

Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite

Yaghoub Fathipour, Maryam Karimi, Azadeh Farazmand, Asghar Talebi Ali

▶ To cite this version:

Yaghoub Fathipour, Maryam Karimi, Azadeh Farazmand, Asghar Talebi Ali. Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite. Acarologia, 2017, 58 (1), pp.31-40. 10.24349/acarologia/20184425 . hal-01670436

HAL Id: hal-01670436 https://hal.science/hal-01670436

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari

All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ acarologia@supagro.inra.fr

Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by

encouraging your institutes to subscribe to the print version of the journal

and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €

http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2016): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d'avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Open Science in Acarolog

Age-specific functional response and predation capacity of *Phytoseiulus* persimilis (Phytoseiidae) on the two-spotted spider mite

Yaghoub Fathipour^a, Maryam Karimi^a, Azadeh Farazmand^b, Ali Asghar Talebi^a

^a Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran.

^b Department of Agricultural Zoology, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran.

ABSTRACT

The lifetime-dependent functional response and predation rate of *Phytoseiulus persimilis* Athias-Henriot on eggs of the two-spotted spider mite, Tetranychus urticae Koch was determined under laboratory conditions using cucumber leaf discs. Densities of 2, 4, 8, 16, 32, 64 and 128 prey were offered to 4 (protonymph), 5 (deutonymph), 6 (1-day-old adult), 10 (5-day-old adult), 15 (10-day-old adult), 20 (15-day-old adult), 25 (20-day-old adult), 30 (25-day-old adult), 35 (30-day-old adult) and 40 (35-day-old adult) P. persimilis individuals. The results of logistic regression analyses showed that on the 15th, 35th and 40th days of predator age, predation rate of *T. urticae* eggs increased, resulting in the type III functional response, while at the other ages, the functional response was type II. The Rogers model was used to estimate searching efficiency (a) and handling time (Th). The longest handling time was obtained in the protonymphal stage with 2.377±0.192 h. The shortest handling time and the highest value of estimated maximum attack rate (T/Th)were estimated at the age of 20 days (0.494±0.009 h and 48.57 prey/day). At the highest prey density used (128 eggs), our findings showed that the highest number of prey was eaten by 15, 20, 25 and 30 days old P. persimilis (39.3, 41.7, 39.3 and 38.1 eggs per day, respectively). The results of this study revealed that P. persimilis especially at the middle and late ages has a good predation potential on T. urticae eggs at higher prey densities.

Keywords Age-specific, functional response, phytoseiid mite, Tetranychus urticae, two-spotted spider mite

Zoobank http://zoobank.org/FB7F0AE7-70B5-4AE5-919D-4A54CB396F8B

Introduction

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) is a cosmopolitan agricultural pest, feeding on more than 1100 plant species, of which more than 150 have economic value (Bolland et al., 1998; Migeon et al., 2011; Sedaratian et al., 2011; Khanamani et al., 2013; Maleknia et al., 2016a).

Predatory mites in the family of Phytoseiidae have gained much attention, because of their important role in biological control of mite and insect pests, hence, there are intensive studies about the distribution, biology, ecology and behavioral characteristics of mites of this family (Fathipour and Maleknia, 2016). Phytoseiulus persimilis Athias-Henriot is one of the most important phytoseiid species that has been known as a very efficient biological control agent of several species of spider mites (Helle and Sabelis, 1985; Alipour et al., 2016; Maleknia

Distributed under Creative Commons CC-BY 4.0

Received 04 May 2017 Accepted 02 August 2017 Published 21 December 2017

Corresponding author Yaghoub Fathipour: fathi@modares.ac.ir

Academic editor Farid Faraji

DOI 10.24349/acarologia/20184225

Copyright Fathipour Y. et al.

et al., 2016b). According to McMurtry *et al.* (2013), this species has a type I life style and feeds exclusively on web-producing spider mites. Owing to the ability of *P. persimilis* to control spider mites, it is being mass produced and sold by many commercial biological control companies.

The performance of a predator can be affected by several attributes, two of which are the functional response and predation rate (Holling, 1959; Skalski and Gilliam, 2001). Functional response describes the relationship between a predator's consumption rate and prey density (Solomon, 1949; Holling; 1966). Several factors such as host plant traits (Cédola *et al.*, 2001; Fathipour *et al.*, 2001; Skirvin & Fenlon, 2003b; Ahn *et al.*, 2010), temperature (Skirvin and Fenlon, 2003a; Li *et al.*, 2007; Gorji *et al.*, 2009; Hoque *et al.*, 2010; Jafari *et al.*, 2012), insecticides (Poletti *et al.*, 2007), prey stage (Hoque *et al.*, 2010; Farazmand *et al.*, 2012), experimental unit (Madadi *et al.*, 2011), age of a natural enemy (Asadi *et al.*, 2006; Li *et al.*, 2007; Nikbin *et al.*, 2014; Fathipour *et al.*, 2017) and generation of a natural enemy (Khanamani *et al.*, 2017) can affect functional response and its parameters.

There are many studies about functional response of *P. persimilis* (Takafuji and Chant, 1976; Everson, 1980; Fernando and Hassell, 1980; Ryoo, 1986; Sabelis and Van der Meer, 1986; Skirvin and Fenlon, 2003a; Hoque *et al.* 2010; Xiao and Fadamiro, 2010 ; Seiedy *et al.*, 2012), but none of them have focused on its age-specific functional response and predation rate. Therefore, this study aimed to reveal the searching efficiency and predation capacity of *P. persimilis* during its whole life cycle and at different life stages. Knowledge on lifetime predation capacity of a predator can help to promote its usage in biocontrol programs. On the other hand, distinguishing which stage of *P. persmilis* has the maximum attack rate and the lowest handling time can help to releasing programs.

Materials and methods

Prey culture

The specimens of *T. urticae* used in this study were obtained from the College of Agriculture, Tehran University, Iran, and reared on cucumber plants (*Cucumis sativus* cv. 'Beth Alpha') in a growth chamber at $25\pm1^{\circ}$ C, $60\pm5\%$ RH and a photoperiod of 16 L:8D h.

Predator source and rearing

A colony of *P. persimilis* was obtained from Koppert Biological System (Spidex[®]). This predator was reared in an arena consisting of a plastic sheet put on water-saturated foam in a $26 \times 18 \times 10$ cm plastic box that was half-filled with water. The edges of the plastic sheet were covered with moist tissue paper to prevent predators from escaping (Walzer and Schausberger, 1999). Cucumber leaves infested with *T. urticae* were added to the arena three times per week.

In order to obtain predators of the same age, approximately 70-80 gravid female *P. persimilis* were randomly selected from the stock colony and transferred to a new arena before starting the experiments. The arena consisted of a piece of cucumber leaf with abundant *T. urticae* placed upside down on agar inside a 19-cm diameter Petri dish. The predatory mites were allowed to lay eggs for 12 hours, then gravid females were removed from the leaf discs. The leaf discs with the *P. persimilis* eggs were kept in a growth chamber at $25\pm1^{\circ}$ C, $60\pm5^{\circ}$ RH and a photoperiod of 16L:8 D hours. The experimental units were monitored until the eggs hatched. Protonymphs, deutonymphs, and different ages of adult females were used for the experiments.

Functional response

The experimental unit was a 3.5-cm diameter cucumber leaf disc that was placed upside down on a thin layer of 2% agar in a 6-cm diameter \times 1-cm height Petri dish. Seven densities (2, 4, 8, 16, 32, 64 and 128) of *T. urticae* eggs were used in functional response experiments. In order

to make experimental units similar to natural conditions (i.e., presence of web and arrangement of eggs), considering the average *T. urticae* oviposition, for the above mentioned densities of *T. urticae*, 1, 2, 3, 6, 12, 22 and 44 gravid females of *T. urticae*, respectively, were transferred onto the leaf discs with a thin paintbrush, and allowed to oviposit for 24 hours and then were removed. The deposited eggs were counted, and in cases of low or high number of eggs in each density, eggs were added or removed. The predatory mites from the same-aged colony in ages 4 (protonymph), 5 (deutonymph), 6, 10, 15, 20, 25, 30, 35 and 40 days were transferred to the leaf discs with a thin paintbrush. The sex of nymphal stages was not clear, therefore mixed sexes were considered but for the adults, only females were used in the experiments.

To prevent escape of predatory mites, the 3.5 cm diameter Petri dish was sealed with parafilm. Each treatment was replicated 10 times. After 24 h the number of intact eggs remaining was counted.

The data on functional response were analyzed in two steps (Juliano, 2001). First, the type of functional response was determined by a logistic regression of the proportion of prey consumed (Na/N_0) as a function of prey density (N_0) :

$$\frac{N_a}{N_0} = \frac{exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3)}{1 + exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3)}$$
(1)

where P_0 , P_1 , P_2 and P_3 are the intercept, linear, quadratic and cubic coefficients, respectively, estimated using the method of maximum likelihood. The sign of the P_1 from equation (1) can be used to distinguish the type of the functional response curve. If $P_1 < 0$, it describes a type II functional response. If $P_1 > 0$ and $P_2 < 0$, it shows a type III functional response (Juliano, 2001). After determining the type of functional response, the next step is to estimate the handling time and attack rate coefficients. In this study, we used an explicit deterministic model for type II functional response (Royama, 1971; Rogers, 1972):

$$N_a = N_t [1 - exp(a(T_h N_a - T))]$$
⁽²⁾

where *Na* is the number of prey killed, *Nt* is the initial number of prey, *T* is total time available for the predator, *a* is attack rate and *Th* is the handling time. For a type III response, the attack rate is assumed to increase with host density according to the equation $a = (d + bN_0) / (1 + cN_0)$ (Hassell *et al.*, 1977). In cases where both *d* and *c* are not significantly different from 0, this leads to $a = bN_0$ which can be inserted into equation (2).

Then, for each host density the attack coefficient (*a*) can be determined as $a = bN_0$. In type III functional response, attack rate is function of prey density (N_t) and was calculated as $a' = bN_t$. An iterative nonlinear least-squares regression was used to fit the random predator equation to data so as to estimate the parameters describing the type II response. Likewise, a non-linear least squares regression procedure was used to fit the related equation to data producing a type III response.

In order to compare the effect of different densities of the prey and different ages of predator on predation rate, analysis of variance (one-way ANOVA) was used for significant differences and Tukey's test was used for means comparisons.

Results

The functional response of *P. persimilis* of different ages at different densities of *T. urticae* eggs is illustrated in Fig. 1. Comparison of functional response curves revealed profound differences between predators of different ages. The results of logistic regression analyses showed that at the age of 15, 35 and 40days, the predation rate of *T. urticae* eggs increased, resulting in a type III functional response. The linear coefficient of equation (1) at other ages of the predator was negative and significantly different from 0 (P < 0.01), indicating a type II functional response

Figure 1 Age-specific functional response of Phytoseiulus persimilis to different densities of Tetranychus urticae

(Table 1). The attack rate and handling time of different ages of the predatory mite are presented in Table 2. Attack rate increased from day 4 (protonymph) up to day 10 then decreased until the last day. This parameter in type III functional response is different at each density. The maximum number of *T. urticae* eggs consumed by *P. persimilis* over a 24-h period (*T/Th*) was 2.02 prey per hour or 48.57 prey per day at the age of 20 day. The shortest handling time (0.49 h) was also recorded at the age of 20 days and the longest handling time was estimated to be 2.38 h for protonymphs (Table 2). Handling time, showed a significant relationship with age of *P. persimilis* ($P_{reg} = 0.009$, $R^2 = 0.903$, Fig. 2), There was a non-linear relationship (quadratic regression) between age of *P. persimilis* and handling time. So that this parameter decreased of age 4 (protonymph) up to 30th (middle age of adult) then gradually increased. Hence, at younger age (protonymph) up to middle age of adult (30 days), the slope of the regression curve was negative and thereafter with increasing age, it became positive (Fig. 2).

The number of *T. urticae* eggs consumed by *P. persimilis* at different ages and varying prey densities are displayed in Table 3. The maximum prey consumption occurred at the highest density 128 of prey for all ages and was significantly higher than other densities except at the ages of 4, 6, and 35 days when feeding was not different between the densities of 64 and 128 eggs.

Generally, at low prey densities (2 and 4 eggs), prey consumption at most ages of the predator was not significantly different. With increasing prey density (16, 32, 64 and 128

Age (day)	Parameters	Estimate (±SE)	χ ²	Р
4	P_0	0.7994 ± 0.2541	9.9	0.0017
	P_1	-0.1452 ± 0.0226	41.37	< 0.0001
	P 2	0.0022 ± 0.0004	24.52	< 0.0001
5	P_0	1.1189 ± 0.2511	19.85	< 0.0001
	P_1	-0.1044 ± 0.0205	26.07	< 0.0001
	P_2	0.0013 ± 0.0004	9.71	0.0018
6	P_0	2.4425 ± 0.3132	60.8	< 0.0001
	P_1	-0.1282 ± 0.0225	32.35	< 0.0001
	P_2	0.0016 ± 0.0004	14.48	0.0001
10	P_0	3.769 ± 0.5131	53.96	< 0.0001
	P_1	-0.1148 ± 0.0333	11.91	0.0006
	P 2	0.0012 ± 0.0006	4.02	0.0451
15	P_0	1.1776 ± 0.2966	15.76	< 0.0001
	P_1	0.0633 ± 0.0232	7.45	0.0064
	P_2	-0.0020 ± 0.0004	21.16	< 0.0001
20	D	2.054 + 0.5222		-0.0001
20		3.974 ± 0.5223	57.89	<0.0001
		-0.1399 ± 0.0337	0.24	<0.0001
	P_2	0.0018 ± 0.0006	9.24	0.0024
25	D	3528 ± 05170	46 56	<0.0001
25	P.	-0.0749 ± 0.0338	40.00	0.0001
	P a	0.00719 ± 0.00000	0.16	0.6260
	1 2	0.0002 2 0.0000	0.10	0.0002
30	Po	2.4948 ± 0.3521	50.21	<0.0001
	P_1	-0.073 ± 0.0246	8.8	0.003
	P_{2}	0.0006 ± 0.0004	2.02	0.1549
	- 2			
35	P_{0}	1.1269 ± 0.3047	13.68	0.0002
	P_1	0.0773 ± 0.0243	10.1	0.0015
	P_2	-0.00213 ± 0.0005	20.98	< 0.0001
	~			
40	P_0	0.4821 ± 0.2561	3.54	0.0598
	P_1	0.0748 ± 0.2561	13.72	0.0002
	P_2	-0.0021 ± 0.0004	31.24	< 0.0001

Table 1 Maximum-likelihood estimates from logistic regression of the proportion of *Tetranychus urticae* eggs consumed by different ages of*Phytoseiulus persimilis* as a function of initial prey density.

Age (day)	Attack rate (a) or a'	T_h (h)	<i>T/T</i> _h (Prey/day)	R^2
4	$0.0205 \pm 0.00374^*$	2.3767±0.1918	10.1	0.902
	(0.0130 - 0.0280)	(1.9940-2.7594)		
5	0.0544±0.00506*	2.1026±0.0558	11.41	0.983
	(0.0443 - 0.0645)	(1.9913 - 2.2139)		
6	0.1081±0.0210*	1.2343±0.0546	19.44	0.958
	(0.0663 - 0.1500)	(1.1254 - 1.3432)		
10	0.1562±0.0169*	0.6008±0.0150	39.95	0.99
	(0.1226 - 0.1899)	(0.5709 - 0.6307)		
15	0.0117±0.00291**	0.6821±0.0198	35.19	0.968
	(0.00593 - 0.0176)	(0.6426 - 0.7216)		
20	0.1301±0.00827*	0.4941 ± 0.00928	48.57	0.996
	(0.1136 - 0.1466)	(0.4756 - 0.5126)		
25	0.1346±0.0120*	0.5665±0.0136	42.36	0.992
	(0.1106 - 0.1586)	(0.5394 - 0.5936)		
30	0.0885±0.00713*	0.5334±0.0165	44.95	0.99
	(0.0742 - 0.1027)	(0.5005 -0.5664)		
35	0.0101±0.00110**	0.6485 ± 0.00901	37	0.992
	(0.00789 - 0.0123)	(0.6305 - 0.6665)		
40	0.00655±0.00134**	0.7915±0.0272	30.32	0.955
	(0.00387 - 0.00923)	(0.7372 - 0.8458)		

Table 2 Estimate (±SE) of instantaneous attack rate and handling time of *Phytoseiulus persimilis* on eggs of *Tetranychus urticae*.

The values in parentheses represent 95% confidence intervals.;* attack rate (a) in Type II functional, **a' (in Type III functional response) (a'=bNt)'; Th: handling time; T/Th: estimated maximum attack rate.

Table 3 Daily consumption of Tetranychus urticae eggs by Phytoseiulus persimilis at different ages.

Predator age (day)													
Prey density	4	5	6	10	15	20	25	30	35	40	F	df	Р
2	1.3±0.21 d AB	1.3±0.21 f AB	1.7±0.15 d A	1.9±0.10 f A	1.6±0.16 e AB	1.9±0.10 f A	1.9±0.10 f A	1.8±0.13 f A	1.6±0.16 e AB	0.9±0.27 e B	3.76	9.90	< 0.0001
4	2.5±0.34 d B	3.0±0.3 e AB	3.4±0.30 cd AB	3.8±0.13 f A	3.8±0.13 de A	3.8±0.13 f A	3.7±0.15 f A	3.7±0.15 f A	3.4±0.22 e AB	2.8±0.33d e AB	3.986	9.90	< 0.0001
8	3.5±0.37 bc E	4.5±0.16 d DE	5.9±0.46 c BCD	7.8±0.13 e A	7.2±0.29 d AB	7.7±0.15 e A	7.5±0.27 e AB	7.1±0.28 e ABC	6.4±0.34 d ABC	5.5±0.76 d CD	15.629	9.90	< 0.0001
16	3.7±0.50 bc D	7±0.21 c C	12.7±0.62 b B	14.4±0.16 d AB	15.1±0.28 c A	14.5±0.17 d AB	15.3±0.21 d A	12.7±0.54 d B	13.8±0.53 c AB	13.6±0.67 c AB	78.713	9.90	< 0.0001
32	4.7±0.67 b F	8±0.26 c E	12.9±0.92 b D	24.3±0.15 c BC	27.8±0.49 b A	23.7±0.15 c BC	25.2±0.79 c AB	21.9±0.95 c C	27.5±0.45 b A	22.6±0.86 b BC	166.122	9.90	< 0.0001
64	7.5±0.79 a E	9.4±0.3 b E	17.7±1.25 a D	32.9±0.28 b AB	28.7±0.57 b B	37.2±0.25 b A	30.2±0.83 b B	30±1.24 b B	35.4±0.52 a A	23.6±1.69 b C	97.953	9.90	< 0.0001
128	9.2±0.40 a E (7-11)	11.4±0.34 a E (10-13)	18.5±0.92 a D (14-23)	36.1±0.25 a BC (35-37)	39.3±0.62 a AB (36-42)	41.7±1.00 a A (37-46)	39.3±0.33 a AB (37-41)	38.1±0.67 a ABC (35-42)	36.4±1.22 a BC (30-42)	34.3±1.47 a C (25-40)	186.364	9.90	< 0.0001
F	30.134	180.615	77.106	404.728	201.963	1293.894	907.018	400.239	577.931	147.82			
df	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63	6.63			
Р	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001			

Figure 2 Quadratic regression curve between *Phytoseiulus persimilis* age and handling time on eggs of *Tetranychus urticae*

eggs), the effect of age on prey consumption was more evident. Nymphal stages (age 4 and 5 days) consumed less prey than older mites. At the beginning of maturity (6 days), prey consumption at all densities became greater with increasing age. Thereafter, mean number of prey consumption indicated fluctuation in different ages and were not significantly different in many cases. Finally, it was decreased on the 40th day of predatory mite age in all densities. The highest mean number of prey consumed, at the density of 128 eggs and at the age of 20 days, was counted to be 41.7 eggs/day (Table 3) and the lowest prey consumption was 0.9 eggs/day at the density of 2 eggs and day 40. With a density of 128 prey, the lowest prey consumption was recorded within the first three days of the experiment. Also, maximum and minimum prey consumption was 46 and 7 eggs/day recorded on the 20th and 4th days of the predatory mite age, respectively.

Discussion

Our findings revealed *P. persimilis* can show both type II and type III functional responses depending on the age of the predator supporting the hypothesis that a single predator or parasitoid species is able to exhibit different responses depending on its age. In a previous study, *A. swirskii* showed type II and III functional response at different ages (Fathipour *et al.*, 2017). Furthermore, Nikbin *et al.* (2014) and Li *et al.* (2007) obtained similar results for *Trichogramma brassicae* Bezdenko and *Scolothrips takahashii* Priesner, respectively.

Some researchers reported type II functional response for phytoseiids (Cedola *et al.*, 2001; Gotoh *et al.*, 2004; Xiao and Fadamiro, 2010; Ahn *et al.*, 2010; Gorji *et al.*, 2009; Farazmand *et al.*, 2012). In this study, immature stages of *P. persimilis* (protonymphs and deutonymphs) had a type II functional response to the density of prey eggs. This was in line with the findings of Fernando & Hassell (1980) for protonymphs and deutonymphs of *P. persimilis*. Adult females (aged 6, 10, 20, 25 and 30 days) also exhibited type II functional response. This is in agreement with Fernando & Hassell (1980) for 6-day-old adult females of *P. persimilis* and Xiao and Fadamiro (2010) for 2-9 days old adult females of this phytoseiid mite feeding on *Panonychus citri* (McGregor) nymphs. The type III functional response of 10-day-old of *P.*

persimilis can be attributed to predators having greater reproductive rates at this time interval, hence, to compensate losing energy, females consumed a significantly higher number of prey. In a study, Moghadasi *et al.* (2013) found type III functional response for gravid *P. persimilis* females aged 3 days on *T. urticae* eggs.

In this study, the type III functional response in ages of 15, 35 and 40 days of the predatory mite has been observed. However, a reason for showing type III functional response in ages of 30 and 35 days might be due to more experience of females in searching for patches with higher prey densities and oviposition strategy. In another study, Fathipour *et al.* (2017) found type III functional response for females of *Amblyseius swirskii* Athias-Henriot aged 12 days.

In our study, 20-days-old females of P. persimilis showed the highest estimated maximum attack rate (T/Th) (48.57) and the lowest handling time (0.49h) compared with other ages of the predatory mite and consumption rate of P. persimilis increased with increasing prey density. This is in line with the work of Xiao and Fadamiro (2010) who showed that *P. persimilis* consumed higher numbers of prey in particular at high prey densities and findings of Fries and Gilstrap (1982) and Hogue et al. (2010) who showed that prev consumption by P. persimilis increased significantly with increasing densities of immature prey stages. In addition, prey consumption increased from the protonymph stage up to middle age of adult females (20 day). The same trend was observed from the protonymph up to adult female stages of *P. persimilis* fed with Tetranychus pacificus (Eveleigh and Chant 1981) and Typhlodromus pyri Scheuten (Sengonca et al. 2003). Likewise, previous work on A. swirskii has shown an increasing in predation rate on T. urticae at the middle-age of its life and at higher prey densities (Fathipour et al., 2017). The higher proportion of prev consumption at days fifteen, twenty, twenty-five, thirty, thirty-five and forty indicates that the predator would be more effective at controlling the T. urticae population at middle and late ages. On the other hand, the handling time showed a decreasing trend with increasing in predator age up to 30th (middle age of adult), this parameter increased again in older ages. Therefore, adult individuals at the middle and late ages are much more efficient than younger stages. This result suggests that releases of this predator may be most effective if populations can be reared and released at middle and late-stage individuals. Such releases would facilitate rapid killing of two-spotted spider mites immediately after release.

Acknowledgements

The support of this research by the Department of Entomology, Tarbiat Modares University, is greatly appreciated.

References

- Ahn J.J., Kim, K.W., Lee J.H. 2010 Functional response of *Neoseiulus californicus* (Acari: Phytoseiidae) to *Tetranychus urticae* (Acari: Tetranychidae) on strawberry leaves J. Appl. Entomol., 134: 98-104. doi:10.1111/j.1439-0418.2009.01440.x
- Alipour Z., Fathipour Y., Farazmand A. 2016 Age-stage predation capacity of *Phytoseiulus persimilis* and *Amblyseius swirskii* (Acari: Phytoseiidae) on susceptible and resistant rose cultivars — Int. J. Acarol., 42(4): 224-228. doi:10.1080/01647954.2016.1171797
- Asadi R., Talebi A.A., Khalghani J., Fathipour Y., Moharramipour S., Askari Siahooei M. 2012 Age-specific functional response of *Psyllaephagus zdeneki* (Hymenoptera: Encyrtidae), parasitoid of Euphyllura pakistanica (Hemiptera: Psyllidae) — J. Crop Protection, 1(1): 1-15.
- Bolland H.R., Gutierrez J., Flechtmann C.H.W. 1998 World catalogue of the spider mite family (Acari: Tetranychiade) Leiden, Brill Academic publishers., 392 p.
- Cédola C.V., Sánchez N.E., Liljesthröm G.G. 2001 Effect of tomato leaf hairiness on functional and numerical response of *Neoseiulus californicus* (Acari: Phytoseiidae) — Exp. Appl. Acarol., 25: 819-831. doi:10.1023/A:1020499624661
- Eveleigh E.S., Chant D. 1981 Experimental studies on acarine predator-prey interactions: the numerical response of immature and adult predators (Acarina: Phytoseiidae) Can. J. Zool., 59(7): 1407-1418. doi:10.1139/z81-192
- Everson P. 1980 The relative activity and functional response of *Phytoseiulus persimilis* (Acarina: Phytoseiidae) and *Tetranychus urticae* (Acarina: Tetranychidae): the effect of temperature Can. Entomol., 112: 17-24.

- Farazmand A., Fathipour Y., Kamali K. 2012 Functional response and mutual interference of *Neoseiulus californicus* and *Typhlodromus bagdasarjani* (Acari: Phytoseiidae) on *Tetranychus urticae* (Acari: Tetranychidae) Int. J. Acarol., 38: 369-376. doi:10.1080/01647954.2012.655310
- Fathipour Y., Kamali K., Khalghani J., Abdollahi G. 2001 Functional response of *Trissolcus grandis* (Hym., Scelionidae) to different egg densities of *Eurygaster integriceps* (Het., Scutelleridae) and effects of wheat genotypes on it Appl. Entomol. Phytopathol., 68: 123-136.
- Fathipour Y., Karimi M., Farazmand A., Talebi A.A. 2017 Age-specific functional response and predation rate of *Amblyseius swirskii* (Phytoseiidae) on two-spotted spider mite — Syst. Appl. Acarol., 22(2): 159-169.
- Fathipour Y., Maleknia B. 2016 Mite Predators. In: Omkar (ed.) Ecofriendly Pest Management for Food Security — San Diego, USA, Elsevier. pp. 329-366.
- Fernando M.H.J.P., Hassell M.P. 1980 Predator-prey responses in an acarine system Res. Popul. Ecol., 22: 301-322. doi:10.1007/BF02530853
- Friese D.D., Gilstrap F.E. 1982 Influence of prey availability on reproduction and prey consumption of *Phytoseiulus persimilis*, *Amblyseius californicus*, and *Metaseiulus occidentalis* (Acarina: Phytoseiidae) Int. J. Acarol., 8: 85-89. doi:10.1080/01647958208683283
- Gorji M.K., Fathipour Y., Kamali K. 2009 The effect of temperature on the functional response and prey consumption of *Phytoseius plumifer* (Acari: Phytoseiidae) on the two-spotted spider mite — Acarina, 17: 231-237.
- Gotoh T., Nozawa M., Yamaguchi K. 2004 Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory Appl. Entomol. Zool., 39(1): 97-105. doi:10.1303/aez.2004.97
- Hassell M.P., Lawton J.H., Beddington J.R. 1977 Sigmoid functional response by invertebrate predators and parasitoids — J. Anim. Ecol., 46, 249-262. doi:10.2307/3959
- Helle W., Sabelis M.W. 1985 Spider mites, their biology, natural enemies and control (Vol.1 P.458) Amsterdam, Elsevier.
- Holling C.S. 1959 The components of predation as revealed by a study of small mammal predation of the European pine sawfly — Can. Entomol., 91: 293-320. doi:10.4039/Ent91293-5
- Holling C.S. 1966 The functional response of invertebrate predators to prey density Mem. Entomol. Soc. Canada, 98(s48): 5-86. doi:10.4039/entm9848fv
 Hoque M.F., Islam M.W., Khalequzzaman M. 2010 Functional response of *Phytoseiulus persimilis*
- Hoque M.F., Islam M.W., Khalequzzaman M. 2010 Functional response of *Phytoseiulus persimilis* Athias–Henriot to *Tetranychus urticae* Koch: effects of prey life stages and temperature — Univ. J. Zool. Rajshahi. Univ., 29(1): 1-8.
- Jafari S., Fathipour Y., Faraji F. 2012 The influence of temperature on the functional response and prey consumption of *Neoseiulus barkeri* (Phytoseiidae) on two-spotted spider mite — J. Entomol. Soc. Iran., 31(2): 39-52.
- Juliano S.A. 2001 Nonlinear curve fitting: predation and functional response curves. In: Scheiner, S.M. and J. Gurevitch (eds.) — Design and Analysis of Ecological Experiments. New York, Oxford University Press, 178-196 pp.
- Khanamani M., Fathipour Y., Hajiqanbar H. 2013 Population growth response of *Tetranychus urticae* to eggplant quality: application of female age-specific and age-stage, two-sex life tables Int. J. Acarol., 39: 638-648. doi:10.1080/01647954.2013.861867
- Khanamani M., Fathipour Y., Talebi A.A., Mehrabadi M., 2017 Quantitative analysis of long-term mass rearing of *Neoseiulus californicus* (Acari: Phytoseiidae) on almond pollen — J. Econ. Entomol., 110(4): 1442-1450 doi:10.1093/jee/tox116
- Li D.X, Tian J., Shen Z.R. 2007 Functional response of the predator *Scolothrips takahashii* to hawthorn spider mite, *Tetranychus viennensis*: effect of age and temperature BioControl., 52: 41-61.
- Madadi H., Mohajeri Parizi E., Allahyari H., Enkegaard A. 2011 Assessment of the biological control capability of *Hippodamia variegata* (Col.: Coccinellidae) using functional response experiments — J. Pest Sci., 84: 447-455. doi:10.1007/s10340-011-0387-9
- Maleknia B., Fathipour Y., Soufbaf M. 2016a How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of *Tetranychus urticae* (Acari: Tetranychidae) Int. J. Acarol., 42: 70-78. doi:10.1080/01647954.2015.1118157
- Maleknia B., Fathipour Y., Soufbaf M. 2016b Intraguild predation among three phytoseiid species, Neoseiulus barkeri, Phytoseiulus persimilis and Amblyseius swirskii — Syst. Appl. Acarol., 21: 417-426.
- Migeon A., Nouguier E., Dorkeld F. 2011 Spider mites web: a comprehensive database for the Tetranychidae Trends in Acarology, 557-560.
- McMurtry J.A., De Moraes G.J., Sourassou N.F. 2013 Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies Syst. Appl. Acarol., 18: 297-320. doi:10.11158/saa.18.4.1
- Moghadasi M., Saboori A., Allahyari H., Zahedi Golpayegani A. 2013 Functional response of *Typhlodromus bagdasarjani* and *Phytoseiulus persimilis* (Acari: Phytoseiidae) feeding on *Tetranychus urticae* (Acari: Tetranychidae) on rose — Plant Pest Research, 2(4): 55-65.
- Nikbin R., Sahragard A., Hosseini M. 2014 Age-specific functional response of *Trichogramma brassicae* (Hymenoptera: Trichogrammatidae) Parasitizing Different Egg Densities of *Ephestia kuehniella* (Lepidoptera: Pyralidae) J. Agr. Sci. Tech., 16: 1205-1216.
- Poletti M., Maia A.H.N., Omoto C. 2007 C Toxicity of neonicotinoid insecticides to *Neoseiulus californicus* and *Phytoseiulus macropilis* (Acari: Phytoseiidae) and their impact on functional response to *Tetranychus urticae* (Acari: Tetranychidae) Biol. Control, 40: 30-36. doi:10.1016/j. biocontrol.2006.09.001
- Royama T. 1971 A comparative study of models for predation and parasitism Res. Popul. Ecol., 1: 1-90. doi:10.1007/BF02511547

- Sedaratian A., Fathipour Y., Moharramipour S. 2011 Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes — Insect Sci., 18: 541-553. doi:10.1111/j. 2010.01379
- Seiedy M., Saboori A., Allahyari H., Talaei-Hassanloui R., Tork M. 2012 Functional response of *Phytoseiulus persimilis* (Acari: Phytoseiidae) on untreated and *Beauveria bassiana* treated adults of Tetranychus urticae (Acari: Tetranychidae) — J. Insect Behav., 25: 543-553. doi:10.1007/ s10905-012-
- Sengonca C., Khan H.A., Blaeser P. 2003 Prey consumption during development as well as longevity and reproduction of Typhlodromus pyri Scheuten (Acari, Phytoseiidae) at higher temperatures in the laboratory — J. Insect Sci., 76(3): 57-64. doi:10.1046/j.1439-0280.2003.03016.x Skalski G.T., Gilliam J.F. 2001 — Functional response with predator interference: viable alternatives to
- the holling type II model Ecol., 82(11): 3083-3092.
- Skirvin D.J., Fenlon J.S. 2003a The effect of temperature on the functional response of *Phytoseiulus* persimilis (Acari: Phytoseiidae) — Exp. Appl. Acarol., 31: 37-49. doi:10.1023/B:APPA.0000005107. 97373 8
- Skirvin D.J., Fenlon J.S. 2003b Of mites and movement: the effect of temperature and plant connectedness on the movement of Phytoseiulus persimilis - Biol. Control, 27: 242-250. doi:10.1016/S1049-9644(03)00022-7
- Solomon M.E. 1949 The natural control of animal populations J. Anim. Ecol., 18: 1-35. doi:10.2307/1578
- Takafuji A., Chant D.A. 1976 Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey — Res. Popul. Ecol., 17(2): 255-310. doi:10.1007/BF02530777
- Walzer A., Schausberger P. 1999 Predation preferences and discrimination between con-and heterospecific prey by the phytoseiid mites *Phytoseiulus persimilis* and *Neoseiulus californicus* — BioControl., 43(4): 469-478.
- XiaoY., Fadamiro H.Y. 2010 Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae) -Biol. Control, 53: 345-352. doi:10.1016/j.biocontrol.2010.03.001