
HAL Id: hal-01670153
https://hal.science/hal-01670153v1

Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilient co-scheduling of malleable applications
Anne Benoit, Loïc Pottier, Yves Robert

To cite this version:
Anne Benoit, Loïc Pottier, Yves Robert. Resilient co-scheduling of malleable applications. Inter-
national Journal of High Performance Computing Applications, 2017, �10.1177/1094342017704979�.
�hal-01670153�

https://hal.science/hal-01670153v1
https://hal.archives-ouvertes.fr

Resilient co-scheduling of malleable applications?

Anne Benoita, Löıc Pottiera, Yves Roberta,b

aLaboratoire LIP, École Normale Supérieure de Lyon, France
bUniversity of Tennessee Knoxville, USA

Abstract

Recently, the benefits of co-scheduling several applications have been demonstrated in a fault-free context,
both in terms of performance and energy savings. However, large-scale computer systems are confronted
by frequent failures, and resilience techniques must be employed for large applications to execute efficiently.
Indeed, failures may create severe imbalance between applications, and significantly degrade performance.
In this paper, we aim at minimizing the expected completion time of a set of co-scheduled applications.
We propose to redistribute the resources assigned to each application upon the occurrence of failures, and
upon the completion of some applications, in order to achieve this goal. First, we introduce a formal model
and establish complexity results. The problem is NP-complete for malleable applications, even in a fault-
free context. Therefore, we design polynomial-time heuristics that perform redistributions and account for
processor failures. A fault simulator is used to perform extensive simulations that demonstrate the usefulness
of redistribution and the performance of the proposed heuristics.

Keywords: Resilience; co-scheduling; redistribution; complexity results; heuristics; simulations.

1. Introduction

With the advent of multicore platforms, HPC applications can be efficiently parallelized on a flexible
number of processors. Usually, a speedup profile determines the performance of the application for a given
number of processors. For instance, the applications in [1] were executed on a platform with up to 256 cores,
and the corresponding execution times were reported. A perfectly parallel application has an execution
time tseq/p, where tseq is the sequential execution time, and p is the number of processors. In practice,
because of the overhead due to communications and to the inherently sequential fraction of the application,
the parallel execution time is larger than tseq/p. The speedup profile of the application is assumed to be
known (or estimated) before execution, through benchmarking studies. A simple scheduling strategy on
HPC platforms is to execute each application in dedicated mode, assigning all resources to each application
throughout its execution. However, it was shown recently that rather than using the whole platform to run
one single application, both the platform and the users may benefit from co-scheduling several applications,
thereby minimizing the loss due to the fact that applications are not perfectly parallel. Sharing the platform
between two applications already leads to significant performance and energy savings [2], which become even
more important when the number of co-scheduled applications increases [3].

To the best of our knowledge, co-scheduling has been investigated so far only in the context of fault-free
platforms. However, large-scale platforms are prone to failures. Indeed, for a platform with p processors, even
if each node has an individual MTBF (Mean Time Between Failures) of 120 years, we expect a failure likely
to occur every 120/p years, for instance every hour for a platform with p = 106 nodes. Failures are likely to
destroy the load-balancing achieved by co-scheduling algorithms: if all applications were assigned resources
by the co-scheduler so as to complete their execution approximately at the same time, the occurrence of a
failure will significantly delay the completion time of the corresponding application. In turn, several failures
may well create severe imbalance among the applications, thereby significantly degrading performance.

Email addresses: Anne.Benoit@ens-lyon.fr (Anne Benoit), Loic.Pottier@ens-lyon.fr (Löıc Pottier),
Yves.Robert@inria.fr (Yves Robert)

?A short version of this work appeared in Proceedings of ICPP’16, Philadelphia, August 2016, as ”Resilient application
co-scheduling with processor redistribution.”

Preprint submitted to IJHPCA April 10, 2017

To cope with failures, the de-facto general-purpose error recovery technique in HPC is checkpoint and
rollback recovery [4]. The idea consists in periodically saving the state of the application, so that when an
error occurs, the application can be restored into one of its former states. The most widely used protocol is
coordinated checkpointing, where all processes periodically stop computing and synchronize to write critical
application data onto stable storage. The frequency at which checkpoints are taken should be carefully tuned,
so that the overhead in a fault-free execution is not too important, but also so that the price to pay in case
of failure remains reasonable. Young and Daly provide good approximations of the optimal checkpointing
interval [5, 6].

This paper investigates co-scheduling on failure-prone platforms. Checkpointing helps to mitigate the
impact of a failure on a given application, but it must be complemented by redistributions to re-balance
the load among applications. Co-scheduling usually involves partitioning the applications into packs, and
then scheduling each pack in sequence, as efficiently as possible. We focus on co-scheduling a given pack of
applications that execute in parallel, and leave the partitioning for further work. This is because scheduling a
given pack becomes a difficult endeavour with failures (and redistributions), while it was of linear complexity
without failures. Also, designing efficient pack scheduling algorithms is needed whenever there are relatively
few applications that can be all scheduled simultaneously, and it is a prerequisite before tackling the general
problem. Given a pack, i.e., a set of parallel applications that start execution simultaneously, there are two
main opportunities for redistributing processors. First, when an application completes, the applications that
are still running can claim its processors. Second, when a failure strikes an application, that application
is delayed. By adding more resources to it, we can reduce its final completion time. However, we have to
be careful, because each redistribution has a cost, which depends on the volume of data that is exchanged,
and on the number of processors involved in redistribution. In addition, adding processors to an application
increases its probability to fail, so there is a trade-off to achieve in order to minimize the expected completion
time of the pack.

The major contributions of this work are the following: (i) the design of a detailed and comprehensive
model for scheduling a pack of applications on a failure-prone platform; (ii) the NP-completeness proof for
the problem with redistributions; (iii) the design and assessment of several polynomial-time heuristics to
deal with the general problem with failures and redistribution costs.

The rest of the paper is organized as follows. First, we discuss related work in Section 2. The model and
the optimization problem are formally defined in Section 3. In Section 4 we expose the complexity results.
We introduce some polynomial-time heuristics in Section 5, which are assessed through simulations using a
fault generator in Section 6. Finally, we conclude and provide directions for future work in Section 7.

2. Related work

Parallel application models. A parallel application is an application that may use several processors
during its execution. Note that the scheduling literature uses the term parallel tasks rather than parallel
application. Many parallel application models have been developed, and several types of applications have
been defined. In 1986, with the development of multiprocessor systems, B lażewicz et al.[7] have modeled
the problem of scheduling a set of independent parallel applications on identical processors. The number of
processors assigned to each application was fixed during the execution. They showed that the problem is NP-
complete when the number of processors is not fixed. An application that has a fixed number of processors
is called rigid. In 1989, Du and Leung [8] developed a model called the Parallel Task System, where an
application is executed by one or more processors at the same time, but the number of processors assigned
to one application cannot exceed a certain threshold. Contrarily to the B lażewicz’s model, the number of
processors is not fixed in advance, but once it is determined (between one and the threshold), it remains fixed
during the execution. Such applications are called moldable. Finally, a malleable application can have its
number of allocated processors vary during the execution. B lażewicz et al. [9] have designed approximation
algorithms to solve the problem of scheduling independent malleable applications. Malleable applications are
more flexible than rigid and moldable applications, and they can be implemented with data redistribution
techniques (the technique used in this paper) or work stealing. In practice, changing the number of processors

2

at runtime requires specific tools, frameworks and even dedicated programming languages like Cilk [10].
Mart́ın et al. [11] have developed an MPI extension, called Flex-MPI, which introduces malleability in MPI.
Flex-MPI can achieve a load balancing among applications through a prediction model. The prediction
model in Flex-MPI does not take into account resilience aspects.

One contribution of this work is to develop a complete model taking into account resilience aspects. We
also provide heuristics able to re-assign processors to applications that need them. We also show that the
problem of finding a schedule that minimizes the execution time with fixed redistribution costs and without
failures is NP-complete (in the strong sense).

Resilience. One of the most used techniques to handle fail-stop errors in HPC is checkpoint and rollback
recovery [4]. The idea is to periodically save the system state, or the application memory footprint onto
a stable storage. Then, after a downtime and a recovery time, the system can be restored into a former
valid state (rollback step). Another technique for dealing with fail-stop errors is process replication, which
consists in replicating a process and even replicating communications. For instance, the project RedMPI [12]
implements a process replication mechanism and quadruplicates each communication.

In this paper, we use a light-weight checkpointing protocol called the double checkpointing algorithm [13,
14]. This is an in-memory checkpointing protocol, which avoids the high overhead of disk checkpoints. Pro-
cessors are paired: each processor has an associated processor called its buddy processor. When a processor
stores its checkpoint file in its own memory, it also sends this file to its buddy, and the buddy does the same.
Therefore, each processor stores two checkpoints, its own and that of its buddy. When a failure occurs,
the faulty processor loses these two checkpoint files, and the buddy must re-send both checkpoints to the
faulty node. If a second failure hits the buddy during this recovery period (which happens with very low
probability), we have a fatal failure and the system cannot be recovered.

Co-scheduling algorithms. This work provides an important extension to our previous work on co-
schedules [3], which already demonstrated that sharing the platform between two or more applications can
lead to significant performance and energy savings [2]. To the best of our knowledge, it is the first work
to consider co-schedules and failures, and hence to use malleable applications to allow redistributions of
processors between applications. However, we point out that co-scheduling with packs can be seen as the
static counterpart of batch scheduling techniques, where jobs are dynamically partitioned into batches as
they are submitted to the system (see [15] and the references therein). Batch scheduling is a complex online
problem, where jobs have release times and deadlines, and where only partial information on the whole
workload is known when taking scheduling decisions. On the contrary, co-scheduling applies to a set of
applications that are all ready for execution. In this paper, as already mentioned, we restrict to a single
pack, because scheduling already becomes difficult for a single pack with failures and redistributions.

3. Framework

We consider a pack of n independent malleable applications {T1, . . . , Tn}, and an execution platform with
p identical processors subject to failures. We assume n ≤ 2p due to the use of the double checkpointing
model. The objective is to minimize the expected completion time of the last application. First, we define
the fault model in Section 3.1. Then, we show how to compute the execution time of an application in
Section 3.2, assuming that no redistribution has occurred. The redistribution mechanism and its associated
cost are discussed in Section 3.3. Finally, the objective function is detailed in Section 3.4.

3.1. Fault model

We consider fail-stop errors, which are detected instantaneously. To model the rate at which faults occur
on one processor, we use an exponential probability law of parameter λ. The mean (or MTBF) of this law
is µ = 1

λ . The MTBF of an application depends upon the number of processors it is using, hence changes
whenever a redistribution occurs. Specifically, if application Ti is (currently) executed on j processors, its
MTBF is µi,j = µ

j (see [16, Proposition 1.2] for a proof). To recover from fail-stop errors, we use the double

checkpointing scheme, or buddy algorithm [13, 14]. Therefore, the number of processors assigned to each

3

application must be even. We enforce periodic checkpointing for each application. Formally, if application Ti
is executed on j processors, there is a checkpoint every period of length τi,j , with a cost Ci,j .

We now explain how to compute the cost Ci,j of a checkpoint when application Ti executes with j
processors. Recall that we use in-memory checkpointing. Let mi be the memory footprint (total data size)
of application Ti. Each of the j processors holds mi

j data, which it must send to its buddy processor. The
time to communicate a message of size s is β + s

τ , where β is a start-up latency and τ the link bandwidth.
We derive that Ci,j = mi

jτ + β.

As for the checkpointing period τi,j , we use Young’s formula [17] and let

τi,j =
√

2µi,jCi,j + Ci,j . (1)

Because τi,j is a first order approximation, the formula is valid only if Ci,j � µi,j . When a fault occurs, there
is first a downtime of duration D, and then a recovery period of duration Ri,j . We assume that Ri,j = Ci,j ,
while the downtime value D is platform-dependent and not application-dependent.

3.2. Execution time without redistribution

To compute the expected execution time of a schedule, we first have to compute the expected execution
time of an application Ti executed on j processors subject to failures. We first consider the case without
redistribution (but taking failures into account). Let ti,j be the execution time of application Ti on j
processors in a fault-free scenario. Let tRi,j(α) be the expected time required to compute a fraction α of the
total work for application Ti on j processors, with 0 ≤ α ≤ 1. We need to consider such a partial execution
of Ti on j processors to prepare for the case with redistributions.

Recall that the execution of application Ti is periodic, and that the period τi,j depends only on the
number of processors, but not on the remaining execution time (see Equation (1)). After a work of duration
τi,j − Ci,j , there is a checkpoint of duration Ci,j . In a fault-free execution, the time required to execute the
fraction of work α is αti,j , hence a total number of checkpoints of

Nff
i,j(α) =

⌊
αti,j

τi,j − Ci,j

⌋
. (2)

Next, we have to estimate the expected execution time for each period of work between checkpoints. We
are able to calculate the expectation of one period of work according to an MTBF value and a number of
processors. The expected time to execute successfully during T units of time with j processors (there are

T −C units of work and C units of checkpoint, where T is the period) is equal to
(

1
λj +D

)
(eλjT − 1) [16].

Therefore, in order to compute tRi,j(α), we compute the sum of the expected time for each period, plus the
expected time for the last (possibly incomplete) period. This last period is denoted as τlast(α) and defined
as τlast(α) = αti,j −Nff

i,j(α)(τi,j − Ci,j).
The first Nff

i,j(α) periods are equal (of length τi,j), hence have the same expected time. Finally, we obtain:

tRi,j(α) = eλjRi,j

(
1

λj
+D

)(
Nff
i,j(α)(eλjτi,j −1) + (eλjτlast(α)−1)

)
. (3)

In a fault-free environment, it is natural to assume that the execution time is non-increasing with the
number of processors. Here, this assumption would translate into the condition:

tRi,j+1(α) ≤ tRi,j(α) for 1 ≤ i ≤ n, 1 ≤ j < p, 0 ≤ α ≤ 1. (4)

However, when we allocate more processors to an application, even though the work is further paral-
lelized, the probability of failures increases, and the corresponding waste increases as well. Therefore, adding
resources to an application is useful up to a threshold. After this threshold, we have tRi,j+1 ≥ tRi,j . In order to
satisfy Equation (4), we restrict the number of processors assigned to each application, and never assign more
processors than the previous threshold. In other words, if Ti is already assigned j processors, we consider
assigning more processors to it only if tRi,j+1 ≤ tRi,j . Formally, this defines a maximum number of processors,

4

time0

processors

T3
RC3 T3

T2

T1 RC1 T1

q
q1
q3

Figure 1: Redistribution at the end of an application,
where RCi represents the redistribution cost for task Ti.

Wdone = te
ti,j Wtodo = α

j
k

t′

time0 te te + t′
ti,j

Figure 2: Work representation for application Ti at time te.

jmax(i), for each application Ti: jmax(i) = min1≤j≤p{j such that tRi,k ≥ tRi,j for all k > j}, and we assume

that tRi,j+1 ≤ tRi,j for all j < jmax(i).
Another common assumption for malleable applications is that the work is non-decreasing when the

number of processors increases [9]: this amounts to saying that no super-linear speed-up is possible. Hence,
we assume here that for 1 ≤ i ≤ n, 1 ≤ j < p and 0 ≤ α ≤ 1, (j + 1)× tRi,j+1(α) ≥ j × tRi,j(α).

For convenience, we denote by tUi the current expected finish time of application Ti at any point of the
execution. Initially, if application Ti is allocated to j processors, we have tUi = tRi,j(1).

3.3. Redistributing processors

There are two major cases for which it may be useful to redistribute processors: (1) in a fault-free sce-
nario, when an application ends, it releases processors that can be used to accelerate other applications,
and (2) when an error occurs, we may want to force the release of processors, so that we can assign more
processors to the application that has been slowed down by the error. We first consider a fault-free sce-
nario in Section 3.3.1, and then we account for the checkpoint costs and for redistribution after failures in
Section 3.3.2. Finally, we discuss the case of consecutive redistributions in Section 3.3.3.

3.3.1. Fault-free scenario

We first consider a simplified scenario without checkpoint (nor failure), in order to explain how redis-
tribution works. Consider for instance that q processors are released when application T2 ends. We can
allocate q1 new processors to application T1, and q3 new processors to application T3, where q1 + q3 = q
(see Figure 1). This redistribution will take some time (redistribution cost RCi, detailed below), after which
T1 and T3 will resume execution, and we first need to compute the new expected completion time for their
remaining fraction of work.

Consider that a redistribution is conducted at time te (the end time of an application), and that appli-
cation Ti, initially with j processors, now has k = j + q > j processors. What will be the new finish time
of Ti? The fraction of work already executed for Ti is te

ti,j
, because the application was supposed to finish at

time ti,j (see Figure 2). The remaining fraction of work is α = 1 − te
ti,j

, and the time required to complete

this work with k processors is t′, where t′

ti,k
= α, hence t′ = αti,k =

(
1− te

ti,j

)
ti,k.

Furthermore, we need to add a redistribution cost: when moving from j to k = j + q processors, the
application Ti must redistribute its data across the processors. The application keeps its initial j processors,
which now hold too much data, and enrolls q = k − j new processors, which have no data yet. Recall that
mi is the memory footprint (total data size) of application Ti. Each of the original j processors initially
holds mi

j data and will keep only mi

k after the redistribution; it sends mi

jk data to each of the newly enrolled

q processors, thereby keeping mi

j − (k− j)mi

jk = mi

k data. In turn, each new processor receives mi

jk data from
j processors and duly gets mi

k data in the end.
What is the best schedule for such a redistribution, and what time does it require? We first account

for a constant start-up overhead S, paid for initiating the redistribution call. Then we adopt a realistic
one-port communication model [18] where a processor can send and receive at most one message at any
time-step. Independent communications, involving distinct sender/receiver pairs, can take place in parallel:
however, two messages sent by the same processor will be serialized. Recall that the time to communicate
a message of size s is β + s

τ . To schedule the redistribution, we build a bipartite graph G with j nodes on

5

j1

j2

j3

j4

q5

q6

j q = k − j

Figure 3: Bipartite graph G representing a redistribution from j = 4 to k = 6 processors, with each communication round
colored. We have χ′(G) = ∆(G) = 4.

the left and q nodes on the right. In the one-port model, there can be up to j simultaneous communications
(each of size mi

jk) involving j distinct processor pairs. Let us call a round such a set of simultaneous

(independent) communications. How many rounds are required to schedule the redistribution? We transform
this problem into an edge coloring problem, with one color for one round (see Figure 3). The number of
rounds required is equal to the edge chromatic number χ′(G). Konig’s theorem [19] states that this edge
chromatic number is equal to the maximum degree in G so χ′(G) = ∆(G) when G is bipartite. Clearly,
we have here ∆(G) = max(j, k − j). Therefore, the number of rounds is equal to max(j, k − j), and the

redistribution cost is RCj→ki = S + max(j, k − j)×
(
mi

jkτ + β
)

.

Needless to say, we would perform a redistribution if the cost of redistribution is lower than the benefit
of allocating new processors to the application, i.e., if ti,j − (te + t′) > RCj→ki .

3.3.2. Accounting for failures

When struck by a fault, an application needs to recover from the failure and to re-execute some work.
While the application loads were well-balanced initially in order to minimize total execution time, now the
faulty application is likely to exceed its expected execution time. If it becomes the longest application of
the schedule, we try to assign it more processors so as to reduce its completion time, hence redistributing
processors.

Because we use the double checkpointing algorithm as the resilience model, we consider processors by
pairs. We aim at redistributing pairs of processors either when an application is finished, at time te (as in
the fault-free scenario discussed in Section 3.3.1), or when a failure occurs, say at time tf . In each case, we
need to compute the remaining work, and the new expected completion time of the applications that have
been affected by the event. Given an application Ti, we keep track of the time when the last redistribution or
failure occurred for this application, denoted as tlastRi

. At time t (corresponding to the end of an application
or to a failure), we know exactly how many checkpoints have been taken by application Ti executed on j
processors since tlastRi , and we let this number be Ni,j :

Ni,j =

⌊
t− tlastRi

τi,j

⌋
. (5)

We begin with the case of an application completion: consider that an application finishes its execution at
time te, hence releasing some processors. We consider assigning some of these processors to an application Ti
currently running on j processors. The fraction of work executed by Ti since the last redistribution is
te−tlastRi

−Ni,jCi,j

ti,j
, because we have to remove the cost of the checkpoints, during which the application did

not execute useful work.
We apply the same reasoning for the second case, when a fault occurs. In this case, we need to consider

the application Ti where the failure stroke, and other applications Ti′ from which we would remove some
processors (in order to give them to Ti).
• Consider that application Ti is running on j processors and subject to a failure at time tf . Therefore,
Ti needs to recover from its last valid checkpoint, and the fraction of work executed by Ti corresponds
to the number of entire periods completed since the last failure or redistribution tlastRi

, each followed

by a checkpoint. We can express it as
Ni,j×(τi,j−Ci,j)

ti,j
.

• At time tf , consider application Ti′ , on which we perform a redistribution, moving from j′ to j′ − q
processors, with q > 0. The fraction of work executed by Ti′ can be computed as in the application

ending case scenario: it is
tf−tlastR

i′
−Ni′,j′Ci′,j′

ti′,j′
.

6

timetlastRi′′
= 0

processors

Ci,j Ci,j

Fault
t

D Ri,j RC
j→j+q
i

Ci,j+q

tlastRi

Ti

Ci′,j′ Ci′,j′ RCj
′→j′−q
i′

Ci′,j′−qTi′

tlastRi′

Ci′′,j′′ Ci′′,j′′Ti′′

Figure 4: Example of redistribution when a fault strikes application Ti. The colored rectangles correspond to useful work done
by Ti and Ti′ before the failure. Ti′′ is not affected by the failure as it does not perform a redistribution.

Finally, for any application subject to a redistribution or a failure, let αi be the remaining fraction of
work to be executed by Ti, that is 1 minus the sum of the fraction of work executed before tlastRi

and the
fraction of work expressed above (computed between tlastRi

and t).

Similarly to the fault-free scenario, RCj→ki denotes the redistribution cost for application Ti when moving
from j to k processors. Redistribution can now add (k > j) or remove (k < j) processors to application Ti,
and the cost is expressed as:

RCj→ki = S + max(min(j, k), |k − j|)×
(
mi

kjτ
+ β

)
. (6)

We are now ready to compute the new values of tlastRi for all applications subject to a failure or a
redistribution, and we illustrate the different scenarios in Figure 4. Let t be the time of the event (end
of application t = te, or failure t = tf), and consider that a redistribution is done either for a faulty
application Ti or for another application Ti′ . After a redistribution, we always start by taking a checkpoint
before computing with the new period. Therefore, if a fault occurs, we do not have to redistribute again.

For the faulty application Ti, the new value of tlastRi
hence becomes tlastRi

= t+D+Ri,j+RCj→ki +Ci,k
(we need to account for the downtime and recovery). However, if Ti′ is performing a redistribution but it
was not struck by a failure, it can start the redistribution at time t: either it is getting new processors
that are available following the end of an application, or it is using fewer processors and can perform its

redistribution. In all cases, we have tlastRi′ = t+RCj
′→k′
i′ +Ci′,k′ . Note that we can have processors involved

simultaneously in two redistributions, as they will only receive data from the other processors of the faulty
application Ti, and send data to the other processors of the non-faulty application Ti′ . We assume that sends
and receives can be done in parallel without slowdown.

Finally, the expected finish time of an application Ti for which we have updated tlastRi becomes tUi =
tlastRi

+ tRi,k(αi), where k is the new number of processors on which Ti is executed, and αi the remaining
fraction of work. Similarly to the fault-free scenario, we give extra processors to an application only if the
new expected finish time tUi is lower than the one with no redistribution.

3.3.3. When multiple redistributions overlap

Here, we deal with the problem of chaining redistributions. If another event (application completion or
fault) occurs during the current redistribution, we cannot enroll the processors that have not yet finished
the current redistribution. On Figure 5, at the end of the application T3, there are no available applications
to whom we may try to give its processors. T1 will be able to start a new redistribution at time-step t1, and
T2 at time-step r2.

3.4. Objective function

We can now state the objective function: Given n malleable applications {T1, . . . , Tn}, their speedup
profiles, and an execution platform with p identical processors subject to failures with individual rate λ,
CoSched aims at minimizing the maximum of the expected completion times of the applications. Redis-
tributions are allowed only when an application completes execution or is struck by a failure (with a cost
specified in Section 3.3).

7

D R1,6 RC6→8
1 C1,8

RC12→10
2

C2,10

r2

W

W

W

W

W

time

processors

0 fault T3 ends r1

T3

T2

T1

Figure 5: Illustration of two consecutive events.

4. Complexity results

We first consider the CoSched problem without redistributions and provide an optimal polynomial-time
algorithm. Then, we prove that the problem becomes NP-complete with redistributions, even in a fault-free
scenario.

Aupy et al. [3] designed a greedy algorithm to solve the problem with no redistribution, in a fault-
free scenario. Their algorithm (called Optimal-1-pack-schedule) therefore works with ti,j values instead
of tRi,j , and minimizes the execution time of the applications. As a minor detail, it does not take into account
the fact that the number of processors assigned to an application must always be even in our setting, because
we use the double checkpointing algorithm. It is not difficult to extend this algorithm to solve the problem
with failures, but still without redistributions: the idea is to give initially two processors per applications, to
sort them by expected execution time, and to greedily give two extra processors to the longest application,
if it decreases its expected execution time. This algorithm is called Opt-NoRedistrib. We can therefore
prove the following theorem (see [20] for the proof).

Theorem 1. The CoSched problem without redistributions can be solved in polynomial time O(n), where
n is the number of applications.

We show through a few examples the difficulty of CoSched when redistributions are allowed, even when
there are no failures. The first example shows that the previous algorithm Opt-NoRedistrib is no longer
optimal. Consider two applications T1 and T2 and three processors, and further assume that there is no cost
for redistribution. We use the following speedup profiles:

T1 =

{
t1,1 = 10, w1,1 = 10
t1,2 = 9, w1,2 = 18
t1,3 = 6, w1,3 = 18

T2 =

{
t2,1 = 6, w2,1 = 6
t2,2 = 3, w2,2 = 6

where wi,j represents the work for application i with j processors, i.e., wi,j = j × ti,j .
Opt-NoRedistrib initially assigns one processor to each application, and then the remaining one to the

longest application T1. At time 6, when T2 finishes and releases its processor, we redistribute T1 over the three
processors. At time 6, the application T1 has done 2/3 of its work, it remains 1/3×t1,3 = 1/3×6 = 2 time units
with 3 processors, therefore T1 ends at time 6+2 = 8 (see Figure 6a). We obtain a smaller makespan if we do
not use Opt-NoRedistrib but instead the variant GreedySpeedupProfile, where remaining processors
are allocated to the application with the best speedup profile. In the example, GreedySpeedupProfile
initially allocates the third processor to T2 because the execution time with two processors is divided by two,
i.e., perfect speedup with w2,2/w2,1 = 1. Then T2 finishes at time 3. At this time, T1 has still to complete
7/10 of its load, so the remaining time for T1 is equal to 7/10× t1,3 = 7/10× 6 = 4.2. The makespan in this
second configuration becomes 3 + 4.2 = 7.2, which is better!

Since Opt-NoRedistrib is no longer optimal, a natural question is whether GreedySpeedupProfile
is optimal. The following example answers negatively. Consider the following speedup profiles (with two
applications and three processors as before):

T1 =

{
t1,1 = 10, w1,1 = 10
t1,2 = 6, w1,2 = 12
t1,3 = 5, w1,3 = 15

T2 =

{
t2,1 = 6, w2,1 = 6
t2,2 = 3, w2,2 = 6

8

T1

T2

0 6 9

T2

0 6 8

T1

(a) Opt-NoRedistrib uses largest execution
time to allocate processors

T1

T2

0 3 10

T2

0 3 7.2

T1

(b) GreedySpeedupProfile uses best
speedup profile to allocate processors

Figure 6: Examples: coordinates are execution time (x-axis) and processors (y-axis).

GreedySpeedupProfile allocates two processors to T2 (best speedup profile) and one processor to T1. So
at time 3, the application T2 completes and its two processors are given to T1. The execution time for T1

is 3 + 7/10× 5 = 6.5. But if we allocate two processors to T1 and one to T2, we finish both applications at
time 6 without any redistribution!

Intuitively, these little examples show that CoSched seems to be of combinatorial nature when redistri-
butions are taken into account, even with zero cost.

To establish the complexity of the problem with redistributions, we consider the simple case with no
failures. Therefore, redistributions occur only at the end of an application, and any application changes at
most n times its number of processors, where n is the total number of applications. We further consider that
the redistribution cost is a constant equal to S, i.e., we let β = 0 and τ = +∞ in Equation (6). Even in this
simplified scenario, the problem is NP-complete:

Theorem 2. With constant redistribution costs and without failures, CoSched is NP-complete (in the
strong sense).

The proof is available in the associated research report [20]. Note that we conjecture that CoSched re-
mains NP-complete with zero redistribution cost. This is because of the combinatorial exploration suggested
by the examples. But this remains an open problem!

5. Heuristics

In this section, we introduce polynomial-time heuristics to solve the general CoSched problem with both
failures and redistributions. Before performing any redistribution, we need to choose an initial allocation
of the p processors to the n applications. We use the optimal algorithm without redistribution discussed in
Section 4 (Opt-NoRedistrib).

We first discuss the general structure of the heuristics. Then, we explain how to redistribute available
processors, and the two strategies to redistribute when failures occur. The pseudo-codes for all algorithms
are available in the companion research report [20].

General structure. All heuristics share the same skeleton: we iterate over each event (either a failure or an
application termination) until total remaining work is equal to zero. If some applications are still working
for a previous redistribution, (i.e., the current time t is smaller than tlastRi

for these applications), then we
exclude them for the next redistribution, and add them back into the list of applications after the current
redistribution is completed. If an application ends, we redistribute available processors as will be discussed in
Section 5. Then, if there is a failure, we calculate the new expected execution time of the faulty application.
Also, we remove from the list the applications that end before tlastRf

, and we release their processors.
Afterwards, we have to choose between trying to redistribute or do nothing. If the faulty application is

not the longest application, the total execution time has not changed since the last redistribution. Therefore,
because it is the best execution time that we could reach, there is no need to try to improve it. However, if
the faulty application is the longest application, we apply a heuristic to redistribute processors (see below).

9

Redistribution when an application ends. When an application ends, the idea is to redistribute the processors
that it releases in order to decrease the expected execution time. The easiest way to proceed consists in adding
processors greedily to the application with the longest execution time, as was done in Opt-NoRedistrib
to compute an optimal schedule. This time, we further account for the redistribution cost, and update the
values of αi, tlastRi

and tUi for each application i that encountered a redistribution. Therefore, this heuristic,
called EndLocal, returns a new distribution of processors.

Rather than using only local decisions to redistribute available processors at time t, it is possible to
recompute an entirely new schedule, using Opt-NoRedistrib again, but further accounting for the cost of
redistributions. This heuristic is called EndGreedy. Now, we need to compute the remaining fraction of
work for each application, and we obtain an estimation of the expected finish time when each application
is mapped on two processors. Similarly to Opt-NoRedistrib, we then add two processors to the longest
application while we can improve it, accounting for redistribution costs.

Note that we effectively update the values of αi and tlastRi for application Ti only if a redistribution was
conducted for this application. It may happen that the algorithm assigns the same number of processors as
was used before. Therefore, we keep the updated value of the fraction of work in a temporary variable αti
and update it whenever needed at the end of the procedure.

Redistribution when there is a failure. Similarly to the case of an application ending, we propose two heuris-
tics to redistribute in case of failures. The first one, ShortestapplicationsFirst, takes only local decisions.
First, we allocate the k available processors (if any) to the faulty application if that application is improv-
able. Then, if the faulty application is still improvable, we try to take processors from shortest applications
(denoted Ts) in the schedule, and give these processors to the faulty application, until the faulty application
is no longer improvable, or there are no more processors to take from other applications. We take processors
from an application only if its new execution time is smaller than the execution time of the faulty application.

The second heuristic, IteratedGreedy, uses a modified version of the greedy algorithm that initializes
the schedule (Opt-NoRedistrib) each time there is a failure, while accounting for the cost of redistributions.
This is done similarly to the redistribution of EndGreedy explained above, except that we need to handle
the faulty application differently to update the values of αf and tlastRf

.

6. Simulations

To assess the efficiency of the heuristics defined in Section 5, we have performed extensive simulations.
The simulation settings are discussed in Section 6.1, and results are presented in Section 6.2. Note that the
code is publicly available at http://graal.ens-lyon.fr/~abenoit/code/redistrib, so that interested
readers can experiment with their own parameters.

6.1. Simulation settings

To evaluate the quality of the heuristics, we conduct several simulations, using realistic parameters. The
first step is to generate a fault distribution: we use an existing fault simulator developed in [21, 22]. In
our case, we use this simulator with an exponential law of parameter λ. The second step is to generate
a fault-free execution time for each application (the ti,j value). We use a synthetic model to generate the
execution profiles in order to represent a large set of scientific applications. The application model that we
use is a classical one, similar to the one used in [3]. For a problem of size m, we define the sequential time:
t(m, 1) = 2×m× log2(m). Then we can define the parallel execution time on q processors:

t(m, q) = f × t(m, 1) + (1− f)
t(m, 1)

q
+
m

q
log2(m). (7)

The parameter f is the sequential fraction of time, we fix it to f = 0.08. So 92% of time is considered as
parallel. The factor m

q log2(m) represents the overhead due to communications and synchronizations. Finally,

we have ti,j(mi) = t(mi, j) where ti,j(mi) is the execution time for application Ti with a problem of size mi

on j identical processors.

10

http://graal.ens-lyon.fr/~abenoit/code/redistrib

Finally, we assign to each application Ti a random value for the number of data mi such that: minf ≤
mi ≤ msup. If minf � msup then the data distribution between applications is very heterogeneous. On the
contrary, if minf is close to msup, the data distribution is homogeneous, in other words all applications have
(almost) the same execution time. Unless stated otherwise, we set minf = 1, 500, 000 and msup = 2, 500, 000
to have execution times long enough so that several failures are likely to strike during execution. With such
a value for msup, the longest execution time in a fault-free execution is around 100 days. We also consider
two different data distribution cases, (i) very heterogeneous with minf = 1, 500, and (ii) homogeneous with
minf = 2, 499, 000.

The cost of checkpoints for an application Ti with j processors is Ci,j = Ci/j, where Ci is proportional
to the memory footprint of the application. We have Ci = mi × c, where c is the time needed to checkpoint
one data unit of mi. The default value is c = 1 , unless stated otherwise. The synchronisation cost value S
is fixed to S = 0 for all following experiments. Finally, the MTBF of a single processor is fixed to 100 years,
unless stated otherwise.

In the following section, we vary the number of processors, the number of applications, the checkpointing
cost and the data distribution, in order to study their impact on performance. Note that we assume that a
failure can strike during checkpoints but not during downtime, recovery and while the processor is performing
some redistribution.

6.2. Results

To evaluate the heuristics, we execute each heuristic x = 50 times and we compute the average makespan,
i.e., the longest execution time in the pack. We compare the makespan obtained by the heuristics to the
makespan (i) in a faulty context without any redistribution (worst case), and (ii) in a fault-free context with
redistributions (best case). We normalize the results by the makespan obtained in a faulty context without
any redistribution, which is expected to be the worst case. The execution in a fault-free setting provides us
an optimistic value of the execution of the application in the ideal case where no failures occur.

We consider four heuristics: IteratedGreedy-EndGreedy where we greedily recompute a new sched-
ule at each application termination and each failure; IteratedGreedy-EndLocal where we use EndLo-
cal at each application termination, but IteratedGreedy in case of failures; Shortestapplications-
First-EndGreedy where we greedily recompute a new schedule at each application termination, but use
ShortestapplicationsFirst in case of failures; and ShortestapplicationsFirst-EndLocal where we
only use the local variants.

Performance in a fault-free context. Figure 7 shows the impact of redistribution in a fault-free context with
100 applications, where we vary the number of processors from 200 to 2000. In this case, we compare
EndLocal with EndGreedy (see Section 5). The two heuristics have a very similar behavior, leading to
a gain of a least 20% with less than 500 processors, and a slightly better gain for the EndGreedy global
heuristic. When the number of processors increases, the efficiency of both heuristics decreases to converge to
the performance without redistribution. Indeed, there are then enough processors so that each application
does not make use of the extra processors released by ending applications. In the heterogeneous context
(with minf = 1500), the gain due to redistribution is even larger.

Figure 8 shows the impact of redistribution in a fault-free context with 1000 applications, we vary the
number of processors from 2000 to 10000. We compare EndLocal with EndGreedy, the two heuristics
have a similar behavior. As showed in Figure 7, the redistribution is more efficient in the heterogeneous
context (with minf = 1500).

In the homogeneous case (Figure 8c), the results clearly show how the number of processors is directly
linked to the efficiency of redistribution. If p/n is even, as each application has almost the same size, we
assign p/n processors to each application. Consequently each application will finish at the same time and
redistributions have very limited use. When p is not divisible by n or if p/n is odd, at least one application
will have more processors than the others. So, at least one application will finish before the others and the
redistribution will be more efficient. We note that the redistribution has a larger impact when few processors
are involved, this is due to the fact that the speedup is better with fewer processors (sublinear speedup). In

11

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 7: Performance of redistribution in a fault-free context with msup = 2500000.

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#proc

Without ReDistrib
With ReDistrib (EndGreedy)

With ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 8: Performance of redistribution in a fault-free context with msup = 2500000.

other words, it is more useful to upgrade from 2 processors to 4 processors rather than from 500 to 502, in
terms of speedup.

Impact of n. Figure 9 shows the impact of the number of applications n when the number of processors is
fixed to 5000. The results show that having more applications increases the efficiency of both heuristics. With
n = 1000, we obtain a gain of more than 40% due to redistributions. The reason is that when n increases,
the number of processors assigned to each application decreases, then heuristics have more flexibility to
redistribute.

Note that, as expected, IteratedGreedy is better than ShortestapplicationsFirst, because it
recomputes a complete new schedule at each fault, instead of just allocating available processors from shortest
applications to the faulty application. Using EndGreedy with IteratedGreedy does not improve the
performance, while EndGreedy is useful with ShortestapplicationsFirst, hence showing that complete
redistributions are useful, even when only performed at the end of an application.

We also observe that results in the heterogeneous cases are slightly better than in the homogeneous
case, but the difference in the homogeneous case when n = 1000 is very tiny due to the large number of
applications (i.e., fewer processors allocated to applications so the redistribution is more efficient).

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 9: Impact of n with p = 5000 processors.

12

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#procs

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 10: Impact of p with n = 100 applications and msup = 2500000.

 1.6x107

 1.8x107
 2x107

 2.2x107

 2.4x107

 2.6x107
 2.8x107

 3x107

 0 2x10 6
 4x10 6

 6x10 6
 8x10 6

 1x10 7
 1.2x10 7

 1.4x10 7

 1.6x10 7

 1.8x10 7

 2x10 7

M
ak

es
pa

n
(s

)

Date of faults (s)

No ReDistrib
IteratedGreedy+EndLocal

ShortestApplicationsFirst+EndLocal

(a) Makespan at each failure dealt with.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0 381870

474815

734087

1.58388e+06

1.72119e+06

4.30732e+06

4.86924e+06

8.12083e+06

1.0241e+07

1.14072e+07

1.17525e+07

1.2509e+07

1.34763e+07

1.47022e+07

1.48639e+07

1.58775e+07

1.96085e+07

1.977e+07

#p
ro

ce
ss

or
s

Date of faults (s)

No ReDistrib
IteratedGreedy+EndLocal

ShortestApplicationsFirst+EndLocal

(b) Standard deviation at each failure dealt with.

Figure 11: Heuristic behaviors with n = 100, p = 1000, MTBF of 50 years, for a single execution.

Impact of p. Figure 10 shows the impact of the number of processors p when the number of applications is
fixed. We vary p between 200 and 5000 processors. The results show that having more processors decreases
the efficiency of both heuristics, but, in the heterogeneous cases, there is always a gain of at least 10%
thanks to redistributions. As noted in the fault-free case, the redistribution is more efficient when the data
distribution is very heterogeneous (Figure 10a). On the contrary, in the homogeneous case (Figure 10c) the
redistribution is less efficient (gain around 10%). The same observations hold, i.e., the use of EndGreedy
vs EndLocal impacts only ShortestapplicationsFirst. In average, with IteratedGreedy, we obtain
a gain of 25%, while ShortestapplicationsFirst provides a gain around 15% when it is not combined
with EndGreedy. This figure also allows us to observe the impact of the MTBF on performance. Indeed,
the MTBF is set to 100 years for each processor, but the overall MTBF for an application (µi,j value)
decreases when the number of processors increases, so the gain obtained by the heuristics decreases due to
the increasing number of failures.

Heuristic behaviors. Figure 11 compares IteratedGreedy and ShortestapplicationsFirst, when com-
bined with EndLocal, on a single execution. We depict both the evolution of the makespan (see Figure 11a)
and the standard deviation, in terms of number of processors (see Figure 11b). IteratedGreedy is clearly
superior in terms of makespan, and this can be explained by the fact that it allocates more processors to
the longest application, earlier in time than ShortestapplicationsFirst, hence resulting in a larger stan-
dard deviation. Because ShortestapplicationsFirst takes only local decisions, it takes more time before
enough processors are given to the longest application.

Impact of MTBF. Figures 12 and 13 show the impact of the MTBF on the performance of redistributions.
We vary the MTBF of a single processor between 5 years and 125 years. When the MTBF decreases,
the number of failures increases, consequently the performance of both heuristics decreases. In Figure 12,
the performance of IteratedGreedy is closely linked to the MTBF value. Indeed, it tends to favor a
heterogeneous distribution of processors (i.e., applications with many processors and applications with few
processors). If an application is executed on many processors, its MTBF becomes very small and this
application will be hit by more failures, hence it becomes even worse than without redistribution!

We observe the same result in Figure 13, especially in the homogeneous case (Figure 13c). This effect is
even amplified due the number of processors (p = 5000) which directly decreases the MTBF and deteriorate
the performance (increasing number of faults).

13

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 12: Impact of MTBF with n = 100, p = 1000, and msup = 2500000.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 13: Impact of MTBF with n = 100, p = 5000, and msup = 2500000.

Impact of checkpointing cost. Figure 14 shows the impact of the checkpointing cost on a platform with 100
applications and 1000 processors. To do so, we multiply the checkpointing cost by c in Figure 14 (recall that c
is the time needed to checkpoint one data unit). When c decreases, the performance of the heuristics increases
and the gap between the execution time in a fault-free context and a fault context becomes small. Indeed, if
checkpoints are cheap, a lot of checkpoints can be taken, and the average time lost due to failures decreases.
We observe that when the checkpointing cost c tends to 1, the checkpointing costs are more important
and the redistribution (specially IteratedGreedy) becomes more unstable. This effect is amplified in a
homogeneous context, because applications and checkpoints are larger than in a heterogeneous context. We
see the same effect on Figure 15.

Impact of the sequential fraction of time. Figure 16 shows the impact of the sequential fraction of time. We
vary f from 0 (applications are fully parallel) to 0.5 (50% of the time is sequential). The results show that
when applications are more parallel, the redistribution is more efficient. This result is expected, because if
applications are not parallel, there is less gain when trying to allocate more processors to help them complete.

In the homogeneous case (Figure 16c), the IteratedGreedy heuristic is worse than the result without
redistribution when f is greater than 0.3. It is due to the fact that all applications are large and not fully
parallel, so when we greedily recompute a new schedule at each fault, we might deteriorate the performance.

Summary. To conclude, we note that IteratedGreedy achieves better performance than Shortestap-
plicationsFirst, mainly because it rebuilds a complete schedule at each fault, which is very efficient but

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 14: Impact of checkpointing cost.

14

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) Original checkpoint cost c = 1.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) Checkpoint cost c = 0.1.

0.40

0.5

0.75

1

 10 20 30 40 50 60 70 80 90 10
0

 11
0

 12
0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

MTBF in year

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) Checkpoint cost c = 0.01.

Figure 15: Impact of checkpointing cost with n = 100, p = 1000, and minf = 1500000.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(a) minf = 1500.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(b) minf = 1500000.

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

(c) minf = 2499000.

Figure 16: Impact of the sequential fraction of time with n = 100 and p = 1000 when 0 ≤ f ≤ 0.5.

also costly. Nevertheless, when the MTBF is low (around 10 years or less), ShortestapplicationsFirst
becomes better than IteratedGreedy. In a faulty context, we gain flexibility from the failures and we
can achieve a better load balance. We observe that the ratio between the number of applications and the
number of processors plays an important role, because having too many processors for few applications leads
to a deterioration of performance (especially in a homogeneous context).

About the data distributions, we observe that the best context to take advantage of redistributions is a
heterogeneous context with large and short applications. In the homogeneous context, when we assign the
same weight to each application, redistributions become much less interesting. We also show that the cost
of checkpointing and the fraction of sequential time have a significant impact on performance.

Finally, we point out that all four heuristics run within a few seconds, while the total execution time of
the application takes several days, hence even the more costly combination IteratedGreedy-EndGreedy
incurs a negligible overhead.

7. Conclusion

In this paper, we have designed a detailed and comprehensive model for scheduling a pack of applications
on a failure-prone platform, with processor redistributions. We have introduced a greedy polynomial-time
algorithm that returns the optimal solution when there are failures but no processor redistribution is allowed.
We have shown that the problem of finding a schedule that minimizes the execution time when account-
ing for redistributions is NP-complete in the strong sense, even with constant redistribution costs and no
failures. Finally, we have provided several polynomial-time heuristics to redistribute efficiently processors
at each failure or when an application ends its execution and releases processors. The heuristics are tested
through extensive simulations, and the results demonstrate their usefulness: a significant improvement of
the execution time can be achieved thanks to the redistributions.

There remains to validate the model on a real system by conducting real experiments, even though this
is beyond the scope of this paper. Further work will also consider partitioning the applications into several
consecutive packs (rather than one) and conduct further simulations (and experiments) in this context. On
the theoretical side, we plan to investigate the complexity of the online redistribution algorithms in terms
of competitiveness. It would also be interesting to deal not only with fail-stop errors, but also with silent
errors. This would require adding verification mechanisms to detect such errors.

15

References

[1] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, R. W. Numrich, Improving Performance via Mini-applications, Research
Report 5574, Sandia National Laboratories, USA (September 2009).

[2] M. Shantharam, Y. Youn, P. Raghavan, Speedup-aware co-schedules for efficient workload management,
Parallel Processing Letters 23 (02) (2013) 1340001. doi:10.1142/S012962641340001X.

[3] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, P. Raghavan, Co-scheduling algorithms for high-
throughput workload execution, Journal of Scheduling To appear.

[4] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, D. B. Johnson, A survey of rollback-recovery protocols in
message-passing systems, ACM Computing Surveys 34 (3) (2002) 375–408.

[5] J. W. Young, A first order approximation to the optimum checkpoint interval, Comm. of the ACM
17 (9) (1974) 530–531.

[6] J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps, FGCS 22 (3)
(2004) 303–312.

[7] J. Blazewicz, M. Drabowski, J. Weglarz, Scheduling multiprocessor tasks to minimize schedule length,
Computers, IEEE Transactions on C-35 (5) (1986) 389–393. doi:10.1109/TC.1986.1676781.

[8] J. Du, J. Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM Journal on Discrete
Mathematics 2 (4) (1989) 473–487. doi:10.1137/0402042.

[9] J. Blazewicz, M. Machowiak, G. Mounié, D. Trystram, Approximation algorithms for scheduling in-
dependent malleable tasks, in: R. Sakellariou, J. Gurd, L. Freeman, J. Keane (Eds.), Euro-Par 2001
Parallel Processing, Vol. 2150 of LNCS, Springer Berlin Heidelberg, 2001, pp. 191–197.

[10] M. Frigo, C. E. Leiserson, K. H. Randall, The Implementation of the Cilk-5 Multithreaded Language,
in: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and Imple-
mentation, PLDI ’98, ACM, New York, NY, USA, 1998, pp. 212–223. doi:10.1145/277650.277725.

[11] G. Mart́ın, D. E. Singh, M.-C. Marinescu, J. Carretero, Enhancing the performance of malleable MPI
applications by using performance-aware dynamic reconfiguration, Parallel Computing 46 (2015) 60 –
77. doi:http://dx.doi.org/10.1016/j.parco.2015.04.003.

[12] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, R. Brightwell, Detection and correction of
silent data corruption for large-scale high-performance computing, in: Proceedings of SC’12, 2012, pp.
78:1–78:12.

[13] X. Ni, E. Meneses, L. Kale, Hiding Checkpoint Overhead in HPC Applications with a Semi-Blocking
Algorithm, in: Proceedings of CLUSTER’12, 2012, pp. 364–372. doi:10.1109/CLUSTER.2012.82.

[14] J. Dongarra, T. Hérault, Y. Robert, Performance and reliability trade-offs for the double checkpointing
algorithm, International Journal of Networking and Computing 4 (1) (2014) 23–41.

[15] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, Batch resizing policies and techniques for fine-grain
grid tasks: The nuts and bolts, Journal of Information Processing Systems 7 (2).

[16] T. Herault, Y. Robert, Fault-Tolerance Techniques for High-Performance Computing, Springer Int.
Publishing, 2015.

[17] J. W. Young, A first order approximation to the optimum checkpoint interval, Commun. ACM 17 (9)
(1974) 530–531. doi:10.1145/361147.361115.

[18] P. B. Bhat, C. S. Raghavendra, V. K. Prasanna, Efficient collective communication in distributed
heterogeneous systems, JPDC 63 (3) (2003) 251–263.

[19] J. A. Bondy, U. S. R. Murty, Graph theory with applications, North Holland, 1976.
[20] A. Benoit, L. Pottier, Y. Robert, Resilient application co-scheduling with processor redistribution,

Research report RR-8795, INRIA, available at graal.ens-lyon.fr/~abenoit (2015).
[21] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, F. Vivien, Checkpointing strategies for parallel jobs,

in: Proceedings of SC’11, 2011, pp. 1–11.
[22] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche, T. Herault, Y. Robert,

F. Vivien, D. Zaidouni, Unified model for assessing checkpointing protocols at extreme-scale, Concur-
rency and Computation: Practice and Experience 26 (17) (2014) 2772–2791. doi:10.1002/cpe.3173.

16

http://dx.doi.org/10.1142/S012962641340001X
http://dx.doi.org/10.1109/TC.1986.1676781
http://dx.doi.org/10.1137/0402042
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2015.04.003
http://dx.doi.org/10.1109/CLUSTER.2012.82
http://dx.doi.org/10.1145/361147.361115
graal.ens-lyon.fr/~abenoit
http://dx.doi.org/10.1002/cpe.3173

Anne Benoit received the PhD degree from Institut National Polytechnique de Grenoble in 2003, and the
Habilitation à Diriger des Recherches (HDR) from École Normale Supérieure de Lyon (ENS Lyon) in 2009. She is
currently an associate professor in the Computer Science Laboratory LIP at ENS Lyon, France. She is the author
of 38 papers published in international journals, and 78 papers published in international conferences. She is the
advisor of 8 PhD theses. Her research interests include algorithm design and scheduling techniques for parallel and
distributed platforms, and also the performance evaluation of parallel systems and applications, with a focus on
energy awareness and resilience. She is Associate Editor of IEEE TPDS, JPDC, and SUSCOM. She is the program
chair of several workshops and conferences, in particular she is program chair for HiPC’2016, program co-chair for
ICPP’2017, and technical papers chair for SC’2017. She is a senior member of the IEEE, and she has been elected a
Junior Member of Institut Universitaire de France in 2009.

Löıc Pottier completed his master at the University of Versailles in 2015, and then moved to École Normale
Supérieure de Lyon (ENS Lyon), where he is currently a PhD candidate under the supervision of Anne Benoit and
Yves Robert. As part of completing his PhD, he also spent three months as visiting student at Argonne National
Laboratory, where he worked with Swann Perarneau. His main topics of interest include co-scheduling, fault tolerance,
and scheduling techniques for large scale platforms.

Yves Robert received the PhD degree from Institut National Polytechnique de Grenoble. He is currently a
full professor in the Computer Science Laboratory LIP at ENS Lyon. He is the author of 7 books, 150 papers
published in international journals, and 220 papers published in international conferences. He is the editor of 11
book proceedings and 13 journal special issues. He is the advisor of 30 PhD theses. His main research interests
are scheduling techniques and resilient algorithms for large-scale platforms. Yves Robert served on many editorial
boards, including IEEE TPDS and JPDC. He was the program chair of HiPC’2006 in Bangalore, IPDPS’2008 in
Miami, ISPDC’2009 in Lisbon, ICPP’2013 in Lyon and HiPC’2013 in Bangalore. He is a Fellow of the IEEE. He has
been elected a Senior Member of Institut Universitaire de France in 2007 and renewed in 2012. He has been awarded
the 2014 IEEE TCSC Award for Excellence in Scalable Computing, and the 2016 IEEE TCPP Outstanding Service
Award. He holds a Visiting Scientist position at the University of Tennessee Knoxville since 2011.

17

	Introduction
	Related work
	Framework
	Fault model
	Execution time without redistribution
	Redistributing processors
	Fault-free scenario
	Accounting for failures
	When multiple redistributions overlap

	Objective function

	Complexity results
	Heuristics
	Simulations
	Simulation settings
	Results

	Conclusion

