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Satisfiability of XPath on data trees

Diego Figueira
CNRS & LaBRI, France

Abstract

This is a survey on the satisfiability problem for XPath on data trees. Data trees are finite trees whose every
node carries a label from a finite alphabet and a data value from an infinite domain. XPath is an expressive
node selecting language for XML documents, which can be abstracted as data trees. Its satisfiability problem
is in general undecidable. However, various fragments of XPath have decidable satisfiability problem, these
are fragments defined in terms of the navigational axes which are allowed. We explore the state of the art
in terms of decidability and discuss briefly some of the algorithmic techniques involved.

1 Introduction

A data tree is a tree whose every node contains a label from a finite alphabet and a data value from
some infinite domain. This model has been considered as a suitable abstraction for semistructured
data such as XML documents: XML tags are modelled as data tree labels, and XML attributes as
its data values. A simpler abstraction would only take into account the tags, resulting in a tree
over a finite alphabet, a model that has been intensively studied in automata theory. However, this
abstraction ignores all actual data stored in the XML document attributes. This is why there has
been an interest in ‘data’ trees as trees that also carry data from an infinite domain. Data trees
have also been considered in the realm of timed automata, program verification, and generally in
systems manipulating data values. Finding decidable logics or automata models over data trees is
generally a relevant question when studying data-driven systems.

More precisely, a data tree is an unranked ordered finite tree whose every node contains a label
and a data value. Labels belong to some finite alphabet (e.g., the set {a, b}), and data values
to some infinite domain (e.g., N = {0, 1, 2, . . . }), see Figure 1 for an example. In this paper we
survey the decidability status on a family of logics based on XPath, which is arguably the most
widely used XML query language. XPath is implemented in XSLT and XQuery and it is used as a

a, 2
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a, 2 b, 1 b, 2

Fig. 1: A data tree over A×D, whose alphabet and data domain are A = {a, b} and D = N.
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constituent part of several specification and update languages. XPath is fundamentally a general
purpose language for addressing, searching, and matching pieces of an XML document. It is an
open standard and constitutes a World Wide Web Consortium (W3C) Recommendation [CD99].

Query containment and query equivalence are fundamental static analysis problems, which can
be useful to, for example, query optimization tasks. In logics closed under boolean operators—as
the ones treated here— these problems reduce to checking for satisfiability : Is there a document
on which a given query has a non-empty result? By answering this question we can decide at
compile time whether the query contains a contradiction and thus the computation of the query
(or subquery) on the document can be avoided. Or, by answering the query equivalence problem,
one can test if a query can be safely replaced by another one which is more optimized in some sense
(e.g., in the use of some resource). Moreover, the satisfiability problem is crucial for applications on
security [FCG04], type checking transformations [MN07], and consistency of XML specifications.

Core-XPath (term coined in [GKP05]) is a fragment of XPath 1.0 that captures all the naviga-
tional behavior of XPath. It has been well studied and its satisfiability problem is known to be
decidable even in the presence of DTDs. The extension of this language with the possibility to
make equality and inequality tests between attributes of elements in the XML document is named
Core-Data-XPath in [Boj+09].

In a nutshell, the important formulas of Core-Data-XPath (henceforth XPath) are of the form

〈α = β〉,

where α, β are path expressions, that navigate the tree using modalities, or axes, and which can
make tests at intermediary nodes. Available axes are the natural navigation relations on a tree:
child (that we note ↓), descendant (↓∗), ancestor (↑∗), next-sibling (→), etc. Such a formula 〈α = β〉
is true at a node x of a data tree if there are two nodes y, z in the tree that can be reached with
the relations denoted by α, β respectively, so that they both carry the same datum. Analogously, a
formula of the form 〈α 6= β〉 tests that one can reach different data values. For example, the formula
〈↓↓[a] = ↑∗[b]〉 holds true at any node of a data tree having a grandchild labelled a carrying the
same data value as an ancestor labelled b; the formula ¬〈↓∗[a] 6= ↓∗[a]〉 states that all the a-labelled
descendants carry the same data value; and a more complex formula like ¬〈↑∗[¬〈↑〉] 6= ↑∗↓∗[¬〈↓〉]〉
states that all the leaves carry the same data value as the root (and this holds irrespectively of the
node where the formula is evaluated).

Other formalisms for trees with data values

Several formalisms have been studied in relation to static analysis on trees with data values. We
mention here some of the most prominent examples.

First-order logic. One possible formalism is FO(<h, succh, <v, succv,∼), first order logic with
binary relations to navigate the tree: the descendant <v, child succv, right sibling succh and
following sibling <h (i.e., the transitive closure of succh); and an equivalence relation ∼ to express
that two nodes of the trees have the same data value. However, the satisfiability problem is
undecidable, even when restricted to using only three variables, and even on data words [Boj+10].
When restricted to using only two variables, the decidability status for the satisfiability of FO2(<h

, succh, <v, succv,∼) remains unknown, although it is known to be at least as hard as the reachability
problem for BVAS (Branching Vector Addition System) [Boj+09], a well-known open problem
in verification, whose decidability is only known for dimension one [Göl+16; Fig+17]. However,
if the signature has only the child and next-sibling relation —FO2(succh, succv,∼)— the logic
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is decidable in 3NExpTime [Boj+09]. Also, on the class of bounded-depth data trees FO2(<h

, succh, <v, succv,∼) becomes decidable [BB07] —a result that can be seen as a non-trivial extension
of the decidability of the logic on data words [Boj+10].

Automata. There has also been works on automata models for trees with data. Tree automata
with registers to store and compare data values were studied in [KT08] as an extension to a similar
model on words [KF94; NSV04]. A decidable alternating version of these automata called ATRA was
studied in [JL11], and it was extended in [Fig10; Fig12a] to show decidability of the satisfiability
problem for a fragment of XPath (discussed in §4.2). The work [BL10] introduces a simple yet
powerful automata model called Class Automata on data trees that can capture FO2(<h, succh, <v

, succv,∼), XPath, ATRA, and other models. Although its emptiness problem is undecidable,
classes of data trees for which it is decidable are studied in [Bár+12].

Modal logics. One can also consider extensions of modal logics such as CTL or µ-calculus with
a data binding mechanism for storing and comparing the data values that have been seen along
the structure during the evaluation of the formula [DLN05; JL07; KSZ10]. Here we concentrate
on XPath, which is incomparable in terms of expressiveness with all the previously mentioned
formalisms (except for Class Automata). While XPath has a modal flavour, it does not have a data
binding operator, instead it uses the aforementioned formulas 〈α = β〉 to test for the existence of
paths leading to nodes with equal data. Finally, another logic that can be seen as a weak version
of XPath is the so-called “logic of repeating values”, or LRV, studied in [DDG07; DFP16; AFF17].
LRV can be seen as the common factor between the data binding approach and XPath.

Other formalisms include tree automata combined with set and linear constraints on cardinalities
of sets of data values [DLT12; Tan12], Datalog programs [Abi+13], or the problem of containment
of pattern-based queries [Dav+13; FL14; ACK11] and positive XPath fragments [NS06; DT01].

Focus of this overview. Here we concentrate on the finite satisfiability problem for XPath,
with a stress on algorithmic techniques required by the presence of data values, negation, and
transitive axes. For an overview on the expressiveness and evaluation of XPath, we refer the reader
to [BK08; BP11]. The problem of testing for bisimulation in this setting has also been addressed in
[Abr+16; FFA15]. Axiomatizations and calculi for XPath have been proposed in [BLS16; Abr+17;
AFS17; AF16].

2 Preliminaries

As usual, we use ·+, ·∗, ·−1 and ◦ to denote, respectively, the transitive closure, the reflexive-
transitive closure, the inverse and the composition of binary relations.

Unranked finite trees. By Trees(A × D) we denote the set of finite ordered and unranked data
trees over a finite alphabet A and data domain D. We use the letter T to denote a data tree, and
T to denote the set of its nodes. For each node x ∈ T we refer by labelT (x) ∈ A to its label and
by dataT (x) ∈ D to its data value. The right-sibling of a node is the first sibling to the right of the
node, should it exist, while the left-sibling is the one to the left.

3 XPath on data trees

3.1 Definition

XPath is a two-sorted language, with path expressions (that we write α, β) and node expressions
(that we write ϕ,ψ). Path expressions express properties of pairs of nodes in a data tree, and thus
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Syntax:

path expressions α, β ::= ε | σ | σ∗ | σ+ | [ϕ] | αβ for σ ∈ {↓, ↑,→,←},
node expressions ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉

Semantics:

path expressions



[[ε]]T = {(x, x) | x ∈ T}

[[↓]]T = {(x, y) ∈ T × T | y is a child of x}

[[↑]]T = ([[↓]]T )−1

[[→]]T = {(x, y) ∈ T × T | y is the right-sibling of x}

[[←]]T = ([[→]]T )−1

[[σ∗]]T = ([[σ]]T )∗ for σ ∈ {↓, ↑,→,←}

[[σ+]]T = ([[σ]]T )+ for σ ∈ {↓, ↑,→,←}

[[ [ϕ] ]]T = {(x, x) ∈ T × T | x ∈ [[ϕ]]T }

[[αβ]]T = [[α]]T ◦ [[β]]T

node expressions



[[a]]T = {x ∈ T | labelT (x) = a}

[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[ϕ ∨ ψ]]T = [[ϕ]]T ∪ [[ψ]]T

[[〈α〉]]T = {x ∈ T | ∃y ∈ T s.t. (x, y) ∈ [[α]]T }

[[〈α=β〉]]T = {x ∈ T | ∃y,z s.t. (x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , dataT (y) = dataT (z)}

[[〈α 6=β〉]]T = {x ∈ T | ∃y,z s.t. (x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , dataT (y) 6= dataT (z)}

Fig. 2: The syntax of XPath and its semantics on a data tree T .

denote a binary relation. These relations result from composing the child, parent, right- and left-
sibling, etc., with the possibility of testing for node expressions. Node expressions denote properties
of nodes. For example, they can test that the node has a certain label; or that it has a child labeled
a with the same data value as an ancestor labeled b, which is expressed by 〈↓[a] = ↑∗[b]〉. As
another example, we can select the nodes that have an a-labeled left sibling with the same data
as some descendant of a right sibling with the formula ϕ = 〈∗←[a] = →∗↓∗〉. Its formal syntax
and semantics are defined in Figure 2. A formula of XPath is either a node expression or a path
expression. We will refer to different navigational fragments of XPath, with the notation XPath(Σ),
for any Σ ⊆ {↓, ↓∗, ↓+, ↑, ↑∗, ↑+,→,→∗,→+,←, ∗←,+←}, as those formulas containing only axes
from Σ. One can also consider an extension of XPath(Σ) by the possibility of adding the Kleene
star to any path expression. We call this extension regXPath(Σ) (for regular -XPath(Σ)). Note
that, for example, in terms of expressive power regXPath(↓) = regXPath(↓, ↓∗) ) XPath(↓, ↓∗);
indeed regXPath(↓) can test that there exists a downward path of a-labelled nodes until a b-node
is reached through 〈(↓[a])∗↓[b]〉, while XPath(↓, ↓∗) cannot express this property. More generally,
regXPath can express any regular property of paths, such as paths with an even number of a’s:(

(↓[¬a])∗ ↓[a] (↓[¬a])∗ ↓[a] (↓[¬a])∗
)∗
.
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3.2 Expressive power

We give some examples of the properties that XPath can express when evaluated at the root node
of a data tree.

(1) Key. The property “all nodes labelled with label a have different data values”, which we call
key property, can be expressed in XPath(↓+,→+) by negating both the property1

〈↓∗[a ∧ 〈ε = ↓+[a]〉]〉

asserting that there are two nodes in ancestor-descendant relation contradicting the Key prop-
erty; and the property

〈↓+[〈↓∗[a] =→+↓∗[a]〉]〉

describing that there are two nodes at incomparable positions contradicting the Key prop-
erty. However, this property cannot be expressed in other fragments such as XPath(↓∗,→∗) or
XPath(↓, ↓+,→).

(2) Foreign key. The property “for every a-labelled node there is a b-labelled node with the same
data value” can be easily expressed in XPath(↓∗, ↑∗) by negating 〈↓∗[a ∧ ¬〈ε = ↑∗↓∗[b]〉]〉.

(3) Matching. One can also express “for every a-labelled node there is exactly one b-node with
the same data value” by mixing the key and foreign key properties. This kind of properties lies
at the basis of the proofs for undecidability or very high (non-primitive recursive) lower bounds
for the satisfiability of some of these fragments.

3.3 Relation to FO

In terms of expressive power, XPath (with all its axes) contains all of FO2(<h, succh, <v, succv,∼).
This containment is strict as FO2(<h, succh, <v, succv,∼) cannot express properties of the form
“every a-labelled node x has a b-labelled descendant y with the same data value so that there is
a c-labelled node between x and y” using only two variables, while this can be expressed through
¬〈↓∗[¬〈[a] = ↓∗[c]↓∗[b]〉]〉 in XPath. However, as soon as we don’t count with horizontal navigation,
these logics become incomparable in expressive power. Indeed, XPath(↓, ↓∗, ↑, ↑∗) can still express
the property just stated, while it cannot express the Key property (1), which can be expressed in
FO2(∼), even without the use of any navigational relation: ∀x∀y a(x) ∧ a(y) ∧ x 6= y → ¬(x ∼ y).
Intuitively, this is because XPath(↓, ↓∗, ↑, ↑∗) lacks the power to navigate to incomparable positions,
and thus the ability to make sure that it navigates to a different node. These examples are in
contrast with the fact that in the absence of data values XPath and FO2(<h, succh, <v, succv,∼)
are equally-expressive.

4 Satisfiability of XPath

The satisfiability problem for XPath, or SAT-XPath, is the problem of whether, given a node
expression ϕ of XPath, there exists a data tree T over which the semantics of the formula is non
empty at at its root, in which case we write T |= ϕ.

1 Note that ↓∗ can be expressed using ↓+, although the reciprocal doesn’t hold.
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The satisfiability problem for XPath is undecidable [GF05] already on data words (i.e., rank
1 trees). How can we regain decidability for satisfiability of XPath then? We can restrict the
models, or restrict the logic. The first possibility is to restrict the classes of documents on which we
evaluate the query [Bár+12; BB07]. Another, more studied, approach is to restrict the syntax. One
way to regain decidability is to syntactically restrict the amount of nodes that XPath properties
can describe. In this vein, there have been thorough studies on many fragments without negation
or without transitive axes [BFG08; GF05]. These fragments enjoy a small model property and
are therefore decidable, with complexities ranging between PTime and NExpTime depending on
the use we allow of negation, transitive closure and nesting. However, they cannot express global
properties, involving possibly the values of all the nodes in an XML document. In this survey we
consider the following desirable features on a logic

• closed under boolean operators,

• having as much freedom as possible to navigate the tree in many directions: up, down, left,
right,

• having the possibility to reach any node of the tree, with transitive axes, like descendant,
following sibling (the transitive closure of the next sibling axis), etc.

In the next sections we discuss several results of the last 10 years regarding navigational frag-
ments which allow: only to go downward, to go downward and rightwards, to go downward and
upward. As we will see, all these fragments have a decidable satisfiability problem. Finally, we will
discuss some (un)decidability results that reveal the surprising difference between using transitive
axes and using reflexive-transitive axes in this context.

4.1 Downward fragment

Downward XPath is the fragment of XPath using only child and descendant relations, that is
XPath(↓, ↓∗). Its satisfiability problem is known to be decidable,

Theorem 1 ([Fig12b]).

• SAT-XPath(↓, ↓∗) and SAT-XPath(↓∗) are ExpTime-complete;

• SAT-XPath(↓) is PSpace-complete.

The satisfiability problem is shown via a reduction to an finite state automata model, which
implies that the same complexities remain if we replace XPath with regXPath [Fig12b].

The key property (1) enjoyed by XPath(↓, ↓∗) used in the decidability proof of the theorem
above is the property of closure under subtree replication. For every tree one can duplicate a
subtree as a sibling without changing the semantics of any formula at any node of the tree; as
depicted in Figure 3, this means that it is safe to make the witness tree to grow ‘fatter’. This allows
to have enough space to find exponential size witnessing paths for every path expression. If this
property would fail, for example as a result of working with ranked data trees, one would obtain
a non-primitive recursive lower bound as it will be discussed later. A corollary of the proof also
shows that for every satisfiable formula of XPath(↓, ↓∗) there exists a witnessing data tree so that
every pair of incomparable subtrees share only a polynomial number of data values (polynomial in
the formula).
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Fig. 3: Subtree replication.

↓ ↓∗ Complexity

• PSpace-complete

• ExpTime-complete

• • ExpTime-complete

Tab. 1: Satisfiability for downward XPath. All complexity results hold for regXPath as well.

Interestingly, while SAT-XPath(↓∗) is ExpTime-complete, this complexity drops to PSpace if
ε expressions are forbidden [Fig12b, Proposition 6.15], that is, the fragment where all data tests
are of the form 〈↓∗α = ↓∗β〉 or 〈↓∗α 6= ↓∗β〉 for some α, β. Another fragment enjoying a PSpace
complexity is the fragment whose data tests are of the form 〈ε = ↓∗[ϕ]〉 [BLS16, Theorem 21]. This
is because in both fragments every satisfiable formula is satisfied by a data tree of polynomial depth,
i.e., they enjoy the poly-depth model property. In fact, it is not hard to see that any fragment of
regXPath(↓, ↓∗) with the poly-depth model property is necessarily in PSpace [Fig12b, Proposition
6.7] —in particular, XPath(↓). On the other hand, as soon as we can use ε in data tests and we count
with the possibility of composing two downward tests, as in formulas of the form 〈ε = ↓∗[ϕ]↓∗[ψ]〉,
one can force a model to have exponential height [Fig12b, Theorem 6.5].

4.2 Forward fragment

The forward fragment of XPath is an extension of the previous fragment using the child, descendant,
right-sibling and following-sibling axes, that is XPath(↓, ↓∗,→,→∗). While its satisfiability problem
is still decidable, the complexity is gigantic: non-primitive recursive hard (NPR). That is, there is
no algorithm that can decide the satisfiability problem using space or time bounded by a primitive-
recursive function on its input formula size. Problems such as this one can be only categorized in
sub-recursive complexity classes beyond Ackermann, such as the extended Grzegorczyk and Fast-
growing complexity hierarchies [Sch16]. These lower bounds follow from the fact that XPath(→,→∗)
on data words —i.e., where → is interpreted as the next-position modality and →∗ as the future
modality— is already non-primitive recursive hard [DL09; FS09]. Notice that in this case the
satisfiability on data words is harder than on (unranked) data trees, since the word structure
imposes additional data constraints (all data values must appear in the same branch) which makes
possible to encode harder problems. In our last section we include more details on these non-
primitive recursive lower bounds.

Theorem 2. [Fig12a] SAT-XPath(↓, ↓∗,→,→∗) is decidable, non-primitive recursive hard.

The decidability result is obtained by reducing the satisfiability problem to the emptiness prob-
lem for a class of register automata. Register automata, introduced in [KF94], are non-deterministic
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finite-state automata running on data words and binary data trees, extended with a collection of
‘registers’ that can store data values and compare them for equality. The alternating version of this
model of automata restricted to having only one register was shown to have a decidable emptiness
problem in the case of data words [DL09] and data trees [JL11].2

The decidability of top-down Alternating Tree 1-Register Automata (ATRA) already allows to
easily prove decidability for the satisfiability of a fragment of XPath(↓, ↓∗,→,→∗) [JL11], restricted
to data tests of the form 〈ε = α〉 and 〈ε 6= α〉. This is done by compiling each formula to an ATRA
automaton expressing the same property and then testing the automaton for emptiness.3

However, formulas of the form 〈α = β〉 are notoriously difficult to encode in a register automata,
especially when they are negated. Indeed, note that ¬〈α = β〉 expresses that the set of data values
reachable through α is disjoint from the set of data values reachable through β, this is a global
property of data values that cannot be expressed in an ATRA model using one register (or any
given number for that matter).

In order to tackle (¬)〈α = β〉 formulas, this model was extended with the ability of non-
deterministically guessing data values, and the possibility to operate simultaneously with all data
values seen along the execution (which can be thought of a restricted form of universal quantification
on the data values). Decidability for this extension can be shown to be decidable [Fig12a] through a
reduction to the coverability problem of a well-structured transition system [FS01]. This extension
comes at the cost of the model being no longer closed under complementation; in fact, it can
express 〈α = β〉 but not ¬〈α = β〉 (nor, for instance, the key property (1) stated before [Fig12a,
Lemma 6.3]). Thus, even the extended ATRA falls short of expressive power to capture forward-
XPath! However, these extra features allow to have an effective (though non-trivial) reduction from
SAT-XPath(↓, ↓∗,→,→∗) into the emptiness problem for extended ATRA [Fig12a].

As it was the case in the previous section, due to the fact of reducing satisfiability to emptiness of
an automata model, the same proof is trivially extended to show that SAT-regXPath(↓, ↓∗,→,→∗)
is decidable.

Satisfiability under tree constraints. In the presence of XML constraints, such as XML Schema,
DTD’s, or in general regular tree constraints, the decidability result is preserved. This is because
the ATRA model can encode any regular tree language.

4.3 Vertical fragment

A different extension of the downward fragment of XPath is the vertical fragment, where formulas
can also navigate upward using the parent and ancestor axes, but they don’t use any horizontal
navigation: XPath(↓, ↓∗, ↑, ↑∗). This fragment is still decidable but, once again, with non-primitive
recursive complexity.

Theorem 3. [FS17] SAT-XPath(↓, ↓∗, ↑, ↑∗) is decidable, non-primitive recursive hard.

The decidability proof of this fact involves the introduction of a new model of alternating register
automata which, contrary of ATRA, is bottom-up and runs on unranked data trees.

The model of Bottom-up 1-register alternating Data Automata (or BUDA) has one register to
store and compare data values in multiple ways: it can compare the stored data value with the
current node’s value, or with the data value of some (or all) descendant nodes reachable through
a path satisfying a given regular property. Hence, in a way it has a two-way behaviour: it moves

2 As soon as two registers are allowed the emptiness problem becomes undecidable [DL09].
3 To be precise, ATRA runs over the first-child/next-sibling binary decomposition of the data tree.
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upward but it can perform data tests on the subtree that has been already processed. It has also the
two extensions introduced for ATRA: the guessing of data values and the universal alternation over
all data values in the subtree. As in the previous case, decidability for this model has been shown to
be decidable [FS17] through a reduction to the coverability problem of a well-structured transition
system, though in this case the compatible well-quasi-order (wqo) acting on the transition system
is more involved. Interestingly, vertical-XPath, as well as BUDA enjoy the subtree replication
property explained before, which is crucial for showing compatibility of the transition system with
respect to the wqo. In fact, the emptiness of BUDA on the class of ranked data trees is undecidable;
just as the satisfiability of vertical-XPath on ranked data trees is undecidable.

Finally, one can effectively translate any node expression of XPath into a BUDA preserving the
expressive power, which yields the decidability of vertical-XPath. As before, the same proof yields
decidability for the satisfiability problem of vertical-regXPath.

4.4 Transitive axes

All the lower bounds mentioned insofar use some ‘1-step’ modality (such as parent) and its transitive
closure (such as ancestor). But what happens if we don’t have 1-step modalities? That is, do any
of the results above change if we only have transitive axes? Surprisingly, the answer depends on
whether the transitivity is reflexive or not.

Already on data words, with only one transitive axis →+ there is a way to encode (in a very
weak sense) the one-step axis →. That is, the possibility to navigate the word and test for equality
of data values is expressive enough to reduce SAT-XPath(→,→+) into SAT-XPath(→+). Since
XPath(→+) is non-primitive recursive on data words, it follows that for any set of axes Σ containing
→+, +←, or ↑+ (that is, some transitive axis in a non-branching direction), we have that XPath(Σ)
is either undecidable or decidable with non-primitive recursive complexity [FS09]. Further, if we
also have some past navigation, as in XPath(→+,+←), we lose decidability. In fact, these results
summarize the bleak picture of the complexity of the satisfiability of XPath: only ↓+ can be used
without incurring into enormous complexities.

However, the previous hardness results only work for transitive axes, as opposed to reflexive-
transitive ones. It may come as a surprise that while SAT-XPath(→+) is non-primitive recursive
hard on data words, SAT-XPath(→∗) is of elementary complexity, and while SAT-XPath(→+, ∗←)
is undecidable [FS09], SAT-XPath(→∗, ∗←) is decidable. In fact, both SAT-XPath(→∗) and SAT-
XPath(→∗, ∗←) are ExpSpace-complete [Fig11]. What is more, this good behavior extends also
to trees, as SAT-XPath(→∗, ∗←, ↓∗) is also of elementary complexity [Fig13] (somewhere between
ExpSpace and 3ExpSpace).

The conclusion is that on this kind of path logics on data trees, while transitive axes are very
costly, reflexive-transitive axes allow to fully navigate the tree while preserving an elementary
complexity. Table 2 summarizes these results.

Satisfiability under tree constraints. In view of the results above, satisfiability under an XML
Schema or DTD inherits all the non-primitive recursive bounds known for data words, since one can
simply restrict the model to be linear with a DTD or XML Schema. Thus, while SAT-XPath(↓, ↓∗)
is ExpTime in the absence of constraints, it becomes non-primitive recursive hard in the presence
of a DTD, since SAT-XPath(→+) is NPR-hard on data words (it is further decidable since even
regXPath(↓, ↓∗,→,→∗) under regular constraints is decidable, as already mentioned). Likewise,
while SAT-XPath(↓, ↓∗, ↑, ↑∗) is decidable in the absence of constraints, as soon as we can impose
a limit on the number of children of a node it becomes undecidable, by reduction from SAT-
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↓∗ →+ →∗ ∗← ↑+ Complexity

• decidable, NPR-hard

• decidable, NPR-hard

• • undecidable

• • • undecidable

• • ExpSpace-complete

• • • in 3ExpSpace

• • • open

Tab. 2: Satisfiability for XPath with transitive axes. All complexity results hold for regXPath as
well. NPR stands for non-primitive recursive complexity.

XPath(→+,+←) on data words.

4.5 On very high lower bounds

All the non-primitive recursive lower bounds are shown by reduction from the emptiness problem of
faulty counter automata. This is a sort of unreliable counter automata (a.k.a. Minsky machine) with
tests for zero. Remember that in a counter automata counters can be decremented, incremented
and tested for zero. While in a counter automata the decrement of a counter with value 0 is not
allowed, in the faulty model it is always allowed, the semantics being that a decrement of 0 remains
0. This seemingly trivial alteration allows to regain decidability in the otherwise undecidable
model [Min61] of counter automata. It is known [Sch02; Sch10] that the emptiness problem for this
class of automata is decidable and not primitive recursive hard, more precisely complete for the
Ackermannian class Fω [Sch16].

All the reductions in this setting are centered around the following strategy: A path encodes
the accepting run witnessing the non-emptiness of the faulty counter automaton. Labels are used
to encode transitions, and data values are used for matching each incrementing transition (i.e., a
transition of the form (q, inc(ci), q

′)) with a later decrementing transition of the same counter (i.e.,
some (p, dec(ci), p

′)). Concretely, in the case of data words, the main properties to test are:

1. each incrementing (resp. decrementing) transition is assigned a unique data value —a sort of
Key property (1)—;

2. for each incrementing transition of counter c there is a matching future decrementing transition
of counter c with the same data value;

3. between an increment of c and its matching decrement there cannot be a transition that tests
for zero counter c.

These properties, in addition to the usual properties on finite state automata, ensure that the
run is a valid run for the faulty counter system. The key property is the last one, which can be
expressed in XPath by expressing that there is no node where a formula of the form 〈[ϕinc(i)] =
→∗[ϕtz(i)]→∗[ϕdec(i)]〉 holds, assuming ϕa tests whether the current node carries a label with a

transition performing the action a. Interestingly, this kind of test cannot be expressed in FO2 since
it would require three variables.
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Observe that for each increment there exists at least one later matching decrement before the
test for zero, but nothing avoids that there be more than one, which in fact does not matter
when working under the faulty semantics. These properties can be encoded on data words using
XPath(→,→∗), which is why XPath(→,→∗) or XPath(↑, ↑∗) are non-primitive recursive hard (note
when going upwards in a tree, ↑, ↑∗ behave as in a data word, and similarly for →,→∗).

If we further add the property

4. for each decrementing transition of counter c there is a previous incrementing transition of
counter c with the same data value,

then we end up encoding non emptiness for ‘non-faulty’ counter automata —since we now have
a bijection between increments and decrements for each counter— and in this way we obtain un-
decidability. Thus, if the logic can express both future-looking and past-looking data properties
of the form above, its satisfiability problem is bound to be undecidable. This is why while SAT-
XPath(→,→∗) is decidable (and non-primitive recursive) on data words, SAT-XPath(→,→∗, ∗←) is
not. A notable exception to this rule of thumb is XPath(→∗, ∗←), and more generally XPath(↓∗,→∗, ∗←)
as discussed in the previous section.

5 Conclusion

Decidability results on XPath are scarce, and most logics on data word with desirable properties
(closed under boolean connectives, having the ability to compare distant nodes for data equality)
are undecidable. The fragments of XPath we have described here are rather rare exceptions to this
landscape of undecidability. These are the downward, forward, and vertical fragments, as well as
the fragment with the reflexive-transitive closure of the child, right-sibling and left-sibling.
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[BB07] Henrik Björklund and Miko laj Bojańczyk. “Bounded Depth Data Trees”. In: Inter-
national Colloquium on Automata, Languages and Programming (ICALP). Vol. 4596.
Lecture Notes in Computer Science. Springer, 2007, pp. 862–874. doi: 10.1007/978-
3-540-73420-8_74.

[BFG08] Michael Benedikt, Wenfei Fan, and Floris Geerts. “XPath satisfiability in the presence of
DTDs”. In: Journal of the ACM 55.2 (2008), pp. 1–79. doi: 10.1145/1346330.1346333.

[BK08] Michael Benedikt and Christoph Koch. “XPath leashed”. In: ACM Computing Surveys
41.1 (2008). doi: 10.1145/1456650.1456653.
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