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I. INTRODUCTION

This note provides complementary information on [1]. In that manuscript, nonstationary

signals of interest are obtained as linear deformations of stationary random signals, namely

amplitude modulations and time warpings:

Aa : Aax(t) = a(t)x(t) , Dγ : Dγx(t) =
√

γ′(t)x(γ(t)) , (I.1)

where a ∈ C1 and γ ∈ C2 are real valued functions, satisfying conditions

0 < ca ≤ a(t) ≤ Ca < ∞ , 0 < cγ ≤ γ′(t) ≤ Cγ < ∞, ∀t , (I.2)

for some constants ca ≤ Ca ∈ R∗+ and cγ ≤ Cγ ∈ R∗+.

Given a (unique) realization of a random signal of the form

Y = AaDγX (I.3)

where X is a stationary zero-mean real random process with (unknown) power spectrum SX,

the goal is to estimate the deformation functions a and γ from this realization of Y, exploiting

the assumed stationarity of X.

II. WAVELET TRANSFORM

Our analysis relies heavily on the continuous wavelet transform (and discretized versions).

The wavelet transform of a signal is defined as:

WX(s, τ)
∆
= 〈X, ψsτ〉 , with ψsτ = q−s/2ψ

(
q−s(t− τ)

)
, (II.1)

ψ∈L2(R) being a smooth wavelet centered at the origin, and q>1 a reference scale constant.
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and Université de Montréal, Canada.
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Classical choices of wavelets in H2(R) =
{

ψ ∈ L2(R) : supp(ψ̂) ⊂ R+
}

are (analytic) deriva-

tive of Gaussian ψk (which has k vanishing moments), and the sharp wavelet ψ] (with infinitely

many vanishing moments). These can be defined in the positive Fourier domain by

ψ̂k(ν) = νke−kν2/2ν2
0 , ψ̂](ν) = ε

δ(ν,ν0)
δ(ν1,ν0) , ν > 0 (II.2)

and vanish on the negative Fourier half axis. Here ν0 is the mode of ψ̂. In the expression of ψ̂],

ν1 is chosen so that ψ̂](ν1) = ε (a prescribed numerical tolerance at some cutoff frequency ν1),

and the divergence δ is defined by δ(a, b) = 1
2

(
a
b +

b
a

)
− 1.

In numerical applications, we choose ν1 = Fs/2 and ε small in order to prevent aliasing in

the wavelet transform when s = 0. Nonetheless, it can be more meaningful to express ψ̂] in

fuction of its quality factor Q. The quality factor is the ratio between the central frequency ν0

of ψ̂] and its bandwidth ∆ν = ν+ − ν− where ψ̂](ν+) = ψ̂](ν−) =
1√
2
. Then, one can show that

Q =
1√

C(C + 4)
where C = − ln 2

ln ε
δ(ν1, ν0) > 0 .

Finally, we give the expression of ψ̂] in function of ν0 and Q:

ψ̂](ν) = 2−Q
(

2Q+
√

1+4Q2
)

δ(ν,ν0) .

To show the influence of the parameter ε on the wavelet transform, we display on the left

side of Fig. 1 the Fourier transform of the sharp wavelet obtained for two different values of

ε. The smaller ε is, the sharper the Fourier transform of ψ] is. Furthermore, the right side of

Fig. 1 displays the time representations of these two wavelets. It shows that when ε decreases,

the time support of ψ] becomes larger.

Then, we compute the corresponding wavelet transforms. the scalograms are displayed on

Fig. 2. The signal used to evaluate the effect of ε is a wolf howl recording. As a consequence

of the previous result, a smaller value of ε improves the localization of the wavelet transform

along the scale axis, while the localization along the time axis is degraded.

III. APPROXIMATION RESULT: PROOF OF THEOREM 1

We provide in this section more details on the approximation of the wavelet transform of

time warped stationary signals discussed in Section III of [1].

Assuming smoothness for a and γ a local analysis is performed using wavelet transform

W : Y →WY defined by WY(s, τ) = 〈Y, ψsτ〉. We then prove that

WY(s, τ) ≈ W̃Y(s, τ)
∆
= a(τ)WX

(
s + logq(γ

′(τ)), γ(τ)
)

. (III.1)
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Fig. 1. Left: Fourier transform of the sharp wavelet ψ] for two different values of ε. Right: Corresponding wavelets

in the time domain: ε = e−500 i.e. Q = 13.43 (top) and ε = e−50 i.e. Q = 4.24 (bottom). Here, ν0 = Fs/4 = 11025 Hz

and ν1 = Fs/2 = 22050 Hz.
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Fig. 2. Scalograms of a wolf howl recording using the sharp wavelet with parameter ε = e−50 (left), and ε = e−500

(right).
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Theorem 1 in [1], which is recalled below, provides a quantitative assessment of the quality of

the approximation.

Theorem 1: Let X be a second order zero-mean stationary random process, let Y be the

nonstationary process defined in (I.3). Let ψ be a smooth test function, localized in such a

way that |ψ(t)| ≤ 1/(1 + |t|β) for some β > 2. Let WY denote the wavelet transform of Y,

W̃Y its approximation given in (III.1), and let ε = WY − W̃Y denote the approximation error.

Assume ψ and SX are such that

I(ρ)X
∆
=

√∫ ∞

0
ξ2ρSX(ξ) dξ < ∞ , where ρ =

β− 1
β + 2

.

Then the approximation error ε is a second order, two-dimensional complex random field, and

E
{
|ε(s, τ)|2

}
≤ C2

a q3s
(

K1‖γ′′‖∞ + K2qµs‖γ′′‖ρ
∞ + K3

∥∥a′
∥∥

∞

)2

where

K1 =
βσX

2(β− 2)√cγ
, K2 = I(ρ)X

(π

2

)ρ√
Cγ

4
3ρ

, K3 =

√
CγβσX

(β− 2)ca
, µ =

β− 4
β + 2

,

σ2
X being the variance of X.

Proof of the theorem: To simplify notations, let Bγ denote the operator Dγ/
√

γ′. We split the

approximation error as follows

ε(s, τ) = 〈AaDγX, ψsτ〉 − 〈Ã τ
a D̃τ

γ X, ψsτ〉

= Ã τ
a

(
〈Ã τ

a
−1

AaDγX, ψsτ〉 − 〈D̃τ
γ X, ψsτ〉

)
= a(τ)

(〈√
γ′BγX, ψsτ

〉
−
〈√

γ′(τ)B̃τ
γX, ψsτ

〉
+
〈(

Ã τ
a
−1

Aa − 1
)

DγX, ψsτ

〉)
= a(τ)

(〈(√
γ′ −

√
γ′(τ)

)
BγX, ψsτ

〉
+
√

γ′(τ)
〈(

Bγ − B̃τ
γ

)
X, ψsτ

〉

+
〈(

Ã τ
a
−1

Aa − 1
)

DγX, ψsτ

〉)

= a(τ)
(

ε(1)(s, τ) +
√

γ′(τ)ε(2)(s, τ) + ε(3)(s, τ)

)
,

where

ε(1)(s, τ)
∆
=

〈(√
γ′ −

√
γ′(τ)

)
BγX, ψsτ

〉
=

〈
X, Bγ−1

(√
γ′ −

√
γ′(τ)

)
ψsτ

〉
,

ε(2)(s, τ)
∆
=

〈(
Bγ − B̃τ

γ

)
X, ψsτ

〉
=
〈

X,
(
Bγ−1 − B̃τ

γ
−1)

ψsτ

〉
,

ε(3)(s, τ)
∆
=

〈(
AaÃ τ

a
−1 − 1

)
DγX, ψsτ

〉
=
〈

X, Dγ−1

(
AaÃ τ

a
−1 − 1

)
ψsτ

〉
.
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In the following, the right-hand term in the scalar product defining ε(k)(s, τ) will be denoted

by f (k)sτ so that ε(k)(s, τ) =
〈

X, f (k)sτ

〉
(with k ∈ {1, 2, 3}).

Besides, the triangle inequality gives:

E
{
|ε(s, τ)|2

}
≤ C2

a

(√
E
{∣∣ε(1)(s, τ)

∣∣2}+

√
CγE

{∣∣ε(2)(s, τ)
∣∣2}+

√
E
{∣∣ε(3)(s, τ)

∣∣2})2

. (III.2)

Let us now determine an upper bound for each error term. To this end, by definition of the

spectrum, they are written as follows:

E

{∣∣∣ε(k)(s, τ)
∣∣∣2} = E

{∣∣∣〈X, f (k)sτ

〉∣∣∣2} =

〈
SX,

∣∣∣ f (k)sτ

∣∣∣2〉 =
∫ ∞

0
SX(ξ)

∣∣∣ f̂ (k)sτ (ξ)
∣∣∣2 dξ ,

with k ∈ {1, 2, 3}.

Concerning the first error term, a Taylor expansion of
√

γ′ around τ gives∣∣∣ f̂ (1)sτ (ξ)
∣∣∣ = ∣∣∣∣∫

R

(√
γ′(t)−

√
γ′(τ)

)
ψsτ(t)e−2iπγ(t)ξ dt

∣∣∣∣
≤
∫

R

∥∥∥∥∥ γ′′

2
√

γ′

∥∥∥∥∥
∞

|t− τ| q−s/2
∣∣∣∣ψ( t− τ

qs

)∣∣∣∣ dt

≤ q
3s
2
‖γ′′‖∞

2√cγ
Iψ ,

where Iψ =
∫

R
|tψ(t)|dt. Furthermore, the localization assumption on ψ allows us to write

Iψ ≤ 2
∫ ∞

0

t
1 + tβ

dt ≤ 2
(∫ 1

0
t dt +

∫ ∞

1

1
tβ−1 dt

)
=

β

β− 2
.

Finally, we can control the first error term as follows:

E

{∣∣∣ε(1)(s, τ)
∣∣∣2} ≤ (q3s/2 ‖γ′′‖∞√cγ

β σX
2(β− 2)

)2

.

Concerning the second error term, the successive applications of the tangent half-angle trigono-

metric identity and the Taylor-Lagrange formula give∣∣∣ f̂ (2)sτ (ξ)
∣∣∣ = ∣∣∣∣∫

R

(
e−2iπγ(t)ξ − e−2iπ(γ(τ)+(t−τ)γ′(τ))ξ

)
ψsτ(t) dt

∣∣∣∣
≤
∫

R

∣∣∣1− e−2iπ(γ(τ)+(t−τ)γ′(τ)−γ(t))ξ
∣∣∣ |ψsτ(t)| dt

≤
∫

R
2
∣∣sin

(
π
(
γ(τ) + (t− τ)γ′(τ)− γ(t)

)
ξ
)∣∣ |ψsτ(t)| dt

≤
∫

R
2
∣∣∣sin

(π

2
ξ(t− τ)2γ′′(t∗)

)∣∣∣ |ψsτ(t)| dt ,

for some t∗ between t and τ. Besides, we have | sin(u)| ≤ |u| and | sin(u)| ≤ 1 so that:∣∣∣ f̂ (2)sτ (ξ)
∣∣∣ ≤ 2qs/2

(∫
J

π

2
ξ‖γ′′‖∞ q2st2 |ψ(t)| dt +

∫
R\J
|ψ(t)| dt

)
.



6

where J = [−v, v]. Finding the zeros of the derivative of this expression with respect to v,

one can show that the value of v minimizing the right-hand side of the latter equation is

v =
(

π
2 ξ‖γ′′‖∞q2s)−1/(β+2). Therefore, we have:

∣∣∣ f̂ (2)sτ (ξ)
∣∣∣ ≤ q

5β−2
2(β+2)

4(β + 2)
3(β− 1)

(π

2
ξ‖γ′′‖∞

) β+2
β−1 .

Finally, we can control the second error term as follows:

E

{∣∣∣ε(2)(s, τ)
∣∣∣2} ≤ (q

5β−2
2(β+2)

4(β + 2)
3(β− 1)

(π

2
‖γ′′‖∞

) β+2
β−1 I(ρ)X

)2

.

Concerning the third error term, the application of the Taylor-Lagrange inequality gives:∣∣∣ f̂ (3)sτ (ξ)
∣∣∣ = ∣∣∣∣∫

R

√
γ′(t)

(
a(t)
a(τ)

− 1
)

ψsτ(t)e−2iπγ(t)ξ dt
∣∣∣∣

≤
√

Cγ

∫
R

‖a′‖∞
ca
|t− τ| |ψsτ(t)| dt = q3s/2

√
Cγ
‖a′‖∞

ca
Iψ ,

Finally, we can control the third error term as follows:

E

{∣∣∣ε(3)(s, τ)
∣∣∣2} ≤ (q3s/2

√
Cγ

ca

βσX
β− 2

‖a′‖∞

)2

.

To conclude the proof, the three errors terms in equation (III.2) are replaced by their upper

bounds to obtain the approximation error given in the theorem. �

IV. ESTIMATION ALGORITHM: PROOF OF PROPOSITION 1

The goal of JEFAS is to estimate both deformation functions γ and a from the approximated

wavelet transform W̃y of a realization y of Y, assuming the latter is a reliable approximation of

the true wavelet transform. Under Gaussianity assumption, the algorithm relies on an iterative

alternate optimization of (an approximate) likelihood of parameters with respect to deformation

function and power spectrum respectively.

The wavelet transform is computed on a regular grid Λ = s× τ ∈ RMs ×RNτ . The goal is

to estimate the vector of parameters Θ = (θ1, θ2, θ3)
∆
= (a(τ)2, logq (γ

′(τ)) , γ(τ)). Let Wy =

W̃y(Λ) denote the corresponding discretized transform. The algorithm ignores time correlations

and performs warping and amplitude modulation parameters estimation for discrete times

τn ∈ τ, and power spectrum estimations on s. Proposition 1 provides an upper bound for

the bias of the power spectrum estimate.
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Proposition 1: Let ψ ∈ H2(R) be an analytic wavelet such that ψ̂ is bounded and
∣∣ψ̂(u)∣∣ =

Ou→∞(u−η) with η > 2. Let ϕ1 and ϕ2 be bounded functions defined on R+ by ϕ1(u) =

u
∣∣ψ̂(u)∣∣2 and ϕ2(u) = u2

∣∣ψ̂(u)∣∣. Assume SX is such that

JX =
∫ ∞

0
ξ−1SX(ξ) dξ < ∞.

Let S
(k)
X denote the estimation of the spectrum after k iterations of the algorithm. Let b(k)SX

denote

the bias defined for all m ∈ [[1, Ms]] by

b(k)SX
(m) = E

{
S̃

(k)
X (q−sm ω0)

}
−SX,ψ(q−sm ω0) .

Assume there exists a constant cθ1 > 0 such that θ
(k)
n,1 > cθ1 , ∀n, k. Then∥∥∥b(k)SX

∥∥∥
∞
≤ JX

‖ψ‖2
2

(
K′1
∥∥∥θ1 − θ̃

(k)
1

∥∥∥
∞
+ K′2

∥∥∥θ̃
(k)
2 − θ2

∥∥∥
∞

)
, (IV.1)

where

K′1
∆
=
‖ϕ1‖∞

cθ1

< ∞ , K′2
∆
= ln(q)

(
‖ϕ1‖∞ + 2‖ψ̂′‖∞‖ϕ2‖∞

)
< ∞ .

Proof of the proposition. Notations are as follows. Assume parameter estimates θ̃
(k)
1 and θ̃

(k)
2

are available. Let wx,sm ∈ CNτ be the vector of wavelet coefficients of the original signal x at

scale sm, and let w̃(k)
x,sm ∈ CNτ denote the estimation of wx,sm after k iterations of the algorithm.

Considering equation (18) in [1], we have w̃(k)
x,sm = 1√

θ̃
(k)
1

W̃y

(
sm − θ̃

(k)
2 , τ

)
. Besides, starting from

the definition of the spectrum given by equation (21) in [1] we obtain:

E
{

S̃
(k)
X (q−sm ω0)

}
=

1
Nτ‖ψ‖2

2
E

{∥∥∥w̃(k)
x,sm

∥∥∥2
}

.

To simplify notations, let us introduce some variables. We define s(ξ)m = sm + logq(ξ) and

h(x) = ϕ1(qx) = qx|ψ̂(qx)|2 for x ∈ R.

By means of the covariance expression given in equation (12) in [1] we can write

E

{∥∥∥w̃(k)
x,sm

∥∥∥2
}

=
Nτ

∑
n=1

1

θ̃
(k)
n,1

E

{
W̃y

(
sm − θ̃

(k)
n,2 , τn

)
W̃y

(
sm − θ̃

(k)
n,2 , τn

)}

=
Nτ

∑
n=1

θn,1

θ̃
(k)
n,1

∫ ∞

0

SX(ξ)

ξ
ξ qsm−θ̃

(k)
n,2+θn,2

∣∣∣∣ψ̂(ξ qsm−θ̃
(k)
n,2+θn,2

)∣∣∣∣2 dξ

=
Nτ

∑
n=1

θn,1

θ̃
(k)
n,1

∫ ∞

0

SX(ξ)

ξ
h
(

s(ξ)m + θn,2 − θ̃
(k)
n,2

)
dξ

=
∫ ∞

0

SX(ξ)

ξ

 Nτ

∑
n=1

θn,1

θ̃
(k)
n,1

h
(

s(ξ)m + θn,2 − θ̃
(k)
n,2

) dξ.
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Let us now split the bias into two terms such that b(k)SX
(m) = g1(m) + g2(m), where g1 and g2

are defined as

g1(m) =
N−1

τ

‖ψ‖2
2

∫ ∞

0

SX(ξ)

ξ

 Nτ

∑
n=1

 θn,1

θ̃
(k)
n,1

− 1

 h
(

s(ξ)m + θn,2 − θ̃
(k)
n,2

) dξ,

g2(m) =
N−1

τ

‖ψ‖2
2

∫ ∞

0

SX(ξ)

ξ

(
Nτ

∑
n=1

(
h
(

s(ξ)m + θn,2 − θ̃
(k)
n,2

)
− h

(
s(ξ)m

)))
dξ.

Regarding the first term, we directly have

|g1(m)| ≤ ‖h‖∞

‖ψ‖2
2

1
Nτ

Nτ

∑
n=1

∣∣∣θn,1 − θ̃
(k)
n,1

∣∣∣
θ̃
(k)
n,1

∫ ∞

0

SX(ξ)

ξ
dξ

≤ ‖h‖∞

‖ψ‖2
2cθ1

∥∥∥θ1 − θ̃
(k)
1

∥∥∥
∞

JX .

Besides, we have ‖h‖∞ = ‖ϕ1‖∞ and the smoothness and decay assumptions on ψ̂ allow us to

write ϕ1(u) = Ou→∞(u1−2η) →
u→∞

0. Then ϕ1 is bounded and K′1 < ∞. This yields

|g1(m)| ≤
JXK′1
‖ψ‖2

2

∥∥∥θ1 − θ̃
(k)
1

∥∥∥
∞

.

Regarding the second term, a Taylor expansion of h around s(ξ)m gives

|g2(m)| ≤ N−1
τ

‖ψ‖2
2

∫ ∞

0

SX(ξ)

ξ

Nτ

∑
n=1

∣∣∣h (s(ξ)m + θn,2 − θ̃
(k)
n,2

)
− h

(
s(ξ)m

)∣∣∣ dξ

≤ ‖h
′‖∞

‖ψ‖2
2

1
Nτ

Nτ

∑
n=1

∣∣∣θn,2 − θ̃
(k)
n,2

∣∣∣ ∫ ∞

0

SX(ξ)

ξ
dξ

≤ ‖h
′‖∞

‖ψ‖2
2

∥∥∥θ2 − θ̃
(k)
2

∥∥∥
∞

JX .

Furthermore, ∀x ∈ R

|h′(x)| =
∣∣ln(q)qx ϕ′1(q

x)
∣∣ ≤ ln(q)

(
qx ∣∣ψ̂(qx)

∣∣2 + 2q2x ∣∣ψ̂(qx)ψ̂′(qx)
∣∣)

≤ ln(q)
(
‖ϕ1‖∞ + 2‖ψ̂′‖∞‖ϕ2‖∞

)
= K′2 .

Besides, the decay assumption on ψ̂ gives |ϕ2(u)| = Ou→∞(u2−η) →
u→∞

0 because η > 2. Then

ϕ2 is bounded and K′2 < ∞. This yields

|g2(m)| ≤ JXK′2
‖ψ‖2

2

∥∥∥θ2 − θ̃
(k)
2

∥∥∥
∞

.

The proof is concluded by summing up the upper bounds of |g1| and |g2| to obtain the upper

bound of b(k)SX
. Notice that this bound does not depends on m. �
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V. APPLICATION TO SPECTRAL ANALYSIS OF A WIDEBAND WIND SOUND

We illustrate here the ability of JEFAS to extract power spectrum information from a real, non-

stationary audio signal. The power spectrum is there the power spectrum of a “stationarized”

version of the signal, i.e. a version of the amplitude modulation and time warping estimated

by JEFAS have been corrected.

The sound we analyze is a 12 seconds long audio sample of howling wind (the full audio

recording is available at Freesound, sample #144083). Unlike the sounds analyzed in the paper [1],

this sound does not display a clear harmonic structure. Indeed, as can be seen on the wavelet

transform of the original sound displayed on the top-left of Fig. 3), two ridges are present but

they are quite large, and the frequency content is really wideband, with a strong low frequency

component. The spectrum of the underlying stationary sound estimated by JEFAS is displayed

on the bottom-right of Fig. 3; this confirms the wideband nature of the signal, and the fact that

the two frequency-localized components are indeed poorly frequency localized, and couldn’t

be well accounted for by sine waves. Besides, the estimated time-warping function displayed

on the bottom-left gives a representation of the instantaneous wind speed.

VI. APPLICATION TO CROSS-SYNTHESIS

The ability to model non-stationary sounds using spectral and warping informations opens

interesting possibilities for sound synthesis. Cross-synthesis, which uses the spectral information

of a signal and warping information of a second one, is a simple example. Examples of such

synthetic sounds are available on GitHub (together with source code that allows reproducing

the numerical examples)

https://github.com/AdMeynard/JEFAS

and on the website

https://meynard.perso.math.cnrs.fr/paperJEFAS/NonStationaryAudio.html
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Fig. 3. Wind sound analysis. Top left: Scalogram of the original signal. Top right: Scalogram of the unwarped

and unmodulated signal. Bottom left: Estimated time-warping and amplitude modulation functions. Bottom right:

Estimated spectrum of the underlying stationary signal.


