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Abstract—In this work, we propose a novel approach to
solve probabilistic planning problems taking into account the
risk that the decision maker is ready to accept regarding the
probabilities of reaching the goals. Our approach guarantees that
the probability of reaching a state satisfying the selected goals
is above a certain limit threshold. To achieve this, we relax the
constraints that all goals must be satisfied, and select the most
valuable set of goals whose reachability probability is above the
threshold. To this end, we propose a goal selection heuristic based
on the reachability probability and the cost between goals that
are estimated using an abstracted version of the problem. Finally,
a planetary exploration problem will be used for illustrating the
effectiveness of the proposed approach. Our results show that
the obtained selections cover the most valuable possible goals
and respect the reachability probability threshold.

I. INTRODUCTION

Automated planning (AP) is an explicit deliberation pro-
cess that chooses and organizes actions by anticipating their
outcomes [1]. Starting from an initial state, the objective is
to reach a final state satisfying all the goals of the problem.
Probabilistic planning is a category of planning problems
where the possible outcomes of actions are not deterministic.
We consider such problems defined in the form of a Markov
Decision Process (MDP), and which can be efficiently solved
with the fixed point of the Bellman equation under the two
following assumptions: the first one is that there exists at
least one proper policy (a policy that reaches the goals with
a probability value equal to 1); and the second one is that all
costs are strictly positive so that improper policies with infinite
loop accumulate cost infinitely. These two assumptions form
the category of problems called Stochastic Shortest Path (SSP)
[2]. If these assumptions do not hold, the Bellman equation
may have no solution. Teichteil-Königsburg [3] proposes an
efficient solution to solve SSP where both assumptions do
not hold, which is called Stochastic Safest and Shortest Path
Problem (S3P ). In S3P , goal-oriented MDP are solved by
first finding all paths that optimize the probability of reaching
the goals and then selecting the one optimizing cost over them.
However, even policies maximizing the probability of reaching
the goals may not be satisfactory enough in situations in which
only poor probability of success exists. In this paper, we adopt
a different approach where we consider that in certain critical
situations, the decision maker may prefer to reduce the number
of satisfied goals in order to have a bounded guarantee on the
probability of success. In this approach, we are looking for

all solutions whose probability of reaching the goals is above
a given threshold, that we will call the safe threshold. With
this constraint, it is possible that no solution satisfies this safe
threshold. In such situations, we propose a solution satisfying
only a subset of goals with a guarantee to be reached above
the safe threshold. Indeed, in critical and/or highly uncertain
situations, the user may prefer to relax the constraint that
all goals must be satisfied in order to have a solution with
a better probability of success. In the remaining, a solution
above the safe threshold will be called a safe solution. Since
all goals may not be part of a safe solution, goal preferences
are expressed with a score assigned to each goal. The objective
of our algorithm is to find the most valuable subset of goals
under the constraint that the solution is safe. This problem
belongs to the category of over-constrained problems where all
goals cannot be satisfied, usually because of limited resources,
or in our case, because of a threshold on the probability of
success.

Over-constrained problems have been studied in AP under
the name of Partial Satisfaction Planning problems (PSP)
[4] and Over-Subscription Planning problems (OSP) [5]. Our
work is inspired by algorithms which solve over-constrained
problems with the difference that we are not limited by
resources of actions (cost, fuel, time, energy,...) but by a
threshold on the probability of success. The challenging task
of such problems is the goal selection process because a full
search in the whole goal states space is unfeasible in practice.
Planners have proposed good heuristics to select goals [6],
[7], however they are based on limited available resources.
To our best of knowledge, no heuristic has been proposed to
select goals guaranteeing a minimum probability of success.
The basic idea of our proposition is to build a relaxed planning
problem from which we can estimate reachability probabilities
and costs between goals. This relaxed plan is then transformed
into a graph whose nodes represent goals, and edges represent
costs and reachability probabilities between goals. The goal
selection is done through a search path algorithm in the graph.

The remainder of this paper is organized as follows. In sec-
tion 2, our motivations and a background of over-constrained
problems are described. Then, we formalize the problem and
present our heuristic algorithm in Section 3 and 4. Section 5
depicts the empirical results of a case study, followed by a
discussion and the work perspectives in Section 6.



II. MOTIVATION AND BACKGROUND

Our work belongs to the category of problems where it may
be preferable to not satisfy the whole set of goals in order to
limit the risk taken. In this section we give a motivation exam-
ple, discuss on existing over-constrained problem algorithms
in AP, and conclude with the main contributions of this work.

A. Motivation

We illustrate our method, along this paper, using the plane-
tary exploration problem (also known as mars rover problem),
where a rover has to navigate a surface, visit different sites
of more or less interest and perform tasks such as collecting
samples. While this problem has been studied under limited
resources (time, energy of the rover) [5], [8], we can notice that
in such expensive missions, it is also important to consider the
danger taken by the rover when exploring the planet. Indeed,
the rover may not move as expected or remain blocked (due to
bumps in the landscape or mud) and thus gets lost forever. To
highlight this phenomenon, we use a slightly modified version
of this planetary exploration problem. The goals are reduced
to the exploration of different sites, and each goal have a score
which represent the level of interest of the site. We also added
the notion of risky area, meaning that every time the rover
moves from a risky area, it has a probability to remain blocked
(which cause the failure of the mission). To this problem, our
method look for solutions where the rover has to visit as many
sites as possible with a guarantee threshold that the rover will
not be too greedy and remain blocked.

B. Constraint satisfaction problem in planning

The aim of classical planning is to reach a goal state
satisfying all goals of the problem. However, in the real world,
it is not always possible to satisfy all of the goals, due to
logically conflicting goals or limited resources. We say that
the problem is over-constrained and a solution can satisfy only
a subset of goals. Hence, we are in presence of a problem of
planning with constraints where we are looking for the best
subset of goals to satisfy. Over-constrained problems in AP are
known as OSP first introduced by Smith [5] and PSP problems
introduced later by Briel et al. [4]. While both PSP and OSP
have the same problem definition and constraint (the planner
cannot achieve all goals), they have different perspectives. OSP
focus on scheduling problems and are resource based. PSP
problems focus on the best trade-off between goal utility and
action cost.

1) Partial satisfaction planning (PSP): PSP Net Benefit
[9] is a problem where some utilities/rewards are allocated
to goals, and costs to actions. The solution is a plan with the
best net benefit, which is the cumulative goal utility minus the
cost to satisfy goals. The drawback of these methods is that
they assume that action costs and goal utilities are comparable.
In our approach we can’t make this assumption because the
probability of reaching a goal is not comparable with goal
utilities.

2) Over-subscription planning (OSP): In OSP, the objective
is to maximize the achieved goal utilities limited by the
allocated resources/costs. Methods used in OSP are mainly
based on a two-steps approach [5], [10]. First, the best subset
of goals is heuristically selected and then it is used to guide
the planner. The planner is given, one at a time, the selected
goals in the order suggested by the selection. It stops when all
the goals are reached or when no more resources are available.
The challenging task of these problems is the goal selection,
because it is not possible to do a search in the whole state
space, except in very small problems. To simplify this process,
an estimation of needed resources to reach goals is computed
from an abstracted version of the problem (which factors
out some details of the problem). For example, Smith [5]
proposes to formalize an abstracted version of the problem as
an orienteering problem (OP) whose nodes are goals (attached
with their utilities) and edges are costs estimation between
goals. The OP is solved by finding the best goal selection
which does not exceed available resources. Similarly, Garcı́a
et al. [10] builds a distances matrix from a relaxed plan
and applies a beam search to select goals. These methods
have been applied to deterministic domains but do not handle
probabilistic domains.

Meuleau et al. [8] studied OSPs applied to probabilistic do-
main under the name of Stochastic Over-Subscription Planning
(SOSP). The first step of the method proposed by Meuleau
et al. is based on solving a substantially smaller Markov
Decision Process for each goal (that they also call sub-tasks).
The second step is to schedule those sub-tasks to solve the
global problem. This approach handles probabilistic aspects
but the solution is risk-neutral. We define the level of safety
of a solution based on the probability of entering a goal state.
Since we aim at guaranteeing safe solutions, our method is
based on the construction of a graph whose edges are the
reachability probability (RP ) between goals. It provides an
estimation of the degree of safety to reach the different goals
and thus to find the best subset of goals whose RP is above
the threshold.

C. Our contribution

We propose an approach to guarantee a safe solution (con-
figurable by the user) in probabilistic planning problems by
reducing the number of goals to satisfy. We consider this
problem as an over-constrained problem limited by the risk the
user is ready to take, in the form of a probability threshold. We
were inspired by OSP problems with the difference that the
goal selection is based on a reachability probability estimation
and that the problem is limited by the risk of the solution
instead of the resources. Our contribution includes:

1) A method estimating the RP between goals to provide
a good sub-optimal goal selection quickly, instead of
doing a full search.

2) An algorithm that guarantees a safe solution with regard
to a configurable probability threshold.



III. THE GOAL SELECTION HEURISTIC

The goal selection heuristic proposed herein will be used
to guide the planner. It is a three-step process resulting in
the best selection of goals which can be satisfied by a safe
solution. In other words, the selection of goals accumulating
the highest total score, and whose reachability probability is
higher or equal to the safe threshold. Here are the three steps:

1) Creation of a relaxed version of the problem that reduces
state space, making a possible detection of goal states.

2) Estimation of the reachability probability and the cost
between goal states with a value iteration based algo-
rithm applied to the relaxed problem.

3) Search of the best goal selection in a graph modeling
goal states and previously computed estimations.

A. Relaxed problem
In practice, a full state space search to find the best goal

selection is impossible. Indeed, the number of possible states
satisfying goals can quickly become intractably large. To
overcome this issue, approximation techniques use a state
space abstraction of the problem [11], [12]. Usually, in OSP
problems, the abstracted or relaxed version results in a graph
structure where nodes are goal states labeled with a score
and edges are resources or dependencies between goal states
[5], [10]. The goal selection results in a search path problem
where the path has to maximize the sum of node scores with
limited capacity (resources attached to edges). The relaxation
method we use in our heuristic is very close to the ones used
by Smith [5] or Benton et al. or [6]. It is efficient under the
condition that goals are sufficiently independent, which is the
case in problems such as the planetary exploration involving
a series of sub-tasks to realize. The method is based on the
identification of interactions and shared variables between
goals. It forms a state space abstraction which allows one
to detect goal states in a reasonable time. In the relaxed
problem, each goal state is associated to a goal and its score
of the original problem. We do not cover more in details the
relaxation process as it not the purpose of this article.

1) Relaxed plan definition: The relaxed planning problem
is formalized as a Markov Decision Process (MDP) where the
list of goals G becomes a list of identified goal states in the
relaxed problem. For example, in our modified version of the
planetary exploration problem presented in section II-A, the
goal states are the coordinates of sites to visit. We use an MDP
because it adequately models uncertainties of our problem. The
relaxed problem results in an undiscounted MDP in the form
〈S,A, SG, p, c, u, α, s0〉 where:
• S is a finite set of states (s0 ∈ S is the initial state).
• A is a finite set of actions. The set of all actions applicable

in a state s will be noted A (s).
• SG ⊆ S is a list of goal states (sg ∈ SG denotes a goal

state).
• u(sg) is the utility/score of the goal state sg (u(sg) > 0).
• p(s, a, s′) ∈ [0, 1] is a transition function which gives the

probability of moving from state s to state s′ applying
action a.

• c(s, a) > 0 is the cost of applying action a in state s.
• α ∈ [0, 1] is the safe threshold and β = 1−α is the risk

threshold.

B. Reachability probability and cost function

1) Background on value function computation: A value
function is a function which links any state s to the value of
a criterion (e.g. cost, reward...). This value corresponds to the
expected criterion when applying the policy starting from s.
In the context of MDPs, we compute the value function using
dynamic programming (DP) [13], which refers to a collection
of algorithms used when the dynamic of the environment is
known (i.e. transition probability and cost). The idea is to
approximate the value function by iterative refinement leading
to an estimation increasingly accurate. The optimal value
function V is the unique solution of the Bellman equation
[14]:

V (s) = min
a ∈ A(s)

Q (s, a) (1)

Q (s, a) = c (a, s) +
∑
s′

p(s, a, s′)V (s′)

In this paper, we will use a value iteration algorithm, which
is considered as a standard DP method, to compute value
functions.

2) Reachability probability and cost computation: For our
heuristic, we define two value functions, one for the reacha-
bility probability that we note RP and one for the cost that
we note V . Both functions are estimated for each identified
goal states of the relaxed planning problem. It results in two
vectors of value functions, each one of the size of the number
of goal states. This decomposition allows one to find the best
subset of goals by selecting goals one by one until the product
of the reachability probabilities between goals goes below the
safe threshold α. While the computation of the cost function is
a direct application of the Bellman equation, the reachability
probability function is estimated as a variant of the Bellman
equation where the value (the reachability probability) is equal
to 1 when entering a goal state and 0 otherwise. Similarly
to Steinmetz et al. [15], we define RP (s, sg) the probability
of entering goal state sg from state s and σ(s, a, sg) the
probability of entering goal state sg from state s applying
action a as follows:

RP (s, sg) = max
a ∈A(s)

σ(s, a, sg) (2)

σ(s, a, sg) =
∑
s′

p(s, a, s′)RP (s′, sg) (3)

We also define the cost function V (s, sg) for each goal state
in the form of the Bellman equation (cf. Eq.1) by considering
that the selected action maximize the reachability probability
instead of minimizing the cost. Thus, we update at the same
time V and RP with the action of maximal reachability
probability (i.e. the action maximizing σ). The cost function
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Fig. 1. Example of SGGraph with α = 0.75 and edges in the form [V,RP ].
All dashed elements are removed because they can’t be part of a safe path.
The most valuable safe path is (s0, sg3, sg2, sg6).

becomes an estimation of the expected future cost when the
agent acts with maximal reachability probability.

V (s, sg) = Q(s, a, sg) s.t. a = argmax
a ∈ A(s)

σ (s, a, sg) (4)

Q(s, a, sg) = c (a, s) +
∑
s′

p(s, a, s′)V (s′, sg) (5)

To ensure the Bellman equation has a solution, we assume that
there exists at least one policy with a non-zero probability of
termination and that all costs are strictly positive (all improper
policies accumulate infinite cost). Once both value functions
are solved, we have the reachability probability and the cost
to go from one goal state sg1 to another goal state sg2 with
RP (sg1, sg2) and V (sg1, sg2).

C. Goal selection

The goal selection process is the process of choosing and
ordering the best subset of goals which will be used to guide
the planner. In [5], [8], [10], the selection is done by solving
an orienteering problem (OP). The OP [16], [17] is a graph
whose nodes are represented with a score and whose aim
is to determine a Hamiltonian path maximizing the sum of
scores without exceeding a given limit. In OSP problems, the
resulting path of solving the OP corresponds to the best goal
selection. Using the same technique, we search for a path
maximizing the sum of scores and whose product of reacha-
bility probabilities is above the safe threshold α. We define a
directed graph called SGGraph whose nodes are the initial
state and goal states of the relaxed plan and edges are labeled
with the reachability probabilities and the costs between goal
states. An example of an SGGraph is given in Fig. 1. More
formally we define SGGraph = (S,E) with S the set of
nodes labeled with a score, being either the initial state or a
goal state such that S = Sg ∪ {s0} and E the edges labeled
with the cost and the reachability probability between two
nodes of the form: [V (s1, s2) , RP (s1, s2)] s.t. s1, s2 ∈ S.
We compute RP (path) as the probability of reaching all goal
states of a path. It is the product of RP from the initial state
to the first goal state, and then from goal state to goal state in
the order given in the path. Note that a path must start at s0.

path = (s0, sg0, sg1, . . . , sgn) s.t. sgi ∈ Sg

RP (path) = RP (s0, sg0)×
n−1∏
i=0

RP (sgi, sgi+1) (6)

A path is safe if its reachability probability is above or equal
to the safe threshold α:

RP (path) ≥ α (7)

We also define the utility of a path U(path) as the total utility
of the path and the cost of path C(path) as the total cost to
go from goal state to goal state.

U (path) =

n∑
i=0

u(sgi) (8)

C (path) = V (s0, sg0) +

n−1∑
i=0

V (sgi, sgi+1) (9)

The optimal path we are looking for is a safe path maximizing
U as a first criterion, and minimizing C as a second criterion.
We use a second criterion because several safe paths may
have the same maximum utility. It is mostly the case when
several paths are composed of the same goals in different
orders. In this situation, considering the cost as a secondary
criterion plays an important role because it enables to choose
the less costly path. Finally, the goal selection is the resulting
path without the initial state. The method used to solve the
SGGraph is given in section IV. We call list g, the goal
selection resulting of the SGGraph:

list g = (sg0, sg1, . . . , sgn) s.t. sgi ∈ Sg

list g = SGGraph(s0) (10)

D. A small example

Here we illustrate the use of the proposed goal selection
heuristic by applying it to the modified version of the planetary
exploration problem that we presented in section II-A.

1) Relaxed problem: The relaxed problem results in states
composed of the rover’s position (x,y) and actions of moving
to the 4 cardinal directions. This relaxed problem is similar to
a grid world problem.

2) Reachability probability and cost estimation: In Fig. 1,
s0 is the initial position of the rover and sgi(i ∈ 1, 2, ..., 6)
are the goal states associated with their scores, that is to say
the sites to visit associated with their levels of interest. Each
edge is labeled with a cost representing how far a site is from
another one and a reachability probability being the probability
to reach a site from another site.

3) Goal selection: In Fig. 1, there are two admissible paths:
path a = (sg3, sg2, sg6) and path b = (sg4, sg6). Other
paths are not admissible because they have either one or more
segments whose RP is lower than the safe threshold α or
because they do not start by s0. Using Eq.6 and Eq.8, we get:
• RP (path a) = 0.84×0.9×1 = 0.756 and U(path a) =

6 + 4 + 5 = 15.
• RP (path b) = 0.85 × 0.92 = 0.782 and U(path b) =

2 + 5 = 7.
When fixing α = 0.75, both path a and path b are safe
paths (RP (path a) ≥ α and RP (path b) ≥ α). However,
the selected path is path a because U(path a) > U(path b).



1: function RPVALUEITERATION
2: InitializeStates() . see Eq.11
3: repeat
4: ∆RP = 0
5: for each s ∈ S do
6: for each sg ∈ SG do . for all goal states
7: safest a = argmaxa ∈ A(s) σ (s, a, sg)
8: V (s, sg) = Q (s, safest a, sg)
9: RP (s, sg) = σ (s, safest a, sg)

10: ∆V = max(∆V , RV (s, sg))
11: ∆RP = max(∆RP , RRP (s, sg))

12: until ∆V < ε & ∆RP < δ . see Eq.12

Fig. 2. Relaxed Plan Value Iteration

Note that the cost is not used here for simplicity of the
example but would be used if both paths had the same utility.
We finally get the best goal selection from path a that is
list g = (sg3, sg2, sg6).

IV. ALGORITHMS

In this section, we first present the VI based algorithm used
to estimate reachability probability and cost from the relaxed
plan. We then detail our method to solve the SGGraph and
finish with the general solution of the planner.

A. Relaxed plan value iteration algorithm
1) Initialization: The cost function V is initialized for

each state arbitrarily with a positive value. The reachability
probability RP is initialized to 1 when entering a goal state
and 0 otherwise. More formally, we have:

∀si, sj ∈ S and ∀sg ∈ SG,

V (si, sj) ≥ 0, RP (si, sg) = 1 else RP (si, sj) = 0 (11)

2) Terminal condition: VI algorithm stops when the Bell-
man error (residual) over all states is sufficiently small. Thus,
we stop our algorithm when residual of Eq.2 and Eq.4 are
small enough for all s and sg:

RV (s, sg) = |V (s, sg)− V ′ (s, sg)|

RRP (s, sg) = |RP (s, sg)−RP ′ (s, sg)|

∀s ∈ S, ∀sg ∈ SG, RV (s, sg) < ε,RRP (s, sg) < δ (12)

3) Update: In the algorithm presented Fig. 2, the value
functions are updated repeatedly using Eq.2 and Eq.4 until
the maximum residual of all updated values is small enough.
Because the agent takes a safe attitude, both functions are
updated with the safest action, that is to say the action
maximizing the probability of reaching a goal state (line 7).
In lines 8 and 9, we update V and RP with this action and
store the maximum residual in lines 10 and 11. The algorithm
stops when ∆V and ∆RP are small enough for an iteration.
The values of ε and δ are discussed with our tests at section
V. In the algorithm, we used the notation σ and Q for space-
saving consideration, but it has to be replaced by the right part
of Eq.3 for σ and Eq.5 for Q.

s0 sg3 sg2 sg6

π0 π1 π2

Fig. 3. The global policy π = (π0, π1, π2) is the aggregated policies
corresponding to the selected subset of goals.

B. Solving SGGraph

The goal selection process consists in finding the optimal
path of SGGraph without loop (see section III-C for the
definition of an optimal path). At first, we simplify the graph
by removing all edges whose reachability probability is lower
than the safe threshold α and all nodes that are not attached
to s0. For example in Fig. 1, all the dashed edges and nodes
are removed. Indeed, these elements cannot be part of any
safe path which has to start by s0 and satisfy Eq.7. Once the
graph is reduced, the next step is to search in the graph the
optimal path. Finding the optimal path in a directed cyclic
graph is exponential in time, so approximate methods have to
be used. We apply a beam search algorithm which provides
a good solution in a reasonable time, and has been used by
others for the same problem [5], [10]. The beam search uses
an inadmissible pruning rule to keep only the most promising
nodes at each level of the search. For each level, we order
all successors using a heuristic, and expand only k successors
(where k denotes the beam value). The optimal solution is not
guaranteed as the search is not complete, except if the beam
is large enough. However, by using a good pruning heuristic,
we get a good sub-optimal solution quickly. The heuristic that
we have chosen gives priority to the nodes having the better
immediate reachability probability (i.e., the probability from
the current node to the node to expand). We use a depth-
first search and avoid repeating nodes due to possible cycles,
by marking them when they are visited in the recursion and
removing the marks just before returning from the recursive
call. For each new safe path found, we compare U (Eq.8) and
if necessary C (Eq.9) to the current optimal path and store the
best one.

C. Planning the selected goals

Because of the probabilistic context, we cannot simply plan
each goal of the selection one by one. We have to find policies
for each goal of the selection, which will be used one at a time.
The idea is to plan each goal state sgi of the selection as an
independent sub-problem and to aggregate all solutions (cf.
Fig. 3). All sub-problems have the same model definition as
the original problem, that is to say the same actions, states,
transition probabilities and costs of actions, but differ in the
initial state and the goals. The initial state of the sub-problem
solving sgi is the goal state sgi−1 of the previous sub-problem
(or s0 of the original problem for i = 0). The goals Gi of the
sub-problem solving sgi is the set of all predicates contained
in sgi. For example, if a goal state of the relaxed problem is
the position of the rover, then Gi will be composed of two
goals: the coordinate x and y of the rover. With the same



VI algorithm presented in our heuristic, we solve each sub-
problem considering two value functions : 1) Vi(s) the cost of
reach reaching Gi and 2) RPi(s) the probability of reaching
Gi. We then compute the policy πi considering the agent acts
with maximal reachability probability first, and minimal cost
if some actions have the same level of reachability probability.
To do so, we have to define SA(s) the set of safest applicable
actions, that is to say actions whose probability of reaching Gi

is the highest. We finally choose the action minimizing cost
among all safest actions.

SA (s) = argmax
a ∈ A(s)

{
∑
s′

p(s, a, s′)RPi(s
′)}

πi (s) = argmin
a ∈ SA(s)

{c (a, s) +
∑
s′

p(s, a, s′)Vi(s
′)} (13)

The solution of the problem is π(s) = (π0, π1, . . . , πn) where
each policy is used one at a time to reach each goal in the order
of the goal selection. Technically, we maintain the already
reached goals at the execution time so we know which of the
πi to call.

V. NUMERICAL RESULTS

A. Case study
In this section, we present the numerical results obtained by

applying our heuristic to our modified version of the planetary
exploration problem presented in section II-A. It is similar to
a grid world problem where the grid represents the landscape
of the planet. This problem is general enough to illustrate our
proposed heuristic. Indeed, the list of goals is composed of
a list of cells to reach on the grid, which corresponds to the
sites of the planet to visit. Each goal has a utility value, which
is the level of interest of the site. We model variation on the
reachability probability with two distinct types of cell (safe and
risky). When the rover enters a risky cell, it has a probability to
remain blocked, and thus cannot reach anymore a goal state.
The rover can perform four actions : go north, go east, go
south, and go west. In a safe cell, an action a ∈ A takes the
rover in a given direction with a probability of success equal
to p. If the action fails, the rover can be transported to each
of the three remaining directions with a probability equal to
(1 − p)/3. In a risky cell, the rover has a probability equal
to q to remain blocked, and 1 − q to move. The objective
of this problem is to reach the most valuable possible cells,
with a probability above the safe threshold. A simulation is a
success if the execution of the solution reaches all the cells
selected by the goal selection. We first evaluate the quality of
solutions obtained by heuristically selecting goals for different
thresholds, and we then compute some tests performance.

1) Selection of terminal condition parameters: Remember
that ε and δ are used to control when we stop the computation
of the value functions and thus the accuracy of the estimation.
We measured on several normal and extreme test cases, how
sensitive were our results for values going from 0.1 to 0.0001
for both parameters. We identified that, for each test case, it
converges to the same result starting from 0.01 for both ε and
δ. We then used a value of 0.01 for all of our tests.

Fig. 4. Goal selection test: the quality (U) is the total goal utility.

Fig. 5. Goal selection test: the failure rate is the rate of simulations not
reaching all goals of the goal selection.

B. Results

In Fig. 4 and Fig. 5, we used a grid area composed of 25×25
cells, and we consider different thresholds β ∈ [0, 1] (from
safe to unsafe). Note that we use the risk threshold β instead
of the safe threshold α for simplicity of reasoning, because
it represents a risk limit to no exceed. We used a problem
involving 10 sites to visit (10 goals) randomly generated,
and 50% of risky cells randomly selected with a probability
q = 0.1 to remain blocked when moving. We first test the
goal selection process for different thresholds β, and we then
simulate each goal selection in order to verify the respect of
the threshold. In Fig. 4, the x-axis represents the risk threshold
[β], and the y-axis represents the quality denoted U that is
obtained by summing all the goals utilities. We can see that
the quality is monotonically increasing when β is increasing.
Indeed, when we tend to an unsafe attitude, we can reach more
valuable set of goals. However, in some cases (for example
β ∈ [0.45, 0.65]), the quality remains constant, meaning that
no better subset of goals is reachable even with a slightly
higher value of β. In Fig. 5, we simulate each previously
computed goal selection to test if the threshold is respected.
For each goal selection, we simulate 1000 times our planner
guided by this selection, and we compute the average failure
rate defined as the percent of the simulations not reaching
all the goals of the selection divided by the total number of
simulations. We also tested some results with 2000 simulations
and got the same precision as with 1000 simulations. As
expected, the failure rates never exceed the threshold β (the
diagonal line). However, there is sometimes a quite important
gap between the produced solution and the threshold. This
is due to the fact that the planner detects that no less costly
solution can satisfy the goal selection, so the planner maintains
the reachability probability as high as possible.



Fig. 6. Performance test: variation of the number of goals with a fixed state-
space (grid size: 25× 25).

Fig. 7. Performance test: variation of state-space size with a fixed number
of goals (8 goals).

C. Performances

The execution time in Fig. 6 and Fig. 7 is in seconds. This
execution time is actually very close to the execution time of
the algorithm estimating value functions (Fig. 2). It is because
the time of building the SGGraph and finding the best path
is less than 2% of the total time with an efficient beam search.
We tested several beam widths with a reasonable number of
goals to be able to compare the beam solution with the exact
optimal solution provided by a full search. We noticed that on
average, the algorithm converges to a unique solution with a
beam width equal to 0.25× the number of goals. Using this
beam width with an efficient heuristic, the search in the graph
takes always a time duration lower than 250 ms for all the
tested state space sizes and number of goals (until 50 goals or
until a state space size of 45× 45 states).

VI. CONCLUSION

Many real probabilistic problems produce unsafe solutions
which can be considered as critical. It is for example the
case in problems such as NASA problems where a rover
or any other equipment is very expensive. In this work, we
have described a heuristic to find solutions satisfying the most
valuable subset of goals under a configurable limited amount
of risk in the form of a threshold. A method for goal selection
has been proposed to select goals which can be reached with
a certain probability of success. The goal selection is based
on a value iteration algorithm which provides an estimation
of cost and reachability probability from a relaxed plan of the
problem.

Our work has created new problems: a reasonable next
step is to work out how safe thresholds can themselves be

chosen by the planners. An idea would be to based the choice
of the threshold on Hurwitz criterion, which is a balanced
choice between safe and unsafe attitudes. Moreover, VI takes
much time in large state spaces as it needs to loop over
the whole state space. We aim to apply our goal selection
method to anytime behavior algorithm such as RTDP or L-
RTPD which can converge much faster to some near optimal
solutions. Finally, we aim to apply the proposed heuristic to
the planning problems considering the formation of agents in
virtual environment in presence of some critical situations.
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