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A B S T R A C T

While neurocognitive data provide clear evidence for the involvement of the motor system in speech perception,
its precise role and the way motor information is involved in perceptual decision remain unclear. In this paper,
we discuss some recent experimental results in light of COSMO, a Bayesian perceptuo-motor model of speech
communication. COSMO enables us to model both speech perception and speech production with probability
distributions relating phonological units with sensory and motor variables. Speech perception is conceived as a
sensory-motor architecture combining an auditory and a motor decoder thanks to a Bayesian fusion process. We
propose the sketch of a neuroanatomical architecture for COSMO, and we capitalize on properties of the auditory
vs. motor decoders to address three neurocognitive studies of the literature. Altogether, this computational study
reinforces functional arguments supporting the role of a motor decoding branch in the speech perception pro-
cess.

Introduction

The neurocognitive involvement of the speech production system in
speech perception is now firmly and clearly established from a number
of studies covering a range of different approaches (see a recent de-
tailed review by Skipper, Devlin, & Lametti, 2017). These include re-
current neuroimagery evidence showing that speech perception tasks
elicit brain activity in cortical and sub-cortical regions associated with
speech production (e.g. Fadiga, Craighero, Buccino, & Rizzolatti, 2002;
Pulvermüller et al., 2006), particularly in the case of speech in noise
(Binder, Liebenthal, Possing, Medler, & Ward, 2004; Zekveld,
Heslenfeld, Festen, & Schoonhoven, 2006), speech with a foreign accent
(Callan, Callan, & Jones, 2014; Wilson & Iacoboni, 2006) or multi-
sensory inputs with some kind of incongruence (Jones & Callan, 2003;
Ojanen et al., 2005). In addition to such “coactivation” data between
the perceptual and motor systems in speech perception tasks, various
studies displayed small but significant modifications of perceptual or
neurophysiological responses after direct modulation of the motor or
premotor cortex by transcranial magnetic stimulation, TMS (e.g.
d’Ausilio et al., 2009; Meister, Wilson, Deblieck, Wu, & Iacoboni, 2007;

Möttönen, Dutton, & Watkins, 2013; Sato, Tremblay, & Gracco, 2009)
or indirect modulation of the motor system by repeated use (Sato et al.,
2011) or sensory-motor perturbations (Lametti, Rochet-Capellan,
Neufeld, Shiller, & Ostry, 2014; Shiller, Sato, Gracco, & Baum, 2009).

While this increasingly large number of experimental data clearly
shows that the speech perception and production systems are strongly
interconnected in the human brain, they do not unambiguously tell us
what is the nature or functional role of these perceptuo-motor inter-
connections. Furthermore, the corresponding papers generally do not
discuss what computational processes could explain the patterns of
perceptuo-motor coactivation or motor modulation of neurocognitive
data they report.

The objective of the present study is to address these questions
through the use of a computational perceptuo-motor model of speech
perception, COSMO. This model has been conceived as an integral
model of speech communication, enabling to simulate both speech
perception and speech production in a single computational archi-
tecture (Moulin-Frier, Diard, Schwartz, & Bessière, 2015; Moulin-Frier,
Laurent, Bessière, Schwartz, & Diard, 2012). The core of the COSMO
architecture is based on the analysis of a speech communication process
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in which the role of the listener and the speaker are both taken into
account in the modeling of speech perception and speech production.
This enables us to address computationally the specific role of the
motor system in speech perception.

Importantly, a mathematical model such as COSMO, developed in
an algorithmic Bayesian framework (Bessière, Mazer, Ahuactzin-Larios,
& Mekhnacha, 2013), allows one to tease out knowledge from compu-
tations. Indeed, neurocognitive data often mix considerations about
what might be stored in a given brain area from what kind of neural
activity could be elicited by a given computation in a given task. Si-
milarly, most Bayesian models of speech perception (e.g. Feldman,
Griffiths, & Morgan, 2009; Kleinschmidt & Jaeger, 2015; McMurray,
Aslin, & Toscano, 2009; Vallabha, McClelland, Pons, Werker, & Amano,
2007) do not properly delineate between knowledge and computations.
Indeed, such models are defined at the computational level, in the sense
of Marr (1982). They provide direct models of processes: in other
words, one model is developed to address any one observed process. In
contrast, in a Bayesian algorithmic model, the distinction between
knowledge and computations is clear and operational (Diard, 2015):
one model of preliminary knowledge yields, by Bayesian inference,
several mathematically consistent process models. It is then possible to
compare models in relation with experimental data (e.g. Gilet, Diard, &
Bessière, 2011; Laurent, Barnaud, Schwartz, Bessière, & Diard, 2017).

In the following, we will present in a first section the COSMO ar-
chitecture for speech perception, and how a “COSMO Agent” can learn
its parameters from stimuli supplied by a “COSMO Master”. The term
“Agent” throughout this paper is taken to refer to any subject equipped
with an adequate cognitive system for speech communication. “COSMO
Agent” refers to the computational architecture that we use to describe
basic computational and representational properties of the corre-
sponding cognitive system. A “Learning Agent” has not yet learnt the
pattern of correspondence between variables enabling her/him to
properly achieve speech production and perception processes. On the
contrary, a “Master Agent” has already mastered her/his speech com-
munication system and is hence able to produce speech sounds asso-
ciated to the adequate linguistic units. A “Master Agent” is a tutor in a
broad sense (e.g. a mother or a father for a learning infant), and the
Master Agent plays the role of providing stimuli to a Learning Agent for
learning the adequate behavior. We will derive three computational
properties that could each provide a basis for a functional role of the
motor system in speech perception: “Redundancy”, “Complementarity”,
and “Specificity”. We will also propose the sketch of a neuroanatomical
architecture implementing COSMO, enabling to address more precisely
neurocognitive data from the literature.

From there on, we will reinterpret three sets of neurocognitive
evidence for the involvement of motor processes in speech perception.
In Section 2, we will show that the “Complementarity” Property could
explain why the motor system would be more involved in adverse
conditions (such as noisy input or foreign accent). In Section 3, we will
exploit the “Redundancy” Property to discuss why a motor perturbation
would result in a perceptual bias in auditory phonetic decoding. In
Section 4, we will discuss why motor activations in speech production
would differ from motor activations in speech perception, and how
audio-motor relationships would be represented in the frontal cortex, in
light of the “Specificity” Property.

Importantly, COSMO remains at this stage a computational archi-
tecture providing a proof of concept and a basis for principled reasoning
about neurocognitive representations and processes, rather than fully
realistic model of speech perception able to quantitatively account for
all known phenomena of speech perception. Therefore, Section 5 will
be the occasion of further discussions about perspectives and challenges
for the future COSMO developments.

1. COSMO, a computational model of perceptuo-motor speech
perception

1.1. Principles and implementation

1.1.1. Architecture
Speech can be conceived as a perceptuo-motor process enabling a

speaker to change the listener’s state of knowledge. We start from a very
basic communication situation in which the speaker wants to designate
an “object” OS (S for “speaker”) to a listener. Objects refer in COSMO to
a range of possible meanings, conflating different levels of analysis
(from words up to concepts and down to phonological units). In this
paper, objects will only refer to phonological entities. For this desig-
nation task, the speaker produces a motor gesture M resulting in a
sound S transferred by the environment to the listener, and enabling the
listener to decode the object as OL (L for “listener”). The speaker-lis-
tener interaction may be completed by an accompanying commu-
nicative action, providing a basis for reference (Moulin-Frier et al.,
2015): this is achieved in COSMO by a communication Boolean variable
C so that =C True if and only if =O OS L.

COSMO is based on an internalization hypothesis according to which
the whole communication chain would be internalized in the brain of
each agent (Fig. 1). COSMO therefore consists in an internal loop be-
tween variables OS, OL, C , M and S, connecting all the internalized
variables in the agent’s brain, and described in a Bayesian im-
plementation of the joint probability distribution over the 5 variables,
P C O S M O( )S L . The COSMO acronym stands for both the involved
communication principle, “Communicating Objects using Sensor-
y–Motor Operations” and the set of variables involved in the model and
summarized by the probability distribution P C O S M O( )S L .

COSMO agents are then entirely defined by the P C O S M O( )S L

distribution. This distribution is decomposed in the following way:

=P C O S M O P O P M O P S M P O S P C O O( ) ( ) ( | ) ( | ) ( | ) ( | ),S L S S L S L (1)

where P O( )S is the probability to select an object for communication,
P M O( | )S is the motor repertoire, P S M( | ) is the internal forward model,
P O S( | )L is the sensory classifier and P C O O( | )S L is a coherence term
evaluating the success of communication (Gilet et al., 2011). The sen-
sory classifier P O S( | )L is actually itself the result of an inference: in-
deed, a sub-model stores sensory prototypes P S O( | )L , from which the
sensory classifier is computed through Bayesian inversion (Laurent
et al., 2017).

1.1.2. Learning
Learning in COSMO is performed in the course of an interaction

between a Learning Agent and a Master Agent, each characterized by
the COSMO distribution defined in Eq. (1) (see Fig. 1a). The P O( )S

distribution is supposed uniform, considering that all objects for the
speaker are equiprobable for the sake of simplicity. The coherence term
P C O O( | )S L is a Dirac distribution such that = =P C True O O([ ]| ) 1S L

when =O OS L. The other probability distributions P M O( | )S , P S M( | ) and
P O S( | )L are unknown for the Learning Agent, i.e. they are uniform
distributions at the beginning of the learning process. In contrast, in the
Master Agent, these distributions encode relevant knowledge con-
cerning how the considered phonological units are produced and how
they sound. During the interaction stage, the Master Agent randomly
selects an object o, and an appropriate motor command m according to
its motor distribution P M O( | )Master

S
Master (using superscripts to dis-

ambiguate, whenever useful, between the Master Agent’s and Learning
Agent’s distributions). The motor command m is transformed into a
sound s by the physical environment. The sound s, together with the
object o, are provided to the Learning Agent to learn the parameters of
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its distributions. Parameter learning comprises three steps (Barnaud,
Diard, Bessière, & Schwartz, 2015; Barnaud, Schwartz, Diard, &
Bessiere, 2016).

– Setting OL
Ag and OS

Ag. The Learning Agent sets the values of its own
variables OL

Ag and OS
Ag equal to the object o communicated by the

Master Agent.
– Learning the sensory distribution. From the pair s o( , ), the Learning
Agent updates the distribution P S O( | )Ag

L
Ag , its repertoire of sensory

prototypes.
– Learning the sensory-motor and motor distributions. The Master
Agent provides no information about the motor commands asso-
ciated to objects and sounds. Hence, the Learning Agent has to infer
them. For this aim, the Learning Agent draws a likely motor gesture

with respect to the pair s o( , ) provided by the Master Agent, ac-
cording to the inference: = =P M S s O( |[ ][Ag Ag

S
Ag

∝ = =o P M O o P S s M]) ( |[ ]) ([ ]| )Ag
S
Ag Ag Ag . Choosing a motor com-

mand according to this distribution and then producing it generates
a sound s, possibly different from s. The Learning Agent updates the
distribution P S M( | )Ag Ag from the pair m s( , ) and the distribution
P M O( | )Ag

S
Ag from the pair m o( , ).

Importantly, this process has the interesting property that, at the
beginning of the learning stage, since the P S M( | )Ag Ag and P M O( | )Ag

S
Ag

distributions are uniform, the Learning Agent explores its motor space.
This random “babbling” exploration is progressively replaced by an
exploration process more and more focused on the Master Agent’s
production (Barnaud et al., 2016), in agreement with the “babbling

Master AgentEnvironmentLearning Agent

MMasterMAg SAg

OLAg OSMaster

CAg

MMasterMAg SAg

OSAg OLAg OSMaster

Motor decoder Auditory decoder Stimuli distribution

OSAg

Perceptuo-Motor decoder

(a)

(b)

Fig. 1. The COSMO model. (a) Learning process and stored representations in the Learning Agent. The Master Agent draws motor commands according to its motor distribution
P M O( | )Master

S
Master . They result in sounds through the physical environment distribution P S M( | )Ag Master . The Learning Agent exploits s o( , ) pairs provided by the Master Agent to learn its

internal distributions P S O( | )Ag
L
Ag , P S M( | )Ag Ag and P M O( | )Ag

S
Ag . (b) Computations involved in a perception task. The Master Agent provides stimuli according to the distribution

P S O( | )Ag
S
Master . Perception involves an auditory decoder – described by its inverse distribution P S O( | )Ag

L
Ag – and a motor decoder – described by its inverse distribution P S O( | )Ag

S
Ag –

fused within a perceptuo-motor decoder according to Eq. (3).
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drift” observed in infant’s sensory-motor exploration (e. g. de Boysson-
Bardies, Halle, Sagart, & Durand, 1989; de Boysson-Bardies, Sagart, &
Durant, 1984). Sensory-motor exploration hence combines some
amount of general knowledge and some amount of information focused
on the adequate sensory-motor relationships exploited by the Master.

At the end of the learning process, the Learning Agent has learned
the P M O( | )Ag

S
Ag , P S M( | )Ag Ag and P S O( | )Ag

L
Ag distributions, hopefully

close but still different from those of the Master Agent. This is displayed
in Fig. 1a, showing that learning enables the model to tune a set of
stored distributions necessary for further communication tasks (see next
section): this is the Learning Agent’s stored state of knowledge.

1.1.3. Perception and production tasks
In COSMO, production tasks consist in asking the COSMO model

questions of the form P M O( | ) that is, what motor gestures should be
selected to designate a given object O? Conversely, perception tasks,
which will be the focus of the present paper, consist in asking questions
of the form P O S( | ), that is, what objects can be inferred from a given
sensory input? (Notice that only auditory inputs will be considered in
this paper, the case of multisensory inputs will be further discussed in
Section 5.3).

COSMO enables to simulate auditory, motor or perceptuo-motor
theories of speech perception by adapting the probabilistic question
P O S( | ) at hand. The auditory and motor theories correspond respec-
tively to selecting OL vs. OS in the P O S( | ) question. That is, in auditory
theories, the pivot is the listener, and perception consists in directly
relating the sensory input S (typically the sound) to the category for the
listener, OL, asking the question P O S( | )L . The solution is provided by
Bayesian inversion of the stored distribution P S O( | )L . This computation
involves no information about motor processes, as proposed by e.g.
Diehl, Lotto, and Holt (2004).

In the COSMO implementation of the motor theory, the pivot is the
speaker and perception consists, as posited by e.g. Liberman and
Mattingly (1985), in recovering the speaker’s aims from the incident
sound, by computing P O S( | )S . Bayesian inference in COSMO provides
the following implementation of the Motor Theory of Speech Perception
(Laurent et al., 2017; Moulin-Frier et al., 2015):

∑∝P O S P M O P S M( | ) ( | ) ( | )S
M

S
(2)

This is an implementation of the Analysis-by-Synthesis process es-
timating a motor cause M from a sensory input S (Bever & Poeppel,
2010; Halle & Stevens, 1959). This Bayesian implementation results
automatically from the model definition and Bayesian inference. It can
be interpreted as performing the acoustic-to-articulatory inversion (e.g.
Bailly, 1997) by a summation over all possible motor configurations of
the product of factors P M O( | )S and P S M( | ) both stored in the Agent’s
state of knowledge.

Finally, a perceptuo-motor model of speech perception (such as
proposed by e.g. Schwartz, Basirat, Ménard, & Sato, 2012; Schwartz,
Boë, & Abry, 2007; Skipper, van Wassenhove, Nusbaum, & Small, 2007)
is implemented in COSMO by computing =P O S C True( | [ ])S , or, in-
differently =P O S C True( | [ ])L , as they both yield identical expressions:

∑
= = =

∝

∝

P O S C True P O S C True
P O S P M O P S M

P O S P O S

( | [ ]) ( | [ ]).
( | ) ( | ) ( | ).

( | ) ( | ).

S L

L
M

S

L S (3)

This equation means that decoding consists in attempting to find an
object corresponding both to the object for the listener OL and the ob-
ject for the speaker OS, imposing that they have the same value thanks
to the constraint =C True. Bayesian inference shows that this is rea-
lized in COSMO by a probabilistic fusion of auditory decoding P O S( | )L

and motor decoding P O S( | )S .
In the framework of the perceptuo-motor theory we developed since

a number of years (Schwartz, Abry, Boë, & Cathiard, 2002; Schwartz

et al., 2007, 2012), we suppose that speech perception is indeed per-
ceptuo-motor, hence modeled in COSMO by Eq. (3). Therefore, a speech
perception task involves three pieces of computational processes dis-
played in Fig. 1b:

(1) auditory decoding by computing the distribution P O S( | )L from the
Bayesian inversion of the auditory repertoire P S O( | )L ;

(2) motor decoding by computing the distribution P O S( | )S from the
motor repertoire P M O( | )S and the sensory-motor distribution
P S M( | ) thanks to Eq. (2);

(3) fusion of the auditory and motor routes in the final decoding stage
by computing = =P O S C True P O S P O S( | [ ]) ( | ) ( | )S L S according to
Eq. (3).

1.2. Three properties ensuring the functional role of the motor system in
speech perception

1.2.1. Redundancy
The sensor fusion process in Eq. (3) enables the decoding system to

benefit from two independent inference processes, respectively P O S( | )L

and P O S( | )S . This results in a first functional role for the motor de-
coding route in COSMO, through redundancy. Combination of auditory
and motor decoding should ensure a gain in robustness provided that
the fusion process is efficient, which is the case in a Bayesian im-
plementation like the one in COSMO (see e.g. Ernst & Banks, 2002;
Massaro, 1987).

1.2.2. Complementarity
Motor decoding and auditory decoding structurally differ in

COSMO. Indeed, learning the auditory distribution P S O( | )L is a direct
process which requires no additional inference once the Master Agent
provides pairs of objects and stimuli o s( , ). The auditory decoding pro-
cess then relies on a simple Bayesian inversion of this stored distribu-
tion. On the contrary, learning the motor decoding route P O S( | )S re-
quires an additional inference on the hidden motor variable M through
Eq. (2).

A consequence (see Laurent et al., 2017; see also Section 2) is that
auditory decoding is perfectly fitted to the sensory distribution of the
Master Agent, and hence more efficient than motor decoding to process
clean stimuli. However, noisy stimuli or stimuli differing from proto-
typical values (e.g. produced in a different accent) do not fit well with
the probability distribution learned in P S O( | )L . Conversely, motor de-
coding appears able to process such stimuli more efficiently because its
learning is more difficult and thus results in wider variance. In sum-
mary, we showed (Laurent et al., 2017) that the auditory decoder
performs better than the motor decoder without noise, but that the
motor decoder outperforms the auditory decoder in adverse conditions.
Hence, auditory and motor decoding are complementary.

1.2.3. Specificity
Finally, apart from this structural complementarity, detailed COSMO

implementation in the case of CV syllables with C a plosive and V an
oral vowel showed that there might also exist an informational com-
plementarity. Indeed, simulations with a “COSMO-syllables” model
(Laurent, Schwartz, Bessière, & Diard, 2013; Laurent et al., 2017)
showed that while vowels are better characterized in auditory than in
motor terms, consonant place of articulation is poorly defined in au-
ditory terms but well characterized in the motor domain. This is in line
with the classical claims about articulatory invariance for consonant
place of articulation by defenders of the Motor Theory of Speech Per-
ception (Liberman & Mattingly, 1985). This introduces a specificity
property associated to the motor decoding route in relation with the
phonetic content of the speech input.
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1.3. A sketch of neuroanatomical architecture for COSMO

To be able to address neurocognitive data with COSMO, we now
need to go one step further and propose some possible brain im-
plantation of the COSMO computational architecture. This is tricky,
since the COSMO architecture is a generic description of algorithmic
processes, and thus is underspecified with respect to coding and im-
plementation. For instance, all equations above refer to variables S and
M , and the properties above result from their relations in the global
COSMO architecture. But, in fact, variable S could also be structured,
and refer to a hierarchy of processing and representations from the
incoming sound, just as the variable M could refer to a hierarchy of
controls and coordination before final motor-command implementa-
tion. As a result, the precise localization of COSMO sensory

representations in relation to the temporal cortex and motor re-
presentations in relation to the frontal cortex could be sometimes un-
specified in the remaining part of this paper (though see some more
detailed discussion in Section 5.1).

Still, it is possible to adapt some inspiring models of the literature,
to derive a possible sketch of neuroanatomical architecture (Fig. 2).
This architecture starts from the organization of the dorsal route in the
dual-stream model of the functional anatomy of language proposed by
e.g. Hickok and Poeppel (2007) (see also Rauschecker & Scott, 2009).
The dorsal route connects an auditory processing network in the tem-
poral lobe (primary and secondary auditory cortex, planum temporale
PT, posterior superior temporal sulcus pSTS) to an articulatory network
in the frontal lobe (inferior frontal gyrus IFG, premotor cortex PMC,
anterior insula, primary motor cortex M1) through a sensory-motor

(a)

(b)

Fig. 2. Proposal for a neuroarchitecture for the
COSMO model. (a) Possible localizations for the
learned distributions P(S |O )Ag

L
Ag in the superior

posterior part of the temporal cortex (planum
temporale, PT; or posterior superior temporal
sulcus, pSTS), P(S |M )Ag Ag in area Spt (Sylvian
parietal temporal) and P M O( | )Ag

S
Ag in the motor

cortex (primary motor cortex M1 or premotor
cortex PMC). (b) Activity related to the compu-
tational processes for perception, with auditory
decoding P(O |S )L

Ag Ag in pSTS or SMG, motor de-
coding P(O |S )S

Ag Ag in PMC and perceptuo-motor

fusion for final decision in superior temporal
(possibly area Spt) or inferior parietal (supra-
marginal gyrus SMG) regions.
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interface in the inferior parietal lobule (down to the parieto-temporal
boundary in the Sylvian fissure within the planum temporale, Spt).
While this sensory-motor route is conceived by Hickok and Poeppel
(2000, 2004, 2007) as essentially dedicated to learning processes, it is
exploited by Skipper et al. (2007) for implementing an Analysis-by-
Synthesis process in which a feedforward connection from posterior
superior temporal areas would lead to motor goal predictions in the IFG
(pars opercularis). Then, a feedback connection through premotor and
motor cortices would generate a motor plan and finally, by efference
copy, a sensory prediction in auditory areas, combined with the initial
auditory processing to provide final decoding.

The same structure may be proposed as a neuroanatomical archi-
tecture for COSMO. The auditory repertoire P S O( | )L would be stored in
the posterior superior temporal areas. The sensory-motor distribution
P S M( | ) would be stored along the posterior-to-anterior pathway, pos-
sibly in the sensory-motor interface provided by area Spt. Finally, the
motor repertoire P M O( | )S would be stored in frontal areas, probably at
various levels from distributions of single articulatory variables in the
primary motor cortex to motor programs associated to phonological
units in the premotor cortex (Fig. 2a).

Remark that these neuroanatomical hypotheses concern distribution
storage, i.e. where probability distributions would be memorized in the
brain. Then, computations for speech perception would “propagate
through” these representations, recruiting them, and may thus also be
localized without requiring further assumptions (Fig. 2b). Firstly, au-
ditory decoding P O S( | )L would be obtained by simple Bayesian inver-
sion of the auditory repertoire P S O( | )L – possibly in the pSTS (Hickok &
Poeppel, 2007); or at the level of the supramarginal gyrus SMG (e.g.
Jacquemot & Scott, 2006; Paulesu, Frith, & Frackowiak, 1993). Sec-
ondly, motor decoding P O S( | )S – or its Bayesian inverse P S O( | )S –
would be achieved by a summation and multiplication process in
frontal areas, probably in the premotor cortex, according to Eq. (2).
Finally, the result of motor decoding would be sent back to temporal
regions, possibly through area Spt (Hickok, Okada, & Serences, 2009),
for the fusion of auditory and motor decoding

= =P O S C True P O S P O S( | [ ]) ( | ) ( | )S L S , yielding the final phonological
decision.

Therefore, at this stage, we remain quite unspecific in terms of
precise localizations, just playing with three coarse neuro-anatomical
poles, respectively in temporal areas (PT, pSTS), in the inferior parietal
lobule or at the temporo-parietal junction (SMG, Spt) and in frontal
areas (M1, PMC). We will come back to the relationship between
COSMO and neuroanatomical and neurocognitive data in more detail in
the general discussion in Section 5.

2. Why should the motor system be more involved in adverse
conditions (such as noisy input or foreign accent)?

As mentioned previously, it has been recurrently shown that the
involvement of parieto-frontal areas associated with speech production
is increased, in absolute or relative terms, compared to temporal areas
associated to auditory processing, when human subjects process speech
in adverse or unusual conditions. Surprisingly, not much functional
interpretation is provided for this fact. It is generally considered that
this could be related to motor simulation, e.g. in the framework of
Analysis-by-Synthesis processes (see a review in Skipper et al., 2017).
But, to our knowledge, no precise proposal has been introduced to
explain why Analysis-by-Synthesis would provide a gain in accuracy in
noise or atypical stimuli.

This is where the Complementarity Property introduced previously
might shed some light. This property explains how motor decoding
would be more robust in noise, as illustrated in Fig. 3. In this figure, as
along all this study, we adopt a simplifying approach in which we
search a minimal formal description of the processes at hand. The aim is
to make both simulations simple and interpretation clear in terms of
possible underlying neurocognitive processes. Hence, we consider a

simple situation where sensory and motor variables would be one-di-
mensional, related by a monotonous sigmoidal relationship =S sig M( ).
The Master Agent communicates about two objects, +o and −o , both
associated with a Gaussian probability distribution in the motor space,
so that = =+ +P M O o μ σ( |[ ]) ( , )Master

S
Master N and P

= =− −M O o μ σ( |[ ]) ( , )Master
S
Master N , with a b( , )N denoting a Gaussian

probability distribution with mean a and standard deviation b (see in-
sert plot in Fig. 1a). Motor values are transformed by the sigmoid into
sensory values, resulting in probability distributions

= +P S O o( |[ ])Ag
S
Master and = −P S O o( |[ ])Ag

S
Master . The Learning Agent

learns all its distributions from o s( , ) pairs provided by the Master Agent
as explained in Section 1.1.2. From these data, learning the sensory
distribution P S O( | )Ag

L
Ag is straightforward and efficient while learning

P S M( | )Ag Ag and P M O( | )Ag
S
Ag distributions involves a more complex

process of motor inference (see displays of the learned distributions in
the insert plots in Fig. 1a). It appears that learning of P S M( | )Ag Ag is
accurate in the regions of S values provided by the Master Agent, but
less so in other regions. Indeed, the babbling process, in its initial
wandering phase, enables the agent to learn some basic approximation
of P S M( | )Ag Ag along the S M( , ) space (Barnaud et al., 2015, 2016).

As a consequence, the P O S( | )S
Ag Ag distribution, involving both the

P S M( | )Ag Ag and P M O( | )Ag
S
Ag distributions, is indeed wider than the

P O S( | )L
Ag Ag one obtained by simple Bayesian inversion of the learned

distribution P S O( | )Ag
L
Ag (see the associated sensory distributions in

Fig. 3a and c). Therefore, when a “prototypical” stimulus (green line in
Fig. 3a–d), close to mean values +μ or −μ , is sensed, it is more accurately
decoded by the auditory route (see Fig. 3b vs. d, and e, left). However,
less prototypical stimuli (brown line in Fig. 3a–d) fall out of the de-
coding abilities of the narrow auditory distribution. Indeed, all sensory
and motor distributions in COSMO are truncated and set at a floor value
under a given threshold. This avoids cognitively implausible numerical
precision of probability distributions in neural assemblies, and ensures
that probability distributions, truncated in this manner, degenerate
outside of their “competence domains”. On the contrary, since the
motor route is wider, a larger portion of the sensory domain is above
the threshold and thus it is able to process such “exotic” stimuli (see
Fig. 3b vs. d and e, right). This is why auditory and motor decoding
would be complementary: auditory decoding would be a narrow-band
process (narrowly focused in the set of stimuli provided by the en-
vironment in the learning process) while motor decoding would be a
wide-band process able to deal with unusual stimuli.

Hence, we now have at our disposal a functional mechanism pos-
sibly explaining why motor decoding should be more involved in ad-
verse conditions. From there on, we can propose two possible ex-
planations for the observed increase in BOLD activity in motor areas in
fMRI data during speech perception in noise or adverse conditions.
Firstly, there could exist some kind of automatic control of neural ac-
tivity based on the compared efficiencies of the auditory and motor
decoding processes. In clean or canonical conditions, auditory decoding
is efficient, while motor decoding is poorer. Therefore, it can be as-
sumed that as soon as an auditory decision is available, the transfer of
neural information from temporal to frontal regions is stopped – hence
frontal activity is small. On the contrary, for noisy or non-prototypical
inputs, auditory decoding is less efficient, hence more neural propa-
gation would occur towards frontal regions for motor decoding, until
sufficient evidence would be acquired, enabling decision to occur in
good conditions. This mechanism would produce an increase in the
amount of frontal activity in the motor regions with e.g. increasing
levels of noise, as can be seen in various studies such as Binder et al.
(2004), Wilson and Iacoboni, (2006) or Zekveld et al. (2006).

Another possibility is that the call to motor decoding is controlled
by attentional processes, according to which the weight of motor de-
coding in the sensory-motor fusion process – and hence the amount of
neural activity in frontal regions – would be actively increased with
noise to improve decoding. This is proposed by e.g. d’Ausilio, Bufalari,
Salmas, and Fadiga (2012) (see also Davis & Johnsrude, 2007) who
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applied perturbations of frontal areas by TMS (see next section) and
studied their effect on reaction times for discriminating between two
categories (a labial vs. a dental plosive). Interestingly, they showed that
TMS applied to the lips vs. the tongue resulted in selective acceleration
of responses to the labial vs. dental plosives, but only in noisy condi-
tions, whereas reaction times were typically identical for clean and
noisy stimuli without perturbation. They conclude that this is rather in
favor of an attention-driven process. In fact, the two alternative me-
chanisms are not exclusive, and could well play a role together; the
current evidence and models do not allow us to unambiguously decide
between these different hypotheses.

In conclusion, the Complementarity Property provides a possible
functional explanation for the importance of the motor route for speech
decoding in adverse conditions: the auditory process would be narrowly
focused on the learning set and hence optimal for such learned stimuli,
while the motor process would be less narrowly tuned and hence more
important in noise. The corresponding neuroanatomical architecture in
Fig. 2, together with the two variants introduced here above, provide a
possible neuroanatomical mechanism explaining the pattern of neural
activity in temporal vs. frontal areas in relation with the prototypical
vs. non-prototypical nature of the sensory inputs to process.

3. Why would a motor perturbation result in a perceptual bias in
auditory phonetic decoding?

We now address a second piece of neurocognitive evidence, in
which perturbations of regions in frontal areas produce modifications in
speech perception tasks. We will consider in the following a specific
study, described in Möttönen and Watkins (2009), and show how
COSMO simulates their data. We will finally discuss how these simu-
lations could be extended or adapted towards other studies using si-
milar experimental paradigms.

Möttönen and Watkins (2009) applied repeated Transcranial Mag-
netic Stimulation (rTMS) to produce a temporary disruption of the “lip
region” on the left primary motor cortex. Disruption was produced by
15-min rTMS stimulation at low frequency. It was applied on two re-
gions in the primary cortex, respectively related to the lips and to the

hands, for control. The efficiency of the disruption was controlled by
measuring motor evoked potentials, before or after stimulation. The
perceptual task consisted in the categorization and discrimination of
stimuli within synthetic continua, e.g. between /ba/ and /da/, gener-
ated by formant synthesis (Klatt, 1980). Results showed that both ca-
tegorization and discrimination were impaired after stimulation in the
lip area: the categorization slope was decreased and the discrimination
between pairs of stimuli respectively on one and the other side of the
categorization boundary was poorer (see below for explanations about
the quantitative assessment of categorization and discrimination).

Results of this experiment can be simulated in COSMO, thanks to its
first property of “Redundancy”. Indeed, since phonetic decoding in
COSMO is perceptuo-motor, the motor decoder does play a role in
phonetic perception. From the cortical architecture in Fig. 2, motor
decoding would involve the computation of P O S( | )S – or its Bayesian
inverse P S O( | )S – in the frontal area, precisely where the perturbation is
applied. According to Eq. (2), P O S( | )S involves the distributions
P S M( | ), possibly stored in Spt in the parietal cortex, and P M O( | )S ,
possibly stored in frontal areas. Modification of the distribution
P M O( | )S by rTMS applied to the motor cortex should play a role in the
final decoding output expressed by Eq. (3), hence it should modify
categorization and discrimination. Let us explain this mechanism in
more detail.

Firstly, we must specify what information could be stored in the
P M O( | )S probability distribution. We will do this still in the simplifying
process we adopted all along the paper.

We display in Fig. 4a in continuous lines what could be such a
P M O( | )S distribution for two “objects” /ba/ and /da/, in a two-di-
mensional motor space involving lips and tongue, i.e.

=M M M( , )lips tongue . Of course, these motor dimensions could be rather
combinations of dimensions (since both lips and tongue are in fact
controlled by more than one motor parameter) or just some part of the
whole lips and tongue systems (e.g. lip closing/opening or tongue tip
elevation). The green ellipses respectively display =P M O ba( |[ “ ”])S

and =P M O da( |[ “ ”])S , assuming that for /ba/ what matters is a precise
lip configuration, the tongue being largely unspecified, and vice versa
for /da/. We quantify the difference in precision of control in each

a b

c d

e

Fig. 3. (a and c) Sensory distributions respectively associated to the auditory route P S O( | )Ag
L
Ag and motor route P S O( | )Ag

S
Ag . (b and d) Associated decoding systems P O S( | )L

Ag Ag and
P O S( | )S

Ag Ag . The truncation threshold makes decoding inefficient for stimuli with too small P S O( | ) values (see text). The brown vertical line in (a–d) corresponds to the noisy stimulus and

the green vertical line corresponds to the prototypical stimulus. (e) Results of the decoding systems for a prototypical stimulus (left panel) and a noisy stimulus (right panel). The two
probabilities P O S( | ) for +o( ) and −o( ), for the auditory route (P O S( | )L

Ag Ag , top row) and the motor route (P O S( | )S
Ag Ag , bottom row), are displayed for a prototypical and a noisy stimulus.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dimension by differences in variances of two-dimensional Gaussian
distributions.

Then, we must specify the effect of an rTMS perturbation in the
primary motor cortex M1. We suppose that applying rTMS in the lips
region of M1 results in a degradation of the representation of the lips,
associated to an increase of the variance of P M O( | )S for both objects
along the Mlips dimension (dotted ellipses in Fig. 4a). It is difficult at this
stage to propose how a perturbation applied to the lips region in M1
would precisely modify P M O( | )S . It could occur directly, by degrading
the representation of the lips parameter, hence making the P M O( | )lips S
distribution less accurate for all objects OS. But it could also be envi-
sioned that a perturbation in M1 could diffuse to the premotor cortex,
as mentioned as a possibility by Möttönen and Watkins (2009), and that
the variance increase would operate at this level.

So, we now have two distributions of =P M O ba( |[ “ ”])S and
=P M O da( |[ “ ”])S , respectively in normal and rTMS perturbed condi-

tions. These distributions are bi-dimensional in the present simplified
reasoning. We also consider a resulting 2D acoustic space. The principle
of a /ba/-/da/ continuum as the one synthesized in Möttönen and
Watkins (2009) consists in selecting a one-dimensional pathway in the
multidimensional acoustic space. Indeed, /ba/-/da/ continua can be
generated as specific trajectories in the (F2-F3) acoustic space of second
and third formant values F2 and F3 estimated at the onset of the con-
sonant-to-vowel trajectory, (see Serniclaes & Sprenger-Charolles,
2003). We display in Fig. 4a such a possible trajectory from /ba/ to
/da/, defining a 1D continua which results in a probability distribution
P M O( | )S such as the one displayed in Fig. 4b, along a parameter M
summarizing the lips-to-tongue pathways. In this 1D space, we assume
that distributions P M O( | )S have the same variance for the two objects
/ba/ and /da/ in normal conditions. In the scenario proposed pre-
viously, the rTMS perturbation would hence result in an increase in the
variance of the P M O( | )S distribution for the /ba/ category in the lips
dimension, while the P M O( | )S distribution would stay essentially un-
changed for /da/, as displayed in Fig. 4b by the distributions in dotted
lines.

Then, the reasoning about categorization and discrimination is
straightforward. Indeed, the change in P M O( | )S for /ba/ would result in
an increase in the variance in the distribution P S O( | )S (see Fig. 4c). This
would be reflected in the categorization behavior at the output of
COSMO. Categorization is obtained here by computing

=P O S C True( | [ ])S , resulting in a product of the factors P O S( | )S and
P O S( | )L . P O S( | )L is unchanged by the perturbation, but P O S( | )S is
modified because of the changes in P M O( | )S . This results in a decrease
in categorization slope (Fig. 4d), in agreement with the data in
Möttönen and Watkins (2009, see their Table 1, p. 9822).

From that basis, discrimination is then computed by considering
two stimuli s1, s2 at different positions along the 1D S dimension in
Fig. 4d. Discrimination between s1 and s2 is supposed to be entirely due
to the probability that they correspond to different classes (see e.g.
Pollack & Pisoni, 1971; Repp, 1984) defined by the following equation:

= = = =

= = =

+ = = =

= = =

P P O S s C True
P O S s C True
P O S s C True
P O S s C True

([ “ba”]|[ ][ ])
([ “da”]|[ ][ ])
([ “da”]|[ ][ ])
([ “ba”]|[ ][ ]).

discr 1

2

1

2

By taking a pair of stimuli providing a Pdiscr value equal to 0.85 in
the normal condition, the value decreases to 0.75 in the simulated rTMS
condition. This is compatible with the experimental values provided by
Möttönen and Watkins (2009, see their Table 2, p. 9822), though, of
course, values in the present simulations are just illustrative of the
qualitative behavior of our model and have no pretention to be best-fit
values.

Hence, COSMO, together with the underlying neurocognitive as-
sumptions in Section 1 (for architecture) and in Section 3 (for the role
of rTMS), may provide a computational interpretation of rTMS studies
such as the one in Möttönen and Watkins (2009). The Redundancy
Property is at the basis of the interpretation, Eq. (3) providing the core
simulation principle, incorporating Bayesian fusion between the motor
and auditory decoding processes. Similar reasoning could be applied to
other studies by the same group on the reduction in discrimination and
EEG response (Mismatch Negativity, MMN) in various kinds of motor
disruption by repeated stimulation of the motor cortex (Möttönen et al.,
2013; Rogers, Möttönen, Boyles, & Watkins, 2014). Conversely, per-
turbations by double-pulse TMS by d’Ausilio et al. (2009, 2012) rather
produce a gain in categorization speed and accuracy for the category
corresponding to the applied perturbation. In the scenario presented
here, this would be simulated by reducing the adequate variance rather
than increasing it. Indeed, the categorization slope would then become
steeper with rTMS. The increase in categorization steepness would

Fig. 4. (a) Schematic representation of the disruption of the lips in a two-dimensional space where one dimension corresponds to the lips and one dimension corresponds to the tongue.
(b) Motor system P M O( | )S before the disruption (continuous line) and after the disruption of the second object (dotted line). (c) Sensory distribution associated to the motor route P S O( | )S

before the disruption (continuous line) and after the disruption of the second object (dotted P M O( | )S line). (d) Decoding system =P O S C True( | [ ])S before the disruption (continuous line)
and after the disruption (dotted line).
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occur in the region of the object with reduced variance, resulting in
increasing categorization performance for this object, which is indeed
what is observed in such experiments.

Of course, the fusion process at work in Eq. (3) remains compatible
with the Complementarity Property discussed in the previous section.
Indeed, if the auditory or the motor route provide a more vs. less reli-
able information for the decoding task, their weight in the Bayesian
fusion process will be modulated accordingly (Ernst & Banks, 2002).
This is the reason why motor perturbation does result in a change in
phonetic decoding only when the auditory task is perturbed, either by
noise (d’Ausilio et al., 2009, 2012) or by considering ambiguous syn-
thetic stimuli around the categorization boundary (Möttönen &
Watkins, 2009; Möttönen et al., 2013; Rogers et al., 2014).

In conclusion, the Redundancy Property, together with its compu-
tational implementation in Eq. (3), provides the basis for interpreting
the results of various studies where a perturbation of motor areas
produces a change in categorization or discrimination in an acoustic
phonetic decoding task. The underlying assumption is that the motor
perturbation would result in modifying the P M O( | )S distribution,
leading to modification in the final decoding process

=P O S C True( | [ ])S .

4. Why would a motor representation in speech production differ
from a motor representation in speech perception – and how could
audio-motor relationships be represented in the frontal cortex?

The last contribution in this paper concerns the recent paper by
Cheung, Hamiton, Johnson, and Chang (2016), which compares neu-
rophysiological responses to speech production and speech perception
tasks. In this study, the authors describe the activity of high-density
electrode grids, providing high spatial and temporal resolution, in
simple speech production and perception tasks.

Their main result concerns the way “auditory” regions (within the
superior temporal gyrus STG) and “motor” regions (within the sensory-
motor cortex SMC) respond in two basic conditions: aloud production
vs. passive perception of CV syllables with V the vowel /a/ and C one of
8 consonants in American English /b d g p t k s ʃ/. It appears that, while
the activity in the SMC region is somatotopically organized in relation
with speech articulators in the production task, its organization is less
clear and different in the perception task. Importantly, the authors
observe that the pattern of activity in SMC in the perception task is
more similar to the pattern in STG in the same task, than to the activity
in SMC in the production task. They conclude that: “motor cortex does

not contain articulatory representations of perceived actions in speech,
but rather, represents auditory vocal information” (p. 1).

In COSMO, the patterns of activity in production in the motor cortex
and in perception in the motor and in the auditory cortex actually
correspond to three different probability distributions. As mentioned in
Section 1.1.3, production tasks correspond to distributions of the type
P M O( | ) and more precisely to distribution P M O( | )S . As discussed in
detail in this paper, perception tasks would involve two routes, an au-
ditory route associated to distribution P O S( | )L , or its Bayesian inverse
P S O( | )L , and a motor route associated to distribution P O S( | )S , or its
Bayesian inverse P S O( | )S . We will show that the data in Cheung et al.
(2016) could actually correspond to these three distributions. Possible
similarities between these distributions may be reported, in agreement
with neural data – but also differences that might not be noticed in that
paper because of the inherent limitations of the experimental material.

Our interpretation of these data will capitalize on the third property
mentioned previously, that is “Specificity”, associated to the coding of
phonetic information in the auditory vs. motor routes. This property
applies well to the present data. To make this clear, let us enter more in
detail in the phonetic content of the speech material used in this work.
More precisely, we will focus on two features at the core of the study,
which are place of articulation and voicing. Phonetic knowledge about
the articulatory and acoustic content of these features yields a simpli-
fied but plausible scenario for understanding neuronal data. We assume
that the motor control of the place contrast between e.g. /ba/ and /da/
is well represented since it involves different articulators, associated to
different somatotopic positions in SMC (e.g. Bouchard, Mesgarani,
Johnson, & Chang, 2013; Pulvermüller et al., 2006). On the contrary,
we suppose that the voicing contrast would be less clearly represented
in motor terms, considering that it mainly involves specific coordina-
tion between vocal cords and vocal tract controls, rather than a specific
articulator. This is summarized – and simplified, as along all this study –
in Fig. 5a, where we assume a two-dimensional motor space, i.e.

=M M M( , )place voicing . It would be involved and associated to four “ob-
jects” such as /ba/, /da/, /pa/and /ta/, the place dimension Mplace
displaying more contrast than the voicing dimension Mvoicing, as dis-
played in the P M O( | )S distributions.

Then, we assume that the motor-to-sensory relationships transform
the 2D motor space =M M M( , )place voicing into a 2D sensory space

=S S S( , )place voicing and that the transform may be nonlinear and different
from one phonetic dimension to the other. In the present case, we as-
sume that the voicing dimension would correspond to a large en-
hancement in the auditory domain, as displayed in Fig. 5b1 by a

Fig. 5. Motor and sensory representations of the voicing and place dimensions in the COSMO simulations (a) Motor system P M O( | )S for the Mvoicing dimension (a1) and the Mplace

dimension (a2). (b) Sensory-motor system P S M( | ) for the voicing dimensions (b1) and the place dimensions (b2). (c) Sensory repertoire P S O( | )L for the voicing dimension Svoicing (c1) and

the place dimension Splace (c2).
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nonlinear motor-to-sensory transform P S M( | )voicing voicing . This is compa-
tible with the Quantal Theory introduced by Stevens (1972, 1989). It is
also in line with a number of perceptual data about categorical per-
ception of Voice Onset Time contrasts in both speech and non-speech
continua, suggesting possible underlying auditory discontinuities en-
hancing the representation of voicing in the auditory domain (e.g.
Jusczyk, Pisoni, Walley, & Murray, 1980; Pisoni, 1977).

In contrast, we assume that the auditory representation of place of
articulation could be difficult to characterize, because coarticulation
makes the acoustic realization of plosives quite dependent of adjacent
vowels. Hence, we assume that the motor-to-sensory transformation for
place would decrease contrast from gestures to sounds, contrary to
what was proposed for voicing. This is realized by using a linear motor-
to-sensory transform with a small slope (Fig. 5b2). The consequence is
that the auditory pattern of the P S O( | )L distribution would be char-
acterized by a low contrast in the Splace dimension, vs. a high contrast in
the Svoicing dimension (Fig. 5c).

Finally, the four syllabic objects /ba da pa ta/ are supposed to be
just the combination of the two possible categories for place and voi-
cing, in both the M and S spaces.

This pattern of distribution of motor and sensory variables for the
four objects /ba da pa ta/ provides the basis for the stimuli generated
by the Master Agent and that should be learned by a COSMO Learning
Agent. The agent learns the three basic distributions in COSMO,
P S O( | )L , P S M( | ) and P M O( | )S , as described in Section 1.1.2. This de-
scribes the probabilistic knowledge the agent has acquired for the 4
syllables. According to the neuroanatomical assumptions in Fig. 2,
P S O( | )L would be stored in the STG, while P M O( | )S would be stored in
the M1-PMC complex, M1 being part of the SMC.

Let us now consider the two tasks studied by Cheung et al. (2016).
We begin by the speech production task. We assume that in this simple
and well automatized task, production is mainly guided by the motor
repertoire (a “syllabary”, see Guenther, Ghosh, & Tourville, 2006) re-
presented by the P M O( | )S distribution stored in the SMC for single ar-
ticulatory dimensions. Therefore, the SMC activity in the speaking
condition (Fig. 4b in Cheung et al., 2016) would be essentially related

to the P M O( | )S distribution in Fig. 6a. To make the correspondence with
experimental data clearer, we add in each plot of this figure a display of
the d′ values between the four syllables for each distribution, computed
by dividing distances between means by values of the standard devia-
tions – equal for the four categories in each plot.

We now consider the speech perception task (Fig. 4e and f in
Cheung et al., 2016). According to COSMO, it involves two decoding
routes. In line with the schema in Fig. 2, the auditory route would
correspond to activity in STG, mainly related to the P S O( | )L distribu-
tion, displayed in Fig. 6b. The motor decoding route would involve
activity related to the P S O( | )S distribution in M1/PMC. This distribu-
tion is computed according to Eq. (2) and the result is displayed in
Fig. 6c. Importantly, this distribution differs from both P M O( | )S and
P S O( | )L . Therefore, it is, as reported by Cheung et al. (2016), NOT equal
to the cortical activity in SMC in the production task: the tasks are
different, hence the computations are different, and neuronal activity,
likely related to computation, also differs. But, importantly, P S O( | )S

also differs from P S O( | )L : they represent activity in two different – and
to a certain extent complementary – pathways for phonetic decoding.

Therefore, the second part of the conclusion by Cheung et al. (2016)
is, in our view, inaccurate: the motor cortex in the perception task
would contain neither articulatory representations of perceived actions
in speech (related to P M O( | )S ), nor auditory vocal information (related
to P S O( | )L ), but rather a third information content P S O( | )S related to
motor decoding. However, importantly, it appears that in the present
simulations there does exist a larger resemblance between distributions
P S O( | )S and P S O( | )L than between P S O( | )S and P M O( | )S . This is due to
the complex way distributions P S O( | )L , P S M( | ) and P M O( | )S are com-
bined for computing P S O( | )S in Eq. (2). More specifically, the dis-
tributions P S O( | )S and P S O( | )L are similar in terms of the positions of
their mean values – which is indeed what was reported by Cheung et al.
(2016). The d′ values reported in the lower plot illustrate these simi-
larities, and provide a rough illustration of how the corresponding data
could be simulated.

However, this does not imply that the information in the motor
route is lost in the distribution. Of particular importance is the value of

Fig. 6. Simulating neural activity in speech perception and speech production in COSMO. (a) Motor cortex activity for production: top, bottom, d′ values. (b) Motor cortex activity for
perception: top, P S O( | )S ; bottom, d′ values. (c) Auditory cortex activity for perception: top, P S O( | )L ; bottom, d′ values.
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the variances of these distributions, in relation with the
Complementarity Property and the narrow-band characteristic of au-
ditory decoding contrasted to the wide-band characteristic of motor
decoding. Differences in variances between the auditory and the motor
routes, well displayed in Fig. 6b and c, show that information in the
motor decoding process is not equivalent to information in the auditory
decoding process and hence that activity in the frontal areas associated
to speech perception might indeed play a specific role for decoding,
particularly in noise or adverse conditions.

Notice that Specificity, in the present implementation, is of course
only partial. There is indeed information on both plosive place and
voicing/manner in both the auditory and the motor decoding routes.
Specificity is only displayed here by differences in variances of relevant
distributions, which are related to the information available on each
dimension in each route. This is compatible with data on the neural
representation of phonetic features in STG as recently displayed by
Mesgarani, Cheung, Johnson, and Chang (2014), through high-density
cortical surface recordings in humans. As a matter of fact, the re-
presentation of consonants in their data is basically organized by
manner of articulation, place being only a secondary feature, and much
less robust in the representation. The present simulations suggest that
information on place of articulation could still be available in motor
areas, within the P S O( | )S distribution.

In conclusion, the Specificity Property and the Complementarity
Property enable us, in COSMO, to propose an interpretation of the
complex pattern of cortical representations observed by Cheung et al.
(2016). Our simulations suggest a possible computational content to the
observed patterns of cortical activity. Importantly, it also leads to
propose some caveats to previous interpretations of such data – and to
insist on the difference between representations and tasks, at the center
of the Bayesian Programming Approach followed in COSMO. The as-
sumption in the present simulations is that motor knowledge associated
with the P M O( | )S distribution is indeed stored in the frontal areas and
exploited for both speech perception and speech production, but that
specific computations associated with each of these tasks can lead to
differences in neuronal activity in the same region of interest.

5. Discussion

In this paper, we described COSMO, a computational perceptuo-
motor model of speech perception, and we hypothesized, for the first
time, a neuroanatomical architecture for the representations and com-
putations associated to this model. This enabled us to propose a co-
herent set of explanations for three different studies corresponding to
different neurocognitive paradigms involved in the exploration of per-
ceptuo-motor interactions in speech perception. These explanations are
based on three properties of the sensory-motor decoding process:
Redundancy, Complementarity and Specificity. Importantly, these
properties provide functional arguments supporting the role of a motor
decoding route in the speech perception process.

This study has a number of limitations linked to the fact that the
aim, at this stage, was to present “proof of concept” illustrations of
mechanisms, rather than a mature neurocognitive/computational
model of speech perception in the human brain, able to quantitatively
account for observed data. Some of the limitations have already been
mentioned. They concern the difficulty to relate algorithms and neu-
ronal implementation, and the generic nature of representations and
coding in COSMO, particularly concerning hierarchies of variables and
processes. Other caveats could be raised concerning the need to specify
relationships between linguistic objects and particular phonological
and lexical/conceptual units, the lack of dynamic components at the
level of both sensory-motor variables and neuronal activity, or the ne-
cessity to take into account multi-sensory stimuli. We will discuss
specifically three major challenges in more detail.

5.1. Cortical architectures and computational representations

To be able to relate computational properties of COSMO to ex-
perimental findings, we introduced in Section 1.3 some coarse as-
sumptions about possible localizations for the distributions learnt by
COSMO Agents. We considered three cortical poles, respectively tem-
poral for sensory distributions, temporo-parietal for sensory-motor
distributions and frontal for motor distributions. Now that we have
displayed a number of relationships between computational processes
and neurocognitive data, carefully distinguishing stored distributions
from Bayesian questions and inference, we may attempt to go one step
further in the specification of neuroanatomical correlates of COSMO
processes. However, the question of the hierarchy of computational
representations inevitably arises.

In COSMO, hierarchies might be considered at the level of sensory
or motor variables, or in the definition of objects. Hierarchies in the
representation of sensory or motor variables refer to the fact that cog-
nitive systems involve a number of successive steps both in the pro-
cessing of sensory inputs and in the elaboration of motor commands.
Cognitive sensory hierarchies, not represented yet in COSMO, would
refer to successive computational/representational layers in auditory
processes in the temporal cortex: from auditory analysis in the Heschl
gyrus (HG) to more complex computations, either anteriorly towards
the anterior STG/STS or posteriorly towards the pSTS/STG and the
planum temporale, considered as a computational hub for processing
complex sounds (Griffiths, Warren, & Warren, 2002) (see a review in
Friederici, Brauer, & Lohmann, 2011). Neurocognitive motor hier-
archies would encompass definitions of motor programs in Broca’s area
pars operculum (Brodmann area 44), or in the left PMC, down to the
implementation of motor commands in M1 in relation with proprio-
ceptive information in the primary somatosensory cortex S1 or in in-
tegrative areas in the inferior parietal lobule, in addition to a number of
other cortical and sub-cortical structures (Guenther & Vladusich, 2012;
Guenther et al., 2006). The introduction of such cognitive sensory or
motor hierarchies associated to successive layers of computation and
representation is easily performed in Bayesian modeling (see e.g. Colas,
Diard, & Bessière, 2010).

The second kind of hierarchy concerns objects of communication,
restricted in the present paper to phonological units. If a hierarchy of
linguistic objects were introduced in COSMO, it would at least include
lexical units – words or their morphemic components – with relation to
meaning. This opens in neuroanatomical terms the question of the
ventral vs. dorsal separation in the “dual-stream model of speech pro-
cessing” (Hickok & Poeppel, 2004, 2007, 2009). Indeed, it is classically
considered that speech comprehension basically involves a ventral
route connecting, after the Heschl gyrus, anterior regions of the su-
perior and middle temporal gyri and further apart in the anterior
temporal lobe, and then anteriorly in Broca’s area pars triangularis
(Brodmann area 45) (Hickok & Poeppel, 2007). The dorsal route, al-
ready described in previous section, would be mainly used for sensory-
motor learning and control in speech production.

This more precise description of the neuroanatomy of speech per-
ception and production circuits leads to refining our proposals for
COSMO distributions. Distributions associated to the S variable could
refer to various successive centers such as HG and PT/pSTS, and the
P S O( | )L distribution could be stored in PT or pSTS as suggested in
Section 1.3. Still, anterior temporal regions could also be suggested to
be involved in storing the P S O( | )L distribution, and it has indeed been
suggested by e.g. Liebenthal, Binder, Spitzer, Possing, and Medler
(2005) and Obleser, Zimmermann, Van Meter, and Rauschecker (2007)
that while posterior temporal regions such as PT or pSTS could be in-
volved in the coding of complex sounds independently of their phonetic
nature, phonetic processing in relation with phonemic categories could
rather involve the anterior part of STG/STS (see also Price, 2012).

Sensory-motor convergence is claimed by Hickok et al. (2009) (see
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also Buchsbaum, Hickok, & Humphries, 2001) to occur in area Spt in
the planum temporale, which is hence a good candidate for both storing
the P S M( | ) distribution and for sensory-motor fusion. Still, proposals by
Jacquemot and Scott (2006) suggest that the supramarginal gyrus is
also a possible candidate for explicit phonemic access – though see
Hickok (2013), for the claim that phonemic access is not part of speech
comprehension. Motor distributions P M O( | )S could be stored at various
levels in the motor cortex from M1 to PMC – if not Broca’s pars oper-
cularis – depending on the level of complexity of the involved speech
motor task.

Importantly, a number of papers were recently published describing
the connectivity between these regions in speech perception or speech
production tasks, based on either diffusion tensor imaging (DTI) or dy-
namic causal modeling (DCM) techniques. These papers confirm the ex-
istence of bilateral links between temporal and frontal areas. Two long
dorsal bundles of neural fibers are involved here: the arcuate fasciculus
connects area 44 to the middle and posterior STG, while the superior
longitudinal fascile connect the dorsal PMC to the middle and superior
temporal gyrus through parietal regions (angular gyrus/supramarginal
gyrus) (see Frey, Campbell, Pike, & Petrides, 2008; Saur et al., 2008; and
reviews in Friederici & Gierhan, 2013; Friederici & Singer, 2015;
Rauschecker & Scott, 2009). The bilateral connections between frontal
regions (ventral inferior frontal gyrus and premotor cortex) and temporal
areas in charge of speech decoding (HG, PT, STS/STG) (Lyu, Ge, Niu, Hai
Tan, & Gao, 2016; Osnes, Hugdahl, & Specht, 2011) confirm the plausi-
bility of the sensory-motor fusion process introduced in COSMO by Eq. (3)
in possible relation with the sensory-motor feedforward/feedback circuit
proposed in Fig. 2 (see also Skipper et al., 2007).

5.2. Neural and computational dynamics

The second question that comes in mind in the evaluation of
COSMO concerns the dynamics of computational processes. This
question is crucial for a neurocognitive analysis of the way cortical
processes unfold over time and of the series of causal mechanisms likely
to progressively elaborate the adequate response to a given speech
stimulus. Still, this question is presently not considered in COSMO.
Indeed, COSMO manipulates probability distributions, and no under-
lying temporal unfolding is attached to these manipulations. For ex-
ample, Eq. (3), which involves fusion of two probability distributions
respectively associated to auditory and motor decoding, does not imply
any assumption about a possible sequence of computations such as the
one suggested at the end of the previous section, that is a feedforward-
feedback process connecting auditory and motor regions in the cortex.

There exist various ways to consider time and dynamics in COSMO.
Time could be explicitly inserted as a sequence of consecutive discrete
events, repeating variables O, S and M for each event. The model
should then consider conditional probabilities in which variables at one
discrete instant would depend on variables at previous discrete instants.
This would make COSMO a dynamic Bayesian network likely to display
delays, temporal loops, cycles and more generally temporal sequences,
which could then be compared with neurocognitive dynamics. Another
way could be to consider that computations expressed in COSMO by
probability distributions – the algorithmic level in a three-level de-
scription of a cognitive model “à la Marr” (Marr, 1982) – are based on
underlying neurophysiological, implementation-level processes which
require time to achieve computations.

As a matter of fact, this level of neurophysiological implementation
of the probabilistic computations in COSMO would be necessary to
better address the relationships between COSMO principles and neu-
rocognitive data considered in the previous sections. Indeed, it was the
basis of the reasoning in Section 2 that the transfer of information from
sensory to motor regions could depend on the efficiency of auditory
decoding, and that neural propagation in the feedforward-feedback
loop between auditory and motor areas could be controlled by the
amount of evidence for decoding. It also intervenes in the reasoning in

Section 4 that different probabilistic computations should result in
different patterns of neural activation likely to be displayed by BOLD
patterns in fMRI data. The underlying assumption here is of course that
there is a relationship between probability distributions, stored or
computed in a given task, and neural activation in local cortical areas.

5.3. Multisensory processing

Another perspective for COSMO concerns multisensory interactions.
It is well known that speech perception involves audiovisual interac-
tions at various levels. Visual speech improves speech perception in
noise or adverse conditions (e.g. Erber, 1969; Grant & Seitz, 2000;
Sumby & Pollack, 1954) but also without noise (Davis & Kim, 2004;
Reisberg, McLean, & Goldfield, 1987) and even modifies phonemic
decoding in silence, as classically exemplified in the McGurk effect
(McGurk & MacDonald, 1976). The neuroanatomy of speech perception
involves a large network with a crucial role for STS (Beauchamp, Nath,
& Pasalar, 2010; Calvert, Campbell, & Brammer, 2000) and a clear in-
volvement of the dorsal route (area Spt, intraparietal sulcus, premotor
cortex, inferior frontal gyrus: see e.g. Callan et al., 2003; Miller &
D’Esposito, 2005; Okada & Hickok, 2009; Skipper et al., 2007; and a
review in Campbell, 2008).

The introduction of a visual component in COSMO does not raise
any conceptual difficulty, as Bayesian models routinely describe mul-
tisensory fusion (e.g. Ernst & Banks, 2002), and Bayesian algorithmic
architectures are easily expanded to integrate additional constraints
and sensory routes in a modular fashion (Patri, Perrier, & Diard, 2016).
However, this raises the question of the adequate architecture for
audiovisual fusion (see reviews in Schwartz, Robert-Ribes, & Escudier,
1998; Summerfield, 1987). A visual componentV could be combined to
the audio component in the S variable in Fig. 1, to provide a joint
sensory input to the decoding process, in what specialists of audiovisual
speech perception would call “early-fusion” (the “direct identification
model” in Schwartz et al., 1998); or the auditory and visual variables
could be kept separate and considered as two different sensory branches
enabling separate inferences on all the other COSMO variables (“late
fusion”). COSMO hence provides a natural architecture for addressing
the potential role of motor processes in audiovisual interactions. Im-
portantly, the Bayesian fusion process at work in COSMO through the
coherence variable C (Eq. (3)) is perfectly reminiscent of Bayesian
processes proposed for audiovisual fusion (e.g. Andersen, 2015;
Massaro, 1987, 1998; Schwartz, 2010).

It is also important to stress at this stage that somatosensory inputs
also seem to intervene in speech perception (Gick & Derrick, 2009; Ito,
Tiede, & Ostry, 2009). COSMO provides a natural framework for in-
tegrating somatosensory inputs to the speech perception process, since
the sensory-motor relationships seems crucial for understanding how
somatosensory stimulation essentially associated to the speech pro-
duction process might intervene in speech perception.

6. Conclusion

In spite of some limitations discussed in the previous sections, and
in relation with the various perspectives also introduced in these sec-
tions, the COSMO structure appears promising for interpreting neuro-
cognitive and neurophysiological data. A crucial element regarding
COSMO is that it is not merely a speech perception model but rather a
model of the whole speech communication process. As such, it can be
used to study both speech perception (e.g. Barnaud et al., 2015, 2016;
Laurent et al., 2013, 2017; Schwartz, Barnaud, Bessière, Diard, &
Moulin-Frier, 2016) and speech production (Patri, Diard, & Perrier,
2015; Patri et al., 2016). COSMO hence constitutes an integrative fra-
mework for addressing a number of questions related to perception and
production, associating a developmental perspective with a character-
ization of online processes. This should be of interest for further ana-
lyses of the neurocognitive processes of speech communication.
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