

0ďtďτ
}X t,z}2q ` 4E sup

0ďtďτ
}X̃t,z}2qq

1

2 .

(12)

It results from Gronwall’s inequality:

Er sup

0ďtďτ
}et }2s “ βpτ qeγ τ ,

with

3



γ “ 2p
?
∆t ` 2λ ` L2д ` 128L4дq, and

βpτ q “ 2δ2
0

` 2τ p∆tL
2

дp1 ` 128L2дqpF2,zd ` E2,z∆t q

` 4τ
a

∆tDpF4,zd ` E4,z∆
2

t q
1

2

p1 ` 4E sup

0ďtďτ
}X t,z}2q ` 4E sup

0ďtďτ
}X̃t,z}2qq

1

2 .

(13)

□

It follows from Theorem 3 and Jensen’s inequality:

Proposition 1. Consider two points x0 and z of Rd ,and a positive
real number δ0. Suppose that x0 P Bpz,δ0q (i.e. }x0 ´ z} ď δ0). Then
EXt,x0 P BpX̃t,z ,δt,δ0q for all t P r0,τ s.

It also follows from Theorem 3:

Proposition 2. In the setting of Theorem 3, the expression δτ ,δ0
tends to

δ0
?
2e2λτ`L2д`128L4д

when ∆t tends to 0 (i.e., when N tends to 8).

2.4 Implementation
This method has been implemented in the interpreted language

Octave, and the experiments performed on a 2.80 GHz Intel Core

i7-4810MQ CPU with 8 GB of memory. The implementation is an

adaptation of the program described in [1] for controlling determin-

istic switched systems, but makes use of the tamed Euler scheme

for SDEs (with the error function δ given in Theorem 3) instead of

the classical Euler scheme.

Example 1. Consider the following system, corresponding to the
example in Section 6.2 of [8] (cf. [9]) for mode u “ 1:

dx1 “ p´0.25x1 ` x2 ` 0.25qdt ` 0.05x1dW
1

t
dx2 “ p´2x1 ´ 0.25x2 ´ 2qdt ` 0.05x2dW

2

t
The program gives (for τ “ 1, ∆t “ τ {104): q “ 0, D “ 1.36,
Lд “ 0.05, λ “ 0.25; and for z “ p´4,´3.8q: E2,z “ 893.3, E4,z “

2.14 ¨ 105, F2,z “ 0.002, F4,z “ 4.9 ¨ 10´6.
Consider now the system corresponding to the example of [8] for

mode u “ 2:
dx1 “ p´0.25x1 ` 2x2 ´ 0.25qdt ` 0.05x1dW

1

t
dx2 “ p´x1 ´ 0.25x2 ` 1qdt ` 0.05x2dW

2

t
The program gives (for τ “ 1, ∆t “ τ {104): q “ 0, D “ 1.36, Lд “

0.05, λ “ 0.25, and, for z “ p0, 3q: E2,z “ 543.2, E4,z “ 7.94 ¨ 104,
F2,z “ 0.0442, F4,z “ 0.00178.

Both computations take less than 10 s. of CPU time. Simulations
of the two systems are given in Figure 1 for mode u “ 1 and starting
point z “ p´4, 3.8q, and in Figure 2 for mode u “ 2 and starting
point z “ p0, 3q. On each figure, the initial ball (t “ 0) is depicted
in black, the final ball (t “ τ ) in red, and 200 random sampling
trajectories in blue for t P r0,τ s.1

1
Note that, in the figures, all the end points (at t “ τ ) of the sampling trajectories lie

in the final ball, but this is not true in general; we only know by Proposition 1 that,

for all starting point x0 of the initial ball, the expected value of the end point lie in the

final ball.

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-6

-4

-2

0

2

4

X1

X
2

Figure 1: Example 1 with mode u “ 1, τ “ 1, ∆t “ 10
´4,

initial ball Bpz,δ0q with z “ p´4, 3.8q and δ0 “ 0.5, final ball
Bpz1,δτ ,δ0q with z1 “ p´3.6, 2.56q and δτ ,δ0 “ 1.17

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

X1

X
2

Figure 2: Example 1 with mode u “ 2, τ “ 1, ∆t “ 10
´4,

initial ball Bpz,δ0q with z “ p0, 3q and δ0 “ 0.5, final ball
Bpz1,δτ ,δ0q with z1 “ p0.79,´0.63q and δτ ,δ0 “ 1.17
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3 SAMPLED STOCHASTIC SWITCHED
SYSTEMS

3.1 Stochastic switched system as a finite
collection of SDEs

We now consider a finite number of SDEs. Each SDE is referred to

as a mode j, and the set of modes is referred to asU “ t1, . . . ,Mu.

We will denote by X
j
t,x0 the solution at time t of the system:

dxptq “ fj pxptqq ` дj pxptqqdW
j
t ,

xp0q “ x0.
(14)

where x0 is a random variable that is measurable in F0. Hypotheses

(H1-H2-H3), as defined in Section 2, are naturally extended to every

mode j of U . Accordingly, constants Lд , λ, F associated to SDE (1)

in Section 2, now become Lдj , λj , Fj respectively, for each j P U .

Likewise, for each j P U , the nonnegative real pδt,δ0q2 becomes

pδ
j
t,δ0

q2 for each mode j; the approximate continuous-time solution

of (14) starting from z, is denoted by X̃
j
t,z , and the approximate

staircase solution by X
j
t,z .

3.2 Control patterns
The control laws that we now consider are “piecewise constant of

duration τ ” in the sense that, every τ seconds, they select a given

mode (see [8]). We call “(control) pattern of length k” a sequence

of k modes (i.e., an element of U k
). Each pattern π of the form

j1j2 ¨ ¨ ¨ jk corresponds to the selection of mode j1 for time t P r0,τ q,

then mode j2 for t P rτ , 2τ q, and so on, until t “ kτ . We assume

that the solution of the system is continuous at sampling instants

t “ τ , 2τ , . . . (which means that there is no “reset” of the system

at sampling instants).

Given a stochastic switched system, a pattern π of length k and

an initial random variable z, one constructs the “approximate solu-

tion controlled by π” by composing together the approximations

obtained by successive application of the modes of π . Formally, the

“continuous” approximate solution X̃π
t,z is defined at time t P r0,kτ s

as follows:

‚ X̃π
t,z “ X̃

j
t,z if π “ j P U , k “ 1 and t P r0,τ s, and

‚ X̃π
pk´1qτ`t 1,z “ X̃

j
t,z1 with z1 “ X̃π 1

pk´1qτ ,z if k ě 2, t 1 P

r0,τ s, π “ π 1 ˚ j for some j P U and π 1 P U k´1
.

The “staircase” approximate solution Xπ
t,z is defined analogously.

Likewise, given an initial error radius δ0 ą 0 and a pattern π of

length k ě 1, one defines the error radius δπt,δ0
as follows:

2

‚ δπt,δ0
“ δ

j
t,δ0

if π “ j P U , k “ 1 and t P r0,τ s, and

‚ δπ
pk´1qτ`t 1,δ0

“ δ
j
t 1,δ 1 with δ 1 “ δπ

1

pk´1qτ ,δ0
, if k ě 2, t 1 P

r0,τ s, π “ π 1 ˚ j for some j P U and π 1 P U k´1
.

2
For the sake of simplicity, we suppose that the number of steps of subsampling N is

the samewhatever the mode j of the pattern π is, hence the stepsize of the subsampling

is always equal to ∆t “ τ {N ; in full generality, we should write Nj instead of N to

express the dependence.

3.3 Controlled pR, Sq-stability
Given a rectangle R Ă Rd and a rectangle S Ă Rd such that

R Ď S , we now extend the problem of “controlled pR, Sq-stability”,

as defined in [1] for deterministic switched systems, to SDEs, as

follows:

For all starting point x0 P R, find a pattern π of length k such

that

‚ EXπ
t,x0 P R for t “ kτ

‚ EXπ
t,x0 P S for all t “ τ , 2τ , 3τ , . . . .

It is easy to see that, in order to solve this problem, it suffices to

exhibit a finite set of points z1, . . . , zp of S , and a positive real δ0 ą 0

such that:

(1) all the balls Bpzi ,δ0q, i “ 1, . . . ,p, cover R, and are included

into S (i.e. R Ď
Ťp
i“1

Bpzi ,δ0q Ď S);
(2) for each i “ 1, . . . ,p, there is a pattern π of length k such

that:

‚ Bi,π ,t Ď S for t “ τ , 2τ , . . . , pk ´ 1qτ , and
‚ Bi,π ,t Ď R for t “ kτ .

where Bi,π ,t :“ BpEX̃π
t,zi ,δ

π
t,δ0

q.

By repeated application of the patterns π1, . . . ,πp , one defines
a control that makes any trajectory starting from R return to R
infinitely oftenwhile always belonging to S at sampling instants t “

τ , 2τ , 3τ , . . .
The program mentioned in Section 2.4, has been extended in

order to find, by exhaustive search, patterns that make the balls

covering R return to R, and such that the intermediate balls (at t “

τ , 2τ , . . . ) belong to S . We now give an application of this program.

Example 2. Consider the system (see [8, 9]):
dx1 “ p´0.25x1 ` ux2 ` p´1qu0.25qdt ` 0.01x1dW

1

t
dx2 “ ppu ´ 3qx1 ´ 0.25x2 ` p´1qu p3 ´ uqqdt ` 0.01x2dW

2

t
where u “ 1, 2.
For τ “ 0.5, ∆t “ 10

´4, one finds (for all mode u “ 1, 2):
q “ 0, D “ 1.36, Lд “ 0.01, λ “ 0.25; for z “ p´4,´3.8q:

E2,z “ 893.31, E4,z “ 2.14 ¨ 105, F2,z “ 0.002, F4,z “ 4.9 ¨ 10´6;
and for z “ p0, 3q: E2,z “ 543.22, E4,z “ 7.94 ¨ 104, F2,z “ 0.0442,
F4,z “ 0.00178.
Our program shows pR, Sq-stability of the system for R “ r´5, 5s ˆ

r´4.4s and S “ r´8, 8s ˆ r´7, 7s: given a covering of R with balls
of radius δ0 “ 0.1, the program finds, by exhaustive search, patterns
of length ď 5 that make the balls return to R. It takes 6 hours of CPU
time. Figures 3, 4, 5 and 6 depict in black the initial balls (at t “ 0)
centered at the corners of R; and for each initial ball, the pattern
that sends the ball back to R (at time t “ kτ ); the intermediate balls
(at t “ τ , 2τ , . . . , pk ´ 1qτ ) are depicted in red, and 200 sampling
trajectories drawn in blue.

3.4 Other applications
Our Euler-based method can also be used to control systems in

order to achieve reachability properties. We sketched out this point

in the following example.

Example 3. (the slit problem)
The problem is adapted from [5]. The controlled dynamics is:

dX “ udt ` dW , X0 “ 1

5



Figure 3: initial ball Bpz,δ0q with z “ p´5, 4q and δ0 “ 0.1;
pattern “ p1 ¨ 1 ¨ 1q; τ “ 0.5

Figure 4: initial ball Bpz,δ0q with z “ p5, 4q and δ0 “ 0.1;
pattern “ p2 ¨ 2 ¨ 2q; τ “ 0.5

with mode u P t´6,´5,´4,´3,´2, 1, 0, 1, 2, 3, 4, 5, 6u. We have (at
t “ 0.5) a slit at x P r´1,´4s. The objective is thus to control the
system so that xptq P S “ r´1,´4s at t “ 0.5.

One has, for all mode: q “ 0, D “ 0, Lд “ 0, λ “ 0. For δ0 “ 0.5,
an initial point z “ 1 and a sampling time τ “ 0.5 with subsampling
∆t “ 10

´3, one has for mode u “ ´6: E2,z “ 144, E4,z “ 20736,
F2,z “ 4, F4,z “ 16; and for mode u “ 0: E2,z “ 0,E4,z “ 0, F2,z “

4, F4,z “ 16.
Suppose that all the trajectories start at x0 with x0 P Bpz,δ0q

(i.e., |x0 ´ z| ď 0.5), with z “ 1 and δ0 “ 0.5. When there is no
control (u “ 0), at time t “ 0.5, the expected value of Xt,x0 is in
Bpz1,δt,δ0q with z1 “ 1 and δt,δ0 “ 2. From Markov’s inequality, it
follows that the trajectories pass by S “ r´1,´4s at t “ 0.5 with low
probability: see Figure 7. On the other hand, with control u “ ´6, at
time t “ τ “ 0.5, the expected value of Xt,x0 is now in Bpz1,δt,δ0q

with z1 “ ´2 and δτ ,δ0 “ 2. This explains why the trajectories now
pass by S “ r´1,´4s at t “ 0.5 with high probability: see Figure 8.

Figure 5: initial ball Bpz,δ0q with z “ p5,´4q and δ0 “ 0.1;
pattern “ p2 ¨ 2q; τ “ 0.5

Figure 6: initial ball Bpz,δ0q with z “ p´5,´4q and δ0 “ 0.1;
pattern “ p1 ¨ 1 ¨ 1 ¨ 1 ¨ 1q; τ “ 0.5

4 FINAL REMARKS AND FUTUREWORK
We have explained how to use an Euler-based method in order to

control stochastic switched systems. We have focused our work on

the property of pR, Sq-stability, but it can also be used for achieving

reachability properties. In the future, we plan to experiment the

method with examples where the drift functions behave polynomi-

ally. We would like also to find bounds not only for the expected

values of the solutions, but for their variance.
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Figure 7: Example 3 without control (u “ 0) for t P r0,τ s;
initial ball Bpz,δ0q with z “ 1 and δ0 “ 0.5; final ball Bpz1,δ1q

(at t “ τ “ 0.5) with z1 “ 1,δ1 “ 2
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Figure 8: Example 3 with control pattern p´6 ¨ 0q; initial ball
Bpz,δ0q with z “ 1 and δ0 “ 0.5; intermediate ball Bpz1,δ1q

(at t “ τ “ 0.5 ) with z1 “ ´2,δ1 “ 2; final ball Bpz2,δ2q (at
t “ 2τ ) with z2 “ ´2,δ2 “ 3.6
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APPENDIX: PROOF OF LEMMA 2
Proof. Let t P rk∆t , pk ` 1q∆t q. Then (using the inequality

pa ` bqr ď 2
r par ` br q):

}X t ´ X̃t }r

“ }pt ´ tk qf pXk q ` дpXk qpWt ´Wtk q}r

ď 2
r pp∆t qr }f pXk q}r

` }дpXk q}r }Wt ´Wtk }r q }X t ´ X̃t }r

ď 2
r pp∆t qr p}f pXk q ´ f p0q}r ` }f p0q}r q

` p}дpXk q ´ дp0q}r ` }дp0q}r q}Wt ´Wtk }r q

ď 2
r pp∆t qr pDpp1 ` }Xk }qq}Xk }2q

r
2 ` }f p0q}r q

` pLrд}Xk }r ` }дp0q}r q}Wt ´Wtk }r q

ď 2
r pp∆t qr pDpp1 ` }Xk }qq

r
2 }Xk }r q ` }f p0q}r q

` pLrд}Xk }r ` }дp0q}r q}Wt ´Wtk }r q

ď 2
r pp∆t qr pD2

r
2 pp1 ` }Xk }

qr
2 q}Xk }r q ` }f p0q}r q

` pLrд}Xk }r ` }дp0q}r q}Wt ´Wtk }r q.

(15)

E}X t ´ X̃t }r

ď 2
r pp∆t qr p}f p0q}r ` D2

r
2

pErp1 ` }Xk }
qr
2 q2sq

1

2 pEr}Xk }2r sq
1

2

` p}дp0q}2r ` LrдE}Xk }
r
2 q

pEr}Wt ´Wtk }2r sq
1

2 qq

ď 2
r pp∆t qr p}f p0q}r ` D2

r`1

2

p1 ` Er}Xk }qr sq
1

2 pEr}Xk }2r sq
1

2

` p}дp0q}2r ` LrдE}Xk }
r
2 q

pEr}Wt ´Wtk }2r sq
1

2 qq

ď 2
r pp∆t qr p}f p0q}r ` D2

r`1

2

p1 ` Er}Xk }qr sq
1

2 pEr}Xk }2r sq
1

2

` p}дp0q}2r ` LrдE}Xk }
r
2 qdpt ´ tk q

r
2 qq

ď 2
r pp∆t qr p}f p0q}r ` D2

r`1

2

p1 ` sup

0ďtďτ
E}X t }qr q

1

2 pE sup

0ďtďτ
}X t }2r q

1

2 q

` p}дp0q}2r ` LrдE sup

0ďtďτ
}X t }

r
2 qdp∆t q

r
2 q

ď 2
r p∆t q

r
2 pp∆t q

r
2 p}f p0q}r ` D2

r`1

2

p1 ` E sup

0ďtďτ
}X t }qr q

1

2 pE sup

0ďtďτ
}X t }2r q

1

2 q

` dp}дp0q}2r ` LrдE sup

0ďtďτ
}X t }

r
2 qq.

(16)

Hence:

sup

0ďtďτ
E}X t ´ X̃t }r ď p∆t q

r
2 pEr,zp∆t q

r
2 ` Fr,zdq

with Er,z “ 2
r p}f p0q}r ` D2

r`1

2 p1 ` E sup
0ďtďτ }X t }qr q

1

2

pE sup
0ďtďτ }X t }2r q

1

2 q,

Fr,z “ 2
r p}дp0q}2r ` LrдE sup0ďtďτ }X t }

r
2 q. □
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