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Introduction

In this paper, we present some recent results obtained for the control synthesis of nonlinear switched systems using the one-sided Lipschitz conditions of their dynamics. The main idea is to use "one-sided Lipschitz conditions" on the system vector fields in order to generate a sequence of balls enclosing the sets of trajectories. The method can be easily extended to take into account uncertainty and compositional synthesis. These results mainly originate from collaboration with A. Le Coënt, F. De Vuyst, L. Chamoin, J. Alexandre dit Sandretto and A. Chapoutot (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF][START_REF] Le Coënt | Distributed control synthesis using Euler's method[END_REF]).

The plan of the paper is as follows: in Section 2, we present the notions of switched systems and (R, S)-stability; in Section 3, we introduce a new error analysis for Euler's method, and explain how to use it for ensuring (R, S)stability in control synthesis of switched systems; we extend this control syn-thesis method to uncertain switched systems, and to compositional synthesis (Section 4); we conclude in Section 5.

2 Switched systems and (R,S)-stability

Switched systems

A hybrid system is a system where the state evolves continuously according to several possible modes, and where the change of modes (switching) is done instantaneously. We consider here the special case of hybrid systems called "sampled switched systems" where the change of modes occurs periodically with a period of τ seconds. We will suppose furthermore that the state keeps its value when the mode is changed (no jump). More formally, we denote the state of the system at time t by x(t) ∈ R n . The set of modes U = {1, . . . , N } is finite. With each mode j ∈ U is associated a vector field f j that governs the state x(t); we have: ẋ(t) = f j (x(t))

We make the following hypothesis:

(H0) For all j ∈ U, f j is a locally Lipschitz continuous map.

We will denote by φ j (t; x 0 ) the solution at time t of the system ẋ(t) = f j (x(t)),

x(0) = x 0 . (1) 
The existence of φ j is guaranteed by assumption (H0). Let us consider S ⊂ R n be a compact and convex set, typically a "box" or "rectangular set", that is a cartesian product of n closed intervals. We know by (H0) that there exists a constant L j > 0 such that:

f j (y) -f j (x) ≤ L j y -x ∀x, y ∈ S. (2) 
We also define, for all j ∈ U :

C j = sup x∈S L j f j (x) . (3) 
Example 1. One consider the example (adapted from [START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF]) of a two rooms apartment, with one heater per room. See Figure 1. There is heat exchange between the two rooms and with the environment. The objective is to control the temperature of the two rooms. The continuous dynamics of the system is given by the equation: A pattern π is a finite sequence of modes; e.g., the expression

˙ T1 T2 = -α21 -αe1 -α f j1 α21 α12 -α12 -αe2 -α f j2 T1 T2 + αe1Te + α f T f j1 αe2Te + α f T f j2 .
0 1 • 0 0 • 1 1 is a pattern in Example 1.
The (state-dependent) control synthesis problem consists in finding at each sampling time τ , 2τ , . . . , the appropriate mode u ∈ U (in function of the current value of x) to be selected for satisfying some objective, for example a safety property. More generally, the control synthesis problem (with a "time-horizon" bounded by a positive integer K) consists first in selecting at time 0 a pattern π1 of length, say 1 ≤ k1 ≤ K, according to the value of state x(0); then after k1τ seconds, selecting a new pattern π2, according to the value of x(k1τ ), and so on repeatedly. This induces a control (or switching) rule σ which is a piecewise constant function of time, with discontinuities occurring at sampling times. By convention, the control law σ is right-continuous.

(R, S)-stability

Among the classical objectives that one is generally aiming for, there are the reachability objective: given an initial region Rinit and a target region R, find a pattern which drives x(t) to R, for any initial state x 0 = x(0) ∈ Rinit; the stability objective: for any initial point

x 0 = x(0) ∈ R, find a pattern π ∈ U k (with 1 ≤ k ≤ K) which makes the trajectory return in R (i.e.: x(kτ ) ∈ R) while always maintaining x(t) in a neighborhood S = R + ε of R, (i.e.: x(t) ∈ S for 0 ≤ t ≤ kτ ).
The effect of such control rules is depicted on Figure 2.

For the sake of simplicity, we focus here on a property that we call "(R, S)-stability": given two rectangular sets (i.e., cartesian products of intervals) R and S with R ⊆ S ⊂ Fig. 2. Illustration of reachability (left) followed by stability (right) R n , called respectively "recurrence set" and "safety set", the (R, S)-stability control problem consists in finding a control σ ensuring, for all x(0) ∈ R 1. recurrence: the state of the system x(t) belongs to R for an infinite number of values of t; 2. safety: the state of the system x(t) belongs to S for all t ≥ 0.

The property of (R, S)-stability is illustrated in Figure 3 We now give the general scheme of control synthesis that has been proposed in MINIMATOR [START_REF] Fribourg | Finite controlled invariants for sampled switched systems[END_REF] for ensuring (R, S)-stability. This scheme consists in two steps:

1. cover R via a finite number m of subsets B 0 1 , B 0 2 , ..., B 0 m of S (with R ⊂ m i=1 B 0 i ⊆ S); 2. for each B 0 i (1 ≤ i ≤ m
), find a pattern πi of length ki ≤ K such that, starting at t = 0 from any point of B 0 i , the trajectory x(t) controlled by πi satisfies:

x(t) ∈ S for all t ∈ [0, kiτ ] ∧ x(t) ∈ R for t = kiτ.
Note that, when the system returns to R (after application of some pattern) at time, say t = t1, the state x(t1) belongs to B 0 i 1 for some 1 ≤ i1 ≤ m; the pattern πi 1 is then applied, which makes the system return to R at time t2 = t1 + ki 1 τ , and so on iteratively.

Remark 1. Let us give a rough estimation of the complexity of MINIMATOR scheme. Let N be the number of modes, n the state dimension, K the time-horizon (or maximum length of patterns), m = 2 nd the number of modes (assuming a uniform covering obtained by bisection of depth d); the MINIMATOR scheme consists essentially in enumerating all the possible patterns of length ≤ K until finding, for each B 0 i (1 ≤ i ≤ m) a safe recurrent candidate; a simple calculation shows that there are 2 nd N K candidate patterns; the complexity of the MINIMATOR scheme is thus exponential in n, d, K (note that the number of modes N may be itself exponential in the dimension n: for example, in a classical n-room heating example with one heater per room and two modes by heater, there are N = 2 n modes).

Remark 2. Note that the set of trajectories starting at points of R form a (positive) invariant set included into S. There are classical methods for generating (maximal) invariant sets included into S ( [START_REF] Asarin | Effective synthesis of switching controllers for linear systems[END_REF][START_REF] Blanchini | Set invariance in control: a survey[END_REF]). Unfortunately, these general methods are based on a backward reachability constructs, which, as noticed by I.M. Mitchell [START_REF] Mitchell | Comparing forward and backward reachability as tools for safety analysis[END_REF], "are more likely to suffer from numerical stability issues, especially in systems with significant contraction -the very systems where forward simulation and reachability are most effective". The forward analysis used by the MINIMATOR scheme (application of patterns) avoids such a difficulty.

Guaranteed integration

The MINIMATOR paradigm described in Section 2.2 relies implicitly on the existence of a process for overapproximating the set of trajectories originating from a subset B 0 i during a multiple of sampling periods. Such a process is called "guaranteed integration" (or "set-integration"). As said in [START_REF] Nedialko | A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations[END_REF]: "Methods of guaranteed integration are methods capable to compute bounds that are guaranteed to contain the solution of a given ODE at points tj, j = 1, 2, . . . , m in the interval (t0, tm] for some tm > t0. These methods are usually based on Taylor series or extension of Hermite-Obreschkoff schemes to interval methods. They usually consist of two phases. On an integration step from tj-1 to tj, the first phase validates existence and uniqueness of the solution of (1) for all [tj-1, tj] and computes a priori bounds for this solution for al t ∈ [tj-1, tj], [19,20]; and the second phase compute tight bounds for the solution of (1) at tj. Note that a major problem in the second phase is the wrapping effect [16]. It occurs when a solution set that is not a box in R n , n ≥ 2, is enclosed, or wrapped, by a box on each integration step. (...) As a result of such a wrapping, an overestimation is often introduced on each integration step. Those overestimations accumulate as the integration proceeds, and the computed bounds may soon become unacceptably large. Many methods have been proposed to reduce the wrapping effect in the context of interval methods."

In order to avoid such a wrapping effect, we proposed an alternate method which, instead of using interval arithmetic [START_REF] Moore | Interval Analysis[END_REF] and higher order Taylor series, has simply recourse to the basic (forward) Euler method [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]. This is made possible through a new error analysis of the Euler method via the notion of "one-sided Lipschitz constant".

3 Euler's method and error estimation

One-sided Lipschitz constant

As remarked in [START_REF] Abbaszadeh | Nonlinear observer design for onesided lipschitz systems[END_REF]:

"The Lipschitz constant of [many] functions is usually region-based and often dramatically increases as the operating region is enlarged. On the other hand, even if the nonlinear system is Lipschitz in the region of interest, it is generally the case that the available observer design techniques can only stabilize the error dynamics for dynamical systems with small Lipschitz constants but fails to provide a solution when the Lipschitz constant becomes large. The problem becomes worse when dealing with stiff systems. Stiffness means that the ordinary differential equation (ODE) admits a smooth solution with moderate derivatives, together with nonsmooth ("transient") solutions rapidly converging towards the smooth ones (...) This problem has been recognized in the mathematical literature and specially in the field of numerical analysis for some time and a powerful tool has developed to overcome this problem. This tool is a generalization of the Lipschitz continuity to a less restrictive condition known as one-sided Lipschitz (OSL) continuity."

Unlike Lipschitz constants, OSL constants can be negative, which express a form of contractivity of the system dynamics. Even if the OSL constant is positive, it is in practice much lower than the Lipschitz constant [START_REF] Dahlquist | Error analysis for a class of methods for stiff non-linear initial value problems[END_REF]. The use of OSL thus allows us to obtain an upper bound for the error associated with Euler's method that is more precise than by using Lipschitz constants [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF].

Let us denote by T a compact overapproximation of the image by φj of box S for 0 ≤ t ≤ τ and j ∈ U , i.e. T is such that

T ⊇ {φj(t; x 0 ) | j ∈ U, 0 ≤ t ≤ τ, x 0 ∈ S}.
The existence of T is guaranteed by assumption (H0). We now make the additional hypothesis that the vector fields fj of the system are one-sided Lipschitz (OSL) [START_REF] Donchev | Stability and Euler approximation of onesided lipschitz differential inclusions[END_REF]. Formally:

(HU ) For all j ∈ U , there exists a constant λj ∈ R such that fj(y) -fj(x), y -x ≤ λj y -x 2 ∀x, y ∈ T, where •, • denotes the scalar product of two vectors of R n . Remark 3. Constants λj as well as Lj and Cj (j ∈ U ) can be computed using constrained optimization algorithms. See Section 3.5 for details.

Euler approximate solutions

Given an initial point x0 ∈ S and a mode j ∈ U , we define the following "linear approximate solution" φj(t; x0 ) for t ∈ [0, τ ] by:

φj(t; x0 ) = tfj(x 0 ) + x0 . (4) 
Formula ( 4) is nothing else but the explicit forward Euler scheme with"time step" t. It is thus a consistent approximation of order 1 in t of the exact solution of (2.1) under the hypothesis x0 = x 0 . More generally, given an initial point x0 ∈ S and pattern π of U k , we can define a "(piecewise linear) approximate solution" φπ(t; x0 ) of φπ at time t ∈ [0; kτ ] as follows:

-φπ(t; x0 ) = tfj(x 0 ) + x0 if π = j ∈ U , k = 1 and t ∈ [0, τ ],
and

-φπ(kτ + t; x0 ) = tfj(z) + z with z = φπ ((k -1)τ ; x0 ), if k ≥ 2, t ∈ [0, τ ], π = j • π for some j ∈ U and π ∈ U k-1 .
Fig. 4. Illustration of Euler's method (from Wikipedia)

We wish to synthesize a guaranteed control σ using approximate functions of the form φπ. We define the closed ball of center x ∈ R n and radius r > 0, denoted B(x, r), as the set {x ∈ R n | x -x ≤ r}. Given a positive real δ 0 , we now define the expression δj(t) which, as we will see in Theorem 1, represents (an upper bound on) the error associated to φj(t; x0 ) (i.e. φj(t; x0 ) -φj(t; x 0 ) ).

Definition 1. Let δ 0 be a positive constant. Let us define, for all 0 ≤ t ≤ τ , δj(t) as follows:

if λj < 0:

δj(t) = (δ 0 ) 2 e λ j t + C 2 j λ 2 j t 2 + 2t λj + 2 λ 2 j 1 -e λ j t 1 2 
if λj = 0 :

δj(t) = (δ 0 ) 2 e t + C 2 j (-t 2 -2t + 2(e t -1)) 1 2 
if λj > 0 :

δj(t) = (δ 0 ) 2 e 3λ j t + C 2 j 3λ 2 j -t 2 - 2t 3λj + 2 9λ 2 j e 3λ j t -1 1 2
Note that δj(t) = δ 0 for t = 0. The function δj(•) depends implicitly on parameter: δ 0 ∈ R>0. In Section 3.3, we will use the notation δ j (•) where the value of δ j (t) for t = 0 is implicitly a parameter denoted by (δ ) 0 . Theorem 1. Given an ODE system satisfying (H0 -HU ), consider a point x0 and a positive real δ 0 . We have, for all x 0 ∈ B(x 0 , δ 0 ), t ∈ [0, τ ]:

φj(t; x 0 ) ∈ B( φj(t, x0 ), δj(t)).
The proof of this theorem is given in [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF].

Remark 4. In Theorem 1, we have supposed that the step size h used in Euler's method was equal to the sampling period τ of the switching system. Actually, in order to have better approximations, it is often convenient to take a fraction of τ as for h (e.g., h = τ 10 ). Such a splitting is called "sub-sampling" in numerical methods.

Corollary 1. (one-step invariance) Given an ODE system satisfying (H0 -HU ), consider a point x0 ∈ S and a real δ 0 > 0 such that:

1. B(x 0 , δ 0 ) ⊆ S, 2. B( φj(τ ; x0 ), δj(τ )) ⊆ S, and 3.

d 2 (δ j (t)) dt 2 > 0 for all t ∈ [0, τ ].
Then we have, for all x 0 ∈ B(x 0 , δ 0 ) and t ∈ [0, τ ]: φj(t; x 0 ) ∈ S. ) with j = π(k ).

Let us now define the expression δ k π as follows: for k = 0: δ k π = δ 0 , and for 1 ≤ k ≤ k: δ k π = δ j (τ ) where (δ ) 0 denotes δ k -1 π , and j denotes π(k ). Likewise, the expression δπ(t) is defined, for 0 ≤ t ≤ kτ , by:

-for t = 0: δπ(t) = δ 0 , -for 0 < t ≤ kτ : δπ(t) = δ j (t ) with (δ ) 0 = δ -1 π , j = π( ), t = t -( -1)τ and = t τ . Note that, for 0 ≤ k ≤ k, we have: δπ(k τ ) = δ k π .
Following the MINIMATOR paradigm (see Section 2.2), we are now ready to synthesize a control σ ensuring (R, S)stability, using the approximate functions φπ.

Theorem 2. Given a sampled switched system satisfying (H0-HU ), consider a point x0 ∈ S, a positive real δ 0 and a pattern π of length k such that, for all 1 ≤ k ≤ k:

1. B(x k π , δ k π ) ⊆ S and 2. d 2 (δ j (t)) dt 2 > 0 for all t ∈ [0, τ ], with j = π(k ) and (δ ) 0 = δ k -1 π .
Then we have, for all x 0 ∈ B(x 0 , δ 0 ) and t ∈ [0, kτ ]: φπ(t; x 0 ) ∈ S.

Corollary 2. Given a switched system satisfying (H0 -HU ), consider a positive real δ 0 and a finite set of points x1, . . . xm of S such that all the balls B(xi, δ 0 ) cover R and are included into S (i.e. R ⊆ m i=1 B(xi, δ 0 ) ⊆ S). Suppose furthermore that, for all 1 ≤ i ≤ m, there exists a pattern πi of length ki such that:

1. B((xi) k π i , δ k π i ) ⊆ S, for all k = 1, . . . , ki -1 2. B((xi) k i π i , δ k i π i ) ⊆ R. 3. d 2 (δ j (t)) dt 2 > 0 with j = πi(k ) and (δ ) 0 = δ k -1 π i
, for all k ∈ {1, ..., ki} and t ∈ [0, τ ].

These properties induce a control σ 1 which guarantees -(safety): if x 0 ∈ R, then φσ(t; x 0 ) ∈ S for all t ≥ 0, and -(recurrence): if x 0 ∈ R then φσ(kτ ; x 0 ) ∈ R for some k ∈ {k1, . . . , km}.

A covering of R with balls as stated in Corollary 2 is illustrated in Figure 6 (left) with a pattern satisfying safety and recurrence in Figure 6 (right). Corollary 2 thus leads to the following method (inspired by the the MINIMATOR scheme described in Section 2.2), aiming for (R, S)-stability:

we (pre-)compute λj, Lj, Cj for all j ∈ U ; we find m points x1, . . . , xm of S and δ 0 > 0 such that R ⊆ m i=1 B(xi, δ 0 )) ⊆ S; we find m patterns πi (i = 1, . . . , m) such that conditions 1-2-3 of Corollary 2 are satisfied.

R S x1 x2 x3 x4 x5 x6 x7 x8 x9 R S δ B( x 3 1 , δ π3 1 ) x3 B( x 3 2 , δ π3 2 )
Fig. 6. Set of balls covering R (left) and safe recurrent pattern associated with one of these balls (right).

Avoiding wrapping effect with Euler's method

The problem of "wrapping effect" inherent to the method of interval analysis has been noticed from the outset: R. Moore [START_REF] Moore | Interval Analysis[END_REF] illustrates it on the simple rotation ẋ = 0 1 -1 0 x; x0 ∈ A for an initial set A which is rectangular. At each step, the rectangle is rotated and has to be wrapped by another one. At t = 2π, the blow up factor is by a factor e 2π ≈ 535, as the step size tends to zero (Figure 7: left). In contrast, the application of the Eulerbased method starting from a ball of radius 0.1 with step size 0.005, does not blow up on this example (Figure 7: right).

Numerical results

Our Euler-based synthesis method has been implemented by Adrien Le Coënt in the interpreted language Octave, and the experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The computation of constants Lj, Cj, λj (j ∈ U ) are realized with a constrained optimization algorithm. They are performed using the "sqp" function of Octave, applied on the following optimization problems:

-Constant Lj:

Lj = max x,y∈S, x =y fj(y) -fj(x) y -x -Constant Cj: Cj = max x∈S Lj fj(x)
-Constant λj: λj = max

x,y∈T, x =y fj(y) -fj(x), y -x y -x 2 Fig. 7. left: guaranteed integration with interval method (from [START_REF] Moore | Interval Analysis[END_REF]); right: with Eulerbased method.

The convexity test

d 2 (δ j (t)) dt 2
> 0 can be performed similarly. Note that in some cases, it is advantageous to use a time sub-sampling to compute the image of a ball. Indeed, because of the exponential growth of the radius δj(t) within time, computing a sequence of balls can lead to smaller ball images. It is particularly advantageous when a constant λj is negative. We illustrate this with the example of the DC-DC converter [START_REF] Beccuti | Optimal control of the boost dc-dc converter[END_REF]. It has two switched modes, for which we have λ1 ≈ -0.014 and λ2 ≈ 0.14. In the case λj < 0, the associated formula δj(t) has the behavior of Figure 8 (a). In the case λj > 0, the associated formula δj(t) has the behavior of Figure 8 (b). In the case λj < 0, if the time sub-sampling is small enough, one can compute a sequence of balls with reducing radius, which makes the synthesis easier. Example 2. (Four-room apartment) We describe a first application on a 4-room 16switch building ventilation case study adapted from [START_REF] Meyer | Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings[END_REF]. The model has been simplified in order to get constant parameters. The system is a four room apartment subject to heat transfer between the rooms, with the external environment, the underfloor, and human beings. The dynamics of the system is given by the following equation:

dTi dt = j∈N * \{i} aij(Tj-Ti)+δs i bi(T 4 s i -T 4 i )+ci max 0, Vi -V * i Vi -V * i (Tu-Ti), for i = 1, ..., 4.
The state of the system is given by the temperatures in the rooms Ti, for i ∈ N = {1, . . . , 4}. Room i is subject to heat exchange with different entities stated by the indices N * = {1, 2, 3, 4, u, o, c}. We have T0 = 30, Tc = 30, Tu = 17, δs i = 1 for i ∈ N . The (constant) parameters Ts i , V * i , Vi, aij, bi, ci are given in [START_REF] Meyer | Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings[END_REF]. The control input is Vi (i ∈ N ). In the experiment, V1 and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values 0V or 3V. This leads to 16 switching modes corresponding to the different possible combinations of voltages Vi. The sampling period is τ = 30s. Compared simulations are given in Figure 9. On this example, the Euler-based method works better than DynIBEX in terms of CPU time (see Table 1 1. Numerical results for the four-room example. 

Bounded uncertainty

Let us now consider the case where the mode j is governed by the uncertain ODE:

ẋ(t) = fj(x(t), w(t)) with w(t) ∈ W
where W is a bounded set of diameter Let us suppose that the uncertain ODE satisfies the assumption:

(HU,W ) For all j ∈ U , there exist λj ∈ R and γj ∈ R ≥0 such that, for all x, x ∈ T , and all w, w ∈ W :

fj(x, w) -fj(x , w ), x -x ≤ λj x -x 2 + γj x -x w -w .
Definition 2. Let δ 0 be a positive real, and W a rectangular set of diameter |W |. We define, for all j ∈ U and 0 ≤ t ≤ τ , the expression δj,W (t) as follows:

-if λj < 0, δj,W (t) = C 2 j -λ 4 j -λ 2 j t 2 -2λjt + 2e λ j t -2 + 1 λ 2 j Cjγj|W | -λj -λjt + e λ j t -1 + λj γ 2 j (|W |/2) 2 -λj (e λ j t -1) + λj(δ 0 ) 2 e λ j t 1/2 (5) 
-if λj = 0, δj,W (t) = C 2 j -t 2 -2t + 2e t -2 + Cjγj|W | -t + e t -1 +(γ 2 j (|W |/2) 2 (e t -1)+(δ 0 ) 2 e t ))) 1/2 (6) -if λj > 0, δj,W (t) = 1 (3λj) 3/2 C 2 j λj -9λ 2 j t 2 -6λjt + 2e 3λ j t -2 + 3λj Cjγj|W | λj -3λjt + e 3λ j t -1 + 3λj γ 2 j (|W |/2) 2 λj (e 3λ j t -1) + 3λj(δ 0 ) 2 e 3λ j t 1/2 (7) 
Under assumption (HU,W ) instead of (HU ), one can naturally extend Theorem 1 and Corollary 1 to take the uncertainty set W into account, using δj,W (•) in place of δj(•). These extended results are useful to control systems with uncertainty, for example when the coefficients in the vector field definitions are known with a limited precision. Such extended forms of Theorem 1 and Corollary 1 can also be applied to control interconnected subsystems, each component regarding the input from the other one as a form of bounded uncertainty (see Section 4.2).

Application to distributed control synthesis

We now consider the distributed (or "compositional") approach which consists in splitting the original system into two sub-systems, in order to synthesize a controller σi (i = 1, 2) for each sub-system independently, then apply the control σ = (σ1|σ2) (by concurrent application of σ1 and σ2) to the global system. The interest of the approach is to break the exponential complexity of the original method w.r.t. the dimension of the system and the number of modes (see Section 2.2). We consider an ODE of the form ẋ = fj(x) with x ∈ R n , j ∈ U , which is of the form

ẋ1 = f 1 j 1 (x1, x2) (8) ẋ2 = f 2 j 2 (x1, x2) (9) 
where the state x is of the form (x1, x2) , and a mode j = (j1, j2) ∈ U = U1 × U2, the solution of the ODE is now denoted by φ (j 1 ,j 2 ) (t; x 0 ), for all t ∈ [0, τ ]. The system (8-9) can be seen as the interconnection of a 1st sub-system [START_REF] Fribourg | Finite controlled invariants for sampled switched systems[END_REF] where x2 plays the role of an "input" given by ( 9), with a 2nd sub-system [START_REF] Girard | Low-complexity switching controllers for safety using symbolic models[END_REF] where x1 is an "input" given by [START_REF] Fribourg | Finite controlled invariants for sampled switched systems[END_REF]. Accordingly, the sets R, S and T are seen under their compositional form R = R1 × R2, S = S1 × S2, T = T1 × T2. We will denote by x m 1 (resp. x m 2 ) an arbitrary point of R1 (resp. R2), typically its central point. We denote by L 1 j 1 the Lipschitz constant for sub-system 1 under mode j1:

with x1 ∈ R n 1 , x2 ∈ R n 2 , n1 + n2 = n,
f 1 j 1 (x1, x2) -f 1 j 1 (y1, y2) ≤ L 1 j 1 x1 x2 - y1 y2 
We introduce also the constant:

C 1 j 1 = sup x 1 ∈S 1 L 1 j 1 f 1 j 1 (x1, x m 2 )
Similarly, we define the constants for sub-system 2:

f 2 j 2 (x1, x2) -f 2 j 2 (y1, y2) ≤ L 2 j 2 x1 x2 - y1 y2 and C 2 j 2 = sup x 2 ∈S 2 L 2 j 2 f 2 j 2 (x m 1 , x2)
In the following, we assume that, for all j1 ∈ U1, there exist a real λj 1 and a nonnegative real γj 1 which make the 1st sub-system satisfy assumption (HU 1 ,W 2 ) for some overapproximation W2 of T2. Symmetrically, we assume that, for all j2 ∈ U2, there exist a real λj 2 and a non-negative real γj 2 which make the 2nd sub-system satisfy (HU 2 ,W 1 ) for some overapproximation W1 of T1.

Given two modes j1 ∈ U1, j2 ∈ U2, and two initial conditions x0 1 , x0 2 , we define the "decompositional" Euler approximate solutions φ1 j 1 and φ2 j 2 , for t ∈ [0, τ ], as follows:

φ1 j 1 (t; x0 1 ) = x0 1 + tf 1 j 1 (x 0 1 , x m 2 ) (10) φ2 j 2 (t; x0 2 ) = x0 2 + tf 2 j 2 (x m 1 , x0 2 ) (11) 
We can now give the distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system satisfying, suppose that the 1st and 2nd sub-systems satisfy, for all j1 ∈ U1 and j2 ∈ U2, the assumptions (HU 1 ,W 2 ) and (HU 2 ,W 1 ) respectively. Consider a point x0 1 and a positive real δ 0 . We have, for all

x 0 1 ∈ B(x 0 1 , δ 0 ), t ∈ [0, τ ], j1 ∈ U1: φ (j 1 ,j 2 ) (t; x 0 ) |1 ∈ B( φ1 j 1 (t, x0 1 ), δj 1 ,W 2 (t)) ∀j2 ∈ U2, ∀x 0 2 ∈ S2, x 0 = x 0 1 x 0 2 .
Likewise, we have, for all

x 0 2 ∈ B(x 0 2 , δ 0 ), t ∈ [0, τ ], j2 ∈ U2: φ (j 1 ,j 2 ) (t; x 0 ) |2 ∈ B( φ2 j 2 (t, x0 2 ), δj 2 ,W 1 (t)) ∀j1 ∈ U1, ∀x 0 1 ∈ S1, x 0 = x 0 1 x 0 2 .
The proof of this theorem is in [START_REF] Le Coënt | Distributed control synthesis using Euler's method[END_REF]. We can now state the distributed version of Corollary 2.

Corollary 3. Given a positive real δ 0 , consider two sets of points x1 1 , . . . , x1 m 1 and x2 1 , . . . , x2 m 2 such that all the balls B(x 1 i 1 , δ 0 ) and B(x 2 i 2 , δ 0 ), for 1 ≤ i1 ≤ m1 and 1 ≤ i2 ≤ m2, cover R1 and R2. Suppose that there exist patterns π 1 i 1 of length ki 1 for the 1st sub-system such that :

1. B((x 1 i 1 ) k π 1 i 1 , δ k π 1 i 1
) ⊆ S1, for all k = 1, . . . , ki 1 -1;

2. B((x 1 i 1 )

k i 1 π 1 i 1 , δ k i 1 π 1 i 1 ) ⊆ R1; 3. d 2 (δ j 1 (t)) dt 2 > 0 with j1 = π 1 i 1 (k ) and (δ ) 0 = δ k -1 π 1 i 1
, for all k ∈ {1, ..., ki 1 } and

t ∈ [0, τ ].
and symmetrically for the 2nd sub-system. These properties induce a control σ1 for the 1st sub-system, and σ2 for the 2nd sub-system such that the composed control σ = (σ1|σ2) ensures recurrence in R and safety in S, i.e.:

if x 0 ∈ R, then φσ(t; x 0 ) ∈ S for all t ≥ 0; if x 0 ∈ R, then φσ(ki 1 τ ; x 0 ) |1 ∈ R1 for some i1 ∈ {1, . . . , m1}, and symmetrically φσ(ki 2 τ ; x 0 ) |2 ∈ R2 for some i2 ∈ {1, . . . , m2}.

Example 3. We demonstrate the interest of the distributed approach by comparing it with respect to the (centralized) approach performed in Example 2. The main difficulty of this example is the large number of modes in the switching system, which induces a combinatorial issue. The centralized controller in Example 2 was obtained with 256 balls in 48 seconds, the distributed controller was obtained with 16+16 balls in less than a second. In both cases, patterns of length 2 are used. A sub-sampling of h = τ /20 is required to obtain a controller with the centralized approach (see Table 2). For the distributed approach, no sub-sampling is required for the first sub-system, while the second one requires a sub-sampling of h = τ /10 (see Table 3). Simulations of the centralized and distributed controllers are given in Figure 10, where the control objective is to stabilize the temperature in [20,22] 3. Numerical results for the distributed four-room example.

Final remarks

We have presented a simple method of control synthesis for switched systems using a new scheme of guaranteed integration based on Euler's method. Preliminary experiments show that, on some examples, the method avoids the wrapping effect occurring with interval-based integration methods. On-going work is done for adapting this Eulerbased method to the treatment of stochastic differential equations.
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 1 Fig. 1. 2-rooms example

  in the case of Example 1, with R = [18, 22] × [18, 22].

Fig. 3 .

 3 Fig. 3. (R, S)-stability

Corollary 1 is illustrated in Figure 5 .Fig. 5 .

 55 Fig. 5. Illustration of one-step invariance in S
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 31 Application to control synthesis for (R, S)-stability Consider a point x0 ∈ S, a positive real δ 0 and a pattern π of length k. Let π(k ) denote the k -th element (mode) of π for 1 ≤ k ≤ k. Let us abbreviate the k -th approximate point φπ(k τ ; x0 ) as xk π for k = 1, ..., k, and let xk π = x0 for k = 0. It is easy to show that xk π can be defined recursively for k = 1, ..., k, by: xk π = xkτ fj(x k -1 π

Fig. 8 .

 8 Fig. 8. Behavior of δj(t) for the DC-DC converter with δj(0) = 0.045. (a) Evolution of δ1(t) (with λ1 < 0); (b) Evolution of δ2(t) (with λ2 > 0).

Fig. 9 .

 9 Fig. 9. Simulation of the four-room case study with Euler-based synthesis method (left) and with the synthesis method of [2] (right).

  the mode j is of the form (j1, j2), with j1 ∈ U1, j2 ∈ U2, U = U1 × U2.

Fig. 10 .

 10 Fig. 10. Simulation of the centralized (left) and distributed (right) Euler-based controllers from the initial condition (22, 22, 22, 22).
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		Euler	DynIBEX
	R [20, 22] Number of balls/tiles 4096	252
	Pattern length	1	1
	CPU time	63 seconds 249 seconds
	Table		

2 × [22, 24] 2 S [19, 23] 2 × [21, 25] 2 τ 30 Time subsampling No Complete control Yes Yes maxj=1,...,16 λj -6.30 × 10 -3 maxj=1,...,16 Cj 4.18 × 10 -6

  2 denoted by |W |. see: [Girard: Reachability of uncertain linear systems using zonotopes] [R. Alur, T. Dang, F. Ivancic, Reachability analysis of hybrid systems via predicate abstraction, Hybrid Systems : Computation and Control, C.J. Tomlin, M.R. Greenstreet (Eds), no . 2289 in LNCS, pp 35-48, 2002.] [E. Asarin, T. Dang, A. Girard, Reachability of non-linear systems using conservative approximations, Hybrid Systems : Computation and Control, O. Maler, A. Pnueli (Eds), no. 2623 in LNCS, pp 22-35, Spinger, 2003]

Table 2 .

 2 4 while never going out of[19, 23] 4 . Numerical results for centralized four-room example.

			Centralized
		R		[20, 22] 4
		S		[19, 23] 4
		τ		30
	Time subsampling		τ /20
	Complete control		Yes
	Error parameters	max j=1,...,16	λj = -6.30 × 10 -3
			max j=1,...,16	Cj = 4.18 × 10 -6
	Number of balls/tiles		256
	Pattern length		2
	CPU time		48 seconds
		Sub-system 1	Sub-system 2
	R		[20, 22] 2 × [20, 22] 2
	S		[19, 23] 2 × [19, 23] 2
	τ			30
	Time subsampling	No	τ /10
	Complete control	Yes	Yes
	Error parameters	max j 1 =1,...,4 max j 1 =1,...,4 λ 1 j 1 = -1.39 × 10 -3 max j 2 =1,...,4 γ 1 j 1 = 1.79 × 10 -4 max j 2 =1,...,4 λ 2 j 2 = -1.42 × 10 -3 γ 2 j 2 = 2.47 × 10 -4 max j 1 =1,...,4 C 1 j 1 = 4.15 × 10 -4 max j 2 =1,...,4 C 2 j 2 = 5.75 × 10 -4
	Number of balls/tiles	16	16
	Pattern length	2		2
	CPU time	< 1 second	< 1 second
	Table		

Given an initial point x ∈ R, the induced control σ corresponds to a sequence of patterns πi 1 , πi

, . . . defined as follows: Since x ∈ R, there exists a a point xi 1 with 1 ≤ i1 ≤ m such that x ∈ B(xi 1 , δ 0 ); then using pattern πi 1 , one has: φπ i 1 (ki 1 τ ; x) ∈ R. Let x = φπ i 1 (ki 1 τ ; x); there exists a point xi 2 with 1 ≤ i2 ≤ m such that x ∈ B(xi 2 , δ 0 ), etc.
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