A Le Coënt 
  
L Fribourg 
  
J Vacher 
  
Cmla 
  
Lsv 
  
Control Synthesis for Stochastic Switched Systems using the Tamed Euler Method

In this paper, we explain how, under the one-sided Lipschitz (OSL) hypothesis, one can find an error bound for a variant of the Euler-Maruyama approximation method for stochastic switched systems. We then explain how this bound can be used to control stochastic switched switched system in order to stabilize them in a given region. The method is illustrated on several examples of the literature.

INTRODUCTION

Control synthesis for stochastic switched systems has been recently explored using the construction of approximately bisimilar symbolic models. This approach relies on the hypothesis of incremental stability of the stochastic switched system (or existence of a common/multiple Lyapunov function) [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Abstractions[END_REF][START_REF] Zamani | Towards scalable synthesis of stochastic control systems[END_REF], which concerns only a small part of the real systems.

Here we address the problem of control synthesis in a more general setting. We do not use the construction of approximatively bisimilar symbolic models, but the (tamed) Euler method [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF] for stochastic switched systems. We thus follow the lines of previous work on control synthesis for deterministic switched systems [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF]. Unlike [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Abstractions[END_REF][START_REF] Zamani | Towards scalable synthesis of stochastic control systems[END_REF], the Euler-based method requires neither state-space discretization nor input set discretization, thus avoiding a source of combinatorial explosion.

The correctness of these Euler-based methods does not rely on the hypothesis of incremental stability as in [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Towards scalable synthesis of stochastic control systems[END_REF], but on the hypothesis of 'one-sided Lipschitz (OSL)' condition with constant λ P R d (also called 'monotonicity'/'dissipativity', see [START_REF] Von Renesse | Existence and uniqueness of solutions of stochastic functional differential equations[END_REF]). It can be seen that if a stochastic switched system satisfies an OSL condition with λ ă 0, then the function V px, x 1 q " }x ´x1 } 2 is a common incremental Lyapunov function in the sense of [START_REF] Zamani | Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Abstractions[END_REF], from which it follows that the switched system is incrementally stable, and can be treated by approximate bisimulation. However, Eulerbased methods also apply when the system is not incrementally stable, in which case the constant λ is necessarily positive.

The plan of the paper is as follows: In Section 2, we give an explicit upper bound on the mean square error of the tamed Euler method for SDEs under OSL condition. We apply the result in order to ensure properties of stochastic switched systems, such as "pR, Sqstability" (Section 3). We conclude in Section 4.

BOUNDING THE ERROR OF THE TAMED EULER METHOD 2.1 Assumptions

The symbol } ¨} denotes the Euclidean norm on R d .The symbol x¨, ¨y denotes the scalar product of two vectors of R d . Given a point x P R d and a positive real r ą 0, the ball Bpx, r q of centre x and radius r is the set ty P R d | }x ´y} ď r u.

Let τ P p0, 8q be a fixed real number, let pΩ, F , Pq be a probability space with normal filtration pF t q t Pr0,τ s , let d, m P N :" t1, 2, . . . u let W " pW p1q , . . . ,W pmq q : r0, Rs ˆΩ Ñ R m be an m-dimensional standard pW t q t Pr0,τ s -Brownian motion and let x 0 : Ω Ñ R d be an F 0 {BpR d q-measurable mapping with Er}x 0 } p s ă 8 for all p P r1, 8q. Moreover, let f : R d Ñ R d be a continuously differentiable and globally one-sided Lipschitz continuous function whose derivative grows at most polynomially and let д " pд i, j q iPt1, ...,d u, jPt1, ...,mu : R d Ñ R d ˆm be a globally Lipschitz continuous function.

Then consider the Stochastic Differential Equations (SDE):

dX t " f pX t qdt `дpX t qdW t , X 0 " x 0 ( 1 
)
for t P r0, τ s. The drift coefficient f is the infinitesimal mean of the process X and the diffusion coefficient д is the infinitesimal standard deviation of the process X . Under the above assumptions, the SDE ( 1) is known to have a unique strong solution. More formally, there exists an adapted stochastic process X : r0, τ s ˆΩ Ñ R d with continuous sample paths fulfilling

X t,x 0 " x 0 `ż t 0 f pX s qds `ż t 0 дpX s qdW s
for all t P r0, τ s P-a.s. (see, e.g., [START_REF] Oksendal | Stochastic Differential Equations: An Introduction with Applications[END_REF]). We denote by X t,x 0 the solution of Equation (1) at time t from initial condition X 0,x 0 " x 0 P-a.s., in which x 0 is a random variable that is measurable in F 0 .

We suppose that f behaves polynomially and д is Lipschitz, i.e.: there exist constants D P R ě0 , q P N and L д P R ě0 such that, for all x, y P R d }f pxq ´f pyq} 2 ď D}x ´y} 2 p1 `}x} q `}y} q q (H1) }дpxq ´дpyq} ď L д }x ´y} (H2) We also assume that the SDE (1) satisfies the following one-sided Lipschitz (OSL) condition with constant λ P R: Dλ P R @x, y P R d : xf pyq ´f pxq, y ´xy ď λ }y ´x} 2 (H3) Remark 1. Constants λ, L д and D can be computed using (constrained) optimization algorithms (see [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF]).

Tamed Euler approximation

The standard way to extend the classical Euler method for ordinary differential equations to the SDE (1) is the Euler-Maruyama scheme [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF]. More precisely, given z : Ω Ñ R d an F 0 {BpR d qmeasurable mapping with Er}z} p s ă 8 for all p P r1, 8q, the explicit Euler-Maruyama (EM) method for the SDE (1) is given by the mappings Y N n,z : Ω Ñ R d , n P t0, 1, . . . , N u, which satisfy Y N 0,z " z and

Y N n`1,z " Y N n,z `τ N ¨f pY N n,z q `дpY N n,z qpW pn`1qτ {N ´Wnτ {N q
for all n P t0, 1, . . . , N ´1u and all N P N. See [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF]. Unfortunately, the convergence results for the EM scheme does not hold when the drift function f of the SDE (1) behaves polynomially (and not linearly). For the sake of generality, we will now adopt a refined scheme, which has been proposed recently in order to overcome this difficulty [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF].

Let X N n,z : Ω Ñ R d , X N n`1,z " X N n,z `τ N ¨f pX N n,z q 1 `τ N ¨}f pX N n,z q} `дpX N n,z qpW pn`1qτ N ´W nτ N q
(2) for all n P t0, 1, . . . , N ´1u and all N P N. We refer to the numerical method (2) as a tamed Euler scheme [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF]. In this method the drift term τ n ¨f pX N n,z q is "tamed" by the factor 1{p1 `τ N ¨}f pX N n,z q}q for n P t0, 1, . . . , N ´1u and N P N in [START_REF] Higham | Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations[END_REF].

A time continuous interpolation of the time discrete numerical approximations (2) is also introduced in [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF] as follows. Let X N z : r0, τ s ˆΩ Ñ R d , N P N, be a sequence of stochastic processes given by

X N t,z " X N n,z `pt ´nτ {N q ¨f p X N n,z q 1 `τ {N ¨}f p X N n,z q} `дp X N n,z qpW t ´W nτ N q
for all t P r nτ N , pn`1qτ N s, n P t0, 1 . . . , N ´1u and all N P N. Note that X N t,z : r0, τ s ˆΩ Ñ R d is an adapted stochastic process with continuous sample paths for every N P N.

Let us define X N t,z by

X N t,z :" X N n,z for t P r nτ N , pn `1qτ N q.
Note that X N t,z " X N t,z " X N n,z at time t " nτ N for n P t0, 1, . . . , N u. The following theorem is proven in [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF]: Theorem 1. [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF] Suppose pH 1qpH 2qpH 3q. Let the setting in this section be fulfilled, and z : Ω Ñ R d be an F 0 {BpR d q-measurable mapping with Er}z} p s ă 8 for all p P r1, 8q. Then, for all p P r1, 8q sup

N PN sup nPt0,1, ..., N u Er}X N n,z } p s ă 8
For the sake of simplicity, the number N of subsampling steps is now left implicit. From Theorem 1, it follows (cf. Lemma 4.3,[START_REF] Higham | Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations[END_REF]): Lemma 2. Suppose pH 1qpH 2qpH 3q. Let the setting in this section be fulfilled, and z : Ω Ñ R d be an F 0 {BpR d q-measurable mapping with Er}z} p s ă 8 for all p P r1, 8q. Then, for any even integer r ě 2, there exist two constants E r,z and F r,z such that

sup 0ďt ďτ E}X t,z ´X t,z } r ď p∆ t q r 2 pE r,z p∆ t q r 2 `Fr,z dq. with ∆ t " τ {N and: E r,z " 2 r p}f p0q} r `D2 r `1 2 p1 `E sup 0ďt ďτ }X t,z } qr q 1 2 pE sup 0ďt ďτ }X t,z } 2r q 1 2 q, F r,z " 2 r p}дp0q} 2r `Lr д E sup 0ďt ďτ }X t,z } r 2 q.
Proof. see Appendix. □ Remark 2. Constants E r,z and F r,z are computed using the constants λ and L д (see Remark 1), and the expected values of X t,z at each time t " 0, ∆t, 2∆t, . . . , N ∆t. These expected values are computed using a Monte Carlo method (by averaging here the value of 10 4 samplings).

Mean square error bounding

The following Theorem holds for SDE [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF]. This corresponds to a stochastic version of Theorem 1 of [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF], showing that a similar result holds on average, using the tamed Euler method of [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF]. It is an adaptation of Theorem 4.4 in [START_REF] Higham | Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations[END_REF].

Theorem 3. Given the SDE system (1) satisfying (H1)-(H2)-(H3). Let δ 0 P R ě0 . Suppose that z is a random variable on R d such that Er}x 0 ´z} 2 s ď δ 2 0 .
Then, we have, for all τ ě 0:

Er sup 0ďt ďτ }X t,x 0 ´X t,z } 2 s ď δ 2 τ ,δ 0 , with δ 2 τ ,δ 0
:" βpτ qe γ τ , where:

γ " 2p ? ∆ t `2λ `L2 д `128L 4 д q, and βpτ q " 2δ 2 0 `2τ ∆ t L 2 д p1 `128L 2 д qpF 2,z d `E2,z ∆ t q `4τ a ∆ t DpF 4,z d `E4,z ∆ 2 t q 1 2 p1 `4E sup 0ďt ďτ }X t,z } 2q `4E sup 0ďt ďτ } Xt,z } 2q q 1 2 .
(3) with ∆ t " τ {N .

Proof. The proof closely follows the proof of Theorem 4.4 in [START_REF] Higham | Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations[END_REF]. Let e t " X t,x 0 ´X t,z . We have, for all 0 ď t ď τ : de t " pf pX t,x 0 q ´f pzqqdt `pдpX t,x 0 q ´дpzqqdW t .

Then, by using Equation ( 4) and the integral version of Itô formula applied to function x Þ Ñ }x} 2 we obtain

}e t } 2 " }e 0 } 2 `ż t 0 2xe s , f pX s,x 0 q ´f pX s,z qyds `ż t 0 }дpX s,x 0 q ´дpX s,z q} 2 ds `Mptq, (5) 
where e 0 " x 0 ´z, and

Mptq " ż t 0 2xe s , дpX s,x 0 q ´дpX s,z qydW s .

So we have using (H2):

}e t } 2 ď }e 0 } 2 `ż t 0 2xe s , f pX s,x 0 q ´f p Xs,z qyds `L2 д ż t 0 }X s,x 0 ´X s,z } 2 ds `ż t 0 2xe s , f p Xs,z q ´f pX s,z qyds `Mptq. (6) 
So we have using (H3) and Young's inequality:

}e t } 2 ď }e 0 } 2 `ż t 0 p2λ}e s } 2 `L2 д }e s } 2 qds `L2 д ż t 0 }X s,z ´X s,z } 2 ds `ż t 0 p 1 ? ∆ t }f p Xs,z q ´f pX s,z q} 2 `a∆ t }e s } 2 qds `Mptq. (7) 
So we have using (H1), for all 0 ď t ď τ :

}e t } 2 ď }e 0 } 2 `pa ∆ t `2λ `L2 д q ż t 0 }e s } 2 ds `L2 д ż t 0 }X s,z ´X s,z } 2 ds `D ? ∆ t ż t 0 p1 `}X s,z } q `} Xs,z } q q}X s,z ´X s,z } 2 ds `Mptq. (8 
) It follows using Lemma 2 for r " 2, and Cauchy-Schwarz inequality:

Er sup 0ďsďt }e s } 2 s ď E}e 0 } 2 `pa ∆ t `2λ `L2 д q ż t 0 E}e s } 2 ds `L2 д τ ∆ t pE 2,z ∆ t `F2,z dq `D ? ∆ t ż t 0 pEp1 `}X s,z } q `} Xs,z } q q 2 q 1 2 pE}X s,z ´X s,z } 4 q 1 2 ds `mptq, (9) 
where mptq " Er sup 0ďsďt }Mpsq}s.

Hence, using using Lemma 2 for r " 4, and inequality pa `bq r ď 2 r pa r `br q:

Er sup 0ďsďt }e s } 2 s ď E}e 0 } 2 `pa ∆ t `2λ `L2 д qq ż t 0 E}e s } 2 ds `L2 д τ ∆ t pE 2,z ∆ t `F2,z dq `2Dτ a ∆ t pE 4,z ∆ 2 t `F4,z dq 1 2 p1 `4E sup 0ďt ďτ }X t,z } 2q `4E sup 0ďt ďτ } Xt,z } 2q q 1 2
`mptq.

(10) On the other hand, from the Burkholder-Davis-Gundy inequality, we get:

mptq ď 16Er ż t 0 }e s } 2 }дpX s,x 0 q ´дpX s,z q} 2 dss 1 2
Hence, using (H2):

mptq ď 16L 2 д Er sup 0ďsďt }e s } 2 ż t 0 }X s,x 0 ´X s,z } 2 dss 1 2
Then, using Young's inequality (for any α ą 0):

mptq ď 8L 2 д pαEr sup 0ďsďt }e s } 2 s `1 α Er ż t 0 }X s,x 0 ´X s,z } 2 dssq.
Hence, by using Lemma 2 for r " 2:

mptq ď 8αL 2 д Er sup 0ďsďt }e s } 2 s `8L 2 д α ż t 0 Er sup 0ďr ďs }e r } 2 sds `8L 2 д α τ ∆ t pE 2,z ∆ t `F2,z dq.
(11) Hence, letting α " 1 16L 2 д , we have by replacing in (10):

1 2 Er sup 0ďsďt }e s } 2 s ď δ 2 0 `pa ∆ t `2λ `L2 д `128L 4 д q ż t 0 Er sup 0ďr ďs }e r } 2 sds `τ pL 2 д `128L 4 д q∆ t pE 2,z ∆ t `F2,z dq `τ 2D a ∆ t pE 4,z ∆ 2 t `F4,z dq 1 2 p1 `4E sup 0ďt ďτ }X t,z } 2q `4E sup 0ďt ďτ } Xt,z } 2q q 1 2 .
(12) It results from Gronwall's inequality:

Er sup 0ďt ďτ }e t } 2 s " βpτ qe γ τ , with γ " 2p ? ∆ t `2λ `L2 д `128L 4 д q, and βpτ q " 2δ 2 0 `2τ p∆ t L 2 д p1 `128L 2 д qpF 2,z d `E2,z ∆ t q `4τ a ∆ t DpF 4,z d `E4,z ∆ 2 t q 1 2 p1 `4E sup 0ďt ďτ }X t,z } 2q `4E sup 0ďt ďτ } Xt,z } 2q q 1 2 .
(13) □

It follows from Theorem 3 and Jensen's inequality:

Proposition 1. Consider two points x 0 and z of R d ,and a positive real number δ 0 . Suppose that x 0 P Bpz, δ 0 q (i.e. }x 0 ´z} ď δ 0 ). Then EX t,x 0 P Bp Xt,z , δ t,δ 0 q for all t P r0, τ s.

It also follows from Theorem 3: Proposition 2. In the setting of Theorem 3, the expression δ τ ,δ 0 tends to

δ 0 ? 2e 2λτ `L2 д `128L 4 
д when ∆ t tends to 0 (i.e., when N tends to 8).

Implementation

This method has been implemented in the interpreted language Octave, and the experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The implementation is an adaptation of the program described in [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF] for controlling deterministic switched systems, but makes use of the tamed Euler scheme for SDEs (with the error function δ given in Theorem 3) instead of the classical Euler scheme.

Example 1. Consider the following system, corresponding to the example in Section 6.2 of [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF] (cf. [START_REF] Zamani | Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Abstractions[END_REF]) for mode u " 1:

dx 1 " p´0.25x 1 `x2 `0.25qdt `0.05x 1 dW 1 t dx 2 " p´2x 1 ´0.25x 2 ´2qdt `0.05x 2 dW 2 t
The program gives (for τ " 1, ∆ t " τ {10 4 ): q " 0, D " 1.36, L д " 0.05, λ " 0.25; and for z " p´4, ´3.8q: E 2,z " 893.3, E 4,z "

2.14 ¨10 5 , F 2,z " 0.002, F 4,z " 4.9 ¨10 ´6. Consider now the system corresponding to the example of [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF] for mode u " 2:

dx 1 " p´0.25x 1 `2x 2 ´0.25qdt `0.05x 1 dW 1 t dx 2 " p´x 1 ´0.25x 2 `1qdt `0.05x 2 dW 2 t
The program gives (for τ " 1, ∆ t " τ {10 4 ): q " 0, D " 1.36, L д " 0.05, λ " 0.25, and, for z " p0, 3q: E 2,z " 543.2, E 4,z " 7.94 ¨10 4 , F 2,z " 0.0442, F 4,z " 0.00178. Both computations take less than 10 s. of CPU time. Simulations of the two systems are given in Figure 1 for mode u " 1 and starting point z " p´4, 3.8q, and in Figure 2 for mode u " 2 and starting point z " p0, 3q. On each figure, the initial ball (t " 0) is depicted in black, the final ball (t " τ ) in red, and 200 random sampling trajectories in blue for t P r0, τ s. 1 1 Note that, in the figures, all the end points (at t " τ ) of the sampling trajectories lie in the final ball, but this is not true in general; we only know by Proposition 1 that, for all starting point x 0 of the initial ball, the expected value of the end point lie in the final ball. Figure 1: Example 1 with mode u " 1, τ " 1, ∆ t " 10 ´4, initial ball Bpz, δ 0 q with z " p´4, 3.8q and δ 0 " 0.5, final ball Bpz 1 , δ τ ,δ 0 q with z 1 " p´3.6, 2.56q and δ τ ,δ 0 " 1.17 : Example 1 with mode u " 2, τ " 1, ∆ t " 10 ´4, initial ball Bpz, δ 0 q with z " p0, 3q and δ 0 " 0.5, final ball Bpz 1 , δ τ ,δ 0 q with z 1 " p0.79, ´0.63q and δ τ ,δ 0 " 1.17

SAMPLED STOCHASTIC SWITCHED SYSTEMS 3.1 Stochastic switched system as a finite collection of SDEs

We now consider a finite number of SDEs. Each SDE is referred to as a mode j, and the set of modes is referred to as U " t1, . . . , Mu.

We will denote by X j t,x 0 the solution at time t of the system:

dxptq " f j pxptqq `дj pxptqqdW

j t , xp0q " x 0 . (14)
where x 0 is a random variable that is measurable in F 0 . Hypotheses (H1-H2-H3), as defined in Section 2, are naturally extended to every mode j of U . Accordingly, constants L д , λ, F associated to SDE (1) in Section 2, now become L д j , λ j , F j respectively, for each j P U .

Likewise, for each j P U , the nonnegative real pδ t,δ 0 q 2 becomes pδ j t,δ 0 q 2 for each mode j; the approximate continuous-time solution of ( 14) starting from z, is denoted by X j t,z , and the approximate staircase solution by X j t,z .

Control patterns

The control laws that we now consider are "piecewise constant of duration τ " in the sense that, every τ seconds, they select a given mode (see [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF]). We call "(control) pattern of length k" a sequence of k modes (i.e., an element of U k ). Each pattern π of the form j 1 j 2 ¨¨¨j k corresponds to the selection of mode j 1 for time t P r0, τ q, then mode j 2 for t P rτ , 2τ q, and so on, until t " kτ . We assume that the solution of the system is continuous at sampling instants t " τ , 2τ , . . . (which means that there is no "reset" of the system at sampling instants).

Given a stochastic switched system, a pattern π of length k and an initial random variable z, one constructs the "approximate solution controlled by π " by composing together the approximations obtained by successive application of the modes of π . Formally, the "continuous" approximate solution X π t,z is defined at time t P r0, kτ s as follows: ' X π t,z " X j t,z if π " j P U , k " 1 and t P r0, τ s, and ' X π pk ´1qτ `t 1 ,z "

X j t,z 1 with z 1 " X π 1 pk ´1qτ ,z if k ě 2, t 1 P r0, τ s, π " π 1 ˚j for some j P U and π 1 P U k ´1.
The "staircase" approximate solution X π t,z is defined analogously. Likewise, given an initial error radius δ 0 ą 0 and a pattern π of length k ě 1, one defines the error radius δ π t,δ 0 as follows: 2 ' δ π t,δ 0 " δ j t,δ 0 if π " j P U , k " 1 and t P r0, τ s, and

' δ π pk ´1qτ `t 1 ,δ 0 " δ j t 1 ,δ 1 with δ 1 " δ π 1 pk ´1qτ ,δ 0 , if k ě 2, t 1 P r0, τ s, π " π 1 ˚j
for some j P U and π 1 P U k ´1. 2 For the sake of simplicity, we suppose that the number of steps of subsampling N is the same whatever the mode j of the pattern π is, hence the stepsize of the subsampling is always equal to ∆ t " τ {N ; in full generality, we should write N j instead of N to express the dependence.

Controlled pR, Sq-stability

Given a rectangle R Ă R d and a rectangle S Ă R d such that R Ď S, we now extend the problem of "controlled pR, Sq-stability", as defined in [START_REF] Le Coënt | Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method[END_REF] for deterministic switched systems, to SDEs, as follows:

For all starting point x 0 P R, find a pattern π of length k such that ' EX π t,x 0 P R for t " kτ ' EX π t,x 0 P S for all t " τ , 2τ , 3τ , . . . . It is easy to see that, in order to solve this problem, it suffices to exhibit a finite set of points z 1 , . . . , z p of S, and a positive real δ 0 ą 0 such that:

(1) all the balls Bpz i , δ 0 q, i " 1, . . . , p, cover R, and are included into S (i.e. R Ď Ť p i"1 Bpz i , δ 0 q Ď S); (2) for each i " 1, . . . , p, there is a pattern π of length k such that: ' B i, π,t Ď S for t " τ , 2τ , . . . , pk ´1qτ , and

' B i, π,t Ď R for t " kτ . where B i, π,t :" BpE X π t,z i , δ π t,δ 0 q.
By repeated application of the patterns π 1 , . . . , π p , one defines a control that makes any trajectory starting from R return to R infinitely often while always belonging to S at sampling instants t " τ , 2τ , 3τ , . . . The program mentioned in Section 2.4, has been extended in order to find, by exhaustive search, patterns that make the balls covering R return to R, and such that the intermediate balls (at t " τ , 2τ , . . . ) belong to S. We now give an application of this program.

Example 2. Consider the system (see [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Abstractions[END_REF]): dx 1 " p´0.25x 1 `ux 2 `p´1q u 0.25qdt `0.01x 1 dW 1 t dx 2 " ppu ´3qx 1 ´0.25x 2 `p´1q u p3 ´uqqdt `0.01x 2 dW 2 t where u " 1, 2. For τ " 0.5, ∆ t " 10 ´4, one finds (for all mode u " 1, 2):

q " 0, D " 1.36, L д " 0.01, λ " 0.25; for z " p´4, ´3.8q: E 2,z " 893.31, E 4,z " 2.14 ¨10 5 , F 2,z " 0.002, F 4,z " 4.9 ¨10 ´6; and for z " p0, 3q: E 2,z " 543.22, E 4,z " 7.94 ¨10 4 , F 2,z " 0.0442, F 4,z " 0.00178. Our program shows pR, Sq-stability of the system for R " r´5, 5s r´4.4s and S " r´8, 8s ˆr´7, 7s: given a covering of R with balls of radius δ 0 " 0.1, the program finds, by exhaustive search, patterns of length ď 5 that make the balls return to R. It takes 6 hours of CPU time. Figures 3,4, 5 and 6 depict in black the initial balls (at t " 0) centered at the corners of R; and for each initial ball, the pattern that sends the ball back to R (at time t " kτ ); the intermediate balls (at t " τ , 2τ , . . . , pk ´1qτ ) are depicted in red, and 200 sampling trajectories drawn in blue.

Other applications

Our Euler-based method can also be used to control systems in order to achieve reachability properties. We sketched out this point in the following example.

Example 3. (the slit problem)

The problem is adapted from [START_REF] Morzfeld | Implicit Sampling for Path Integral Control, Monte Carlo Localization, and SLAM[END_REF]. The controlled dynamics is:

dX " udt `dW , X 0 " 1 Figure 3: initial ball Bpz, δ 0 q with z " p´5, 4q and δ 0 " 0.1; pattern " p1 ¨1 ¨1q; τ " 0.5

Figure 4: initial ball Bpz, δ 0 q with z " p5, 4q and δ 0 " 0.1; pattern " p2 ¨2 ¨2q; τ " 0.5

with mode u P t´6, ´5, ´4, ´3, ´2, 1, 0, 1, 2, 3, 4, 5, 6u. We have (at t " 0.5) a slit at x P r´1, ´4s. The objective is thus to control the system so that xptq P S " r´1, ´4s at t " 0.5.

One has, for all mode: q " 0, D " 0, L д " 0, λ " 0. For δ 0 " 0.5, an initial point z " 1 and a sampling time τ " 0.5 with subsampling ∆ t " 10 ´3, one has for mode u " ´6: E 2,z " 144, E 4,z " 20736, F 2,z " 4, F 4,z " 16; and for mode u " 0: E 2,z " 0, E 4,z " 0, F 2,z " 4, F 4,z " 16.

Suppose that all the trajectories start at x 0 with x 0 P Bpz, δ 0 q (i.e., |x 0 ´z| ď 0.5), with z " 1 and δ 0 " 0.5. When there is no control (u " 0), at time t " 0.5, the expected value of X t,x 0 is in Bpz 1 , δ t,δ 0 q with z 1 " 1 and δ t,δ 0 " 2. From Markov's inequality, it follows that the trajectories pass by S " r´1, ´4s at t " 0.5 with low probability: see Figure 7. On the other hand, with control u " ´6, at time t " τ " 0.5, the expected value of X t,x 0 is now in Bpz 1 , δ t,δ 0 q with z 1 " ´2 and δ τ ,δ 0 " 2. This explains why the trajectories now pass by S " r´1, ´4s at t " 0.5 with high probability: see Figure 8. 5: initial ball Bpz, δ 0 q with z " p5, ´4q and δ 0 " 0.1; pattern " p2 ¨2q; τ " 0.5 Figure 6: initial ball Bpz, δ 0 q with z " p´5, ´4q and δ 0 " 0.1; pattern " p1 ¨1 ¨1 ¨1 ¨1q; τ " 0.5

FINAL REMARKS AND FUTURE WORK

We have explained how to use an Euler-based method in order to control stochastic switched systems. We have focused our work on the property of pR, Sq-stability, but it can also be used for achieving reachability properties. In the future, we plan to experiment the method with examples where the drift functions behave polynomially. We would like also to find bounds not only for the expected values of the solutions, but for their variance. Bpz, δ 0 q with z " 1 and δ 0 " 0.5; intermediate ball Bpz 1 , δ 1 q (at t " τ " 0.5 ) with z 1 " ´2, δ 1 " 2; final ball Bpz 2 , δ 2 q (at t " 2τ ) with z 2 " ´2, δ 2 " 3.6

APPENDIX: PROOF OF LEMMA 2

Proof. Let t P rk∆ t , pk `1q∆ t q. Then (using the inequality pa `bq r ď 2 r pa r `br q): }X t ´X t } r " }pt ´tk qf pX k q `дpX k qpW t ´Wt k q} r ď 2 r pp∆ t q r }f pX k q} r `}дpX k q} r }W t ´Wt k } r q }X t ´X t } r ď 2 r pp∆ t q r p}f pX k q ´f p0q} r `}f p0q} r q `p}дpX k q ´дp0q} r `}дp0q} r q}W t ´Wt k } r q ď 2 r pp∆ t q r pDpp1 `}X k } q q}X k } 2 q r 2 `}f p0q} r q `pL r д }X k } r `}дp0q} r q}W t ´Wt k } r q ď 2 r pp∆ t q r pDpp1 `}X k } q q r 2 }X k } r q `}f p0q} r q `pL r д }X k } r `}дp0q} r q}W t ´Wt k } r q ď 2 r pp∆ t q r pD2 r 2 pp1 `}X k } qr 2 q}X k } r q `}f p0q} r q `pL r д }X k } r `}дp0q} r q}W t ´Wt k } r q.

(15) E}X t ´X t } r ď 2 r pp∆ t q r p}f p0q} r `D2 `p}дp0q} 2r `Lr д E}X k } r 2 qdpt ´tk q r 2 qq ď 2 r pp∆ t q r p}f p0q} r `D2 pE sup 0ďt ďτ }X t } 2r q 1 2 q, F r,z " 2 r p}дp0q} 2r `Lr д E sup 0ďt ďτ }X t } r q. □

Figure 2

 2 Figure2: Example 1 with mode u " 2, τ " 1, ∆ t " 10 ´4, initial ball Bpz, δ 0 q with z " p0, 3q and δ 0 " 0.5, final ball Bpz 1 , δ τ ,δ 0 q with z 1 " p0.79, ´0.63q and δ τ ,δ 0 " 1.17

Figure

  Figure5: initial ball Bpz, δ 0 q with z " p5, ´4q and δ 0 " 0.1; pattern " p2 ¨2q; τ " 0.5

Figure 7 :Figure 8 :

 78 Figure7: Example 3 without control (u " 0) for t P r0, τ s; initial ball Bpz, δ 0 q with z " 1 and δ 0 " 0.5; final ball Bpz 1 , δ 1 q (at t " τ " 0.5) with z 1 " 1, δ 1 " 2
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