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Abstract

Cache-partitioned architectures allow subsections of the shared last-level cache (LLC) to be exclusively
reserved for some applications. This technique dramatically limits interactions between applications that
are concurrently executing on a multi-core machine. Consider n applications that execute concurrently, with
the objective to minimize the makespan, defined as the maximum completion time of the n applications.
Key scheduling questions are: (i) which proportion of cache and (ii) how many processors should be given
to each application? In this paper, we provide answers to (i) and (ii) for Amdahl applications. Even though
the problem is shown to be NP-complete, we give key elements to determine the subset of applications
that should share the LLC (while remaining ones only use their smaller private cache). Building upon
these results, we design efficient heuristics for Amdahl applications. Extensive simulations demonstrate the
usefulness of co-scheduling when our efficient cache partitioning strategies are deployed.

Keywords: Co-scheduling; cache partitioning; complexity results.

1. Introduction

At scale, the I/O movements of High Performance Computing (HPC) applications are expected to be one
of the most critical problems [Adv14]. Observations on the Intrepid machine at Argonne National Laboratory
(ANL) show that I/O transfers can be slowed down up to 70% due to congestion [GAB+15]. When ANL
upgraded its house supercomputer from Intrepid (Peak perf: 0.56 PFlops; peak I/O throughput: 88 GB/s)
to Mira (Peak perf: 10 PFlops; peak I/O throughput: 240 GB/s), the net result for an application whose
I/O throughput scales linearly (or worse) with performance was a downgrade from 160 GB/PFlop to 24
GB/PFlop!

To cope with such an imbalance (which is not expected to reduce on future platforms), a possible approach
is to develop in situ co-scheduling analysis and data preprocessing on dedicated nodes [Adv14]. This scheme
applies to data-intensive periodic workflows where data is generated by the main simulation, and parallel
processes are run to process this data with the constraints that output results should be sent to disk storage
before newly generated data arrives for processing. These solutions are starting to be implemented for HPC
applications. Sewell et al. [SHF+15] explain that in the case of the HACC application (a cosmological code),
petabytes of data are created to be analyzed later. The analysis is done by multiple independent processes.
The idea of their work is to minimize the amount of data copied to I/O filesystem, by performing the analysis
at the same time as HACC is running (what they call in situ). The main constraint is that these processes
are data-intensive and are handled by a dedicated machine. Also, the execution of these processes should
be done efficiently enough so that they finish before the next batch of data arrives, hence resulting in a
pipelined approach. All these frameworks motivate the design of efficient co-scheduling strategies.
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One main issue of co-scheduling is to evaluate co-run degradations due to cache sharing [ZBF10]. Many
studies have shown that interferences on the shared last-level cache (LLC) can be detrimental to co-scheduled
applications [LK14]. Previous solutions consisted in preventing co-schedule of possibly interfering workloads,
or terminating low importance applications [ZLMT14]. Lo et al. [LCG+16] recently showed experimentally
that important gains could be reached by co-scheduling applications with strict cache partitioning enabled.
Cache partitioning, the technique at the core of this work, consists in reserving exclusivity of subsections of
the LLC of a chip multi-processor (CMP), to some of the applications running on this CMP. This functionality
was recently introduced by Intel under the name Cache Allocation Technology [Int14]. With the advent of
large shared memory multi-core machines (e.g., Sunway TaihuLight, the current #1 supercomputer uses
256-cores processor chips with a shared memory of 32GB [Don16]), the design of algorithms that co-schedule
applications efficiently and decide how to partition the shared memory (seen as the cache here), is becoming
critical.

In this work, we study the following problem. We are given a set of Amdahl applications, i.e., parallel
applications application obeying Amdahl’s speedup law [Amd67] (see Equation 1 for details). Amdahl’s law
has had a profound impact on the evolution of HPC [Hea15] and many scientific applications, including most
Nas Parallel Benchmarks, obey this law [CE00]. We are also given a multi-core processor with a shared last-
level cache LLC. How can we best partition the LLC to minimize the total execution time (or makespan),
i.e., the moment when the last application finishes its computation. For each application, we assume that we
know the number of compute operations to perform, and the miss rate on a fixed size cache. For the multi-
core processor, we know its LLC size, the cost for a cache miss, the cost for a cache hit, the size of the cache
and total number of processors. For the theoretical study, we assume that these processors can be shared by
two applications through multi-threading [KSS12], hence we can assign a rational number of processors to
each application, and this allows us to study the intrinsic complexity of co-scheduling with cache partitioning.
Equipped with all these applications and platform parameters, recent work [HSPE08, RKB+09, KSS12] shows
how to model the impact of cache misses and to accurately predict the execution time of an application. In
this context, we make the following main contributions:
• With rational numbers of processors, we show that the co-scheduling problem is NP-complete, even

when applications are perfectly parallel, i.e., their speed-up scales up linearly with the number of
processors.

• With rational numbers of processors, we show several results that characterize optimal solutions, and
in particular that the co-scheduling cache-partitioning problem reduces to deciding which subset of
applications will share the LLC; when this subset is known, we show how to determine the optimal
cache fractions and rational number of processors for perfectly-parallel applications. Furthermore, we
show that all applications should finish at the same time, even if they are not perfectly parallel.

• These theoretical results guide the design of heuristics for Amdahl applications. We show through ex-
tensive simulations (using both rational and integer numbers of processors) that our heuristics greatly
improve the performance of cache-partitioning algorithms, even for parallel applications obeying Am-
dahl’s law with a large sequential fraction, hence with a limited speedup profile.

The rest of the paper is organized as follows. Section 2 provides an overview of related work. Section 3 is
devoted to formally defining the framework and all model parameters. Section 4 gives our main theoretical
contributions. The heuristics are defined in Section 5, and evaluated through simulations in Section 6.
Finally, Section 7 outlines our main findings and discusses directions for future work.

2. Related work

Since the advent of systems with tens of cores, co-scheduling has received considerable attention. Due to
lack of space, we refer to [MSM+11, DJF+15, LCG+16] for a survey of many approaches to co-scheduling.
The main idea is to execute several applications concurrently rather than in sequence, with the objective to
increase platform throughput. Indeed, some individual applications may well not need all available cores, or
some others could use all resources, but at the price of a dramatic performance loss. In particular, the latter
case is encountered whenever application speedup becomes too low beyond a given processor count.
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The main difficulty of co-scheduling is to decide which applications to execute concurrently, and how many
cores to assign to each of them. Indeed, when executing simultaneously, any two applications will compete
for shared resources, which will create interferences and decrease their throughput. Modeling application
interference is a challenging task. Dynamic schedulers are used when application behavior is unknown [QP06,
TJS09]. Static schedulers aim at optimizing the sharing of the resources by relying on application knowledge
such as estimated workload, speed-up profile, cache behavior, etc. One widely-used approach is to build an
interference graph whose vertices are applications and whose edges represent degradation factors [JSCT08,
ZHG+15, HZJ16]. This approach is interesting but hard to implement. Indeed, the interaction of two
applications depends on many factors, such as their size, their core count, the memory bandwidth, etc.
Obtaining the speedup profile of a single application already is difficult and requires intensive benchmarking
campaigns. Obtaining the degradation profile of two applications is even more difficult and can be achieved
only for regular applications. To further darken the picture, the interference graph subsumes only pairwise
interactions, while a global picture of the processor and cache requirements for all applications is needed by
the scheduler.

Shared resources include cache, memory, I/O channels and network links, but among potential degrada-
tion factors, cache accesses are prominent. When several applications share the cache, they are granted a
fraction of cache lines as opposed to the whole cache, and their cache miss ratio increases accordingly. Mul-
tiple cache partitioning strategies have been proposed [BCSM08, GSYY09, BZF10, DFB+12]. In this paper,
we focus on a static allocation of LLC cache fractions, and processor numbers, to concurrent applications
as a function of several parameters (cache-miss ratio, access frequency, operation count). To the best of our
knowledge, this work is the first analytical model and complexity study for this challenging problem.

3. Model

This section details platform and application parameters, and formally states the optimization problem.

Architecture. We consider a parallel platform of p homogeneous computing elements, or processors, that
share two storage locations:
• A small storage Ss with low latency, governed by a LRU replacement policy, also called cache;
• A large storage Sl with high latency, also called memory.

More specifically, Cs (resp. Cl) denotes the size of Ss (resp. Sl), and ls (resp. ll) the latency of Ss (resp. Sl).
In this work, we assume that Cl = +∞. We have the relation ls � ll.

In this work, we consider the cache partitioning technique [Int14], where one can allocate a portion of
the cache to applications so that they can execute without interference from other applications.

Applications. There are n independent parallel applications to be scheduled on the parallel platform,
whose speedup profiles obey Amdahl’s law [Amd67]. For an application Ti, we define several parameters:
• wi, the number of computing operations needed for Ti;
• si, the sequential fraction of Ti;
• fi, the frequency of data accesses of Ti: fi is the number of data accesses per computing operation;
• ai, the memory footprint of Ti.

We use these parameters to model the execution of each application as follows.

Parallel execution time. Let Fli(pi) be the number of operations performed by each processor for applica-
tion Ti, when executed on pi processors. According to Amdahl’s speedup profile [Amd67], we have

Fli(pi) = siwi + (1− si)
wi
pi

(1)

The power law of cache misses. In chip multi-processors, many authors have observed that the Power Law
accurately models how the cache size affects the miss rate [HSPE08, RKB+09, KSS12]. Mathematically, the
power law states that if m0 is the miss rate of a workload for a baseline cache size C0, the miss rate m for a
new cache size C can be expressed as m = m0

(
C0

C

)α
where α is the sensitivity factor from the Power Law of

Cache Misses [HSPE08, RKB+09, KSS12] and typically ranges between 0.3 and 0.7 with an average at 0.5.
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Note that, by definition, a rate cannot be higher than 1, hence we extend this definition as:

m = min

(
1,m0

(
C0

C

)α)
. (2)

This formula can be read as follows: if the cache size allocated is too small, then the execution goes as if no
cache was allocated, and all accesses will be misses.

Computations and data movement. We use the cost model introduced by Krishna et al. [KSS12] to evaluate
the execution cost of an application as a function of the cache fraction that it has been allocated. Specifically,
for each application, we define m0, the miss rate of application Ti with a cache of size C0 (we can also use the
miss rate of applications with a cache of another fixed size). We express the execution time of Ti as a function
of pi, the number of processors allocated to Ti, and xi, the fraction of Ss allocated to Ti (recall both are
rational numbers). Let Fli(pi) be the number of operations performed by each processor for application Ti,
given that the application is executed on pi processors. We have Fli(pi) = siwi + (1 − si)wipi according to
Amdahl’s speedup profile. Finally,

Exei(pi, xi) =



Fli(pi) (1 + fi (ls + ll)) if xi = 0;

Fli(pi)

(
1 + fi

(
ls + ll ·min

(
1, m0(

xiCs
C0

)α
)))

if xiCs ≤ ai;

Fli(pi)

(
1 + fi

(
ls + ll ·min

(
1, m0(

ai
C0

)α
)))

otherwise.

(3)

Indeed, for each operation, we pay the cost of the computing operation, plus the cost of data accesses,
and by definition we have fi accesses per operation. At each access, we pay a latency ls, and an additional
latency ll in case of cache miss (see Equation (2)). The last case states that we cannot use a portion of cache
greater than the memory footprint ai of application Ti. This model is somewhat pessimistic: cache accesses
to the same variable by two different processors are counted twice. We show in Section 6 that despite this
conservative assumption (no sharing), co-scheduling can outperform classical approaches that sequentially
deploy each application on the whole set of available resources.

Equation (3) calls for a few observations. For notational convenience, let di = m0

(
C0

Cs

)α
:

• It is useless to give a fraction of cache larger than ai
Cs

to application Ti;

• Because of the minimum min
(

1, di
(xi)α

)
, either xi > d

1
α
i , or xi = 0: indeed, if we give application Ti a

fraction of cache smaller than d
1
α
i , the minimum is equal to 1, and this fraction is wasted.

Hence, we have for all i:

xi = 0 or d
1
α
i < xi ≤

ai
Cs
. (4)

Of course, if d
1
α
i ≥

ai
Cs

for some application Ti, then xi = 0.

We denote by Exeseqi (xi) = Exei(1, xi) the sequential execution time of application Ti with a fraction of
cache xi.

Scheduling problem. Given n applications T1, . . . , Tn, we aim at partitioning the shared cache and assign
processors so that the concurrent execution of these applications takes minimal time. In other words, we
aim at minimizing the execution time of the longest application, when all applications start their execution
at the same time. Formally:

Definition 1 (CoSchedCache). Given n applications T1, . . . , Tn and a platform with p identical processors
sharing a cache of size Cs, find a schedule {(p1, x1), . . . , (pn, xn)} with

∑n
i=1 pi ≤ p, and

∑n
i=1 xi ≤ 1, that

minimizes
max
1≤i≤n

Exei(pi, xi).

We pay particular attention in the following to perfectly parallel applications, i.e., applications Ti with

si = 0. In this case, Exei(pi, xi) = Exei(1,xi)
pi

=
Exeseqi (xi)

pi
. The co-scheduling problem for such applications is

denoted CoSchedCachePP.
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4. Complexity Results

In this section, we focus on the CoSchedCache problem with rational numbers of processors in order
to study the intrinsic complexity of co-scheduling with cache partitioning. We first prove that in an optimal
execution, all applications must complete at the same time when using rational numbers of processors
(Section 4.1). We remind that CoSchedCache is NP-complete, even for perfectly parallel applications
(Section 4.2), and we show several dominance results on the optimal solution (Section 4.3). While some of
these dominance results only hold for perfectly parallel applications, they will guide the design of heuristics
for general applications in Section 5.

4.1. All applications complete at the same time

Lemma 1. To minimize the makespan when using rational numbers of processors, all applications must
finish at the same time.

Proof. Consider n applications T1, . . . , Tn that obey Amdahl’s law, and a solution S = {(pi, xi)}1≤i≤n to
CoSchedCache. Let DS = maxi Exei(pi, xi) be the makespan of this solution. For simplicity, we let

Ai = 1 + fi

(
ls + ll ·min

(
1,
mi

1MBSs(
xiCs
106

)α
))

,

bi = Aiwisi,

ci = Aiwi(1− si)

Hence, Exei(pi, xi) = bi + ci
pi

. The set of applications whose execution time is exactly DS is denoted
by IS .

We show the result by contradiction. We consider an optimal solution S whose subset IS has minimal
size (i.e., for any other optimal solution So, |IS | ≤ |ISo |). Then we show that if |IS | 6= n, we can construct
a solution S ′ with either (i) a smaller makespan if |IS | = 1 (contradicting the optimality hypothesis), or
(ii) one less application whose execution time is exactly DS (contradicting the minimality hypothesis).

Assume |IS | 6= n, let Ti0 ∈ IS and Ti1 /∈ IS . We have Exei1(pi1 , xi1) < Exei0(pi0 , xi0) = DS , that is

bi1 +
ci1
pi1

< bi0 +
ci0
pi0

, and hence (bi1 − bi0)pi0pi1 − ci0pi1 + ci1pi0 < 0. (5)

We now prove that we can always find 0 < ε < pi1 s.t. Exei0(pi0 , xi0) > Exei0(pi0 + ε, xi0) > Exei1(pi1 −
ε, xi1), i.e.,

DS = bi0 +
ci0
pi0

> bi0 +
ci0
pi0+ε

> bi1 +
ci1
pi1−ε

.

The left part of inequality bi0 +
ci0
pi0

> bi0 +
ci0
pi0+ε

is always true when ε > 0. For the right part of inequality

above, we have:

−(bi1 − bi0)ε2 + [(pi1 − pi0)(bi1 − bi0) + ci0 + ci1 ]ε+ (bi1 − bi0)pi0pi1 − ci0pi1 + ci1pi0 < 0. (6)

From Equation (5), we know that (bi1−bi0)pi0pi1−ci0pi1 +ci1pi0 < 0, so we can always find a 0 < ε < pi1
that could make Equation (6) satisfied.

Then clearly, S ′ = {(p′i, xi)}i where p′i is (i) pi if i /∈ {i0, i1}, (ii) pi0 + ε if i = i0, (iii) pi1 − ε if i = i1, is
a valid solution: we have the property

∑
i p
′
i =

∑
i pi ≤ p, and

∑
i x
′
i =

∑
i xi ≤ 1.

Hence,
• If |IS | = 1, then for all i, Exei(p

′
i, xi) < DS , hence showing that S is not optimal;

• Else, IS′ = IS \ {i0}, and DS′ = DS , hence showing that S is not minimal.
This shows that necessarily, |IS | = n.
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4.2. Intractability

We have shown in [ABD+17] that the problem is NP-complete, even for perfectly parallel applications.

Definition 2 (CoSchedCachePP-Dec). Given n perfectly parallel applications T1, . . . , Tn and a platform
with p identical processors sharing a cache of size Cs, and given a bound K on the makespan, does there
exist a schedule {(p1, x1), . . . , (pn, xn)}, where pi and xi are nonnegative rational numbers with

∑n
i=1 pi ≤ p

and
∑n
i=1 xi ≤ 1, such that max1≤i≤n Exei(pi, xi) ≤ K?

The proof of intractability is done thanks to a reformulation of the problem using the following Lemma:

Lemma 2. CoSchedCachePP can be rewritten as finding the optimal cache partitioning strategy X =
{x1, . . . , xn} that minimizes the completion time of an optimal solution:

1

p

n∑
i=1

Exei(1, xi). (7)

Theorem 1. CoSchedCachePP-Dec is NP-complete.

4.3. Dominance results for perfectly parallel applications

In this section, we provide dominance results that will guide the design of heuristics. The dominance
results are for perfectly parallel applications (si = 0) but we give intuition on how to extend this work for
Amdahl applications in Section 4.4. Finally, we further assume that application memory footprints are larger
than the cache size (ai = +∞), and we assume rational numbers of processors.

The core of the previous intractability result relies on the hardness to determine the set of applications
that receive a cache fraction (denoted by IC) and those that do not (denoted by IC). In this section, we
show (i) how to determine the optimal solution when these sets IC and IC are known, and (ii) whether one
can disqualify some partitions as being sub-optimal.

In particular, we define a set of partitions of applications that we call dominant (Definition 4). We show
that (i) if a partition of applications IC , IC is dominant, then we can compute the minimum execution time
for this partition, and (ii) if a partition is not dominant, then we can find a better dominant partition. We
start by rewriting the problem when the partitioning IC , IC of applications is known:

Definition 3 (CSCPP-Part
(
IC , IC

)
). Given a set of applications T1, . . . , Tn and a partition IC , IC , the

problem CSCPP-Part
(
IC , IC

)
(for CoSchedCachePP-Part) is to find a set X = {x1, . . . , xn} that

minimizes the execution time:

1

p

∑
i∈IC

wi(1 + fi(ls + ll)) +
∑
i∈IC

wi(1 + fils + fill
di
xαi

)


under the constraints xi = 0 if i ∈ IC , xi > d

1/α
i if i ∈ IC , and

∑
1≤i≤n xi ≤ 1.

We now relax some bounds in CSCPP-Part
(
IC , IC

)
and define CSCPP-Ext

(
IC , IC

)
, which is the same

problem except that the constraints on the xi’s when i ∈ IC is relaxed: we have instead xi ≥ 0 if i ∈ IC .
A solution of CSCPP-Part

(
IC , IC

)
is a solution of CSCPP-Ext

(
IC , IC

)
, because we simply removed

the constraints xi > d
1/α
i in the latter problem. Hence the execution time of the optimal solution of

CSCPP-Ext
(
IC , IC

)
is lower than that of CSCPP-Part

(
IC , IC

)
.

Furthermore, given a solution of CSCPP-Ext
(
IC , IC

)
, one can easily see that its execution time in

CoSchedCache will be lower (the objective function is lower since it involves a minimum for all applications
in IC).

Lemma 3. Given a set of applications T1, . . . , Tn and a partition IC , IC , the optimal solution
to CSCPP-Ext

(
IC , IC

)
is

xi =
(wifidi)

1/(α+1)∑
j∈IC (wjfjdj)

1/(α+1)
if i ∈ IC ,

xi = 0 otherwise.
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The proof is available in the companion research report [ABD+17].

Definition 4 (Dominant partition). Given a set of applications T1, . . . , Tn, we say that a partition of these
applications IC , IC is dominant, if for all i ∈ IC ,

(wifidi)
1/(α+1)∑

j∈IC (wjfjdj)
1/(α+1)

> d
1/α
i .

We can now state the following result:

Theorem 2. If a partition IC , IC is not dominant, then we can compute in polynomial time a better solution.

The proof is available in the companion research report [ABD+17].
We can show a second dominance result characterizing the optimal solution:

Theorem 3. If a partition IC , IC is dominant, then the optimal solution to CSCPP-Part
(
IC , IC

)
is:

xi =
(wifidi)

1/(α+1)∑
j∈IC (wjfjdj)

1/(α+1)
if i ∈ IC ;

xi = 0 otherwise.

Proof. This is a corollary of Lemma 3.
Indeed, this solution is the optimal solution to CSCPP-Ext

(
IC , IC

)
and it is a valid solution to

CSCPP-Part
(
IC , IC

)
, hence it is the optimal solution to CSCPP-Part

(
IC , IC

)
.

4.4. Extension of the dominance criterion for Amdahl applications

Finally, we provide extended definitions for non-perfectly parallel applications, by defining the dominant
partition of both the parallel part and the sequential part of such applications.

Definition 5 (Dominant partition of parallel part). Given a set of applications T1, . . . , Tn, we say that a
partition of these applications IC , IC is dominant for the parallel part if for all i ∈ IC ,

(wifidi(1− si))1/(α+1)∑
j∈IC (wjfjdj(1− sj))1/(α+1)

> d
1/α
i .

Definition 6 (Dominant partition of sequential part). Given a set of applications T1, . . . , Tn, we say that a
partition of these applications IC , IC is dominant for the sequential part if for all i ∈ IC ,

(wifidisi)
1/(α+1)∑

j∈IC (wjfjdjsj)
1/(α+1)

> d
1/α
i .

The intuition behind these two definitions is the following: recall from Lemma 1 that the execution time
is defined as Exei(pi, xi) = bi + ci

pi
, with

Ai = 1 + fi

(
ls + ll ·min

(
1,
mi

1MBSs(
xiCs
106

)α
))

,

bi = Aiwisi,

ci = Aiwi(1− si).

We can observe that si, the sequential fraction, is key to decide which parts bi or ci
pi

we should favor to

minimize Exei(pi, xi). If si <<
1
pi

, then ci
pi

dominates the execution time, i.e., Exei(pi, xi) ≈ ci. Hence the
application could be seen as a perfectly parallel application where the new number of computing operations
to do is w̃i = wi(1 − si). Then Definition 5 is just a consequence of applying the definition of Dominant
Partition to this new application.
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Symmetrically, if si is large in front of one over the number of processors assigned to an application, then
bi dominates the execution time. Intuitively in this case, the number of processors by application is less
important (and we will have a fair balance of processors). Hence, we want to favor applications with large
values of siwifidi.

We verify these intuitions experimentally in Section 6.

5. Heuristics

In this section, we aim at designing efficient heuristics for general applications that obey Amdahl’s law,
and whose memory footprints are larger than the cache size (ai = +∞). However, the CoSchedCache
problem seems to be very difficult for such applications, as seen in Section 4.

We first explain how heuristics work, in particular to assign (rational numbers of) processors, in Sec-
tion 5.1. The core of the heuristic consists in building a dominant partition, and we detail different possibil-
ities to do so in Section 5.2. Finally, we propose a way to round the number of processors in case we need
an integer number of processors, for instance if no multi-threading is allowed (see Section 5.3).

5.1. Structure of heuristics

We simplify the design of the heuristics by temporarily allocating processors as if the applications were
perfectly parallel, and then concentrating on strategies that partition the cache efficiently among some
applications (and give no cache fraction to remaining ones). In accordance with Theorem 2, our goal is to
compute dominant partitions. Recall that IC represents the subset of applications that receive a fraction
of the cache. Once a dominant partition is given, we obtain the schedule S = {(xi, pi)}i as follows: first
we determine the xi’s with Theorem 3, and then we recompute the pi’s so that all applications complete
simultaneously at time K. Indeed, while Lemma 2 does not hold for Amdahl applications, we still know
thanks to Lemma 1 that all applications should complete simultaneously.

However, there is no longer a nice analytical characterization of the makespan K, hence we use a binary
search to compute K as follows: for each application Ti, the execution time writes (si + 1−si

pi
)ci = K, where

si is the sequential fraction, and ci = wi(1 + fi(ls + ll
di
xαi

)) if Ti ∈ IC , or ci = wi(1 + fi(ls + ll)) otherwise.

From
∑n
i=1 pi = p, we derive the equation n∑

i=1

1− si
K
ci
− si

= p

and we compute K through a binary search. A lower (resp. upper) bound for K is to assign p (resp. 1)
processor(s) to each application.

5.2. Computing a dominant partition

To compute dominant partitions, we use two greedy strategies:

• Dom: we start with IC = I and greedily remove some applications from IC until we have a dominant
partition (see Algorithm 1); NotDom(i, IC) returns true if i does not satisfy the definition of dominant
partition for IC ;

• DRev: initially IC is empty, and we greedily add applications while IC remains dominant (see Algo-
rithm 2); IsDom(I ′C) returns true if I ′C is a dominant partition.

Both strategies come in three flavors, depending on the dominance definition that we use. From Def-

inition 4, we get that NotDom(i, IC) is true if and only if (wifidi)
1/(α+1)

d
1/α
i

≤
∑
j∈IC (wjfjdj)

1/(α+1)
, and

IsDom(I ′C) is true if and only if ∀i ∈ I ′C , (wifidi)
1/(α+1)

d
1/α
i

>
∑
j∈I′C

(wjfjdj)
1/(α+1)

(strategies Dom and

DRev). If we use Definition 6, we simply replace all wk’s by wksk (strategies DomS and DRevS focusing
on the sequential part), while with Definition 5, we replace all wk’s by wk(1 − sk) (strategies DomP and
DRevP focusing on the parallel part).
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Algorithm 1: Dom strategy, starting with all
applications

1 procedure Dom (I, choice) begin
2 IC ← I;
3 while ∃i ∈ IC s.t. NotDom(i, IC) do
4 k ← choice(IC);
5 IC ← IC \ {k};
6 if IC = ∅ then break;

7 end

8 IC ← I \ IC ;

9 return (IC , IC);

10 end

Algorithm 2: DRev strategy, starting from
empty set

1 procedure DRev (I, choice) begin

2 IC ← I; IC ← ∅;
3 k ← choice(IC);
4 I ′C ← {k};
5 while IsDom(I ′C) do
6 IC ← I ′C ;

7 IC ← IC \ {k};
8 if IC = ∅ then break;

9 k ← choice(IC);
10 I ′C ← I ′C ∪ {k};
11 end

12 return (IC , IC);

13 end

Figure 1: Two strategies to build dominant partitions.

For each of these strategies, the greedy criterion to select the next application is the choice function
taken from the following three alternatives:

• Random: choice(I) picks up randomly one application among all applications;
• MinRatio considers the ratio that appears in Definition 4, 6 or 5 (dominant partitions), and chooses

an application with a small ratio; for Dom and DRev, we have:

choice(I) = arg min
i∈I

(
(wifidi)

1/(α+1)

d
1/α
i

)
;

and we replace wi by wisi in DomS and DRevS, or by wi(1− si) in DomP and DRevP;
• MaxRatio proceeds the other way round, by choosing an application with a large ratio, simply

replacing the arg min by an arg max.
The intuition behind these heuristics is the following: applications that make the solution non dominant

for Dom and DRev are such that (see Definition 4):

(wifidi)
1/(α+1)

d
1/α
i

≤
∑
j∈IC

(wjfjdj)
1/(α+1)

.

Hence, we expect to reach dominance faster by removing from a non-dominant solution applications with

low (wifidi)
1/(α+1)

d
1/α
i

(left term of the equation). Intuitively, Dom, DomS and DomP should work well with

the MinRatio criterion. For symmetric reasons, we expect DRev, DRevS and DRevP to work well with
the MaxRatio criterion. These intuitions will be experimentally confirmed in Section 6.

Altogether, by combining six strategies, and with three different choice functions for each strategy, we
obtain 18 heuristics to build dominant partitions. We denote by Dom-MinRatio the Dom strategy using
MinRatio as a choice function, and we use a similar notation for all heuristics.

5.3. Integer processor assignment

Based on the rational cache allocation, we want to give an integer processor allocation in order to tackle
architectures that do not allow to share processors between applications through multi-threading. The choice
functions above are first used to build a dominant partition, then we assign cache based on that partition
to obtain the xi’s. In Algorithm 3, the set I contains all applications and x is the set that contains all xi’s.
Finally, p is the total number of processors and n the total number of applications (i.e., n = |I|). After the
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App Description

CG Uses conjugate gradients method to solve a large sparse
symmetric positive definite system of linear equations

BT Solves multiple, independent systems of block tridiagonal
equations with a predefined block size

LU Solves regular sparse upper and lower triangular systems

SP Solves multiple, independent systems of scalar pentadi-
agonal equations

MG Performs a multi-grid solve on a sequence of meshes

FT Performs discrete 3D fast Fourier Transform

Figure 2: Description of the NPB benchmarks.

App wi fi mi
40MBSs

CG 5.70E+10 5.35E-01 6.59E-04

BT 2.10E+11 8.29E-01 7.31E-03

LU 1.52E+11 7.50E-01 1.51E-03

SP 1.38E+11 7.62E-01 1.51E-02

MG 1.23E+10 5.40E-01 2.62E-02

FT 1.65E+10 5.82E-01 1.78E-02

Figure 3: Experimental values from NPB
benchmarks.

cache is assigned, we initialize processor assignment by giving one processor to each application, and the
remaining processors are assigned in a greedy way: assign one processor to the application currently with
longest execution time, until all processors are assigned. It should be noted that integer processor assignment
will only work when p ≥ n, since each application needs at least one processor.

Algorithm 3: Integer processor assignment

1 procedure IntegerProcessor (x, p, I)
2 begin
3 for i ∈ I do p′i = 1;
4 premain = p− n;
5 while premain > 0 do
6 i = arg maxk∈I (Exek(p′k, xk));
7 p′i = p′i + 1;
8 premain = premain − 1;

9 end
10 return p′i;

11 end

6. Simulations

To assess the efficiency of the heuristics defined in Section 5, we have performed extensive simulations.
The simulation settings are discussed in Section 6.1, and results are presented in Section 6.2 (comparison
of the 18 heuristics of Section 5), Section 6.3 (assessing the gain due to co-scheduling), and Section 6.4
(with integer numbers of processors). The code is publicly available at http://perso.ens-lyon.fr/loic.
pottier/archives/cache-int.zip.

6.1. Simulation settings

We use data from applicative benchmarks to run the experiments. Figure 2 provides a brief description
of the NAS Parallel Benchmark (NPB) suite [BBB+91], and Figure 3 shows the parameters for these six
HPC applications. We obtain the values shown in Figure 3 by instrumenting and simulating the benchmarks
(CLASS=A) on 16 cores using PEBIL [LTCS10]. For the simulations, we use a cache configuration repre-
senting an Intel Xeon CPU E5-2690, with a 40MB last level cache per processor of 8 cores. Since the cache

miss ratio is defined for a 40MB cache, we have di = mi
40MBSs

(
40×106
Cs

)α
.

To build a set of n applications, we pick randomly n times one application among the six applications
defined by Table 3, the number of application wanted. In additions, for each of these n applications, the
work wi is randomly taken between 1E+8 and 1E+12. Other data sets building upon these applications have
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been used (see the companion research report [ABD+17]), and the results are very similar. The sequential
fraction of work si is taken randomly between 1% and 15%.

For the execution platform, we consider one manycore Sunway TaihuLight [Don16] with 256 processors
and a shared memory of 32GB. We chose this platform because of its high core count. Strictly speaking,
this platform does not have a last level cache (LLC), but the shared memory can be seen as the LLC, using
the disk as the large memory. We have Cs = 32 × 109. The large storage latency ll is set to 1. The small
storage latency ls is set to 0.17. According to the literature [KKSM13, MHSN15, PB14], the last level cache
(LLC) latency is on average four to ten times better than the DDR latency, and we enforce a ratio of 5.88
in the simulations. We have used different ratios in [ABD+17], and they lead to similar results. Finally, the
Power Law parameter is set to α = 0.5. We execute each heuristic 50 times and we compute the average
makespan, i.e., the longest execution time among all co-scheduled applications.

6.2. Comparison of the heuristics
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Figure 4: Comparison of all dominant partition heuristics on 256 processors.

Figure 4 shows the normalized makespan obtained by all of the heuristics building dominant partitions.
We set the number of processors to 256. Results are normalized with the makespan of AllProcCache,
which is the execution without any co-scheduling: in the AllProcCache heuristic, applications are executed
sequentially, each using all processors and all the cache. We vary the number of applications between 1 and
256. The eighteen heuristics obtain similarly good results, with a gain of 85% over AllProcCache as soon
as there are at least 50 applications.

Since all eighteen variants show the same performance on the previous data sets, we investigate the
impact of the cache miss rate by varying it between 0 and 1 with a LLC of Cs = 1GB in Figure 5. Results
are now normalized with DomS-MinRatio in both figures, which enables to zoom out the differences.

The first noticable result from Figure 5 is that for all versions of the strategies that build dominant
strategies, MinRatio performs better with strategies that remove applications from the IC (Dom, DomS,
DomP), whereas MaxRatio works better with strategies that add applications to the IC (DRev, DRevS,
DRevP). This confirms the mathematical intuition presented in Section 5.

Furthermore, we confirm the mathematical intuition on the influence of the Amdahl factor (si) presented
in Section 4.4:
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(b) si randomly set between 0.001 and 0.01.

Figure 5: Impact of the cache miss ratio mi
40MBSs with a 1GB cache and 16 applications.

• We observe that in Figure 5a, when the sequential fraction is not negligible (si chosen uniformly at
random between 0.01 and 0.15), DomS-MinRatio and DRevS-MaxRatio are always the best (their
plots overlap), with a gain from 10 to 15% with respect to the random-based heuristics when the cache
miss rate is greater than 0.5.

• On the contrary, when it is negligible (si chosen uniformly at random between 0.001 and 0.01), then
the DomP-MinRatio and DRevP-MaxRatio versions perform better.

Note that overall, the observable differences between heuristics is mainly when the cache miss ratio is
large. According to current data, m40MBSs ranges from 1E-02 to 1E-04 (see Table 3). In addition, these
differences are visible only with a small shared memory (1GB in the example), while our execution platform
has a 32GB shared memory. Overall, for the system used in these simulations, all heuristics perform similarly,
even though DomS-MinRatio and DRevS-MaxRatio seem to perform best in all other settings that we
tried (see [ABD+17]).

In the following simulations, the sequential fraction will always, unless otherwise mentioned, be taken
between 1% and 15%. Therefore, for clarity, we plot only one heuristic based on dominant partitions in the
remaining simulations, namely DomS-MinRatio.

6.3. Gain with co-scheduling

In this section, we assess the gain due to co-scheduling by comparing DomS-MinRatio with AllProc-
Cache and with three other heuristics:
• Fair gives pi = p

n processors, and a fraction of cache xi = fi∑n
j=1 fj

to each application;

• 0cache gives no cache to any application, i.e., xi = 0 for 1 ≤ i ≤ n, and then it computes the pi’s so
that all applications finish at the same time;

• RandomPart randomly partitions applications with and without cache. For those in cache, the xi’s
are computed with the method used for dominant partitions. Then, the pi’s are computed so that all
applications finish at the same time.

Impact of the number of applications. Figure 6 (normalized with AllProcCache on the left)
shows the impact of the number of applications when the number of processors is set to 256. We see that
DomS-MinRatio outperforms the other heuristics, hence showing the efficiency of our approach based on
dominant partitions. Results are also normalized with DomS-MinRatio (on the right), so that we can
better observe the differences between co-scheduling heuristics. Fair exhibits good results only for a small
number of applications, when all applications can fit into cache. Otherwise, the use of dominant partitions is
much more efficient, as seen with RandomPart, or even 0cache that does not use cache but ensures that
all applications finish at the same time. These results show the accuracy of the model and the benefits of
using dominant partitions. Also, we note the importance of cache partitioning, since the difference between
0cache and DomS-MinRatio relies on cache allocation.
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Figure 6: Impact of the number of applications.
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Figure 7: Impact of the number of processors.

Impact of the number of processors. Figure 7 (normalized with AllProcCache on the left) shows
the impact of the number of processors when the number of applications is set to 16. When the number of
processors increases, the gain of co-scheduling increases. In both figures, DomS-MinRatio and outperforms
other methods. RandomPart, which builds a random partition instead of a dominant one, is outperformed
by DomS-MinRatio, and the latter is the only heuristic that surpasses AllProcCache when the number
of processors is low. So, building a dominant partition seems a good strategy to optimize the makespan.

The normalization with DomS-MinRatio (on the right) shows that when the number of processors
increases, Fair becomes better, while RandomPart and 0cache are quite stable since they are based on
the same model as DomS-MinRatio. The only difference between 0cache and DomS-MinRatio is the
cache allocation strategy, and the gain from cleverly distributing cache fractions across applications exceeds
20%. With more applications, we obtain the same ranking of heuristics, except that Fair is always the worst
heuristic: since there are less processors on average per application, a good co-scheduling policy is necessary
(see [ABD+17] for detailed results).

Impact of the sequential fraction of work. Figure 8 (normalized with AllProcCache) shows the
impact of the sequential part si when the number of processors is set to 256. The number of applications is
set to 16. As expected, when the sequential fraction of work increases, all co-scheduling heuristics perform
better than AllProcCache, and DomS-MinRatio is always the best heuristic. It leads to a gain of more
than 50% when si = 0.01.

The normalization with DomS-MinRatio better shows the impact of the sequential part: we observe
that when the sequential fraction of work increases, Fair obtains results closer to DomS-MinRatio.

Processor and cache repartition. Figure 9 shows the processor repartition and cache repartition when
we vary the number of applications from 1 to 256 with 256 processors. We use an error bar plot where the
error interval represents here the maximum and minimum number of processors (or cache fraction) allocated
to an application. As expected, we observe that the range between minimum and maximum decreases when
the number of applications increases. The processor allocation of Fair is not interesting, the maximum is
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Figure 8: Impact of sequential fraction of work.
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Figure 9: Processor and cache repartition with 256 processors.

always equal to the minimum because we allocate the same number of processors to each application.
Since all dominant partition heuristics give the same results, we only use DomS-MinRatio. The repar-

tition of processors for 0cache is interesting: it turns out to be very close to the repartition obtained with
DomS-MinRatio, even though it is not using cache.

Summary. To summarize, all heuristics based on dominant partitions are very efficient, especially when
compared to the classical heuristics Fair (which shares the cache fairly between applications) and All-
ProcCache (which does no co-scheduling). The unexpected result that can be observed is that the gain
brought by our heuristics comes even with very low sequential time (below 0.01)! This is unexpected since
the natural intuition would be a behavior such as the one observed on Fair: a makespan up to 1.9 times
longer than AllProcCache with low sequential time.

We show that the ratio processors/applications has a significant impact on performance: when many
processors are available for a few applications, it is less crucial to use efficient cache-partitioning and all
applications can share the cache, hence Fair obtains good results, close to DomS-MinRatio. Otherwise,
RandomPart is the second best heuristic. A surprising information that also confirms the strength of our
partition based heuristics is that natural heuristics such as Fair and AllProcCache perform worse than
0cache our implementation with no usage of cache.

All heuristics run within a very small time (less than ten seconds in the worst of the settings used, to be
compared with a typical application execution time in hours or days), hence they can be used in practice
with a very light overhead.

6.4. With an integer number of processors

In this section, we study the impact of rounding the number of processors to an integer number on
heuristics. We focus again mainly on DomS-MinRatio, and we add the suffix Int to heuristic names to
denote the fact that we use Algorithm 3 to compute an integer processor allocation.
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Figure 10: Impact of the number of applications.

Impact of the number of applications. In this simulation, we vary the number of applications from
1 to 256 on 256 processors. Figure 10 is normalized with AllProcCache (on the left), and heuristics
obtain a similar relative performance as in Section 6.3, with a gain of 90% over AllProcCache as soon as
there are at least 50 applications. The right side of Figure 10 shows the performance of the same heuristics
but normalized with DomS-MinRatioInt. As expected, 0cacheInt is the worst, and RandomPartInt
performs always in the middle between 0cacheInt and FairInt. As we use the same algorithm to round
the rational processor allocation, the differences in performance mostly rely on cache allocation.

The fact that FairInt and DomS-MinRatioInt give similar results show that the cache allocation of
DomS-MinRatioInt must not be far from the fair distribution of FairInt. However, contrarily to Fair,
processors are not equally shared between applications but distributed according to their needs, hence the
much better performance of FairInt compared to Fair.

Simulations showing the impact of the number of processors and of the sequential fraction of work give
similar results, with FairInt and DomS-MinRatioInt overlapping and beating other heuristics. We refer
to the companion research report for details [ABD+17].

Impact of the sequential fraction and the cache miss rate. As DomS-MinRatioInt and FairInt
show the same performance, we study the impact of the sequential fraction and the cache miss rate, as we did
in Section 6.2, in Figure 11. The number of applications is set to 16 and the number of processors to 256 with
a LLC of Cs = 1GB. The results are normalized with DomS-MinRatioInt. In the left figure, we compare
all dominant partition heuristics by varying the sequential fraction when the cache miss rate is set to 0.8
in order to see differences between heuristics. We note that the dominant partition heuristics favoring the
sequential part outperform the others, especially the ones favoring the parallel part. Dom-MinRatioInt and
DRev-MaxRatioInt overlap with DomS-MinRatioInt. All variants using Random criterion perform
on average around 1.10. As expected, giving more cache to applications with bigger sequential fractions
is better. In the right figure, we vary the cache miss rate between 0 and 1 This figure is interesting due
to the difference of performance between DomS-MinRatioInt and FairInt. Clearly, the difference of
performance between heuristics when we use integer processors rely on cache allocation. When the cache
miss ratio increases, the performance of DomS-MinRatioInt becomes better. When the cache miss rate is
larger than 0.01, DomS-MinRatioInt outperforms all other heuristics, and we obtain an average gain of
10% on FairInt. The performance of 0cacheInt becomes better when the cache miss rate increases.

Summary. To summarize, when we use integer processors, all heuristics based on dominant partitions are
still very efficient, but those that favor either the sequential part or none of them perform better. The main
difference between results with rational and integer processor assignments is that DomS-MinRatioInt and
FairInt overlap if the cache miss rate is low (less than 1%), because of the better processor assignment
for FairInt. We show that the cache miss rate has a significant impact on performance: when many cache
misses occur, it is more crucial to use efficient cache-partitioning and all applications can share the cache,
hence DomS-MinRatioInt outperforms FairInt when the cache miss rate is larger than 10%. As expected,
DomS-MinRatioInt performs better when the cache miss rate increases. Otherwise, RandomPartInt is
the third best heuristic, followed by 0cacheInt that does not use the cache.
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Figure 11: Impact of the sequential fraction and the cache miss rate.

7. Conclusion

In this paper, we have provided a preliminary study on co-scheduling algorithms for cache-partitioned
systems, building upon a theoretical study. The two key scheduling questions are (i) which proportion of
cache and (ii) how many processors should be given to each application. For rational numbers of processors,
we proved that the problem is NP-complete, but we have been able to characterize optimal solutions for
perfectly parallel applications by introducing the concept of dominant partitions: for such applications, we
have computed the optimal proportion of cache to give to each application in the partition. Furthermore,
we have provided explicit formulas to express the number of processors to assign to each application.

Several polynomial-time heuristics focusing on Amdahl’s applications have been built upon these results,
both for rational and integer numbers of processors. Extensive simulation results demonstrate that the use
of dominant partitions always leads to better results than more naive approaches, as soon as there is a small
sequential fraction of work in application speedup profiles. The concept of sharing the cache only between a
subset of applications seems highly relevant, since even an approach with a random selection of applications
that share the cache leads to good results. Also, a clever partitioning of the cache pays off quite well, since
our heuristics lead to a significant gain compared to an approach where no cache is given to applications.
Overall, the heuristics appear to be very useful for general applications, even though their cache allocation
strategy rely mainly on simulating a perfectly parallel profile.

Future work will be devoted to gain access to, and conduct real experiments on, a cache-partitioned
system with a high core count: this would allow us to further validate the accuracy of the model and to
confirm the impact of our promising results. On the theoretical side, we plan to focus on the problem with
integer numbers of processors and we hope to derive interesting results that could help design even more
efficient heuristics.
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