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Semi-independent resampling for particle filtering

Among Sequential Monte Carlo (SMC) methods, Sampling Importance Resampling (SIR) algorithms are based on Importance Sampling (IS) and on some (resampling-based) rejuvenation algorithm which aims at fighting against weight degeneracy. However this mechanism tends to be insufficient when applied to informative or high-dimensional models. In this paper we revisit the rejuvenation mechanism and propose a class of parameterized SIR-based solutions which enable to adjust the tradeoff between computational cost and statistical performances.

I. INTRODUCTION AND BACKGROUND

Bayesian filtering consists in estimating some variable x t from noisy measurements y 0:t = {y 0 , • • • , y t }. We assume that {(x t , y t )} t≥0 is a Hidden Markov Chain, i.e. that the joint density of (x 0:t , y 0:t ) reads p(x 0:t , y 0:t ) = p(x 0 ) t s=1 f s (x s |x s-1 ) t s=0 g s (y s |x s ). The problem can be traced back to Kalman [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] in the context of linear and Gaussian state space models. Approximate solutions for non linear and/or non Gaussian state space models include the extended Kalman filter [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF]- [START_REF] Ristic | Beyond the Kalman Filter: Particle Filters for Tracking Applications[END_REF], the unscented Kalman filter [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]- [START_REF] Menegaz | A systematization of the unscented Kalman filter theory[END_REF], or SMC methods (also called particle filters (PF)) [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear / non-Gaussian Bayesian tracking[END_REF], [START_REF] Gordon | Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[END_REF], [START_REF]Sequential Monte Carlo Methods in Practice[END_REF], which propagate in time a discrete approximation p(x t |y 0:t ) = N i=1 w i t δ x i t of the posterior pdf p(x t |y 0:t ).

A. The classical SIR algorithm

Let Θ t = ϕ(x t )p(x t |y 0:t )dx t be a moment of interest of p(x t |y 0:t ). One iteration of an SMC algorithm can be decomposed in three steps.

Starting at time t -1 from {w i t-1 , x i t-1 } N i=1 , the first two steps consist in sampling (S.) N particles xi t from importance densities q i and weighting (W.) them so as to take into account the discrepancy between the target and importance densities; then Θ t is estimated as Θ SIS,N t = N i=1 wi t ϕ(x i t ) (superscript SIS will be justified below). Finally a third (optional) step consists in re-sampling (R.) the weighted particles, i.e. in redrawing each particle with a probability equal to its weight and assigning to the resampled particles the same weight 1 N . This yields the class of SIR algorithms [START_REF] Smith | Bayesian statistics without tears : a sampling-resampling perspective[END_REF] [START_REF] Gordon | Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[END_REF] [10] [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear / non-Gaussian Bayesian tracking[END_REF] described by Algorithm 1.

Let us comment this algorithm. If resampling is totally absent, each time iteration reduces to the first two steps, i.e. is based on IS only. However such a sequential IS (SIS) algorithm is well known to fail in practice since after a few iterations most weights get close to zero. The third step (which can be performed whatever t or depending on some criterion such as the number of effective particles [START_REF] Kong | Sequential imputations and bayesian missing data problems[END_REF] [13] [14] [START_REF] Cornebise | Adaptive methods for sequential importance sampling with application to state-space models[END_REF])

Algorithm 1 The classical SIR algorithm Data: q(x t |x t-1 ), y t , {w i t-1 , x i t-1 } N i=1 for 1 ≤ i ≤ N do S. xi t ∼ q(x t |x i t-1 ); W. wi t ∝ w i t-1 ft(x i t |x i t-1 )gt(yt|x i t ) q(x i t |x i t-1 )
,

N i=1 wi t = 1; end for Θ SIS,N t = N i=1 wi t ϕ(x i t ); if R. then for 1 ≤ i ≤ N do l i ∼ Pr(L = l) = wl t , 1 ≤ l ≤ N ; end for Set {w i t , x i t } N i=1 = { 1 N , xli t } N i=1 . else Set {w i t , x i t } N i=1 = { wi t , xi t } N i=1 . end if
discards particles with low weights (such particles are likely to be never resampled) and is considered as a traditional rescue against weight degeneracy. On the other hand, this (R.) step introduces local extra variance [13, section 4.2.1], [16, p. 213], which in turn affects the variance of Θ SIS,N t at subsequent iterations. It has thus been proposed to control this extra variance term via alternative resampling schemes (see e.g. [17] [18] [19] • • • ). Yet despite many proposed refinements this generic SIR mechanism remains inefficient in informative models featuring very sharp likelihood functions (i.e., when g t (y t |x t ) is very small for most values of x t ), and in particular in high-dimensional state-space models [START_REF] Snyder | Obstacles to high-dimensional particle filtering[END_REF], [START_REF] Snyder | Particle filters, the optimal proposal and high-dimensional systems[END_REF].

B. The independent SIR algorithm

Recently it has thus been proposed to revisit the SIR algorithm [START_REF] Lamberti | Particle filters with independent resampling[END_REF] [23] [START_REF] Lamberti | Independent resampling sequential Monte Carlo algorithms[END_REF] and more precisely to come back to the rejuvenation mechanism (R.). The counterpart of this (R.) step is that it duplicates particles with high weights, which results in support degeneracy. Moreover given {w i t-1 , x i t-1 } N i=1 the samples {x j t } produced by Algorithm 1 are marginally distributed from some compound pdf qN t which takes into account the effects of the three elementary (S.), (W.) and (R.) steps, but are obviousy dependent [START_REF] Lamberti | Particle filters with independent resampling[END_REF] (a single particle can be resampled more than once); by contrast, given

{w i t-1 , x i t-1 } N i=1
the independent SIR Algorithm [START_REF] Lamberti | Particle filters with independent resampling[END_REF] [24] produces N i.i.d. draws from qN t . Note that Algorithm 2 below only decribes the rejuvenation step of the independent SIR algorithm, and replaces the "if R. then" part of Algorithm 1.

C. Scope of the paper

Algorithm 2 has displayed good results in severe situations [START_REF] Lamberti | Particle filters with independent resampling[END_REF] and can be combined with a post-resampling, secondstage reweigthing scheme due to its auxiliary particle filtering Algorithm 2 Indep. SIR algorithm (resampling step only)

Data: q(x t |x t-1 ), y t , {w i t-1 , x i t-1 } N i=1 ; for 1 ≤ j ≤ N do x1,j t ← xj t , w1,j t ← wj t . end for for 1 ≤ i ≤ N do R. l i ∼ Pr(L = l) = wi,l t , 1 ≤ l ≤ N ; Rejuvenation of the support for iteration i + 1 if (i < N ) then for 1 ≤ j ≤ N do xt i+1,j ∼ q(x t |x j t-1 ); w i+1,j t = w j t-1 ft(x i+1,j t |x j t-1 )gt(yt|x i+1,j t ) q(x i+1,j t |x j t-1 )
, end for wi+1,:

t ∝ w i+1,: t , N j=1 wi+1,j t = 1; end if end for Set {w i t , x i t } N i=1 = { 1 N , xi,l i t } N i=1 .
interpretation [23] [24]. However its rejuvenation mechanism involves the sampling of N 2 particles { xt i,j } N i,j=1 (plus N resampling steps), by contrast with the classical SIR algorithm which only samples N intermediate particles {x j t } N j=1 (and is also followed by N resampling steps). One can wonder whether this extra cost is indeed necessary, so the aim of this paper is to design an algorithm which is both efficient (in terms of computational cost) and effective (in terms of statistical results). The rest of this paper is organized as follows. Our algorithm is described in section II. Simulations are displayed in section III, and the paper ends with a conclusion.

II. SEMI-INDEPENDENT RESAMPLING

A. An intermediate resampling scheme

The classical and independent SIR resampling mechanisms can be reconciled in a common framework. In both schemes, one progressively builds N weighted sets x1,:

t , • • • , xN,: t (the N supports) and redraws one sample x i t out of each of them (see figure 1). The difference lies in the way xi,:

t is built from xi-1,:

t : in the classical SIR mechanism, xi,:
t is a copy of xi-1,:

t (so the resampling step amounts to redrawing N samples from the common support x1,: t , see Algorithm 1); in the independent SIR mechanism, a whole new support xi,:

t is drawn at each iteration i. In other words, from a computational point of view both schemes resample N particles from some intermediate set {x i,j t } N i,j=1 , but building that set requires N preliminary independent sampling steps in the classical case, while it requires N 2 independent sampling steps in the independent case.

In this paper we propose a resampling scheme which creates an intermediate set {x i,j t } N i,j=1 with more diversity than in the classical case, but at a reduced sampling cost as compared to the independent case. Starting from xi-1,j t , xi,j t can now either be a copy (to save cost) or a new sample (to enhance diversity). The algorithm is as follows. Fix the number k (with 0 ≤ k ≤ N ) of samples which will be redrawn at each iteration. At step i, uniformly draw a subset m i, 

1:k = (m i,1 , • • • , m i,k ) of size    x1,1 t . . . x1,N t    x1,: t →    x2,1 t . . . x2,N t    x2,: t → • • • →    xN,1 t . . . xN,N t    xN,: t ↓ ↓ ↓ x 1 t x 2 t x N t Fig
k out of (1, • • • , N ) (m i,l
are the indices of the particles which will be redrawn). Next xi,j t ∼ q(x t |x j t-1 ) if j ∈ m i,1:k , and xi,j t = xi-1,j t if j / ∈ m i,1:k . Finally observe that the classical (resp. independent) SIR algorithm corresponds to the particular case k = 0 (resp. k = N ). The algorithm is summarized in Algorithm 3 below. Algorithm 3 Semi-ind. SIR algorithm (resampling step only)

Data: q(x t |x t-1 ), y t , {w i t-1 , x i t-1 } N i=1 for 1 ≤ j ≤ N do x1,j t ← xj t , w1,j t ← wj t . end for for 1 ≤ i ≤ N do R. l i ∼ Pr(L = l) = wi,l t , 1 ≤ l ≤ N ; Partial rejuvenation of the support for iteration i + 1 if (i < N ) then xi+1,: t ← xi,: t , w i+1,: t ← w i,: t ; for 1 ≤ j ≤ k do m j ∼ Pr(M = n|n ∈ 1:N \{m 1:j-1 }) = 1 N -j+1 ; xi+1,m j t ∼ q(x t |x m j t-1 ); w i+1,m j t = w m j t-1 ft(x i+1,m j t |x m j t-1 )gt(yt|x i+1,m j t ) q(x i+1,m j t |x m j t-1 )
; end for wi+1,:

t ∝ w i+1,: t , N j=1 wi+1,j t = 1; end if end for Set {w i t , x i t } N i=1 = { 1 N , xi,l i t } N i=1 .

B. Performances vs. computational cost

We now evaluate the performance of this procedure by comparing the variances of the estimates computed after the resampling step because they affect the variances of the estimates at subsequent iterations [START_REF] Douc | Comparison of resampling schemes for particle filtering[END_REF]. So let Θ .,N t = 1 N N i=1 ϕ(x .,i t ), where the generic notation x .,i t represents the points produced either by Algorithm 1, 2 or 3 (so we consider Θ SIR,N t , Θ I-SIR,N t and Θ SR,N,k t , where SR stands for semiresampling). We have the following proposition (the proof is given in the Appendix).

Proposition 1: Given the previous set of particles {x i 0:t-1 } N i=1 , for all k, 0 ≤ k ≤ N , we have:

E( Θ SR,N,k t ) = E( Θ I-SIR,N t ) = E( Θ SIR,N t ), (1a) 
var( Θ I-SIR,N t ) ≤ var( Θ SR,N,k t ) ≤ var( Θ SIR,N t ), (1b) 
var( Θ SR,N,k t ) ≤ var( Θ SR,N,k-1 t ). (1c) 
So as the number k of intermediate redrawings increases from 0 to N , the conditional variance of the semi-independent resampling estimator Θ SR,N,k t decreases from the upper bound of inequality (1b) (if k = 0, Θ SR,N,0 t reduces to Θ SIR,N t ) to its lower bound (if k = N , Θ SR,N,N t reduces to Θ I-SIR,N t ). However remember from section II-A that N + (N -1) × k samples are needed for building Θ SR,N,k t ; so parameter k of the SR scheme enables to fix a compromise between variance reduction and computational budget.

C. A parallelized version

Finally Algorithm 3 can be transformed into a parallelized version, the non-sequential SR (NSSR) algorithm. At iteration i, instead of duplicating the N -k surviving particles from the previous support xi-1,: t (see Fig. 1), we propose to duplicate the Nk surviving particles directly from the initial set x1,: t of particles. The N -1 new supports can thus be produced in parallel, contrary to Algorithm 3 which by nature is sequential. Of course, this procedure alters the diversity of the final set of particles, as is illustrated by the following proposition.

Proposition 2: Let Θ N SSR,k t be the estimate built from the non-sequential semi-independent resampling procedure. Then given the previous set of particles {x i 0:t-1 } N i=1 , for all k, 0 ≤ k ≤ N , we have:

E( Θ NSSR,N,k t ) = E( Θ I-SIR,N t ) = E( Θ SIR,N t ), (2a) 
var( Θ I-SIR,N t ) ≤ var( Θ NSSR,N,k t ) ≤ var( Θ SIR,N t ), (2b) var( Θ NSSR,N,k t ) ≤ var( Θ NSSR,N,k-1 t ), (2c) 
var( Θ SR,N,k t ) ≤ var( Θ NSSR,N,k t ). (2d) 
So we see that var( Θ NSSR,N,k t ) still decreases with k, but is always larger than var( Θ SR,N,k t ). As with Proposition 1, the variance inequalities still rely on Jensen's inequality, and the proof is omitted.

III. SIMULATIONS

We consider a tracking problem based on range-bearing measurements. The hidden state-vector contains the position and velocity of the target in cartesian coordinates, x t = [c x,t , ċx,t , c y,t , ċy,t ] T . We set f t (x t |x t-1 ) = N (x t ; Fx t-1 ; Q),

g t (y t |x t ) = N (y t ; c 2 x,t + c 2 y,t ; arctan cy,t cx,t T ; R), with R = diag(σ 2 ρ , σ 2 θ ), F = I 2 ⊗ 1 1 0 1 , Q = 10 × I 2 ⊗ 1 3 1 2 1 2
1 where ⊗ is the Kronecker product. We set q(x t |x t-1 ) = f t (x t |x t-1 ) and we compare the RMSEs averaged over 1000 MC runs.

A. Variance of SR procedures

We first analyze the behaviour of our algorithms as a function of k. We set N = 100, σ ρ = 0.1 and σ θ = π 1800 ; all MC runs use the same measurements. Fig. 2 displays the RMSE of Θ SR,N,k t , Θ NSSR,N,k t , Θ I-SIR,N t deduced from our resampling schemes and Θ SIS,N t (a resampling step is computed at each time step but the estimate is taken before this step). Of course, the performances of estimates based on the SR procedure improve when k incrases. Even for small values of k, the improvement is significant. It is also interesting to note that Θ SR,N,k t (resp. Θ NSSR,N t ) has the same performance as Θ I-SIR,N t when k ≥ N/2 (resp. k ≥ 4N/5). 

B. RMSE in the informative case at equal cost

We now compare our estimates with existing improvements of the PF in informative models. In particular, the PF with MCMC resample move is a popular solution to introduce sample variety after resampling [START_REF] Gilks | Following a moving target -Monte Carlo inference for dynamic Bayesian models[END_REF]. Roughly speaking, the N particles which follow the (R.) step of Algorithm 1 are moved via an MCMC algorithm with k iterations (here an independent Metropolis-Hasting algorithm). Thus, our SR procedure has the same computational cost in terms of sampling steps as the SIR PF with MCMC moves. We also compare our estimates with those based on the classical SIR and I-SIR algorithms but with a given budget of total sampling (sampling + resampling) operations. We thus set N = 100 particles and k = N/2 for the computation of Θ SR,N,k t and the estimate based on the resample move PF, N = 72 for that of Θ I-SIR,N t and N + (N -1)k 2 = 2575 particles for that of Θ SIS,N t . The global sampling cost for all these algorithms is approximately (2N + N k). We also compute Θ NSSR,N,k t with N = 100 and k = 4N/5; its computation does not have the same computational cost but can be parallelized. The results are displayed in Fig. 3.

When the observations are very informative (σ ρ and σ θ are small), the classical solution tends to degenerate (it starts working when (σ ρ , σ θ ) = (0.15, π 1200 )), while our solutions are robust and present better performances. As the variance of the measurement noise increases, the different estimates tend to behave similarly; the classical SIR algorithm performs slightly better, which is not surprising since in this case it no longer suffers from the degeneracy phenomenon and the number of final samples used is far superior to the other solutions. We also observe that the resample move which uses differently the k extra samples does not perform well when compared to the SR procedure in very informative models, and is outperformed by our solutions when the observations are not informative. Finally, our SR algorithm with k = N 2 outperforms the (totally) independent resampling one when the budget is fixed. IV. CONCLUSION In this paper we revisited the resampling step of PF algorithms, and proposed a resampling scheme where each new final particle is resampled from a support which is partially rejuvenated with k new particles. This yields a class of parameterized solutions which encompasses the classical multinomial resampling technique (k = 0) and the independent resampling one (k = N ), enabling to tune the balance between variance and computational cost. Simulations showed that choosing k = N/2 leads to similar performances to the fully independent resampling procedure. Moreover, in very informative models our algorithm is not affected by the degeneration phenomenon, contrary to the classical SIR algorithm.

APPENDIX PROOF OF PROPOSITION 1

Let us consider a PF with resampling at time t. First, (1a) holds because the SIR, I-SIR and SR procedures all produce resampled particles which, given {x i 0:t-1 } N i=1 , are (marginally) sampled from the same distribution qN ; and (1b) is straightforward from (1c) and the fact that SR reduces to SIR (resp. I-SIR) when k = 0 (resp. k = N ). Let us address (1c). Since Θ SR,N,k

t = 1 N N i=1 ϕ(x SR,i t ), given {x i 0:t-1 } N i=1 N 2 var k ( Θ SR,N,k t ) = N i=1 var(ϕ(x i t ))+2 N i1,i2=1 i1<i2 cov k (ϕ(x i1 t ),ϕ(x i2 t ));
here index k in a (co)variance emphasizes the fact that it depends on k. The first term of the r.h.s. is independent of k (and coincides with var( Θ I-SIR,N t

)), so the difference between different values of k stems from the covariance terms. Next cov k (ϕ(x i1 t ), ϕ(

x i2 t )) = E k [ϕ(x i1 t )ϕ(x i2 t )]- E[ϕ(x i1 t )]E[ϕ(x i2 t )],
and again, the second term of the r.h.s. is independent of k. Finally for i 

1 < i 2 , E k [ϕ(x i1 t )ϕ(x i2 t )] = E[E[ϕ(x i1 t )ϕ(x i2 t )| xt i1:i2,: ]] = E[E[ϕ(x i1 t )|x i1,: t ]E[ϕ(x i2 t )|x i2,: t ]] = E[ Θ SIS t (x i1,: t ) Θ SIS t (x i2,: t )] = E[E[ Θ SIS t (x
k (ϕ(x i1 t )ϕ(x i2 t )) = 1 (A k N ) i2-i1 m i 2 i 1 +1 (1:k) h(m i2 i1+1 (1:k)). (3) 
It remains to compare (3) with the same expression with k ← k -1. We observe that (3) can be rewritten as for all m i2 i1+1 (k), and so that E[h(m i2 i1+1 (1:k))|m i2 i1+1 (1:k-1)] ≤ h(m i2 i1+1 (1:k -1)), whence (1c).

E k (ϕ(x i1 t )ϕ(x i2 t )) = 1 (A k-1 N ) i2-i1 m i 2 i 1 +1 (1:k-1) 1 N -k + 1 m i 2 i 1 +1 (k)
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 2 Fig. 2: RMSE as a function of k, tracking model.
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  . 1: The classical, independent and semi-independent resampling mechanisms. Each scheme draws N supports xi,:

	t and redraws one t out of each support. The difference lies in the way xi,: sample x i t is built from xi-1,: t is a copy of xi-1,j in the classical case; is t a new particle in the independent case; and can be either copied of
	redrawn in the intermediate, semi-independent case.

t : xi,j

  N\m i 2 i 1 +1(1:k) are the particles shared by supports xi1,: and xi2,: . Under this conditioning, Θ SIS t (x i1,: t ) and Θ SIS t (x i2,: t ) are independent so the general term is

		i1,: t ) Θ SIS t (x i2,: t )|m i2 i1+1 (1:k)]]
	where m i2 i1+1 (1 : k) represents all the indices redrawn from iterations i 1 + 1 to i 2 (the third equality holds because x i t is resampled from support xi,: t (see Fig. 1), so E(ϕ(x i t )) = Θ SIS,N t (x i,: t ) where Θ SIS,N was defined in section I-A). t The outer expectation in this last expression corresponds
	to a uniformly weighted sum over all possible values of
	m i2 i1+1 (1:k), i.e. over (A k N ) i2-i1 terms where A k N is the number of arrangements of k among N . Given m i2 i1+1 (1:k), the general term of this sum reads
	E[ Θ SIS t (x i1,: t ) Θ SIS t (x i2,: t )|m i2 i1+1 (1:k)] =
	E[E[ Θ SIS t (x i1,: t ) Θ SIS t (x i2,: t )|x i1,1:N \m t	i 2 i 1 +1 (1:k)	]|m i2 i1+1 (1:k)]
	where xi1,1:E[E[ Θ SIS t (x i1,: t )|x i1,1:N \m t	i 2 i 1 +1 (1:k)	]
	× E[ Θ SIS t (x i2,: t )|x i1,1:N \m