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Spectral analysis for nonstationary audio

Adrien Meynard and Bruno Torrésani

Abstract

A new approach for the analysis of nonstationary signals is proposed, with a focus on

audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-

breaking operators acting on Gaussian stationary random signals. The focus is here on time

warping and amplitude modulation, and an approximate maximum-likelihood approach based

on suitable approximations in the wavelet transform domain is developed. This paper provides

theoretical analysis of the approximations, and describes and analyzes a corresponding esti-

mation algorithm. The latter is tested and validated on synthetic as well as real audio signal.

Index Terms

Nonstationary signals, deformation, wavelet analysis, time warping, local spectrum, Doppler

effect

I. INTRODUCTION

Nonstationarity is a key feature of acoustic signals, in particular audio signals. For

example, a large part of information carried by musical and speech signals is encoded

by their nonstationary nature. This is also the case for environment sounds (for example,

nonstationarity of car noises or wind informs about speed variations), and many animals

(bats, dolphins,...) use nonstationary signals for localization and communication. Beyond

acoustics, amplitude and frequency modulation are of prime importance many domains

such as telecommunication.
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While stationarity can be given rigorous definitions, nonstationarity is a very wide

concept, as there are infinitely many ways to depart from stationarity. The theory of

random signals and processes (see [1], [2] and references therein) gives a clear meaning

to the notion of stationarity. In the context of time series analysis, Priestley [2], [3] was

one of the first to develop a systematic theory of nonstationary processes, introducing

the class of locally stationary processes and the notion of evolutionary spectrum. A

similar approach was followed in [4], who proposed a wavelet-based approach to

covariance estimation for locally stationary processes (see also [5]). An alternate theory

of locally stationary time series was developed by Dahlhaus [6] (see also [7] for a

corresponding stationarity test). In a different context, frequency-modulated stationary

signal were considered in [8], [9], and time warping models were analyzed in [10]. In

several of these approaches, wavelet, time-frequency and similar representations happen

to play a key role for the characterization of nonstationarity.

In a deterministic setting, a popular nonstationarity model expresses the signal as a

sum of K sinusoidal components y(t) = ∑
K
k=1 Ak(t) cos(2πφk(t)). This model has been

largely used in speech processing since early works by McAulay and Quatieri [11]

(see [12] and references therein for more recent developments, and [13], [14] for prob-

abilistic approaches). The instantaneous frequencies φ′
k of each mode give important

information about the physical phenomenon. Under smoothness assumptions on func-

tions Ak and φ′
k, techniques such as ridge/multiridge detection (see [15] and references

therein), synchrosqueezing or reassignment have been developed to extract theses quan-

tities from a single signal observation (see [16], [17], [18] for recent accounts).

In sound processing, signals often possess a harmonic structure, which corresponds to

a special case of the above model where each instantaneous frequency φ′
k is multiple of a

fundamental frequency φ′
0: φ′

k(t) = (k+ 1)φ′
0(t). In the special case Ak(t) = αkA0(t), we

can describe such signals as a stationary signal x(t) = ∑
K
k=1 αk cos(2πkt + ϕk) modified

by time warping and amplitude modulation: y(t) = A0(t)x(φ0(t)). A major limit of this

model is that each component is purely sinusoidal while audio signals often contain

broadband information. However, sounds originating from physical phenomena can

often be modeled as stationary signals, deformed by a stationarity-breaking operator

(time warping, amplitude modulation,...). For example, sounds generated by a variable-

speed engine or any stationary sound deformed by Doppler effect can be described
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as such. A stochastic time warping model has been introduced in [19], [20], where

wavelet-based approximation and estimation techniques were developed. In [9], [21],

an approximate maximum-likelihood approach was proposed for the joint estimation

of the time warping and power spectrum of the underlying Gaussian stationary signal,

exploiting similar approximations.

In this paper, we build on results of [9], [21] which we extend and improve in

several ways. We develop an approximate maximum likelihood method for estimating

jointly time warping and amplitude modulation (not present in [9], [21]) from a single

realization. While the overall structure of the algorithm is similar, we formulate the

problem as a continuous parameter estimation problem, which avoids quantization

effects present in the earlier approaches, and allows computing a Cramér-Rao bound

for assessing the precision of the estimate. After completing the estimation, the inverse

deformation can be applied to the input signal, which yields an estimate for the power

spectrum.

The outline of the paper is as follows. After giving some definitions and notations

in Section II, we detail in Section III the nonstationary signal models we consider,

and specify the assumptions made on the underlying stationary signal. We also an-

alyze the effect of time warping and amplitude modulation in the wavelet domain,

which we exploit in designing the estimation procedure. We finally propose an alternate

estimation algorithm, and analyze the expected performances of the corresponding

estimator. Section IV is devoted to numerical results, on both synthetic signals and real

sounds. We also shortly describe in this section an extension published in [22] involving

simultaneously time warping and frequency modulation. Mathematical developments

are given in Supplementary data, together with additional examples.

II. NOTATIONS AND BACKGROUND

A. Random signals and stationarity

Throughout this paper, we will work in the framework of the theory of random

signals. Signals of interest will be modeled as realizations of random processes t ∈
R → Xt ∈ C. Signals of interest are real-valued, however we will work with complex-

valued functions since complex-valued wavelet transforms will be used. In this paper,

the random processes will be denoted by uppercase letters while their realizations will
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be denoted by lowercase letters. The random processes will be assumed to have null

mean (E {Xt = 0} for all t) and be second-order, i.e. they have a well-defined covariance

kernel E
{

XtXt′
}

. A particularly interesting class of such stochastic processes is the class

of second order (or weakly) stationary processes, for which CX(t − t′) ∆
= E

{
XtXt′

}

is a function of t − t′ only. Under these assumptions, the Wiener-Khinchin theorem

states that the covariance kernel may be expressed as the inverse Fourier transform of

a nonnegative measure dηX, which we will assume to be continuous with respect to the

Lebesgue measure: dηX(ν) = SX(ν)dν, for some nonnegative L1 function SX called the

power spectrum. We then write

CX(t) =
∫

SX(ν)e
2iπνtdν .

We refer to textbooks such as [1], [2] for a more complete mathematical account of the

theory, and to [21] for an extension to the setting of distribution theory.

B. Elementary operators

Our approach rests on nonstationary models obtained by deformations of stationary

random signals. We will mainly use as elementary operators the amplitude modulation

Aα, translation Tτ, dilation Ds, and frequency modulation Mν defined as follows:

Aαx(t) = αx(t) , Tτx(t) = x(t − τ) ,

Dsx(t) = q−s/2x(q−st) , Mνx(t) = e2iπνtx(t) .

where α, τ, s, ν ∈ R and q > 1 is a fixed number.

The amplitude modulation commutes with the other three operators, which satisfy

the commutation rules

TτDs=DsTq−sτ , Tτ Mν= e−2iπντ MνTτ , MνDs=DsMνqs .

C. Wavelet transform

Our analysis relies heavily on transforms such as the continuous wavelet transform

(and discretized versions). In particular, the wavelet transform of a signal X : t ∈ R → Xt

is defined as:

WX(s, τ)
∆
= 〈X, ψsτ〉 , with ψsτ = TτDsψ . (1)
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where ψ is the analysis wavelet, i.e. a smooth function with fast decay away from

the origin. It may be shown that, for suitable choices of ψ, the wavelet transform is

invertible (see [15]), but we will not use that property here. Notice that, when X is a

realization of a continuous time random process, it does not need to decay at infinity.

However, for a suitably smooth and localized wavelet ψ, the wavelet transform can

still be well defined (see [15], [21] for more details). In such a situation the wavelet

transform of X is a two-dimensional random field, which we analyze in the next section.

Besides, in this paper the analysis wavelet ψ is complex-valued and belongs to the space

H2(R) =
{

ψ ∈ L2(R) : supp(ψ̂) ⊂ R+
}

. In that framework, a useful property is that,

if X is a real, zero mean, Gaussian process, then WX is a complex, zero mean, circular,

Gaussian random field.

Classical choices of wavelets in H2(R) are (analytic) derivative of Gaussian ψk (which

has k vanishing moments), and the sharp wavelet ψ♯ (with infinitely many vanishing

moments) introduced in [22]. These can be defined in the positive Fourier domain by

ψ̂k(ν) = νke−kν2/2ν2
0 , ψ̂♯(ν) = ǫ

δ(ν,ν0)
δ(ν1,ν0) , ν > 0 (2)

and vanish on the negative Fourier half axis. Here ν0 is the mode of ψ̂. In the expression

of ψ̂♯, ν1 is chosen so that ψ̂♯(ν1) = ǫ (a prescribed numerical tolerance at cutoff

frequency ν1), and the divergence δ is defined by δ(a, b) = 1
2

(
a
b +

b
a

)
− 1.

Remark 1: In (1), the scale constant q > 1 acts a unit selector for the scale s. For

example, in musical terminology, q = 2 means that s is measured in octave, whereas

for q = 21/12, s is measured in semitones.

D. Amplitude modulation, time warping

The nonstationary signals under consideration are obtained as linear deformations

of stationary random signals. Deformations of interest here are amplitude modulations

and time warpings. Amplitude modulations are pointwise multiplications by smooth

functions,

Aa : Aax(t) = a(t)x(t) , (3)

where a ∈ C1 is a real valued function, such that

0 < ca ≤ a(t) ≤ Ca < ∞, ∀t , (4)
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for some constants ca, Ca ∈ R
∗
+. Time warpings are compositions with smooth and

monotonic functions,

Dγ : Dγx(t) =
√

γ′(t)x(γ(t)) (5)

where γ ∈ C2 is a strictly increasing smooth function, satisfying the control condi-

tion [21]

0 < cγ ≤ γ′(t) ≤ Cγ < ∞, ∀t , (6)

for some constants cγ, Cγ ∈ R∗
+.

Amplitude modulations constitute a simple model for nonstationarity. While there

exists a well established state of the art for demodulation algorithms in deterministic

settings (in particular in telecommunications), the stochastic case has attracted less

attention. In the recent literature, one may mention [10], where the so-called DEMON

spectrum is proposed for amplitude modulation estimation. This problem will be tackled

here using wavelet transform.

Time warping is an important transformation which has been exploited in various

contexts, starting from Doppler effect, which we briefly address at the end of this

paper, but also speech processing, bioacoustics (see [23] and references therein) and

more generally in diverse fields including chemistry, bioinformatics,... The reference

algorithm for time warping estimation is DWT (Dynamic Time Warping, see [24] for a

review), which has been successfully applied to speech processing, in particular speech

recognition. However, DTW is essentially a template matching algorithm, and does not

address the problem considered here, where no template is available. Closer to our point

of view are approaches based upon transforms such as the Harmonic transform [25] or

the Fan-Chirp transform [26] (see [27] for an application to speech analysis/synthesis).

These mainly involve computing a time-frequency representation of a warped copy of

the input signal. Even though this does not seem to be strictly necessary, the warping

function generally belongs to a parametrized family (for example quadratic), and has

to be estimated. The application domain seems to be limited so far to locally harmonic,

deterministic signal models, and the estimation of the warping function strongly relies

on these assumptions. Wavelet transform and scalogram are also natural representations

for estimating warping. Actually, interpreting (normalized) time slices of the signal

scalogram as probability distributions naturally suggests to compute a time-dependent
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average scale, directly related to the value of the warping function. This is the approach

we will use as baseline approach. However, our approximations below allow us to give a

more precise meaning to this remark; in addition, scalogram lacks the phase information

which turns out to be quite relevant and yield more precise estimations.

The approach we develop below exploits complex valued wavelet transform, and

combines amplitude modulation and time warping in the framework of a generic stochas-

tic signal model, without any harmonicity assumption. This allows us to set the cor-

responding estimation problems as statistical inference problems, and use tools from

estimation theory.

III. JOINT ESTIMATION OF TIME WARPING AND AMPLITUDE MODULATION

A. Model and approximations

Let us first describe the deformation model we will mainly be using in the following.

Assume one is given a (unique) realization of a random signal of the form

Y = AaDγX (7)

where X is a stationary zero mean real random process with (unknown) power spectrum

SX. The goal is to estimate the deformation functions a and γ from this realization of

Y, exploiting the stationarity of X.

Remark 2: The stationarity assumption is not sufficient to yield unambiguous esti-

mates, as affine functions γ(t) = λt + µ do not break stationarity: for any stationary

X, DγX is stationary too. Therefore, the warping function γ can only be estimated up

to an affine function, as analyzed in [20], [21]. Similarly, the amplitude function a can

only be estimated up to a constant factor.

Key ingredients here are the smoothness of the functions a and γ, and their slow

variations. This allows us to perform a local analysis using smooth and localized test

functions, on which the action of Aa and Dγ can be approximated by their so-called

tangent operators Ã τ
a and D̃τ

γ (see [20], [9], [21], [28]). Given a test function g located

near t = τ (i.e. decaying fast enough as a function of |t − τ|), Taylor expansions near

t = τ yield

Aag(t) ≈ Ã τ
a g(t) , with Ã

τ
a

∆
= Aa(τ) , (8)
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Dγg(t) ≈ D̃τ
γ g(t) , with D̃τ

γ
∆
= TτD− logq(γ

′(τ))T−γ(τ) . (9)

Therefore, we approximate the wavelet transform of Y by WY(s, τ) ≈ W̃Y(s, τ)
∆
=〈

Ã τ
a D̃τ

γ X, TτDsψ
〉

, i.e.

W̃Y(s, τ) = a(τ)WX

(
s + logq(γ

′(τ)), γ(τ)
)

. (10)

Here, we have used the standard commutation rules of translation and dilation opera-

tors given in Section II-B.

The result below provides a quantitative assessment of the quality of the approxima-

tion. There, we denote by ‖ f‖∞ = ess supt| f (t)| the essential absolute supremum of a

function f .

Theorem 1: Let X be a second order zero mean stationary random process, let Y be the

nonstationary process defined in (7). Let ψ be a smooth test function, localized in such

a way that |ψ(t)| ≤ 1/(1+|t|β) for some β > 2. Let WY be the wavelet transform of Y,

W̃Y its approximation given in (10), and let ε = WY − W̃Y denote the approximation

error. Assume ψ and SX are such that

I
(ρ)
X

∆
=

√∫ ∞

0
ξ2ρSX(ξ)dξ < ∞ , where ρ =

β − 1

β + 2
.

Then the approximation error ε is a second order, two-dimensional complex random

field, and

E

{
|ε(s,τ)|2

}
≤C2

aq3s
(
K1‖γ′′‖∞+K2qµs‖γ′′‖ρ

∞+K3

∥∥a′
∥∥

∞

)2

where

K1 =
βσX

2(β − 2)
√

cγ
, K2 = I

(ρ)
X

(π

2

)ρ√
Cγ

4

3ρ
,

K3 =

√
CγβσX

(β − 2)ca
, µ =

β − 4

β + 2
,

σ2
X being the variance of X.

The proof, which is an extension of the one given in [21], rests on Taylor approxima-

tions of γ′ and a in the neighborhood of t = τ and subsequent integral majorizations,

is given in the supplementary data.

Remark 3: The assumption on β ensures that the parameters belong to the following

intervals: 1/4 < ρ < 1 and −1/2 < µ < 1. Therefore, the variance of the approximation
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error tends to zero when the scales are small (i.e. s → −∞). Besides, the error is

inversely proportional to the speed of variations of γ′ and a. This is consistent with

the approximations of the deformation operators by their tangent operators made in

equations (8) and (9).

From now on, we will assume the above approximations are valid, and work on the

approximate random fields. The problem is then to estimate jointly a, γ from W̃Y, which

is a zero mean random field with covariance

E

{
W̃Y(s, τ)W̃Y(s′, τ′)

}
= C(s, s′, τ, τ′) (11)

where the kernel C reads

C(s, s′, τ, τ′) =a(τ)a(τ′)q
s+s′

2

√
γ′(τ)γ′(τ′)

∫ ∞

0
SX(ξ)

×ψ̂
(
qsγ′(τ)ξ

)
ψ̂
(
qs′γ′(τ′)ξ

)
e2iπξ(γ(τ)−γ(τ′))dξ. (12)

B. Estimation

1) Estimation procedure: Our goal is to estimate both deformation functions γ and a

from the approximated wavelet transform W̃y of a realization y of Y, assuming the

latter is a reliable approximation of the true wavelet transform. From now on, we

additionally assume that X is a Gaussian random process. Therefore, W̃Y is a zero mean

circular Gaussian random field and its probability density function is characterized by

the covariance matrix. However, equation (12) shows that besides deformation functions

the covariance also depends on the power spectrum SX of the underlying stationary

signal X, which is unknown too. Therefore, the evaluation of the maximum likelihood

estimate for a and γ requires a guess for SX. This constraint naturally brings the

estimation strategy to an alternate algorithm. In [22], an estimate for SX was obtained

at each iteration using a Welch periodogram on a “stationarized” signal A
−1

ã D
−1
γ̃ Y, ã

and γ̃ being the current estimates for the deformation functions a and γ. We use here

a simpler estimate, computed directly from the wavelet coefficients. The two steps of

the estimation algorithm are detailed below.

Remark 4: The alternate likelihood maximization strategy is reminiscent of the Expec-

tation-Maximization (EM) algorithm, the power spectrum being the nuisance parameter.

However, while it would be desirable to apply directly the EM paradigm (whose conver-

gence is proven) to our problem, the dimensionality of the latter (and the corresponding
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size of covariance matrices) forces us to make additional simplifications that depart

from the EM scheme. Therefore we turn to a simpler approach with several dimension

reduction steps.

(a) Deformation estimation. Assume that the power spectrum SX is known (in fact, only

an estimate S̃X is known). Thus, we are able to write the likelihood corresponding to

the observations of the wavelet coefficients. Then the maximum likelihood estimator is

implemented to determine the unknown functions γ and a.

The wavelet transform (1) is computed on a regular time-scale grid Λ = s × τ, δs

being the scale sampling step and Fs the time sampling frequency. The sizes of s and τ

are respectively denoted by Ms and Nτ .

Considering the covariance expression (12) we want to estimate the vector of pa-

rameters Θ = (θ1, θ2, θ3)
∆
= (a(τ)2, logq (γ

′(τ)) , γ(τ)). Let Wy = W̃y(Λ) denote the

discretized transform and let CW(Θ) be the corresponding covariance matrix. The re-

lated log-likelihood is

L (Θ) = −1

2
ln |det(CW(Θ))| − 1

2
CW(Θ)−1Wy · Wy . (13)

The matrix CW(Θ) is a matrix of size MsNτ × MsNτ , which is generally huge. For

instance, for a 5 seconds long signal, sampled at frequency Fs = 44.1 kHz, when the

wavelet transform is computed on 8 scales, the matrix CW(Θ) has about 3.1 trillion

elements which makes it numerically intractable. In addition, due to the redundancy

of the wavelet transform, CW(Θ) turns out to be singular, and likelihood evaluation is

impossible.

To overcome these issues, we use a block-diagonal regularization of the covariance

matrix, obtained by forcing to zeros entries corresponding to different time indices. In

other words, we disregard time correlations in the wavelet domain, which amounts

to considering fixed time vector wy,τn = W̃y(s, τn) as independent circular Gaussian

vectors with zero mean and covariance matrix

C(Θn)ij = θn,1C0(θn,2)ij , 1 ≤ i, j ≤ Ms , (14)

where

C0(θn,2)ij = q(si+sj)/2
∫ ∞

0
SX(q

−θn,2ξ)ψ̂(qsi ξ)ψ̂(qsj ξ)dξ . (15)
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In this situation, the regularized log likelihood L r splits into a sum of independent

terms

L
r(Θ) = ∑

n

L (Θn) ,

where Θn = (θn,1, θn,2)
∆
= (θ1(n), θ2(n)) corresponds to the amplitude and warping

parameters at fixed time τn = τ(n). Notice that, in such a formalism, θn,3 = γ(τn)

does not appear anymore in the covariance expression. Thus, we are led to maximize

independently for each n

L (Θn) = −1

2
ln |det(C(Θn))| −

1

2
C(Θn)

−1wy,τn · wy,τn . (16)

For simplicity, the estimation procedure is done by an iterative algorithm (given in

more details in part III-B2), which rests on two main steps. First, the log-likelihood is

maximized with respect to θn,2 using a gradient ascent method, for a fixed value of θn,1.

Second, for a fixed θn,2, an estimate for θn,1 is directly obtained which reads

θ̃n,1 =
1

Ms
C−1

0 (θn,2)wy,τn · wy,τn , (17)

(b) Spectrum estimation. Assume the amplitude modulation and time-warping param-

eters θ1 and θ2 are known (in fact, only estimates θ̃1 and θ̃2 are known). For any n we

can compute the wavelet transform

1

θ1/2
n,1

W̃y (s − θn,2, τn) = Wx(s, γ (τn)) , (18)

For fixed scale sm, wx,sm

∆
= Wx(sm, γ(τ)) ∈ CNτ is a zero mean random circular Gaussian

vector with time independent variance (as a realization of the wavelet transform of

a stationary process). Hence, the empirical variance is an unbiased estimator of the

variance. We then obtain the so-called wavelet spectrum

SX,ψ(q
−smω0)

∆
= E

{
1

Nτ‖ψ‖2
2

‖wx,sm‖2

}
(19)

=
1

‖ψ‖2
2

∫ ∞

0
SX(ξ)q

sm
∣∣ψ̂ (qsmξ)

∣∣2dξ , (20)

where ω0 is the central frequency of |ψ̂|2. SX,ψ is a narrowband version of SX centered

around frequency νm = q−smω0. Besides, the bandwidth of the filter is proportional to

the frequency νm. This motivates the introduction of the following estimator S̃X of SX

S̃X(q
−sm ω0)

∆
=

1

Nτ‖ψ‖2
2

‖wx,sm‖2 . (21)
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Finally, the estimate S̃X is extended to all ξ ∈ [0, Fs/2] by linear interpolation.

2) Algorithm: The estimation procedure is implemented in an iterative alternate op-

timization algorithm. This algorithm whose pseudo-code is given as Algorithm 1 is

named Joint Estimation of Frequency, Amplitude, and Spectrum (JEFAS). The initialization

needs an initial guess for the power spectrum SX of X. We use the spectrum estima-

tor (21) applied to the observation Y.

After k iterations of the algorithm, estimates Θ̃
(k)
n and S̃

(k)
X for Θn and SX are

available. Hence we can only evaluate the plug-in estimate C̃
(k)
0 of C0, obtained by

replacing the power spectrum with its estimate in the covariance matrix (15). This yields

an approximate expression L (k) for the log-likelihood, which is used in place of L

in (16) for maximum likelihood estimation. The influence of such approximations on

the performances of the algorithm are discussed in section III-C.

To assess the convergence of the algorithm, the relative update of the parameters is

chosen as stopping criterion:
∥∥∥θ̃

(k)
j − θ̃

(k−1)
j

∥∥∥
2

2∥∥∥θ̃
(k−1)
j

∥∥∥
2

2

< Λ , for j = 1, 2 , (22)

where 0 < Λ < 1 is a user defined threshold.

Finally, after convergence of the algorithm to the estimated value Θ̃
(k)

, logq(γ
′) and

a2 are estimated through time by cubic spline interpolation. Besides, γ is given by

numerical integration assuming that γ(0) = 0.

Remark 5: To control the variances of the estimators, and the computational cost, two

different discretizations of the scale axis are used for θ̃1 or θ̃2. Indeed, the computation

of the log-likelihood involves the evaluation of the inverse covariance matrix. In [21],

a sufficient condition for invertibility was given in the presence of noise. The major

consequence induced by this condition is that when δs is close to zero (i.e. the sampling

period of scales is small), the covariance matrix could not be numerically invertible.

The scale discretization must then be sufficiently coarse to ensure good conditioning

for the matrix. While this condition can be reasonably fulfilled to estimate θn,2 without

impairing the performances of the estimator, it cannot be applied to the estimation of

θn,1 because of the influence of Ms on its Cramér-Rao bound (see section III-C below).

The choice we made is to maximize L (Θn) for θn,2 with wy,τn corresponding to a
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Algorithm 1 JEFAS

Initialization: Compute an estimate S̃Y of the power spectrum of Y as an initial

guess S̃
(0)

X for SX. Initialize the estimator of the squared amplitude modulation with

θ̃
(0)
n,1 = 1, ∀n.

Compute the wavelet transform Wy of y.

k := 1

while criterion (22) is false and k ≤ kmax do

• For each n, subsample wy,τn on scales sp, and estimate θ̃
(k+1)
n,2 by maximizing the

approximate log-likelihood L (k)
(

θ̃
(k)
n,1, θn,2

)
in (16).

• For each n, estimate θ̃
(k+1)
n,1 by maximizing the approximate log-likelihood

L (k)
(

θn,1, θ̃
(k+1)
n,1

)
with respect to θn,1 in (16). Or, in absence of noise, directly apply

equation (17) using the regularized covariance matrix given by (23).

• Construct the estimated wavelet transform Wx of the underlying stationary signal

by interpolation from Wy and θ̃
(k)

with equation (18). Estimate the corresponding

power spectrum S̃
(k+1)
X with (21).

• k := k + 1

end while

• Compute ã and γ̃ by interpolation from Θ̃
(k)

.

coarse sampling sp which is a subsampled version of the original vector s, the scale

sampling step and the size of sp being respectively pδs and ⌊Ms/p⌋ for some p ∈ N∗.

While L (Θn) is maximized for θn,1 on the original fine sampling s, a regularization of

the covariance matrix has to be done to ensure invertibility. The regularized matrix is

constructed by replacing covariance matrix C0(θn,2) in (15) by its regularized version

C0,r(θn,2), given by

C0,r(θn,2) = (1 − r)C0,r(θn,2) + rI , (23)

for some regularization parameter 0 ≤ r ≤ 1.

Remark 6: After convergence of the estimation algorithm, the estimated functions ã

and γ̃ allow constructing a “stationarized” signal

x̃ = Dγ̃−1Aã−1y .
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x̃ is an estimation of the original underlying stationary signal x. Furthermore, the Welch

periodogram [29] may be computed from x̃ to obtain an estimator of SX whose bias

does not depend on frequency (unlike the estimator used within the iterative algorithm).

Remark 7: In order to accelerate the speed of the algorithm, the estimation can be done

only on a subsampled time. The main effect of this choice on the algorithm concerns

the final estimation of a and γ which is more sensitive to the interpolation operation.

In the following section, we analyze quantities that enable the evaluation of the

expected performances of the estimators, and their influence of the algorithm. The reader

who is not directly interested in the statistical background may skip these section and

jump directly to the numerical results in part IV.

C. Performances of the estimators and the algorithm

(a) Bias. For θn,1, the estimator is unbiased when the actual values of θn,2 and SX are

known. In our case, the bias b
(k)
n,1 (θn,1) = E

{
θ̃
(k)
n,1

}
− θn,1 is written as

b
(k)
n,1 (θn,1) =

θn,1

Ms
Trace

{
C̃
(k)
0

(
θ̃
(k)
n,2

)−1
C0(θn,2)− I

}
. (24)

As expected, the better the covariance matrix estimation, the lower the bias
∣∣∣b(k)n,1

∣∣∣.
For θn,2, as we do not have a closed-form expression for the estimator we are not

able to give an expression of the bias. Nevertheless, if we assume that the two other

true variables are known, as a maximum likelihood estimator we make sure that θ̃n,2 is

asymptotically unbiased (i.e. θ̃n,2 → θn,2 when Ms → ∞).

Regarding SX, equation (19) shows that the estimator yields a smoothed, thus biased

version of the spectrum. Proposition 1 below shows that the estimated spectrum con-

verges to this biased version when the deformation parameters converge to their actual

values.

Proposition 1: Let ψ ∈ H2(R) be an analytic wavelet such that ψ̂ is bounded and
∣∣ψ̂(u)

∣∣ = Ou→∞(u−η) with η > 2. Let ϕ1 and ϕ2 be bounded functions defined on R+

by ϕ1(u) = u
∣∣ψ̂(u)

∣∣2 and ϕ2(u) = u2
∣∣ψ̂(u)

∣∣. Assume SX is such that

JX =
∫ ∞

0
ξ−1

SX(ξ)dξ < ∞.
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Let S
(k)

X denote the estimation of the spectrum after k iterations of the algorithm. Let

b
(k)
SX

denote the bias defined for all m ∈ [[1, Ms]] by

b
(k)
SX

(m) = E

{
S̃

(k)
X (q−sm ω0)

}
−SX,ψ(q

−sm ω0) .

Assume there exists a constant cθ1
> 0 such that θ

(k)
n,1 > cθ1

, ∀n, k. Then

∥∥∥b
(k)
SX

∥∥∥
∞
≤ JX

‖ψ‖2
2

(
K′

1

∥∥∥θ1 − θ̃
(k)
1

∥∥∥
∞
+ K′

2

∥∥∥θ̃
(k)
2 − θ2

∥∥∥
∞

)
, (25)

where

K′
1 =

‖ϕ1‖∞

cθ1

< ∞ ,

K′
2 = ln(q)

(
‖ϕ1‖∞ + 2‖ψ̂′‖∞‖ϕ2‖∞

)
< ∞ .

The proof of the Proposition is given in supplementary materials.

Remark 8: If θ
(k)
1 → θ1 and θ

(k)
2 → θ2 as k → ∞, we have E

{
S̃

(k)
X (νm)

}
→
k

SX,ψ(νm),

as expected.

Formula (25) enables the control of the bias of the spectrum at frequencies νm =

q−smω0 only. We can also notice the required property JX < ∞ forces SX to vanish at

zero frequency.

(b) Variance. The Cramér-Rao lower bound (CRLB) gives the minimum variance that

can be attained by unbiased estimators. The Slepian-Bangs formula (see [30]) directly

gives the following CRLB for component θn,i

CRLB(θn,i) = 2

(
Trace

{(
C(Θn)

−1 ∂C(Θn)

∂θn,i

)2
})−1

.

This bound gives information about the variance of the estimator at convergence of the

algorithm, i.e. when both SX and the other parameters are well estimated.

Applying this formula to θn,1 gives

E

{(
θ̃n,1 − E

{
θ̃n,1

})2
}
≥ CRLB(θn,1) =

2θ2
n,1

Ms
.

This implies that the number of scales Ms of the wavelet transform must be large enough

to yield an estimator with sufficiently small variance.

For θn,2, no closed-form expression is available for the CRLB. Therefore, the evaluation

of this bound and its comparison with the variance of the estimator θ̃n,2 can only be

based on numerical results, see section IV.
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(c) Robustness to noise. Assume now observations are corrupted by a random Gaussian

white noise W with variance σ2
W (supposed to be known):

Y = AaDγX + W . (26)

The estimator θ̃n,1 is not robust to noise. Indeed, if the maximum likelihood estimator

of model (7) in the presence of such white noise, a new term b
(k)
n,1|W (θn,1) must be added

to the bias expression (24), which becomes

b
(k)
n,1|W (θn,1) =

1

Ms
Trace

{
C̃
(k)
0

(
θ̃
(k)
n,2

)−1
Cwn

}
,

where (Cwn)ij = σ2
Wq(si+sj)/2

∫ ∞

0 ψ̂(qsi ξ)ψ̂(qsj ξ)dξ. In practice, this term can take large

values, therefore noise has to be taken into account. To do so, the covariance matrix is

now written as

C(Θn)ij=q
si+sj

2

∫ ∞

0
(θn,2SX(q

−θn,1ξ) + σ2
W)ψ̂(qsi ξ)ψ̂(qsj ξ)dξ , (27)

and the likelihood is modified accordingly. Formula (17) is no longer true and no closed-

form expression can be derived anymore, the maximum likelihood estimate θ̃n,1 must

be computed by a numerical scheme (here we use a simple gradient ascent).

The estimator θ̃n,2 is very robust to noise. Indeed, equation (27) shows that the only

change in the covariance matrix formula is to replace the power spectrum SX by SZ =

SX +
σ2

W
θn,2

. The additive constant term does not impair the estimator as long as it is small

in comparison with the maximum values of SX.

Moreover, the estimator S̃X is modified because when computing 1

θ1/2
n,1

W̃y (s − θn,2, τn)

on scale sm, we compute:

wz,sm = wx,sm + ww∗,sm ,

where ww∗,sm = 1

θ
1/2
1

W̃w (sm − θ2, τ) is the wavelet transform of a white noise modulated

in amplitude by a−1. Thus a constant term σ̃W independent of frequency is added to

the new spectrum estimator S̃Z, so that

E
{
S̃Z

}
= SX,ψ + σ̃2

W where σ̃2
W = σ2

W

1

Nτ

Nτ

∑
n=1

1

θn,1
.
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D. Extension: estimation of other deformations

To describe other nonstationary behaviors of audio signals, other operators can be

investigated. For example, combination of time warping and frequency modulation can

be considered, as was done in [22], we shortly account for this case here for the sake

of completeness. Let α ∈ C2 be a smooth function, and set

Mα : Mαx(t) = e2iπα(t)x(t) , (28)

The deformation model in [22] is of the form

Y = AaMαDγX . (29)

To perform joint estimation of amplitude and frequency modulation and time warping

for each time, a suitable time-scale-frequency transform V is introduced, defined as

VX(s, ν, τ) = 〈X, ψsντ〉, with ψsντ = Tτ MνDsψ. In that case, approximation results similar

to Theorem 1 can be obtained from which the corresponding log-likelihood can be

written. At fixed time τ, the estimation strategy is the same as before, but the parameter

space is of higher dimension, and the extra parameter θ3 = α′(τ) complicates the log-

likelihood maximization. In particular, the choice of the discretization of the two scale

and frequency variables s and ν influences performances of the estimator, in particular

the Cramér-Rao bound.

IV. NUMERICAL RESULTS

We now turn to numerical simulations and applications. A main ingredient is the

choice of the wavelet transform. Here we shall always use the sharp wavelet ψ♯ defined

in (2) and set the scale constant to q = 2.

We systematically compare our approach to simple estimators for amplitude modu-

lation and time warping, commonly used in applications, defined below. The approach

of [20] was also implemented, but we couldn’t get satisfactory results with that ap-

proach.

• Amplitude modulation: we use as baseline estimator of a(τn)2 the average energy

θ̃
(B)
n,1 defined as follows:

θ̃
(B)
n,1 =

1

Ms
‖wy,τn‖2 .
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This amounts to replace the estimated covariance matrix in (17) by the identity

matrix. Notice that θ̃
(B)
n,1 does not depend on the time warping estimator, and can

be computed directly on the observation.

• Time warping: the baseline estimator θ̃
(B)
n,2 is the scalogram scale center of mass

defined as follows:

θ̃
(B)
n,2 = C0 +

1

‖wy,τn‖2

Ms

∑
m=1

s[m]|wy,τn [m]|2 .

C0 is chosen such that θ̃
(B)
n,2 is a zero mean vector.

Numerical evaluation is performed on both synthetic signals and deformations and real

audio signals.

A. Synthetic signal

We first evaluate the performances of the algorithm on a synthetic signal. This allows

us to compare variance and bias with their theoretical values.

The simulated signal has length Nτ = 216 samples, sampled at Fs = 8 kHz (mean-

ing the signal duration is tF = (Nτ − 1)/Fs ≈ 8.2 s). The spectrum SX is written

as SX = S1 + S2 where Sl(ν) = 1 + cos
(

2π(ν − ν
(l)
0 )/∆

(l)
ν

)
if |ν − ν

(l)
0 | < ∆

(l)
ν /2

and vanishes elsewhere (for l ∈ {1, 2}). The amplitude modulation a is a sine wave

a(t) = a0 (1 + a1 cos(2πt/T1)), where a0 is chosen such that t−1
F

∫ tF

0 a2(t)dt = 1. The

time warping function γ is such that logq(γ
′(t)) = Γ + cos(2πt/T2)e

−t/T3 , where Γ is

chosen such that t−1
F

∫ tF

0 γ′(t)dt = 1.

JEFAS is implemented in the Matlab R©/Octave scientific environment. Dimensions

were set as Ms = 106 and p = 7. In this problem, the algorithm took 67 seconds to

converge on a standard desktop computer (CPU Intel R© CoreTM i3-6100T @ 3.20 GHz ×
4, 7.7 GB RAM). Results are shown in Fig. 1 and compared with baseline estimations.

For the sake of visibility, the baseline estimator of the amplitude modulation (which is

very oscillatory) is not displayed, but numerical assessments are provided in Table I,

which gives MSEs for the different estimations. JEFAS is clearly more precise than the

baseline algorithm, furthermore its precision is well accounted for by the Cramér-Rao

bound: in Fig. 1, the estimate is essentially contained within the 95 % confidence interval

provided by the CRLB (assuming Gaussianity and unbiasedness).
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Fig. 1. Joint amplitude modulation/time warping estimation on a synthetic signal. Top: amplitude modulation

estimation (a1 = 0.4 and T1 = tF/3). Bottom: warping estimation (T2 = tF/2 and T3 = tF/2).

Estimation Amplitude Time

method modulation warping

Baseline 2.01 × 10−1 2.32 × 10−2

JEFAS 7.01 × 10−2 4.91 × 10−4

TABLE I

ESTIMATION MEAN SQUARE ERRORS FOR BOTH DEFORMATIONS

The left hand side of Fig. 2 displays the estimated spectrum given by the algorithm

with formula (21). The agreement with the actual spectrum is very good, with a slight

enlargement effect due to filtering by |ψ̂|2. The right hand side of Fig. 2 gives the

evolution of the stopping criterion (22) with iterations. Numerical results show that

time warping estimation converges faster than amplitude modulation estimation. Nev-

ertheless, when fixing a stopping criterion to 0.1 % only 7 iterations are necessary for

JEFAS to converge.
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Fig. 2. Left: Spectrum estimation (ν
(1)
0 = 600 Hz, ∆

(1)
ν = 200 Hz, ν

(2)
0 = 1.2 kHz, ∆

(2)
ν = 400 Hz): actual (dash-dot

blue line) and estimated (solid red line) spectra. Right: Stopping criterion evolution.

B. Application to dolphin sound spectral analysis

After studying the influence of the various parameters, we now turn to real life audio

examples. First, we analyze a recording of a two seconds long dolphin vocalization

sound, described in [23]. The wavelet transform of this signal in Fig. 3 shows that the

warping model (7) fits well this kind of signal, except for transient clicks that are not

accounted for. JEFAS allows the estimation of the spectrum of the underlying stationary

signal.

On the top-right of Fig. 3, we display the wavelet transform of the signal obtained by

application of the inverse deformations estimated by JEFAS. Notice that the presence

of clicks slightly disturbs the stationarization process. Nonetheless, it makes sense to

estimate a power spectrum from this signal, since the time dependence of its wavelet

transform is negligible with respect to its scale dependence. The estimated spectrum

is displayed on the bottom of Fig. 3. The harmonic structure clearly appears, together

with a formant-type structure as mentioned in [23]. We believe the application of JEFAS

to these types of sounds can potentially bring new insights in bio-acoustic applications.
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Fig. 3. Dolphin sound spectral analysis. Top left: Scalogram of the original signal. Top right: Scalogram of the

unwarped and unmodulated signal. Bottom: estimated spectrum of the underlying stationary signal.

C. Application to Doppler estimation

Finally, we analyze a sound which is a recording (from a fixed location) from a racing

car, moving with constant speed. The car engine sound is then deformed by the Doppler

effect, which results in time warping, as explained below. Besides, as the car is moving,

the closer the car to the microphone, the larger the amplitude of the recorded sound.

Thus, our model fits well this signal.

The wavelet transforms of the original signal and the two estimations of the un-
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derlying stationary signal are shown in Fig. 4. While the estimation of time warping

only corrects the displacement of wavelet coefficients in the time-scale domain, the

joint estimation of time warping and amplitude modulation also approximately corrects

nonstationary variations of the amplitudes.

The physical relevance of the estimated time warping function can be verified. Indeed,

denote by V the (constant) speed of the car and by c the sound velocity. Fixing the time

origin to the time at which the car passes in front of the observer at distance d, the time

warping function due to Doppler effect can be shown to be

γ′(t) =
c2

c2 − V2

(
1 − V2t√

d2(c2 − V2) + (cVt)2

)

.

(30)

We plot in Fig. 4 (bottom right) the estimation γ̃′ compared with its theoretical value

where d = 5 m and V = 54 m/s. Clearly the estimate is close to the corresponding

theoretical curve obtained with these data, which are therefore realistic values.

Nevertheless, a closer look at scalograms in Fig. 4 shows that the amplitude correction

is still not perfect, due to the presence of noise, and the fact that the model remains

too simple: the amplitude modulation actually depends on frequency, which is not

accounted for.

V. CONCLUSIONS

We have discussed in this paper extensions of methods and algorithms described

earlier in [9], [28], [21], [22] for the joint estimation of deformation operator and power

spectrum for deformed stationary signals, a problem already addressed in [20] with a

different approach. Besides some improvements on the estimation algorithm itself, the

main improvements described in this paper concern the following two points

1) the extension of the algorithm to the joint estimation of deformations including

amplitude modulation to the model and its estimation ([22] was limited to time

warping and combinations of time warping with frequency modulation, and in-

vestigated generalized wavelet transforms);

2) a statistical study of the estimators and of the performances of JEFAS algorithm,

with precise mathematical statements.
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Fig. 4. Doppler estimation. Top left: Scalogram of the original signal. Top right: Scalogram of the unwarped and

unmodulated signal. Bottom left: Scalogram of the unwarped signal. Bottom right: Estimated time warping compared

with the theoretical value given in (30).

The proposed approach was validated on numerical simulations and applications to two

case studies: spectral estimation from non-stationary dolphin vocalization, and Doppler

estimation.

The results presented here show that the proposed extensions yield a significant

improvement in terms of precision, and a better theoretical control. In particular, the con-

tinuous parameter estimation procedure avoids quantization effects that were present

in [21] where the parameter space was discrete and the estimation based on exhaustive

search. It also allows the derivation of precision estimates, in particular a Cramér-Rao

bound. Numerical results show that the introduction of amplitude modulation also

improves results. Finally, regarding the approach of [20], its domain of validity seems

to be limited to small scales (i.e. high frequency) signals, which is not the case here.

Contrary to [20], our approach is based on (approximate) maximum likelihood estima-

tion in the Gaussian framework. Because of our choice to disregard time correlations, the

estimates obtained here generally present spurious fluctuations, which can be smoothed

out by appropriate filtering. A natural extension of our approach would be to introduce
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a smoothness prior that should avoid such filtering steps when necessary.

We believe that being able to estimate precisely warping functions can be valuable in

a variety of audio applications. Speech applications have already been studied, we may

also mention bio-acoustic signals, for example to refine the frequency excursion indices

used to assess vocal performances in birdsongs (see [31] and references therein). Quite

obviously, controlling warping and spectrum opens new perspectives in sound design,

for example for cross-synthesis. Application to nonstationary blind source separation is

also a natural follow-up (work in preparation).

The code and datasets used to produce the numerical results of this paper, and other

audio examples (female voice, wind, etc.) are available at the web site

https://github.com/AdMeynard/JEFAS

More details on the sharp wavelet and proofs of Theorem 1 and Proposition 1 are

given in supplementary data, that also contains another case study (application to wind

sound).
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