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ARTICLE

Mutations in the TGFb Binding-Protein-Like Domain 5 of FBN1 Are
Responsible for Acromicric and Geleophysic Dysplasias

Carine Le Goff,1 Clémentine Mahaut,1 Lauren W. Wang,2 Slimane Allali,1 Avinash Abhyankar,3

Sacha Jensen,4 Louise Zylberberg,5 Gwenaelle Collod-Beroud,6,7 Damien Bonnet,8 Yasemin Alanay,9

Angela F. Brady,10 Marie-Pierre Cordier,11 Koen Devriendt,12 David Genevieve,13

Pelin Özlem Simsek Kiper,9 Hiroshi Kitoh,14 Deborah Krakow,15 Sally Ann Lynch,16 Martine Le Merrer,1

André Mégarbane,17 Geert Mortier,18 Sylvie Odent,19 Michel Polak,20 Marianne Rohrbach,21

David Sillence,22 Irene Stolte-Dijkstra,23 Andrea Superti-Furga,24 David L. Rimoin,25

Vicken Topouchian,26 Sheila Unger,24 Bernhard Zabel,27 Christine Bole-Feysot,28 Patrick Nitschke,29

Penny Handford,4 Jean-Laurent Casanova,3,30 Catherine Boileau,31 Suneel S. Apte,2 Arnold Munnich,1

and Valérie Cormier-Daire1,*

Geleophysic (GD)andacromicricdysplasia (AD)belong to theacromelicdysplasia groupandarebothcharacterizedby severe short stature,

short extremities, and stiff joints. Although AD has an unknownmolecular basis, we have previously identified ADAMTSL2mutations in

a subset of GDpatients. After exome sequencing inGD andAD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even thoughmuta-

tions in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16

heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFb-binding protein-like domain 5 (TB5) of FBN1

in 29GDandAD cases.Microfibrillar network disorganization and enhanced TGFb signalingwere consistent features inGDandADfibro-

blasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as

the underlying mechanism of GD and AD phenotypes. Although enhanced TGFb signaling caused by FBN1mutations can trigger either

Marfan syndrome or GD and AD, our findings support the fact that TB5mutations in FBN1 are responsible for short stature phenotypes.
Introduction

Geleophysic dysplasia (GD, [MIM 231050]) and acromicric

dysplasia (AD, [MIM 102370]) belong to the acromelic

dysplasia group and are both characterized by severe short

stature (<�3 standard deviations [SD]), short hands and

feet, joint limitations, and skin thickening.1 Radiological

manifestations include delayed bone age, cone-shaped

epiphyses, shortened long tubular bones, and ovoid verte-

bral bodies. GD is distinct from AD because it has an auto-

somal-recessive mode of inheritance, characteristic facial
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features—a ‘‘happy’’ face with full cheeks, a shortened

nose, hypertelorism, a long and flat philtrum, and a thin

upper lip—a progressive cardiac valvular thickening often

leading to an early death, toe walking, tracheal stenosis,

respiratory insufficiency, and lysosomal-like storage vacu-

oles in various tissues. AD has an autosomal-dominant

mode of inheritance and is characterized by distinct facial

features—a round face, well-defined eyebrows, long

eyelashes, a bulbous nose with anteverted nostrils, a long

and prominent philtrum, and thick lips with a small

mouth—a hoarse voice, a pseudomuscular build, and
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distinct skeleton features, including an internal notch of

the femoral head, an internal notch of the second meta-

carpal, and the external notch of the fifth metacarpal.2,3

We recently identified ADAMTSL2 [MIM 612277] muta-

tions in GD and demonstrated a direct involvement of

ADAMTSL2 in TGFb bioavailability.4 However, the absence

of ADAMTSL2 mutations in 19 out of 33 GD patients

suggests genetic heterogeneity.5 The molecular etiology

of AD has not been previously reported. The aim of our

study was to identify (1) the gene mutated in AD and (2)

an additional mutated gene in GD by studying those GD

cases without ADAMTSL2 mutations.
Subjects and Methods

Patients
NineteenGD cases were included in the study, and they all fulfilled

the diagnostic criteria, namely short stature <�3 SD, short hands

and feet, restricted joint mobility, characteristic facial features,

and progressive cardiac involvement (Table 1, Figure 1). Ten AD

cases, including two familial cases, were included in the study.

They all fulfilled the diagnostic criteria for AD, namely severe short

stature, short hands and feet, progressively stiff joints, and charac-

teristic facial features (Table 1, Figure 1). We collected blood

samples fromaffected individuals after obtainingwritten informed

consent, in accordance with the ethical standards of our institu-

tional review board on human experimentation.

Exome Sequencing
Enrichment was performed by hybridization of shotgun fragment

libraries to Agilent SureSelect in solution capture assays. Using the

Solid3.5 (Life Technologies), we generated an average of 5.1 Gb of

mappable sequence data per sample to achieve more than 403

median coverage of the targeted exome (38 Mb, ~18,000 genes).

We first focused our exome analyses on nonsynonymous variants.

We also defined variants as previously unidentified if they were

absent from control populations and all datasets, including

dbSNP129, the 1000 Genomes Project, and in-house exome data.

Mutation Detection
Wedesigned a series of 66 intronicprimers to amplify the 65 coding

exons of FBN1 (MIM 134797; NM_000138.4). We purified the

amplicons and sequenced them by using the fluorescent dideoxy-

terminator method on an automatic sequencer (ABI 3100).

Immunofluorescence
Skin fibroblasts from affected individuals and controls were

obtained after written informed consent, in accordance with the

ethical standards of our institutional review board on human

experimentation and were grown in cell-culture chambers and

fixed in 4% paraformaldehyde (PFA). After being blocked with

3% bovine serum albumin (BSA), cells were incubated with

FBN1 antibody (Millipore) overnight at 4�C, and followed by incu-

bation with fluorescein-isothyocianate-conjugated secondary

antibodies at room temperature.

Immunoblotting Analysis
For pSMAD2 immunoblotting, cell lysates were obtained from

skin fibroblasts (controls and GD and AD patients) and actin
(Invitrogen) and pSMAD2 (Cell signaling technology) antibodies

were used. Respective protein species were quantified by densi-

tometry (Kodak 1D image analysis software).
ELISA Assays for Active and Total TGF-b1
TGF-b1 present in 100 ml culture medium of confluent fibroblasts

from two affected individuals and unaffected controls was quanti-

tated with the TGF-b1 EMax Immunoassay kit (Promega). The

samples were acidified for measurement of total TGF-b1 (active

plus latent). TGF-b1 standard curves were undertaken for each

assay. All experiments were performed in triplicate. A t test was

performed.
Production of Recombinant Fibrillin-1 Peptide and

BIAcore Analysis
We used a full-length human fibrillin-1 expression plasmid6

to generate hFib1-49, a fragment encoding residues 1–1525

(N-terminal half of fibrillin-1). The conditioned medium of the

stably transfected HEK293F cells was used to purify hFib1-49

via Ni2þ-agarose chromatography, essentially as previously

described.7 Purified hFib1-49 in 10 mM sodium acetate (pH 4.5)

was immobilized on a BIAcore CM5 sensor chip (research grade)

with the amine coupling kit according to the manufacturer’s

instructions (chip and kit from GE Health Care, Piscataway, NJ).

The Resonance unit coupled to the chip was 1614 RU, and the

analysis used a Biacore 3000 instrument (GE Health Care, Piscat-

away, NJ). The kinetic analysis was performed at 25�C in 10 mM

HEPES buffer (pH 7.4) with 0.15 M NaCl, 2 mM CaCl2, and

0.005% (v/v) surfactant P20 at a flow rate of 20 ml/min. The puri-

fied mouse Adamtsl2 was diluted in the above buffer at different

concentrations and injected both to an uncoupled control flow

cell and the cell coupled with hFib1-49. The sample injection

time was 2 min and was followed by a pause of 6 min for dissoci-

ation. A total of 10 mM NaOH solution was used for regeneration

after each injection at a flow rate of 50 ml/min for 30 s. The stabi-

lization time after regenerations was 3 min. All the data were cor-

rected with reference to the background binding in the control

flow cell. We calculated the kinetic constants by assuming a 1:1

(Langmuir) binding model with the BIAevaluation software

(version 4.0.1, GE Health Care, Piscataway, NJ).
Homology Modeling
Homologymodelingof the cbEGF-TB5-cbEGF25 regionwas carried

out with the coordinates of the fibrillin-1 cbEGF22-TB4-cbEGF23

structure (PDB 1UZJ) andModeler software.8 Figureswere rendered

with the PyMOL Molecular Graphics System (Schrödinger).
Results

Exome Analysis

Among the 19 GD cases with no ADAMTSL2 mutations,

absence of consanguinity or recurrence in sibs prompted

us to perform exome sequencing in two out of 19 unex-

plained GD cases. We also performed exome sequencing

in three out of ten AD unrelated patients. We first focused

our analyses on nonsynonymous variants, splice acceptor

and donor site mutations, and coding indels because we

anticipated that synonymous variants were far less likely

to be pathogenic. We also defined variants as previously



Table 1. Clinical Manifestations of GD and AD Patients

Family Origin Diagnosis Age (Years) Height Cardiac Involvement Other

1 Belgium GD Death at 9 <�6 SD (80 cm) mitral stenosis and insufficiency tracheotomy at 3

2 France GD 18 <�6 SD (112 cm) mitral stenosis HTAP, respiratory insufficiency,
hepatomegaly, laryngeal stenosis

3 Russia GD 12 <�6 SD (106 cm) no hepatomegaly

4 Switzerland GD 21 <�6 SD (116 cm) tricuspid stenosis, mild aortic
insufficiency

5 Russia GD 8 �4 SD (103.5 cm) no

6 France GD 5.7 �4 SD (97 cm) no laryngeal and respiratory
insufficiency

7 U.K. GD Death at 3 �5 SD (75 cm) no respiratory insufficiency, HTAP,
Sleep apnea

8 Turkey GD 4.5 �4 SD (85 cm) mitral and tricuspide stenosis respiratory insufficiency,
hepatomegaly, spleep apnea

9 Algeria GD Death at 4 <�6 SD (60 cm) mitral and tricuspide stenosis laryngeal and respiratory
insufficiency, HTAP

10 Lebanon GD 14 �3.5 SD (133 cm) no –

11 USA GD ? ? no pyloric stenosis

12 Turkey GD 3 �3 SD (85 cm) no

13 Russia GD 18 �4 SD (134 cm) mitral valve prolapse

14 Iraq GD 11 <�6 SD (92 cm) yes hepatomegaly

15 USA GD ? ? aortic stenosis, mitral and aortic
valve insufficiencies

16 Japan GD 9 �6 SD (98 cm) no _

17 Australia GD 3 �4 SD (76 cm) severe pulmonary hypertension hepatomegaly

18 USA GD ? ?

19 Korea/Japan GD 7 �6 SD (88 cm) mitral insufficiency HTAP

20 France AD 10 �6 SD (99 cm) no -

21 France AD 62 �6 SD (125 cm) no broncho-pulmonary infection

22-a France AD 10 �3 SD (121 cm) no

22-b France AD 13 �3.5 SD (128 cm) no

22-c France AD 40 �6 SD (128 cm) no mother of 22 a and 22b

23 Belgium AD 14 <�6 SD (111 cm) no broncho-pulmonary infection

24 Netherlands AD 36 <�6 SD (119cm) no carpal tunnel syndrome,
laminectomy C1-C3 for cervical
spine stenosis

25 France AD 13 <�6 SD (104cm) no

26 Italy AD 43 <�6 SD (129cm) no

27-a China AD 10 �4 SD (117 cm) no

27-b China AD 35 �5 SD (130 cm) no mother of 27a

28 France AD 54 <�6 SD 125 cm no carpal tunnel syndrome

29 France AD 33 �6 SD (125 cm) no asthma
unidentified if they were absent from control populations

and from all datasets including dbSNP129, the 1000

Genomes Project, and in-house exome data.

Considering the recessivemode of inheritance of GD, we

selected 11 candidate genes on the basis of the presence of
either two distinct mutations or one mutation present at

the homozygote state. For AD, we selected 66 candidate

genes considering the dominant mode of inheritance.

Given the phenotypic overlap between AD and GD, we

also searched for a shared mutated gene among the five



Figure 1. Clinical and Radiological Features in GD and AD
(B, D, F, andG) GD patient 1 at 5 years and (A, C, and E) 15 years; note the ‘‘happy’’ face with full cheeks, a shortened nose, and a long and
flat philtrum with a thin upper lip. (D and E) Note the delayed bone age and cone-shaped epiphyses, (F) shortened long tubular bones,
epiphyseal dysplasia, and (G) ovoid vertebral bodies.
(H and I) AD patient 21 at 3 years and 62 years. Note the round face, bulbous nose, pseudomuscular build, (J, K, L, and M) very short
hands and feet with a delayed bone age, and (N) the internal notch of the femoral head.
exomes. We identified changes in three genes: MUC17

(MIM 608422), HYDIN (MIM 610812), and FBN1. The

link between tall stature and Marfan syndrome caused by

FBN1 mutations (MIM 154700) prompted us to consider

FBN1 as the best candidate gene.9

Exome analysis detected three missense FBN1mutations

(c.5096A>G [p.Tyr1699Cys], c.5087A>G [p.Tyr1696Cys],

and c.1414T>C [p.Tyr472His]) in both GD patients

and three heterozygous FBN1 missense mutations

(c.5182G>A [p.Ala1728Thr], c.5165C>G [p.Ser1722Cys],

and c.5251T>G, [p.Ser1750Arg]) in AD patients. These

results were confirmed by Sanger sequencing. However,

Tyr472His was considered a polymorphism on the basis

of information from the Marfan mutation database.

FBN1 screening led to the identification of six distinct

heterozygous mutations in 17 additional GD cases. These

mutations were not observed in GD parents, confirming

that they occurred de novo.

Subsequent analyses in AD isolated seven FBN1

mutations. In two out of ten AD cases, mutations were
identified in the affected parent, whereas they occurred

de novo in the remaining cases. All mutations were

absent from alleles in 2000 ethnicity-matched controls

and in the Marfan mutation database.10,11 All together,

we identified a total of 16 distinct heterozygous FBN1

mutations in 29 GD and AD cases (15 missense and one

insertion, Table 2). Importantly, all mutations were clus-

tered in the same region (exons 41 and 42) encoding

the TGFb-binding protein-like 5 (TB5) domain of FBN1

(Figure 2A).

Consequences of Mutations on 3D TB5 Domain

Structure

We used homology modeling to investigate the distribution

of sites affected by heterozygous GD and AD mutations

within the structure of the TB5 domain (Figure 2B) by using

the known crystal structure of fibrillin-1 fragment

cbEGF22-TB4-cbEGF23 as a template.12 GD substitutions

appeared to alter structurally important residues such as

cysteines involved in disulphide bond formation (Cys1706,



Table 2. FBN1 Mutations Identified in Individuals with GD and AD

Family Origin Diagnosis Nucleotide Change Amino Acid Change Parent Tested: De Novo Event Confirmed

1 Belgium GD c.5087A>G p.Tyr1696Cys yes

2 France GD c.5096A>G p.Tyr1699Cys yes

3 Russia GD c.5284G>A p.Gly1762Ser no mutation in the mother; father not available

4 Switzerland GD c.5096A>G p.Tyr1699Cys Parents not available

5 Russia GD c.5284G>A p.Gly1762Ser yes

6 France GD c.5284G>A p.Gly1762Ser yes

7 UK GD c.5087A>G p.Tyr1696Cys yes

8 Turkey GD c.5096A>G p.Tyr1699Cys no mutation in the mother; father not available

9 Algeria GD c.5117G>A p.Cys1706Tyr yes

10 Lebanon GD c.5157C>G p.Cys1719Trp yes

11 USA GD c.5096A>G p.Tyr1699Cys no

12 Turkey GD c.5284G>A p.Gly1762Ser yes

13 Russia GD c.5284G>A p.Gly1762Ser yes

14 Iraq GD c.5182G>A p.Ala1728Thr yes

15 USA GD c.5183C>T p.Ala1728Val yes

16 Japan GD c.5095T>G p.Tyr1699Asp yes

17 Australia GD c.5198G>A p.Cys1733Tyr yes

18 USA GD c.5284G>A p.Gly1762Ser no

19 Korea/Japan GD c.5096A>G p.Tyr1699Cys no mutation in the mother; father not available

20 France AD c.5182G>A p.Ala1728Thr yes

21 France AD c.5165C>G p.Ser1722Cys yes

22-a France AD c.5251T>G p.Ser1750Arg inherited from 22-c

22-b France AD c.5251T>G p.Ser1750Arg inherited from 22-c

22-c France AD c.5251T>G p.Ser1750Arg yes

23 Belgium AD c.5177G>T p.Gly1726Val yes

24 Netherlands AD c.5096A>G p.Tyr1699Cys yes

25 France AD c.5202_5204dup p.Gln1735dup yes

26 Italy AD c.5273A>T p.Asp1758Val no

27-a China AD c.5099A>G p.Tyr1700Cys inherited from 27-b

27-b China AD c.5099A>G p.Tyr1700Cys yes

28 France AD c.5141T>G p.Met1714Arg yes

29 France AD c.5165C>G p.Ser1722Cys yes
Cys1719, Cys1733) or large aromatic components (Tyr1696,

Tyr1699, Tyr1700). TheGD substitutionswere also clustered

near the region of the TB domain known to be involved in

intermolecular interactions on the basis of integrin-binding

studies with fibrillin-1 TB4 domain fragments and LAP-LTBP

interactions. AD substitutions appeared to be even more

evenly distributed throughout the TB5 domain.
Microfibrillar Structure

To analyze the consequences of FBN1 mutations, we

compared the microfibrillar structure in skin fibroblasts
from GD and AD patients to that in control fibroblasts

by indirect immunofluorescence. Staining revealed abun-

dant long microfibrils in controls, but AD and GD fibro-

blasts demonstrated a reduced number of microfibrils

and complete network disorganization (Figure 3A).
Analysis of TGFb Signaling Pathway

To test the impact of TB5 domain substitutions on TGFb

signaling, we analyzed phospho-SMAD2 and -3 in the

cell lysate of GD and AD fibroblasts and age- and

passage-matched control skin fibroblasts by immunoblot



Figure 2. Location of FBN1 Mutations Identified in GD and AD Patients
(A) Functional domains of FBN1. The location of the amino change found in each family is shown (GD are families listed in roman font;
AD families are in italics, and mutations shared by AD and GD are in bold).
(B) 3Dmodeling of the fibrillin-1 cbEGF24-TB5-cbEGF25 region showing residues affected by GD andADmutations. GD substitutions (I)
are shown inmagenta and AD substitution sites (II) are shown in cyan. Note the clustering of disease-causing substitutions in the region
of the TB domain previously associated with protein-protein interactions. cbEGF domains are shown in green, and the TB domain is in
blue. Red spheres represent calcium ions bound to domains cbEGF24 and cbEGF25. Homologymodeling created withModeler software7

and the coordinates of the fibrillin-1 cbEGF22-TB4-cbEGF23 structure (PDB 1UZJ). The figure was generated with Pymol. GD substitu-
tions are shown in roman font, whereas those found in AD or in both diseases are shown in italics and bold, respectively.
(Figure 3B) and found an enhanced signal. Consistent with

this observation, we quantified active and total TGF-b in

the cultured medium of GD and AD skin fibroblasts by

ELISA and found a 10-fold higher level of total TGF-b in

the cultured medium of GD and AD fibroblasts than in

the controls (p < 0.0003) (Figure 3C).
Link between FBN1 and ADAMTSL2

Because we have previously identified ADAMTSL2 muta-

tions in a subset of GD patients, we hypothesized a direct

link between FBN1, which is involved in AD and a portion

of GD patients, and ADAMTSL2. To demonstrate this inter-

action, we performed surface plasmon resonance analysis

by using FBN1 recombinant protein.

Although the fibrillin construct used did not contain

TB5 domain, this analysis identified a specific direct inter-

action (KD ¼ 60 nM) between the two proteins (Figure 4).
Discussion

Here, we report the identification of FBN1mutations in 19

GD and ten AD patients; both GD and AD are clinically

defined conditions combining short stature, short hands,

and stiff joints.
Although GD has been described as an autosomal-reces-

sive disorder, the identification of heterozygous FBN1muta-

tionsdemonstrates adominant formofGD, strictly fulfilling

the diagnostic criteria for GD (including progressive cardiac

valvular thickening and early death in three out of 19 GD

patients without ADAMTSL2 mutations). As previously

reported,5 we did not find any significant difference in the

main clinical and radiological features characteristic of

GD,namely cardio-respiratory involvement, skin thickness,

facial features (including a round full face, a small nose with

anteverted nostrils, and a long philtrum) hepatomegaly,

natural history of the disorder, and severe outcome between

the two forms of GD.However, a broad nasal bridge, narrow

palpebral fissures, and tip-toe walking were more consis-

tently observed in the ADAMTSL2-mutated group.5 These

minor phenotypic differences between the two forms of

GD might guide the clinician diagnostically and help in

the prioritization of the molecular screening.

Similarly, all AD cases fulfilled the diagnostic criteria of

AD. None of them had cardiac involvement or early death.

These data demonstrate that GD and AD appear clinically

distinct but are allelic conditions.

We did not find any obvious differences in the nature of

the mutations identified in GD compared to the mutations

identified in AD. Among the 16 FBN1mutations identified,
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a b c Figure 3. Microfibril and TGFb-Signaling
Analysis in GD and AD Skin Fibroblasts
(A) Microfibril analysis in skin fibroblasts
from (a) control, (b) a GD patient, and (c)
an AD patient. The microfibrillar network
formation was detected by indirect immu-
nofluorescence with fibrillin-1 antibody.
(MAB019). The staining revealed abun-
dant long microfibrils in the control fibro-
blasts (a). Conversely, the GD and AD
patient fibroblasts showed a reduced
number of microfibrils and a disorganiza-
tion of the MF network (b and c). The scale
bar represents 50 mm.
(B) Enhanced phosphorylation of SMAD2
(pSMAD2) in skin fibroblasts from one
GD patient (family 8), one AD patient
(family 22), and control. pSMAD2 was
normalized to actin for comparison of
pSMAD2 levels in affected and unaffected
fibroblasts as shown in the right panel.
(C) Quantification of total (gray bars) and
active (black bars) TGFb in the conditioned
medium of fibroblasts from individuals
with GD (family 8) or AD (family 22) and
controls. The conditioned medium from
families 8 and 22 showed an amount of
total TGFb (*p < 0,003) greater than the
conditioned medium from the controls.
seven were specifically identified in GD and seven were

specifically identified in AD, but two mutations were

found in either GD or AD cases. All mutations were located

in exons 41 and 42, encoding the TB5 domain and were

altering either large aromatic components or structurally

important residues. Half of the mutations were creating

or removing a cysteine residue within this domain, which

is characterized, as are the other TB domains, by eight

cysteines directly involved in FBN1 folding via intrado-

main disulfide linkage.13

Although FBN1mutations have been identified in a wide

rangeofdisorders fromMarfan syndrome to isolatedectopia
lentis, our findings support that mutations of the TB5

domain are responsible for the phenotype of short stature,

short hands, and stiff joints. A deletion in TB5 domain has

been previously reported in Weill-Marchesani syndrome

[MIM 608328], which is also characterized by short stature,

short hands, and stiff joints but differs from AD and GD in

the presence of microspherophakia.14 More recently, mu-

tations in the TB4 domain have been reported in stiff skin

[MIM 184900] patients, who differ from AD and GD by

the absence of short stature and short hands.15

It is not knownwhymutations affecting the TB5 domain

give rise to GD and AD rather than Marfan syndrome. Our
Figure 4. ADAMTSL2 Interacts Directly with Fibrillin-1
(A) The domain structure of the fibrillin peptide hFib1-
49 is shown relative to the full-length fibrillin-1. The key
to the fibrillin-1 modules is shown.
(B) Colloidal Coomassie-blue-stained-reducing poly-
acrylamide gel showing purification of hFib1-49 (arrow).
The molecular weight markers (in kDa) are indicated on
the left.
(C) SPR analysis of ADAMTSL2 (analyte) binding to
hFib1-49 (ligand). The sensorgrams shown were ob-
tained after injection of increasing concentrations of
ADAMTSL2 as indicated. The y axis indicates the
response difference obtained between the flow cell
with bound hFib1-49 and the control flow cell without
hFib1-49 when ADAMTSL2 was used as the analyte.
The x axis shows time (s).



findings of a specific interaction between FBN1 and

ADAMTSL2might support the hypothesis that a dysregula-

tion of FBN1/ADAMTSL2/TGFb interrelationship is the

underlying mechanism of the short stature phenotypes

The finding of similar enhancement of TGFb signaling

and microfibrillar structural changes in AD and GD with

FBN1 or ADAMTSL2 mutations further supports the func-

tional link between the TB5 domain and ADAMTSL2.

However, thefindingof increasedTGFb signaling infibro-

blasts fromADandGDandMarfanpatients is still question-

able and further illustrates the tissue dependence and the

complexity of the TGFb- and SMAD-signaling pathways

with various levels of regulations. We hope that ongoing

studies will document interaction of TB5 domain and

ADAMTSL2 and contribute to a greater understanding of

how enhanced TGFb signaling caused by FBN1 mutations

can trigger either tall stature, arachnodactyly, andhyperlax-

ity or severe short stature, short hands, and stiff joints.
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Web Resources

The URLs for data presented herein are as follows:

Marfan Mutation Database, http://www.umd.be/

Mutation Nomenclature, http://www.hgvs.org/mutnomen

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

Pymol, http://www.pymol.org
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