Design and Control of a DC Grid for Railway Stations
Sabah Benamane Siad, Gilney Damm, Lilia Galai Dol, Alexandre de Bernardinis

To cite this version:
Sabah Benamane Siad, Gilney Damm, Lilia Galai Dol, Alexandre de Bernardinis. Design and Control of a DC Grid for Railway Stations. 2017 International Exhibition and Conference for Power Electronics and Energy Management (PCIM 2017), May 2017, Nuremberg, Germany. (elec. proc.), 10.1109/SBMicro.2017.7990699. hal-01670152

HAL Id: hal-01670152
https://hal.science/hal-01670152
Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract
With growing concerns about environmental issues like climate change, energy efficiency has become crucial. In this framework, the regeneration of the braking energy of trains into electricity is a promising source to highly increase energy efficiency.

The focus of this paper is to Design and Control a Direct Current (DC) Grid integrated in urban railway station, the solution consists in recovering and storing trains braking energy into a hybrid storage system and reusing it for non-railway applications such as loads in a train station and electric vehicles and their recharging plants.

To attain this goal, the main points are power management and voltage control for the DC MicroGrid, and improving the dynamic performance of the system. These are obtained by controlling the energy storage system.

1. Introduction
The consumption of energy is increasing constantly in the word. In the meantime, limited availability of conventional sources has encouraged a better use of available energy and to develop alternatives for generating power. Among others, the Braking Energy Recovery System (BERS) power is an important energy efficiency issue. During the last decade, considerable progress has been made of electric traction due to evolving of Power electronics. These innovations have made it possible a large range of regeneration of the train braking energy, and offer a very attractive way to reduce the energy consumption of urban railway stations. However, the electricity production from these sources is strongly variable with very high transients (see [1] to [4]).

This energy is naturally available when the train uses electric brakes to slow down its engines, instead of using mechanical brakes. It is then necessary to design a hybrid Storage system to limit power losses and store the excess of braking energy. Nevertheless, this system must take into account several operating constraints (see [2] and [5]). The stored energy can be used to supply the railway station load for many hours. The energy coming from urban trains is available in a DC grid, the storage system being also DC; it is then natural to develop a control strategy in a DC node (see [2], [6] and [7]). The model of each component of the DC MicroGrid has to be developed. In this paper, we propose through a power electronics study to analyse the dynamic behaviour of the system and to simulate the electric power flow and to optimize the storage device size, lifetime and control algorithm (see [3] and [8]).

This paper is organized as follows. Section II describes Braking Energy Recovery System Configuration. Section III deals with modelling of the source and associated power electronics. Section IV concerns the Energy storage system (lithium ion and Supercapacitor) where all aspects related to modelling, control and integration are addressed. Section V presents the power plant in the DC grid. Section VI provides simulation results about the system. In section VII conclusions are provided.

2. BERS Configuration
The braking energy recovery system consists of a DC/DC converter which is connected in parallel to an existing substation, with an Energy Storage System (ESS) which permits to store the energy. As said before, since all elements are in DC, we have chosen to build a DC grid. As shown in Fig1, the proposed system consists of train residual
braking energy as source, energy storage elements such as super-capacitors and batteries, DC loads and grid-tied converter. The train residual braking energy converter is a 1 MW buck converter. Energy storage elements play an important role for the entire power management of the DC microgrid. They ensure a secured grid network, provide high quality power and maintain common DC grid voltage constant [5].

Bidirectional converters are used to charge or discharge the energy storage elements, while an inverter is used to feed railway station ([14] [20]).

For modeling the converters’ switches it will be included small resistances (Ro1, Ro2, Ro3 Ro4, Ro5 and Ro6,) when they are driving, so the conduction losses are taken into account.

3. BERS Modeling

3.1. Braking Energy Recovery as sources
The considered railway system works in 750 V to recover energy by regenerative braking [1]. We in tegrate a LC filter due to very fluctuating current as shown below.

3.2. DC/DC buck Converter

![DC/DC Buck Converter Circuit](image)

The DC/DC converter topology used is the buck (Fig. 2) the analytical method to model such converter is a state-variable-averaging method ([19], [21]), that can be expressed as:

\[
\dot{x} = Ax + Bu = \begin{bmatrix} A_1 \cdot u_1 + A_2 \cdot (1-u_1) \end{bmatrix} x + \begin{bmatrix} B_1 \cdot u_1 + B_2 \cdot (1-u_1) \end{bmatrix} u
\]

Where \(x \) denotes the system states that have been averaged over one switching cycle. \(y \) is the output vector, \(u \) is control vector, \(A \) the state matrix, \(B \) the input matrix and \(C \) the output matrix.

Thus, we have: in the interval \([0, u1T]\), that T1 is closed and in the interval \([u1T, T]\), T1 is open .

\[
A = \begin{bmatrix} 0 & 0 & -\frac{1}{C_1} & -\frac{u}{C_1} \\ 0 & 1 & \frac{1}{L_1} & 0 \\ \frac{1}{L_2} & \frac{1}{L_2} & 0 & -\frac{u_nR_n}{L_2(1-u_1)} \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{L_2} & 0 \\ 0 & 0 \end{bmatrix}
\]

\[
C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}
\]

The following equations can be obtained

\[
\begin{align*}
\frac{dv_{c1}}{dt} &= L_1 \left(u_{c1} - \frac{1}{L_1} v_{c1} + \frac{1}{L_2} v_{c2} \right) + R_1 i_{c2} + \frac{1}{C_1} v_{c2} \\
\frac{dv_{c2}}{dt} &= \frac{1}{L_2} v_{c2} + \frac{1}{L_2} v_{u1} + \frac{1}{L_2} v_{f} - \frac{1}{L_2} v_{c1} \\
\frac{di_{c1}}{dt} &= \frac{1}{L_2} i_{c1} - \frac{1}{L_2} i_{c2} + \frac{1}{L_2} v_{f} \\
\frac{di_{u1}}{dt} &= \frac{1}{L_2} i_{u1} - \frac{1}{L_2} i_{u2} + \frac{1}{L_2} v_{f}
\end{align*}
\]

3.3. Control law

The braking of the train increases the energy, therefore an overvoltage in the catenary. The control strategy is to reduce this voltage to the nominal voltage of the grid (750V) by recovering this energy through the converter. Here the control target is to control voltage at \(V_{br} \), it means to control \(U_c \) value ([24], [28]).

![DC/DC Buck Converter](image)

The reference value for \(U_c \) is the nominal voltage \(V_n^* \) used in the first equation. In order to assign \(V_n^* \) reference value to \(u_c \), an \(iL^* \) reference value for \(iL \) is designed by backstepping technique. Consider the system (3) and the desired equilibrium points \(u_1^*, v_{c2}^*, i_{c1}^* \), and \(i_{u1}^* \)

Where \(v_{c2}^* \) is given and \(i_{u1}^* \) is a function of \(v_{c2}^* \).

The \(v_{c2}^* \) and \(i_{u1}^* \) variables will be the zero dynamic, which will be chosen to converge to a desired set.

Then taking the current \(i_{c1}^* \) and (ideally) the DC grid voltage value:

\[
i_{c1}^* = -K_i C_1 \left(v_{c1} - v_{c2}^* \right) - K_i C_1 \alpha - \frac{u}{C_1} i_{u1}
\]

In order to assign \(v_{c2}^* \) reference value to \(v_{c2}^* \), the...
reference i_o value for is i_o selected as in equation 5 where α is governed by equation

$$ \dot{\alpha} = \mathbf{K}^T (u_c - V_c^*) $$

(6)

Consequently, the first equation of (3) becomes

$$ \dot{V}_c = -K_i (u_c - V_c^*) - K_{ii} (u_i - V_i^*) $$

(7)

According to the output choice

$$ y_i = U_c $$

(8)

Let the u_i control input be

$$ u_i = \frac{1}{K_{ii}} \left[K_i (u_c - V_c^*) + K_{ii} (u_i - V_i^*) - \frac{1}{L_f} (U_c - V_i) + \mathbf{K} C_i \alpha + \mathbf{K}_{ii} \alpha \right] $$

(9)

Then the system asymptotically converges to the equilibrium points (4). The controlled equilibrium is then locally asymptotically stable, with the following condition to be respected:

$$ K_i i_{Li} \neq 0 $$

(10)

We operate in Continuous conduction mode, and then we may select the value for inductor L_i for which the inductor current is greater than zero at all times and under all allowed operating conditions of the converter. Then, the condition (10) is satisfied.

The Lyapunov function is taken for the two selected states

$$ V_{3,3} = \frac{1}{2} (U_c - V_c^*)^2 + \frac{1}{2} (u_i - V_i^*)^2 + \frac{K_{ii}}{K_i} \left(u_i - V_i^* \right)^2 $$

(11)

where α_3 is governed by equation

$$ \dot{\alpha}_3 = K_i (u_c - V_c^*) $$

(12)

and its derivative is calculated in order to develop a proper controller:

$$ \dot{V}_{3,3} = -K_i (u_c - V_c^*)^2 - K_{ii} (u_i - V_i^*)^2 $$

(13)

The Lyapunov derivative is semidefinite negative, but using Barbalat’s lemma we can state that the system is asymptotically stable.

Let us now move the focus to the zero dynamics.

Taking

$$ y_i = U_c = V_c^* $$

(14)

Consequently

$$ i_o = i_{Li} = \frac{V_c^* - V_i^*}{R_{i1}} $$

(15)

We can rewrite the zero dynamics equations as

$$ \dot{i}_{Li} = \frac{R_{i1}}{L_i} \left[\frac{R_{i1} - R_{i1}}{L_i} \right] i_{Li} + \frac{1}{L_i} (U_c - V_c^*) $$

(16)

$$ V_{c2} = -\frac{1}{R_c} i_{Li} + \frac{1}{R_c} V_c^* $$

(17)

The equations 16 and 17 are a linear stable first order system, which means that according to it the equilibrium point will be given by i_{Li} and V_{c2} values, and then the system is always stable.

4. Energy Storage System modeling

The hybrid storage system adopts the advantage of both technologies, high power density from the supercapacitor and high energy density from the battery.

The proposed Hybrid storage consists of Lithium ion battery and a supercapacitor ([12], [13], [15]).

4.1 Battery modeling

4.1.1 Simulink model

The model chosen for a Lithium ion Battery is based on the resistive Thevenin model. It holds on the estimation of the battery state-of-charge.

The battery is considered as a voltage generator ([9], [10], [11]).

4.1.2 Bidirectional Boost Converter.

We have two structures for the above converter. In the first one, the current branch receives energy in a positive voltage ([19], [21]).

In the second structure, branch current supplies power in a positive voltage. The reversal of power transfer is obtained by changing the direction of the current. Similarly to section 2, the following equations can be obtained. In the first interval $[0, u2T]$, T1 closes and T2 opens. In the interval $[u2T, T]$, T1 opens and T2 closes. Where $u2$ denotes the duty ratio of the switches.

Noteworthy that in these driving modes, if $0 < u2 < 0.5$ the power goes from the low side to the high side, and if $0.5 < u2 < 1$ the power goes the other way. We select three state variables, the voltages on the capacitors C_3 and C_4 and the current in the inductance L_2.

![Image](Image 320x404 to 514x465)

Figure 4 Resistive Thevenin battery model scheme

![Image](Image 381x574 to 472x633)

Figure 5 DC/DC BOOST Converter Circuit
Control law

Now we have to set the regulation loops correctly. There are two steps of regulation that have to be set over our system; each of them is having its own specificity ([27], [28]).

The first is to respond to the need of a power transfer from the network to the storage system and vice-versa. The second is to set keep currents or voltages in chosen boundaries so as not to stress or destroy electric components.

Battery current and voltage regulation consists in a cascade control: there will be an inner current loop and an outer voltage loop.

First, we consider the inner current loop designed to control the converter that directly stabilizes the network (see [15]). Then, we have to consider the control of the DC-DC interface. The current Idc in the DC grid is directly linked to the current from the storage systems Ist (see equation 36), and this current has to be supplied or absorbed at the same time and with the same amplitude as IL2 through the control of the converter switches. This is why the Ist reference of storage current is defined by the amount of power the operator wants to transfer to or from the battery given by Ibat_ref (how to compute Pbat_ref is shown in section 5).

This procedure is used when the state of the charge (SOC) is between 40% and 80%.

In the second step, the control objective is to keep the battery from being overcharged or undercharged, either of which significantly reduces the battery’s life. Typically, a deep-cycle battery should not be discharged past 30% or charged past 100%, and then the current will be used for controlling the desired capacitor voltage Vc3*.

In our study, the system is sized such that the battery and supercapacitor stay in 40%<SOC<80%, so we work in the linear phase of the battery.

Consider the system (18) and the desired equilibrium points Vc3*, Vc4* and IL2* (19)

Where IL2 is given by the current in the DC grid (see section 5).

According to the output choice y2 = IL2 (20)

From equation of the current (18) let the u2 control input be as in (21):

\[u_2 = \frac{1}{V_{c4} + (R_{u4} - R_{u3})} [V_{c1} + V_{c4} - R_{u4}i_{2} + L_4 \alpha_i (i_{2} - i_{2}')] + L_4 \alpha_i \]

the following condition needs to be respected:

\[V_{c4} + (R_{u4} - R_{u3})i_{2} \neq 0 \]

where i_{2}' is the desired value for the inductance current, and \(\alpha_i \) is governed by equation:

\[\alpha_i = K_0 (i_{2} - i_{2}') \]

The closed loop dynamics will then be

\[i_{2} = -K_0 (i_{2} - i_{2}') - K_0 \alpha_i \]

The Lyapunov function (25) is used to analyze the behavior for the two selected states

\[V_{c4} = \frac{1}{2} [V_{c4} - V_{c4}'] + \frac{1}{2} (i_{2} - i_{2}')^2 + \frac{K_0}{2} \alpha_i^2 \]

\(V_{c4} \) being the value for the capacitor voltage.

\[\dot{V}_{c4} = V_{c4} - R_{u4} i_{2}' \]

Its derivative is calculated as:

\[\dot{V}_{c4} = -K_0 [V_{c4} - V_{c4}'] - K_0 \alpha_i \leq 0 \]

The Lyapunov derivative is semidefinite negative, but utilizing Barbabat’s lemma we can state that the system is asymptotically stable.

Analyzing it when u2* equilibrium point is reached:

\[\frac{dV_{c4}}{dt} = -\frac{1}{R_{u4} C_4} (V_{dc} - V_{c4}) + \frac{1}{C_4} \left[V_{c3} - R_{u4} i_{2}' \right] \]

The analysis is performed using the linearization around the equilibrium points in order to check stability:

\[\frac{V_{c4}}{R_{u4}} << (i_{2}') \leq \frac{V_{c4}}{R_{u4}} \]

The condition 29 being always satisfied, the system is stable.

A nominal current of the Battery \(I_5 = C_5 / 15 \text{ hours} \) denotes the constant current of charge and discharge for five hours

Where the C rate is the capacity of the battery of delivering so much current for so many hours

4.2 Supercapacitors

4.3.1 Equivalent model

The following figure represents the equivalent circuit of the three-branch model: [16], [17], [18].
4.2.2 Bidirectional Boost Converter.

Figure 7: DC/ Bidirectional Converter Circuit

4.2.3 Control law

As in the battery, the current will be used for control the desired capacitor current.

\[
\begin{align*}
\frac{dV_C}{dt} &= \frac{1}{RC_1} V_C - \frac{1}{C_1} i_{L,3} + \frac{1}{RC_v} V_{ST,ref}
\end{align*}
\]

(30)

Consider the system (30) and the desired equilibrium points \(V_{cs} \), \(V_{cs}^* \) and \(I_{s,3}^* \)

Where \(i_{L,3} \) is given by the current in the DC grid (see section 5). According to the output choice

\[
y_3 = i_{L,3}
\]

(32)

From equation of the current (30) Let \(\mu_3 \) the control input be

\[
u_3 = \frac{1}{V_{cs} + (R_{dc} - R_{ST})i_{L,3}} \left[V_{cs} + V_{cs} - R_{dc} i_{L,3} + L_K i_{L,3} \right] + L_K u_3
\]

(33)

The stability analysis is same as in the battery.

5. Analysis of the Proposed DC MicroGrid

5.1 Power Flow

The power flow in the MicroGrid is shown in Fig. 8. It is the sum of the output power of the train residual braking energy, the consumption and the storage. It is defined as follow (see [10] and [20]).

\[
P_{DC} = P_{br} - P_{load} - P_{ST}
\]

(34)

\[
P_{ST} = P_{bat} + P_{sup}
\]

(35)

\(P_{br} \): Braking power, \(P_{ST} \): Storage system power, \(P_{bat} \): Battery power, \(P_{sup} \): Supercapacitor power, \(P_i \): Load power and \(P_{DC} \): DC MicroGrid power.

5.2 Power Control of an Energy Storage

The train residual braking energy is strongly time-varying with several high peaks, and needs to be dealt with properly to ensure that electrical devices connected to the grid do not receive too few or too much power. The DC grid is connected to the AC grid (22).

The residual braking energy serves in priority to supply the train station through the inverter. The energy storage elements can switch between charge and discharge mode in order to maintain the DC grid power balance.

Supercapacitor undertakes the sudden peak of power while the battery undertakes the demands of large amounts of power for long time periods. In this work strong currents are minimized in the battery aiming at maximizing its lifetime.

In previous sections we set a control law for charging and discharging the battery and supercapacitor, in this section we define the references for these controllers.

We proceed as follow: according to a varying load demand, the energy storage element realizes a power balance. From equation (35):

\[
\left| P_{load} - P_{br} \right| = \left| P_{ST} \right| = P_{DC, ref}
\]

(36)

\[
\frac{dV_{CS}}{dt} = \frac{1}{C_{CS} R_C} \left(V_{CS} - V_{C} \right) + \frac{1}{L_C R_C} \left(V_{C} - V_{C} \right) + \frac{1}{R_C} \left(V_{CS} - V_{C} \right) - \frac{1}{L_C} V_{CS,ref}
\]

(37)

Based on the physical characteristics of the storage components, and in particular on the current limitations from the battery, we propose to decompose the power reference in two components, a fast and a fundamental (slow).

The fundamental component will be the reference power for the battery, while the fast fluctuating component will be the reference power for the supercapacitor ([23] an [25]).

The two components must be chosen such to keep sufficient time-scale separation between the power and the voltage control objectives, and to assure that the battery does not need to react faster than its specifications. In this way, the lifespan of the battery is seriously augmented ([27]).

A low-pass filter (LPF) with a cutoff frequency \(f_c \) of 3 Hz is used to decompose the power reference, in other words the LPF provides for the battery
current control loop a ripple-free (slow) reference signal \((I_{\text{bat_ref}})\) and for the supercapacitor current control loop a rippled (fast) reference signal \((I_{\text{sc_ref}})\)

\[
P_{\text{PcRef}}(t) = P_{\text{long}} + P_{\text{fast}}
\]

\[
I_{\text{bat_ref}} = \frac{P_{\text{long}}}{V_{\text{discharge}}}
\]

\[
I_{\text{sc_ref}} = \frac{P_{\text{fast}}}{V_{\text{discharge}}}
\]

acts to maintain the balance of power

acts to dampen oscillations

6. Simulation result

In this section, some simulations are conducted:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{cell}})</td>
<td>3.2 V</td>
</tr>
<tr>
<td>Nominal power</td>
<td>1 MW</td>
</tr>
<tr>
<td>Duration of power compensation</td>
<td>5h</td>
</tr>
<tr>
<td>(C_1)</td>
<td>15000A</td>
</tr>
<tr>
<td>(I_1)</td>
<td>1500A</td>
</tr>
<tr>
<td>LAB Electrochemical process efficiency</td>
<td>(K = 0.75)</td>
</tr>
<tr>
<td>LAB self-discharge rate</td>
<td>(D = 1e^{-5})</td>
</tr>
<tr>
<td>Step, sec</td>
<td>3600</td>
</tr>
<tr>
<td>Nb_serie/ Nb parallel</td>
<td>100/1</td>
</tr>
</tbody>
</table>

Table 2 Parameters for Supercapcitator

\(R_1\)	\(0.3 \times \text{ESR}\)
\(R_2\)	\(0.2 \times \text{ESR}\)
\(R_3\)	\(0.5 \times \text{ESR}\)
Voltage across the SC	1000 V to 2000 V
Discharge Ratio Desired/Limit	\(d=50\%\)
Required Demanded Power	1 MW to over 2MW
\(P_{\text{required}}\)	1MW
Capacitance	2600F
Stable Operating Voltage	2.7OV
ESR	0.35mΩ
Time Constant	0.9
Thermal Operating Conditions	40°C to +70°C
Lifetime expected to exceed	500,000 operating cycles
10 year expected life	

Table 3 simulation parameters

\(R_{01}\)	\(0.001\Omega\)
\(R_{02}\)	\(0.001\Omega\)
\(R_{03}\)	\(0.001\Omega\)
\(R_{1}\)	\(0.25\Omega\)
\(R_{2}\)	\(0.001\Omega\)
\(C_1\)	\(0.15\text{ F}\)
\(C_2\)	\(0.02\text{ F}\)
\(L_1\)	\(0.05\text{ H}\)
\(P_{\text{bat_ref}}\)	\(1\text{ MW}\)
\(P_{\text{sc_ref}}\)	\(1\text{ MW}\)

In Fig. 9 one can see the strong power (right) and respective current (left) from the braking. This power shape is instantaneously absorbed by the supercapacitor (Psc), such that the battery can stay rather unchanged during the whole time. As a consequence its lifespan is significantly increased. The battery can then provide most of the energy demanded by the load, allowing long term planning, and the use of weather forecast and load predictions in the higher level algorithms.

The control inputs are smooth except in the case of fast power variations of different elements of the DC MicroGrid.

In Fig. 11 can see the variations of the two components of the power reference provided by storage, the slow reference and the fast reference.
We can see in Figure 12 that the controller always keeps V_{dc} close to its nominal value. The control strategy is then shown to successfully operate in a wide range of situations.

![Figure 12 DC MicroGrid voltage](image)

Figure 12 DC MicroGrid voltage

In, this paper each converter in this system is modeled in order to study the dynamic behavior of the overall system. The power management strategy and the nonlinear control are developed for the DC distribution system recovering the DC train braking energy.

The regulated sources (storage) are used to keep the DC voltage and guarantee the balance between generation and energy consumption; this is obtained by an algorithm applied in these storage elements that tracks the DC voltage, and injects electric power into the DC network.

This paper is based on realistic characteristics of the grid’s element, and was focused on proposing easily implementable control algorithms. Simulation results illustrate our claims, and the good behavior of each element and the overall interconnected system. In this paper, we chose to work in the linear part of the battery and the supercapacitance, which allowed us to regulate the voltage of V_{dc} without stressing these elements. This approach offers advantages for the network and the storage.

In future works, we will take into account the nonlinear part of the battery and supercapacitor, and regulate V_{dc} by the inverter; afterwards we will compare the two methods. Real size experiments are under construction.

6. Conclusion

The need to improve energy efficiency has led to developing braking energy recovery from trains. To attain this goal it was designed a flexible integration strategy of such sources to the network based on “Plug and play systems” philosophy, using a hybrid storage system composed of a battery and a supercapacitor connected to a DC grid.

![Figure 13 Output power and state of the charge of the battery and supercapacitor](image)

Figure 13 illustrate Output power and the state (SOC) of the battery and supercapacitor, we can see the supercapacitor charge and discharge very fast to meet a peak power demand and battery discharge slowly to secure power plant and to maintain voltage in dc grid.

REFERENCES

[1] L. Galai Dol, A. De Bernardinis “AC or DC grid for urban railway station?” PCIM Europe 2016,

[7] M. Jiménez Carrizosa, F. Dorado Navas, G. Damm , A. Benchaib and F. Lamnabhi-Lagarrigue,

