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Abstract. Future Cosmic Microwave Background (CMB) satellite missions aim to use the
B mode polarization to measure the tensor-to-scalar ratio r with a sensitivity σr <∼ 10−3.
Achieving this goal will not only require sufficient detector array sensitivity but also unprece-
dented control of all systematic errors inherent in CMB polarization measurements. Since
polarization measurements derive from differences between observations at different times
and from different sensors, detector response mismatches introduce leakages from intensity
to polarization and thus lead to a spurious B mode signal. Because the expected primordial B
mode polarization signal is dwarfed by the known unpolarized intensity signal, such leakages
could contribute substantially to the final error budget for measuring r. Using simulations
we estimate the magnitude and angular spectrum of the spurious B mode signal resulting
from bandpass mismatch between different detectors. It is assumed here that the detectors
are calibrated, for example using the CMB dipole, so that their sensitivity to the primor-
dial CMB signal has been perfectly matched. Consequently the mismatch in the frequency
bandpass shape between detectors introduces differences in the relative calibration of galac-
tic emission components. We simulate this effect using a range of scanning patterns being
considered for future satellite missions. We find that the spurious contribution to r from the
reionization bump on large angular scales (` < 10) is ≈ 10−3 assuming large detector arrays
and 20 percent of the sky masked. We show how the amplitude of the leakage depends on
the nonuniformity of the angular coverage in each pixel that results from the scan pattern.

Keywords: CMBR experiments, CMBR polarisation
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1 Introduction

Measurements of the cosmic microwave background (CMB) provide a rich data set for study-
ing cosmology and astrophysics and for placing stringent constraints on cosmological models.
In particular, the ESA Planck satellite mission has produced full sky maps in both temper-
ature and polarization at unprecedented sensitivity in nine broad (∆ν/ν ≈ 0.3) microwave
frequency bands [1].

Conventional cosmological models predict that the CMB is linearly polarized, so that
the fourth Stokes parameter V vanishes. CMB polarization patterns can be decomposed
in two components known as the E and B modes, respectively of even and odd parity. In
linear cosmological perturbation theory, scalar perturbations produce E mode polarization
but are unable to produce any B mode polarization at linear order. The E mode polarization
angular power spectrum can be predicted from a model fitted to the measured T anisotropies.
The WMAP [2] and Planck [3] space missions, complemented on smaller angular scales by
ACT [4] and SPT [5], have already measured the E mode polarization power spectrum up to
high multipole number `, even if the accuracy of the measurement can still be substantially
improved. On the other hand, the odd parity (or pseudo-scalar) polarization pattern called
the B mode arises either from primordial tensor perturbations, or equivalently primordial
gravitational waves, presumably generated during inflation, or from scalar modes at higher
nonlinear order, primarily through gravitational lensing. Gravitational lensing B modes
dominate over primordial B modes on small angular scales. These gravitational lensing B
modes have already been observed at ` >∼ 100 by the POLARBEAR [6], SPT-Pol [7] and
Bicep2/Keck [8] ground-based experiments. Primordial B modes have not been observed
yet. Their predicted shape features a ‘recombination bump’ visible around ` ≈ 80, and a
‘reionization bump’ at ` <∼ 10. The overall amplitude of this primordial B mode spectrum
depends linearly on the value of the tensor-to-scalar ratio r. The current upper limit is
r < 0.07 at 95% c.l. [9, 10].

After Planck, a number of ground-based and balloon-borne experiments currently either
taking data or in the planning stage aim to make the first detection of primordial B modes. In
parallel, the space-borne mission concepts CORE [11], LiteBIRD [12, 13], and PIXIE [14] have
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been designed to probe B modes at higher sensitivities and using frequency bands inaccessible
from the ground. Constraining physically motivated inflation models requires sensitivities in
the tensor-to-scalar ratio of σr <∼ 10−3, almost two orders of magnitude beyond the Planck
sensitivity. Furthermore, systematic errors must be controlled so that their contribution to
the final error budget is subdominant. The calibration requirements become correspondingly
more stringent, and future experiments will have to devise novel calibration procedures to
characterize the instrument at a level that makes it possible to correct the raw data at
sufficient accuracy.

Typically experiments observe in a number of different frequency channels with many
detectors for each frequency channel. Ideally, all detectors in a single channel should have
the exact same bandpass function (i.e., the response g(ν) that defines the transmission of the
system as a function of frequency) in order to construct single band maps, which are then
analyzed to isolate the primordial cosmological signal. Many detectors are necessary in each
channel to improve on the sensitivity of the current observations, which already use detectors
that are very nearly at the quantum noise limit. If however the detectors that are meant to
be identical have slightly different bandpasses, artifacts are introduced into the maps that
are obtained by combining the signals from several detectors. After cross-calibration on
the CMB, for instance using the bright CMB dipole, the amplitude of other astrophysical
components is different in the different detectors, and residuals of the differences of integrated
intensity leak into the reconstructed polarization maps. Such effects have been observed in
Planck [15] and WMAP [16]. In this paper we call these artifacts ‘bandpass mismatch errors’.

Obviously, such errors can be avoided if the observing strategy allows first to make
polarization maps with each detector independently, hence without bandpass mismatch er-
rors, and then to combine these individual detector maps into a global map. This however
requires observing each sky pixel with enough independent orientations of the detector polar-
izer. This polarization modulation can be achieved either with the use of a rotating half-wave
plate (HWP), or by rotating the whole instrument so that each pixel is observed with an
optimized set of detector orientations. However, practical considerations may constrain the
range of possible polarization orientations, leading to a loss of sensitivity after combining
single detector polarization maps.

The objective of this paper is to evaluate the level of the bandpass mismatch effect for
future space missions and to estimate its possible impact on the final determination of the
tensor-to-scalar ratio r if no correction measures are taken. Our study first focuses on the case
without a HWP, and we also verify that the effect is greatly reduced with an ideal rotating
HWP without any chromaticity or other non-idealities. For a more detailed discussion of
general issues pertaining to the use of a HWP for achieving polarization modulation and in
particular a discussion of the issue of achromaticity, we refer the reader to the results of the
ABS experiment [17] and the thesis [18] and references therein. We note that in the first case,
making single detector maps that are subsequently combined to avoid bandpass mismatch
errors, could be done at the price of increased final noise since the angular coverage in each
pixel is sub-optimal. HWP non-idealities are not studied in this paper. Some of the issues
considered in this paper are also discussed in ref. [19].

In section 2 we model the bandpass mismatch effect, and in section 3 we evaluate the
impact on B mode measurements and relate the mismatch errors to the “crossing moment
maps”, that provide a measure of uniformity of polarizer angle coverage in each pixel. Cor-
rection methods are developed in a companion publication [20].

– 2 –
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2 Sky emission model and mismatch errors

The total intensity of the microwave sky can be expressed as a sum of components of different
astrophysical origin. In intensity, the CMB anisotropies are dominant over most of the sky,
but several diffuse components of galactic origin are also present as well as compact sources,
which include extragalactic radio sources, IR sources (understood to be dusty galaxies), and
Sunyaev-Zeldovich (SZ) distortions from the hot gas within galaxy clusters. We model the
unpolarized sky emission at position p̂ and frequency ν as

Itot(p̂, ν) = I0(ν) +
∂B(ν;T )

∂T

∣∣∣∣∣
T0

∆TCMB(p̂) +
∑
(c)

I(c)(p̂, ν) (2.1)

where B(ν;T ) is the spectrum of a blackbody at temperature T , T0 is the average CMB
temperature of about 2.7255 K, ∆TCMB(p̂) is the CMB temperature fluctuation around this
mean value, I(c)(p̂, ν) the emission spectrum of component (c) as a function of electromagnetic
frequency ν, I0(ν) is the monopole including all components. We have similar relationships
for the Q and U Stokes parameters. All three Stokes parameters of the CMB at a given
position on the celestial sphere have the factorized frequency dependence as given above.
A similar factorizable form can be used for the SZ emission assuming that the hot gas is
non-relativistic. The galactic components are more complicated at the accuracy required for
future satellite missions, and an Ansatz where the frequency dependence of each component
factorizes out breaks down. However for studying bandpass mismatch error to first order, a
simple factorizable model suffices.

For this bandpass mismatch study, we consider only the CMB and the diffuse galac-
tic components, which contribute the largest bandpass mismatch error. At frequencies
≈ 150 GHz where we focus our study, the galactic emission can be decomposed into thermal
dust emission, which is the dominant component, and synchrotron, free-free, and spinning
dust emissions. The carbon monoxide (CO) rotational emission at transition line frequencies
ν = 115 GHz for J = 1 → 0 and ν = 230 GHz for J = 2 → 1 was a source of significant
leakage in Planck experiment [21], but is not considered here because we anticipate that the
filters used by future satellite experiments will avoid these lines.

For our study we assume that the galactic thermal dust emission is a greybody of
temperature Td ≈ 19.7 K [22] with an emissivity spectral index β(p̂), which depends on sky
position and whose average value is ≈ 1.62 as measured by Planck [22, 23]. The synchrotron
and free-free emissions can be described by power law spectra with the negative spectral
indices ≈ −3.1 and ≈ −2.3, respectively (see [24] and references therein). The fluctuation of
the signal (relatively to the average CMB monopole) measured by the detector i is given by∫

dν gi(ν)
(
I(p̂, ν)− I0(ν)

)
=

∫
dν gi(ν)

∂B(ν;T )

∂T

∣∣∣∣
T0

∆TCMB(p̂)

+

∫
dν gi(ν) Id(p̂, ν0)

(
ν

ν0

)β(p̂) B(ν;Td)

B(ν0;Td)
+ . . . , (2.2)

where I0(ν) = B(ν;T0) is the CMB monopole, gi(ν) is the bandpass function of the detector
i, Id(p̂, ν0) is the amplitude of the dust component at the reference frequency ν0, and where
the dots stand for other components (such as synchrotron and free-free) not explicitly written
here. To first order we obtain for the total sky intensity Isky(ν0) after converting the CMB
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temperature ∆TCMB to intensity ICMB(ν0):

Isky(ν0) = ICMB(ν0) + γd Idust(ν0) + γs Isync(ν0) + . . . , (2.3)

where

γd =


∫
dν gi(ν)

(
ν
ν0

)β
B(ν;Td)
B(ν0;Td)∫

dνgi(ν)
(
∂B(ν;T )
∂T

) ∣∣∣
T0

(∂B(ν0;T )

∂T

) ∣∣∣∣
T0

. (2.4)

The factor γs is similarly defined integrating over the synchrotron spectrum, etc.
Eq. (2.3) also holds for the polarization when I is replaced with Q and U. The unit

normalization for the CMB component is justified because the data are calibrated using the
CMB dipole (or higher order temperature anisotropies). The values of the γ parameters are
close to unity when the bandwidth is narrow.

Differences in the bandpass function gi(ν) from detector to detector result in correspond-
ing variations in γ from detector to detector for each non-CMB component. Such variations
have been observed in the Planck data (see figures 5 and 28 of [25] for the measured Planck
filters and the mismatch parameters, respectively). Pre-flight Fourier Transform Spectrome-
ter (FTS) ground measurements characterized variations of the filter edge positions at both
the low and high frequencies at about the percent level. Ground measurements, however,
were not accurate enough to detect variations near the center of the filters, and thus could not
be used to determine the γ parameters with sufficient accuracy. The γ parameter variations
had to be determined from the flight data to allow an accurate correction of the leakage (see
the low-` Planck paper [15] as well as [26]). It should be noted that the variations of the
bandpass functions of the filters from detector to detector for a future satellite experiment
will depend on the kind of detector technology used (see also [27] regarding the WMAP
experiment).

As already stressed, for the above sky emission model where each component has a
fixed (factorizable) frequency dependence, the bandpass mismatch maps depend only on the
γ parameters and not on other details of the filters. The deviations from this simplified model
due to the observed spatial variations of the spectral indices of component spectra and of
thermal dust temperature produce a second order correction to the bandpass mismatch error,
which is neglected for this study. Consequently, the intensity to polarization leakage due to
bandpass mismatch can be obtained using only the γ’s and no additional properties of the
bandpass functions.

To relate these variations to filter properties, we assume a simple model in which each
frequency band is a tophat bandpass function for which g(ν) = 1 in the interval [νmin, νmax]
and g(ν) = 0 elsewhere. We assume that the variations in νmin and νmax for each detector
are generated independently according to a uniform distribution with a width of 1%.1

We also assume a bandwidth (νmax− νmin)/ν0 of 0.25 on average, with ν0 = 140.7 GHz.
The resulting RMS of γd is 0.6% for this simple model. This is similar to the variations
observed for Planck at 143 GHz. The fact that actual bandpass functions are more complex

1We thank Aritoki Suzuki for sharing with us that the measurement errors with FTS in the bandpass of
the third-order Chebyshev filter placed between the broadband sinuous antennas and the bolometers of the
focal plane panels of the Simons Array [28] give approximately this spread. Obviously, since these are values
dominated by measurement error, the actual bandpass mismatch for these filters could be much smaller. These
measurements merely serve to establish an upper bound on the mismatch. These values are also of the same
order of magnitude as the values representing the bandpass mismatch of the metal mesh filters used as part
of the Planck satellite HFI instrument. [See [29] for a discussion of the Planck bandpass mismatch.]
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functions of ν does not affect the applicability of the present work as long as the corresponding
γ coefficients remain of the same order of magnitude. Results for other values may be obtained
by trivial rescaling. We verified the expected linear scaling by increasing the width of the
uniform distribution from 1% to 2% and observed that the leakage increases by a factor of
2, as expected.

This simple model for detector bandpasses is appropriate for the foreground components
having a smooth frequency spectral dependence (e.g., synchrotron and dust emission), but for
galactic line emission (such as galactic CO emission and other spectral lines) a more detailed
model would be required. The γ’s are computed as a random set from this distribution
model, since those are the only quantities needed for the bandpass mismatch evaluation.

In this paper, we focus our analysis on a frequency channel centered at ν0 = 140 GHz,
and so we restrict ourselves to the dominant galactic component, namely the thermal dust
emission. More galactic components are included in the companion paper discussing the
correction of the mismatch [20].

3 Calculating the bandpass mismatch

In this section we use a simplified model of the measurement, stripped of additional com-
plications such as asymmetric beams, pixelization effects, etc. for estimating the dominant
contribution to the bandpass mismatch error. A study of more than one source of systematic
errors simultaneously would obviously be more complicated and also less intuitive to inter-
pret. Here our purpose is to study bandpass mismatch error in isolation and in the simplest
possible context.

We assume a scanning pattern that combines three rotations: a relatively fast spin of
the payload around a spin axis that precesses around the anti-solar direction, which itself
follows the yearly motion of the spacecraft around the Sun. Many of the proposed future
CMB polarization space missions have adopted such a scan strategy [11, 13, 30]. The exact
scanning pattern is characterized by the following parameters: α (precession angular radius),
β (spin angular radius), τprec (precession period), and τspin (spin period). The motion of the
satellites and the definitions of the scanning parameters are indicated in figure 1.

Our simulations use maps of the celestial sphere pixelized using HEALPix2 [31] (with
nside = 256). A sufficiently fast sampling rate is chosen so that several hits are recorded during
each pixel crossing, so that altering this parameter does not significantly affect the results.
White instrument noise of a stationary amplitude is assumed, and under this hypothesis we
solve the map making equation:

m̂ = (ATN−1A)−1(ATN−1d). (3.1)

Here the notation is such that m̂ includes the estimated maps of Stokes parameters Î , Q̂
and Û ; A is the pointing matrix relating data samples to the map; N is the noise covariance
matrix in the time domain; and we denote the polarization angle of a detector ψ with respect
to a reference axis. Individual measurements comprising the data vector d are given by

Sj = I(p) +Q(p) cos 2ψj + U(p) sin 2ψj + nj (3.2)

where nj represents a stationary white noise source for observations indexed by j. Here the
index j (j = 1, . . . , Np) labels the observations falling into the pixel labelled by p. The

2http://healpix.sourceforge.net.
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Figure 1. Representation of typical satellite scanning strategy.

normalization of the noise does not matter for our purpose. The model here assumes that
all the beams are azimuthally symmetric and identical.

The hypothesis of white instrument noise provides considerable simplification because
in this special case the map making equation [i.e., eq. (3.1)] can be cast into a block diagonal
form, so that the equations for different pixels decouple from each other. Each block (labelled
by the pixel index p) takes the form

Î(p)

Q̂(p)

Û(p)

 =
1

Np
×


1 〈cos 2ψj〉 〈sin 2ψj〉

〈cos 2ψj〉
1 + 〈cos 4ψj〉

2

〈sin 4ψj〉
2

〈sin 2ψj〉
〈sin 4ψj〉

2

1− 〈cos 4ψj〉
2



−1

×



∑
j Sj∑
j Sj cos 2ψj∑
j Sj sin 2ψj

 (3.3)

where the hats indicate the maximum likelihood estimator, and 〈·〉 denotes the average of a
quantity over all data samples j.

Computing the maps Î(p), Q̂(p), and Û(p) as above gives the minimum variance es-
timator of the sky signal in the frequency band under consideration under the hypothesis
that the noise of each detector is white (with no correlations in time giving rise to excess
low-frequency noise, nor variation of the noise r.m.s. with time), that it is uncorrelated be-
tween detectors, and that its level is identical in all detectors [32]. It also assumes no source
of systematic errors that may require a different detector weighting to estimate each of the
Stokes parameters (and, in particular, no bandpass mismatch).

– 6 –
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Following eq. (3.2), for this map-making solution, bandpass mismatch causes the fol-
lowing map errors

δÎBPM

δQ̂BPM

δÛBPM

 =


1 〈cos 2ψj〉 〈sin 2ψj〉

〈cos 2ψj〉
1 + 〈cos 4ψj〉

2

〈sin 4ψj〉
2

〈sin 2ψj〉
〈sin 4ψj〉

2

1− 〈cos 4ψj〉
2



−1

×


δ 〈Sj〉

δ 〈Sj cos 2ψj〉

δ 〈Sj sin 2ψj〉

 (3.4)

where δ 〈Sj〉 , δ 〈Sj cos 2ψj〉 , and δ 〈Sj sin 2ψj〉 are functions of the underlying sky component
maps. Here we assume that the normalization of the CMB component for each detector is
perfect. This is obviously an idealization because in reality there are also systematic errors
from uncorrected gain variation, but this is a separate issue that we do not analyze here.
Moreover, since the relative gain of the detectors is calibrated using the CMB dipole, the
approximation that the error is mostly in the relative contributions of the other components
is a reasonable one.

Given a model of the microwave sky, the bandpass functions of the various detectors,
and the scanning pattern on the sky, eq. (3.4) can be used to compute the bandpass mismatch
errors in the reconstruction of a map of Stokes parameters. For future studies of the CMB
polarization, and in particular for the search for primordial B modes, the error of greatest
concern arises from the leakage of the I component of the foregrounds into the Q and U
components of the maximum likelihood band sky maps. From eq. (3.4) we observe that
the three terms δ 〈Sj〉 , δ 〈Sj cos 2ψj〉 , and δ 〈Sj sin 2ψj〉 can potentially induce a bias on the
polarization Stokes parameters. The first term δ 〈Sj〉 has no impact if the maps of 〈cos 2ψ〉
and 〈sin 2ψ〉 vanish. This is the case in particular if the detectors are arranged in sets of
perfectly orthogonal pairs observing the sky along the same scanning path. If in addition for
each such pair there is a matching pair observing at an angle of 45◦ relative to the first one,
we get an optimized configuration [32] for which the 3×3 matrix in eq. (3.3) takes the form

1 0 0

0
1

2
0

0 0
1

2


−1

. (3.5)

This simple form is preserved when observations are made with a set of such ‘optimized
configurations’ oriented at any angle with respect to each other. This type of detector
arrangement was used for the Planck mission and is now standard for all proposed CMB
polarization experiments. We then get

δQ̂BPM (p) = 2δ 〈Sj cos 2ψj〉 ,
δÛBPM (p) = 2δ 〈Sj sin 2ψj〉 , (3.6)

where under the sky model presented in section 2

δ 〈Sj cos 2ψj〉 =
∑
(c)

I(c)(p)
∑
i

γ(c),ifi(p) 〈cos 2ψi,j〉 ,

δ 〈Sj sin 2ψj〉 =
∑
(c)

I(c)(p)
∑
i

γ(c),ifi(p) 〈sin 2ψi,j〉 . (3.7)
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Figure 2. Crossing moment map azimuthal averages. We show the azimuthal average of 〈cos 2ψ〉
and 〈cos 4ψ〉 maps, constituting the totality of the component that is coherent on large angular scales.
The corresponding 〈sin 2ψ〉 and 〈sin 4ψ〉 maps vanish for symmetry reasons.

Here the index (c) labels the non-CMB components of the sky model and i labels the detectors
of the frequency channel under consideration (ideally supposed to have the same bandpass
function). The coefficients γ(c),i vary from detector to detector as a function of the stochastic
realizations for the bandpass variation δνmin,i and δνmax,i. fi(p) denotes the fraction of the
total hits in pixel p from the detector i, and 〈cos 2ψi,j〉 and 〈sin 2ψi,j〉 are the components of
the second-order crossing moments in pixel p for the detector i.

Before describing the predictions of the level of residual due to bandpass mismatch, we
briefly digress to examine the properties of the crossing moment maps 〈cos 2ψ〉, 〈cos 4ψ〉,
〈sin 2ψ〉, and 〈sin 4ψ〉 for an individual detector for our model scanning pattern characterized
by the parameter values: α = 65◦, β = 30◦, τspin = 10.002 min, and τprec = 96.2079 min.
Those maps, which are studied into more detail in section 3.3, enter into the expression of
the bandpass mismatch. In ecliptic coordinates, these quantities have a nearly symmetric
pattern around the poles. Figure 2 shows the azimuthally averaged quantities (i.e., averaged
over the ecliptic angle φ or ecliptic longitude) as a function of the sine of the latitude of
the maps. We observe that for a large fraction of pixels, the spin-2 and spin-4 quantities
(functions of period π and π/2, respectively) are less then 0.2.

3.1 Results

We now present numerical results for the bandpass mismatch maps and their power spectra
based on simulations. We construct timestreams for each detector by reading a CMB map
and a galactic map, both at nside = 256, which were preconvolved with a symmetric Gaussian
beam of θFWHM = 32′. We use an instrument model with actual locations of detectors in
the focal plane as described in [13] or [11] depending on the case being considered. We note
however that the details of the arrangement of the detectors have little or no impact on the
leakage power spectra. The galactic map is rescaled from detector to detector using random
errors in the bandpass generated as described in detail in section 2. Then we construct
combined I, Q, and U maps obtained by applying the map making equation as given in
eq. (3.1). No noise is included in the simulation, because the map making method is linear
and the noise does not affect the bias induced by the mismatch. For the same reason we do
not introduce sky emission polarization in simulations. The bandpass mismatch properties
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Figure 3. Q and U leakage maps, in ecliptic coordinates, with fiducial scanning parameters and
Ndet = 222.

of each detector are generated randomly and in a statistically independent manner. Figure 3
shows the Q and U leakage maps δQBPM and δUBPM for one particular realization. The
output polarization maps result from optimal map making using our simulated noiseless and
polarizationless timestreams for the 140 GHz channel and are shown in ecliptic coordinates.
The simulation assumed 222 detectors, which is the number of detectors composing the
LiteBIRD arrays described in [13], spread over a large focal plane approximatively 10 degrees
wide observing with no HWP. The detector polarizer covers the full range of angles in the
focal plane with 22.5 degree separation. We assume the fiducial scanning parameters α = 65◦,
β = 30◦, τspin = 10 min, and τprec = 96.1803 min for the center of the focal plane (see
section 3.3 for a discussion of the choice of τspin and τprec to minimize the inhomogeneity of
the scanning pattern which is responsible for Moiré effects in the crossing moment maps).
At 140 GHz the bandpass mismatch error in polarization is dominated by the I component
of the thermal dust emission, although there are subdominant contributions from the diffuse
galactic synchrotron emission and other non-primordial (non-CMB) components. The length
of the survey in this simulation is exactly one sidereal year in order to ensure as uniform and
complete sky coverage as possible and hence to facilitate the interpretation of those results.
We observe that the leakage is concentrated near the galactic plane, as expected. The bands
at equal latitude visible in the leakage maps correspond to regions where the second order
crossing moments depart significantly from zero (figure 2), and as can be seen from eq. (3.7),
there is a strong correlation between the relative leakage amplitude and these moments.

Figures 4, 5, and 6 show the bandpass mismatch leakage contributions to the EE and
BB power spectra in different observing configurations. The power spectra are computed
after the 20% of the sky where the thermal dust emission is strongest is masked. The data
in this masked region is set to zero with no apodization (which is unnecessary since the
small-scale power in the leakage maps dominates over the spurious power induced by the
masking). For comparison we also show the CMB B mode spectrum for two different values
of r. The dashed curves show how the signal is attenuated by beam smearing assuming the
140 GHz FWHM beamwidth of 32’ fitted to a Gaussian profile for the present LiteBIRD
configuration [33]. As will be demonstrated later, neglecting the discreteness of the scans,
the overall amplitude of the leakage due to bandpass mismatch is nearly Gaussian and of zero
mean, and the variations of γdust impact all multipoles of the leakage map power spectrum in
a correlated way. For this reason, an accurate estimate of the average leakage power spectrum
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Figure 4. EE andBB leakage power spectra for α = 65◦, β = 30◦, τspin = 10 min, τprec= 96.1803 min,
and combining data for either 74 or 222 detectors. The red curve corresponds to BB with 74 detectors,
the cyan to EE with 74 detectors, the blue to BB with 222 detectors and the green to EE with 222
detectors. The purple curve represents a model of primordial B mode power spectrum with fiducial
cosmological parameters after Planck for r = 0.01, the black curves are including lensing for r = 0.01
and r = 0.001. The dashed curves show the effect of convolving with a 32 arcmin beam. This plot
demonstrates the 1/Ndet dependance of the level of the power spectra.

requires averaging over many independent realizations even if many detectors are used for
the simulations. At least on large angular scales, the fluctuations in the power spectrum due
to different realizations is roughly an overall amplitude varying as the square of a Gaussian.

We find that with all other parameters equal, the bandpass mismatch error amplitude
scales as 1/

√
Ndet where Ndet is the number of detectors (and hence the power spectrum

scales as 1/Ndet). This scaling becomes more accurate when Ndet becomes large, as shown
by comparing the EE and BB leakage power spectra for τspin = 10 min, τprec= 96.1803 min
and Ndet of either 74 or 222. The pairs of spectra have the same shape but the ratio of power
spectrum amplitudes is consistent with the predicted ratio 222/74 = 3.

Figure 5 shows the BB power spectra for α = 65◦, β = 30◦ for several spin and
precession period combinations. We see that the characteristics of the leakage power spectrum
(and in particular the location of the peaks at ` ≤ 100) depend on the exact values of τspin
and τprec. A proper value of the ratio τprec/τspin moves the peaks in the bandpass leakage
spectrum to higher `, away from the location of the maximum of the primordial B mode
recombination bump.

Figure 6 compares the BB power spectra for different opening angles α and β, and also
different scan rates. With the constraint α+ β = 95◦, scan strategies with larger precession
angle produce less leakage because they allow for more homogeneous scan angle coverage per
pixel, and hence lower |〈cos 2ψj〉| and |〈sin 2ψj〉| per individual detector.
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Figure 5. BB leakage power spectra for α = 65◦, β = 30◦, τspin=10 min, τprec=93 min (red);
τspin=10 min, τprec=96.1803 min (green); and τspin=10/3 min, τprec=96.1803 min (blue). Simulations
include 222 detectors and 365 days observation. See the figure 4 caption for a description of the model
curves.

We observe that the power spectra above (without a HWP) are approximately propor-
tional to `−η where η ≈ 2.5. This angular power spectrum is less steep than that of dust
emission itself. The shape of the resulting leakage spectrum can be expressed as a kind
of convolution between the harmonic coefficients of the crossing moment maps and of the
dust component map (see ref. [34] for an analytical explanation of this power law). This
spectral shape is problematic on very large scales, for example near the reionization bump,
because the ratio of the bandpass mismatch to the white noise component of the detector
noise (having an η ≈ 0 spectrum) increases toward lower multipole number `. We observe
some dependance of the amplitude of the leakage spectra with respect to the scanning strat-
egy parameters α and β. Scanning strategies with more uniform angular coverage (provided
by larger precession angles for the studied cases) have a lower leakage amplitude.

When the experiment observes with a rotating HWP, the equivalent of an optimized
polarimeter configuration is straightforwardly obtained when the HWP observes a given sky
position p̂ during an integer number of turns (and, thus, for an evenly spread set of angles
between 0 and 2π). In practice, however, the pointing direction moves while the HWP
rotates, and hence data samples are not usually so evenly distributed. However, when the
HWP rotates at 1.467 Hz (88 rpm) while the instrument beam scans the sky with a spin period
of τspin = 10 minutes and with a 30◦ angle, the beam is displaced by 0.204◦ (about 12.3′)
each time the HWP makes one turn. Neglecting this displacement, single detector timelines
of I, Q, and U with no bandpass mismatch leakage can be straightforwardly obtained from
the data set, and projected onto sky maps with optimal noise averaging, i.e., equivalent
to the generalized least square solution of eq. (3.1). Of course, a real-life HWP is not
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Figure 6. BB leakage power spectra for different scanning parameters. In cyan: α = 65◦, β = 30◦,
τspin=10 min, τprec=96.1803 min, red: α = 50◦, β = 45◦, τspin=10 min, τprec=96.1803 min, green:
α = 50◦, β = 45◦, τspin=2 min, τprec=4 day, blue: α = 30◦, β = 65◦, τspin=2 min, τprec=4 day.
Spectra are computed for 222 detectors. Curves for the B mode model are described in the figure 4
caption. For the scanning strategies with a long precession period, we computed spectra for 100
detectors rescaling to 222 equivalent detectors using the 1/Ndet dependence.

perfectly achromatic and hence is likely to introduce bandpass mismatch effects of its own.
We postpone to future work the study of this effect.

To illustrate the added value of a perfect HWP, we perform a simple set of simulations
in which the input sky (smoothed by a 32′ beam) is a Healpix map pixelized at nside = 256.
The pixel size is well matched to the rotation speed of the HWP, which makes about one turn
while it crosses a pixel. However, numerical effects will generate unevenness in the angular
coverage of each pixel, and thus, when multi-detector maps are made using eq. (3.1), small
bandpass leakage mismatch effects will subsist. Simulating the observation of this model sky
with the use of a HWP spinning at 88 rpm and other parameters set to α = 65◦, β = 30◦,
τspin =10 min, τprec = 96.1803 min, we obtain the small residual leakage shown in figure 7,
which confirms the effectiveness of the HWP in reducing bandpass leakage by homogenizing
the angular coverage in each pixel. The shape of the spectrum of the residual is similar to
that of white noise. Its origin is in the small unevenness of the angle distributions across the
pixels and is an artefact of sky pixelization.

We verify that in case of a perfect HWP, the multi-detector solution for the polarization
is close to the solution consisting in combining single detector (including the HWP) polar-
ization maps, as the residual leakage and its impact of r that can be read off the plot, is
negligible.

Table 1 shows the contribution to r that would result from uncorrected bandpass mis-
match based on its power spectrum averaged over many realizations, calculated using the
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Figure 7. EE and BB leakage power spectra with rotating HWP for α = 65◦, β = 30◦ and spin
period of 10 min with a HWP rotating at 88 rpm for 50 detectors.

2 ≤ ` ≤ 10 10 ≤ ` ≤ 200

α = 30◦; β = 65◦; τprec = 4 days; ωspin = 0.5 rpm 1.83 ×10−3 9.32 ×10−5

α = 50◦; β = 45◦; τprec = 4 days; ωspin = 0.5 rpm 6.49 ×10−4 4.66 ×10−5

α = 50◦; β = 45◦; τprec = 96 min; ωspin = 0.1 rpm 6.32 ×10−4 3.08 ×10−5

α = 65◦; β = 30◦; τprec = 93 min; ωspin = 0.1 rpm 3.29 ×10−4 7.61 ×10−5

α = 65◦; β = 30◦; τprec = 96 min; ωspin = 0.1 rpm 3.27 ×10−4 2.11 ×10−5

α = 65◦; β = 30◦; τprec = 96 min; ωspin = 0.3 rpm 3.03 ×10−4 1.77 ×10−5

Table 1. Contribution of bandpass mismatch error to the tensor-to-scalar ratio r computed according
to eq. (3.8). The level of the bandpass leakage relative to primordial B mode signals is acceptable at
the angular scale of the recombination bump, but problematic for the reionization bump at ` . 10.
Scanning strategies with larger α and smaller β perform better, as they provide more uniform angular
coverage in each pixel.

projection

δ̂r =

∑`max
`=`min

(2`+ 1)C`Ĉ`∑`max
`=`min

(2`+ 1)C2
`

. (3.8)

Here C` is the power spectrum for the primordial B mode signal normalized to r = 1. The
table shows δr calculated for two ranges of `: one with ` ∈ [2, 10] to isolate the signal from
the re-ionization bump, and another with ` ∈ [10, 100] to isolate the signal arising from the
recombination bump. The results in the table assume Ndet = 222 detectors, but can be
rescaled based on the 1/Ndet dependence to other numbers of detectors. These results are
only an order of magnitude estimate because they are based on a single 140 GHz channel,
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and it has been assumed that very low and very high frequency channels have been used to
removed the non-primordial components completely. We stress that the bandpass mismatch
power spectrum is not a simple bias that can be predicted and subtracted away because its
overall amplitude suffers large fluctuations, which are of the same order of magnitude as the
average bias itself.

3.2 Analytic estimates

With the objective of finding fast and easy ways to predict the magnitude of potential leakage
without running many Monte Carlo simulations, and in order to understand how the patterns
shown in the leakage map in figure 3 are related to the scanning strategy, we now study
theoretically in more detail how the leakage manifests itself in the polarization maps. To this
end, we expand the solution of the map making equation [eq. (3.1)].

We derive a simple expression for the leakage originating from differencing the signal
from a pair of orthogonally polarized detectors observing instantaneously at the same location
in the sky, so that data of the two detectors of the pair i at time t in pixel p denoted as
Si;a(t) and Si;b(t) are given by

Si;a(t) = Ii;p +Qp cos 2ψ(t) + Up sin 2ψ(t) +Mi;p,
Si;b(t) = Ii;p −Qp cos 2ψ(t)− Up sin 2ψ(t)−Mi;p. (3.9)

Here we assume no noise and perfect calibration on the CMB (e.g., using the CMB dipole),
and ψ is the polarizer angle for detector a. Ii;p, Qp, Up are the Stokes parameters of the sky
signal, Ii;p being the mean intensity parameter for the detector pair i, and Mi;p represents
the bandpass mismatch component, which is given by

Mi;p =
1

2

∑
(c)

(
γa(c) − γ

b
(c)

)
Ip,(c). (3.10)

Here the index (c) labels the non-CMB sky components. The coefficient differences
(
γa(c) −

γb(c)
)

vary from detector pair to detector pair, as explained in section 2 (see in particular

eq. (2.3)). To minimize clutter, we have suppressed the index i labelling the detector pairs.
We neglect the subdominant effect of bandpass mismatch on the polarized sky components.
As in the previous section, we neglect noise in our analysis. The estimated noiseless Stokes
parameter maps Q̂p and Ûp can be expanded as Q̂p = Qp + δQp and Ûp = Up + δUp, where
δQ and δU represent the leakages to polarization resulting from bandpass mismatch. Ideal
solutions with no leakage are given in eq. (3.9).

The map making equation gives
Îp

Q̂p

Ûp

 =


1 0 0

0 1
2 (1 + 〈cos 4ψ〉) 1

2〈sin 4ψ〉

0 1
2〈sin 4ψ〉 1

2 (1− 〈cos 4ψ〉)


−1

〈S〉

〈12(Sa − Sb) cos 2ψ〉

〈12(Sa − Sb) sin 2ψ〉

 , (3.11)

and the zeros in the 3×3 matrix result because the exact orthogonality of the two detectors
of each pair insures that 〈cos 2ψ〉 and 〈sin 2ψ〉 vanish exactly [compare with eq. (3.4)], so
that the expression for Îp decouples from the expressions for Q̂p and Ûp. Consequently, the
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Figure 8. Left: leakage for the Q component relative to the dust temperature (δQ/IGal) after
polarization reconstruction using one bolometer pair only and a one year observation time. Right:
averaged cos 2ψ in each pixel for one bolometer after one year observation time. This quantity is
strongly correlated with the relative leakage Q component with respect to the dust intensity.

leakages are given by(
δQp
δUp

)
=

(
1
2(1 + 〈cos 4ψ)〉 1

2〈sin 4ψ〉
1
2〈sin 4ψ〉 1

2(1− 〈cos 4ψ)〉

)−1(〈Mp cos 2ψ〉
〈Mp sin 2ψ〉

)

=
2

(1− 〈cos 4ψ〉2 − 〈sin 4ψ〉2)

(
1 + 〈cos 4ψ〉 −〈sin 4ψ〉
−〈sin 4ψ〉 1− 〈cos 4ψ〉

)(
〈Mp cos 2ψ〉
〈Mp sin 2ψ〉

)
. (3.12)

Assuming that 〈cos 4ψ〉2 + 〈sin 4ψ〉2 � 1 (which is not so bad an approximation except very
near the poles), we obtain (

δQp
δUp

)
≈ 2

(
〈Mp cos 2ψ〉
〈Mp sin 2ψ〉

)
. (3.13)

For one Galactic component, by replacing Mp by its expression in eq. (3.10), the relative
amplitude of the leakage can be written as(

δQp

IGal;p
δUp

IGal;p

)
=
(
γaGal − γbGal

)(〈cos 2ψ〉
〈sin 2ψ〉

)
. (3.14)

The term on the right-hand side is one of the crossing moment terms for a single detector.
We should then observe a large correlation between the two maps on the two sides of the
equation. We have verified, with the help of simulations of data for one detector pair, this
relationship for two different scanning strategies: α = 65◦ and β = 30◦ and α = 50◦ and
β = 45◦. Figure 8 shows the relative leakage map δQp/IGal;p and the quantity

∑
cos 2ψ/np.

The U component (not shown here) exhibits similar properties.
Figure 9 shows the correlation of the two maps by plotting the values of one map versus

the other for a subset of pixels. We observe a high correlation between the two maps. We
verify that the slope is given by the coefficient ∆γ = γa − γb as derived in eq. (3.14). This
figure shows the tight link between the crossing moments and the relative leakage due to
bandpass mismatch. It also shows that the approximations made to derive eq. (3.14) are
valid since we observe a relatively small scatter around the linear slope. The outliers in the
figure are due to pixels near the ecliptic poles where the angle coverage is less uniform for
the scanning parameters used as a baseline in this work.
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Figure 9. Values of the relative leakage δQp/IGal;p for a pair of detectors with orthogonal polariza-
tions of a function of the scanning strategy parameter (1/np)

∑
cos 2ψ (see text) after map making

with two detectors only. We observe a tight correlation between the relative leakage and the second
order crossing moments.

We now consider the solution combining more detectors. The generalization of eq. (3.13)
gives for the resulting leakage component

(
δQp
δUp

)
=


1
2

∑
i

∑
j

(1 + cos 4ψji )
1
2

∑
i

∑
j

sin 4ψji

1
2

∑
i

∑
j

sin 4ψji
1
2

∑
i

∑
j

(1− cos 4ψji )


−1

∑
i

∑
j

cos 2ψji Mi,p∑
i

∑
j

sin 2ψji Mi,p

 (3.15)

where we sum over all the detector pairs indexed by i and over all samples j falling in pixel p
for each detector. In this case, for which we consider the realistic configuration of more than
one pair of detectors per pixel, the covariance matrix above becomes nearly diagonal. As
the number of detectors is increased, the matrix in eq. (3.15) becomes increasingly diagonal.
The total leakage is then simply, replacing the leakage term Mp by its expression:

δQp
IGal;p

≈ 2

Nhit

∑
i

∆γi
∑
j

cos 2ψji , (3.16)

using eq. (3.10), where we have defined Nhit as the total number of hits including all detectors
(and not only count 1 per detector pair which explains the cancellation of the 1/2 factors
since the sum runs over detector pairs), and ∆γi = γai − γbi . The leakage vanishes if each
individual detector has uniform angle coverage. We observe that the relevant quantities to
estimate the level of leakage for a given scanning strategy are the individual detector second
order crossing moments. Following our hypothesis that the γ parameters are random and
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Figure 10. Left: estimated leakage variance of the Q component relative to the dust temperature
(Var (δQp/IGal;p)) after polarization reconstruction using all bolometer pairs and one year of observa-
tions. We used 10 independent realizations of the bandpass to estimate the variance. Right: averaged〈(

(1/n̄p)
∑

cos 2ψj
i

)2〉
det

in each pixel for all bolometers after one year observation time. As for the

detector pair case, we observe a tight correlation of the two maps on large angular scales.

uncorrelated, we express the variance of the leakage map as:

Var

(
δQp
IGal;p

)
≈
∑
i

Var(∆γi)

∑
j

cos 2ψji

2(
2

Nhit

)2

, (3.17)

which gives, since Var(∆γ) = 2Var(γ):

Var

(
δQp
IGal;p

)
≈ 4

Var(γ)

Ndet

〈(∑
cos 2ψji
n̄p

)2〉
det

, (3.18)

where 〈 · 〉det denotes average over all detectors, and n̄p = Nhit
Ndet

is the average number of
hits per detector. The expression for the U component is similar with the cosine replaced by
a sine. This expression for the variance of the leakage map is also valid if detectors are not
arranged by pairs.

Figure 10 compares the maps of the variance on the left-hand side of the previous rela-
tionship which was estimated with ten independent realizations of the bandpass parameters,

with the quantity
〈(

(1/n̄p)
∑

cos 2ψi

)2〉
det

. Figure 11 shows the correlations between the

two quantities on a scatter plot. We observe a significant correlation of the two quantities,
especially on large scales. The dispersion is partly due to the limited number of realizations
to estimate the variance. Nevertheless, this shows that the level of leakage can be evalu-
ated by estimating the second order crossing moments only for different scanning strategies
without the need of running large simulations. This result explains what was observed in
figure 6, showing the level of the leakage with respect to the scanning parameters α and β.
The strategies with more uniform angle distribution (the ones with larger precession angle)
show lower residuals (see also [35] for the link with other systematic effects).

Results show that contamination from bandpass mismatch even if small could contribute
to the B mode spectrum at a non-negligible level, close to the detection limit of primordial B
modes with future satellite missions. Systematic variation of the bandpass functions across
the focal plane, as opposed to the uncorrelated random variations assumed in this study,
could produce larger errors. These considerations motivate developing correction methods,
which we present in the companion paper [20].
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Figure 11. Estimated variance distribution of the relative leakage parameter: Var (δQp/IGal;p) as a

function of c =
〈(

(1/n̄p)
∑

cos 2ψt;i

)2〉
det

(see text) after map making including all detectors. We

have averaged over ten realizations to estimate the variance.

3.3 Importance of avoiding resonances

Here we briefly explain some considerations for choosing the scan frequency parameters ωspin

and ωprec. We found that to obtain good crossing moment maps, careful attention must
be paid to choosing the ratios of the hierarchy of scan frequencies ωann � ωprec � ωspin,
and when there is a continuously rotating HWP also ωHWP. For ωprec/ωann, we choose to
make this number an integer so that the scan pattern closes. In all the simulations reported
here, we assumed a single survey of exactly one year in duration. Given the large number
of precession cycles in a year, this requirement can be achieved by means of a very small
adjustment in ωprec. One might also want to do the same for the spin period, but this is less
critical because of its shortness compared to a year.

More critical is the ratio θ = ωspin/ωprec, which must be chosen so that θ cannot be well
approximated by simple fractions of the form p/q where p and q are relatively prime and q is
small in a sense that we shall make more precise shortly. Of concern are exact or near exact
resonances where q is less than of order ωprec/ωspin.

Before entering into the theory of how the ratio θ should be chosen (and jumping ahead
slightly), we show what goes wrong when θ is not well chosen. For example, our first try
had τspin = 10 min and τprec = 93 min and gave hit count and crossing moment maps with
clearly visible Moiré patterns at intermediate angular scales, as shown in figure 12, showing
clear evidence of a near resonance. However, when ωprec was sped up by the Golden ratio
Φ = (1 +

√
5)/2 = 1.61803398875 (reputed to be the “most irrational” number),3 these

3See for example Michael Berry, (1978, September), Regular and irregular motion, in S. Jorna (Ed.), AIP
Conference proceedings (Vol. 46, No. 1, 16–120), AIP for a nice discussion of these questions in a different
context, that of perturbations of integrable systems in classical mechanics, KAM theory, and the stability of
the solar system.
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Figure 12. Effect of a poorly chosen scanning frequency ratios. The map on the left has θ =
ωspin/ωprec = 9.3, whose continued fraction representation is [9, 3, 3], whereas the lower map has the
more irrational ratio θ = 9.61803, whose continued fraction representation is [9, 1, 1, 1, ......]. A series
of Moiré patterns on intermediate angular scales is clearly visible in the map on the left, which lead
to spikes in the crossing moment map power spectra, and also in the final bandpass mismatch power
spectra. The artefacts can be avoided by choosing ratios of frequencies judiciously in order to avoid
good rational approximations.

undesirable Moiré patterns disappear, as shown in the bottom right panel of the figure. The
same effect could be achieved by altering the ratio θ by just 5%, so that the spin cycle has the
same phase as with the Golden ratio sped up. We note that the effect of these Moiré patterns
on the bandpass mismatch power spectra is to introduce peaks at multipole numbers at which
the bandpass mismatch error is increased by up to about an order of magnitude beyond the
baseline, where it would be if θ had been well chosen to avoid near resonances. We also note
that when a continuously rotating HWP is introduced, there are two independent ratios to
worry about, although the artefacts are less acute than in the case of no rotating HWP.

The theory of choosing ratios to avoid near resonances relates to problems well studied
by pure mathematicians in the area of number theory, or more specifically the theory of
Diophantine approximations, and we discussed these issues in more detail elsewhere [36].
The tool for characterizing the near resonance properties of real numbers is the continued
fraction representation, where we expand

θ = [a0, a1, a2, . . .] = ao +
1

a1 +
1

a2 + . . .

(3.19)

where a0 is an integer and a1, a2, . . . are positive integers. For a rational number, the contin-
ued fraction representation terminates; for an irrational number it is of infinite length. The
partial sums, known as ‘convergents,’ generate a sequence of ‘best rational approximations’
p/q to θ,4 with q ascending. When a coefficient an is large compared to one, the preceding
convergent is a particularly good approximation to θ considering the magnitude of q. The
Golden ratio Φ has the continued fraction representation [1, 1, 1, . . .], and thus has among the
worst approximation properties of any number.

For the parameters used in the simulations reported below, we adjusted the precession
period so that there are an integer number 5467 cycles in a sidereal year, giving a precession

4An irreducible fraction p/q is a ‘best approximation’ to θ if |θ − p′/q′| > |θ − p/q| whenever q′ < q.
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period of 96.2080 minutes, and we replaced the ratio of θ = 9.3, which in terms of contin-
ued fractions is represented by [9, 3, 3], with the ratio 9.618033988749895,5 whose continued
fraction representation is [9, 1, 1, 1, ......], giving a spin period of 10.002876 minutes. One may
ask: approximately to what accuracy would one wish to maintain this ratio? Certainly more
accuracy than the inverse of the number of precession cycles in a year would be superflu-
ous. In fact, less accuracy would be adequate, the exact number depending on the precise
scanning parameters, but we postpone further assessment of the required precision to future
work. Moreover, it is more the absolute pointing that matters and not so much a question
of maintaining precise ratios at any particular moment.

An important practical question is what accuracy is required in the ratios of the fre-
quencies in order to avoid the Moiré patterns due to near resonances. It is not possible to
provide a general answer to this question, but we performed some numerical experiments for
the scanning frequencies considered in this paper and found that tuning the ratio of the fre-
quencies to about 0.2% sufficed. It should be stressed that it is the relative phase rather than
the instantaneous ratio of frequencies that matters for avoiding Moiré artifacts. In the above
discussion we considered only a single ratio, but for more complicated situations with several
frequencies, there is more than one ratio to keep away from near resonant values. A rotating
half-wave plate, for example, introduces another frequency, and in principle the annual drift
also allows other dimensionless ratios of frequencies to be formed. These complications will
be investigated elsewhere.

3.4 Hitcount and crossing moment map properties

We now examine the properties of the hitcount map Ha(p) for a particular detector labeled
by the index a (where the index p denotes a particular discrete pixel) as well as maps of
〈cos 2ψ(p)〉a , 〈sin 2ψ(p)〉a , 〈cos 4ψ(p)〉a , and 〈sin 4ψ(p)〉a , which, as already stressed enter
into the expressions for the bandpass mismatch.

Figures 13 and 14 show the maps Ha(p), 〈cos 2ψ(p)〉a , 〈sin 2ψ(p)〉a , 〈cos 4ψ(p)〉a , and
〈sin 4ψ(p)〉a for a typical detector with the fiducial scan parameters given above for a full-year
scan (so that there are no boundaries).

These figures demonstrate that in all the maps (except for the 〈sin 2ψ(p)〉a , and
〈sin 4ψ(p)〉a maps), when small-scale structure is ignored, there is an azimuthally symmetric
non-uniformity. From the azimuthally averaged quantities shown in figure 2, we can see that
superimposed on this azimuthally symmetric component is a component almost completely
devoid of large-angle power resulting from the discreteness of the scans. Figure 15 shows
the power spectra of the crossing moment maps. We note that given the finite size of the
focal plane, the spin opening angle β varies from detector to detector. This variation in β
induces an azimuthally symmetric component having large-scale power in the difference map
of moments for different detectors at different locations in the focal plane. Also present will
be a small-scale component, which would disappear in the limit ωspin, ωprec → +∞ along
with the sampling rate while keeping the ratio ωspin/ωprec fixed. This small scale power is
somewhat akin to shot noise.

5In any specific application, the objective of avoiding near resonances obviously requires an accuracy involv-
ing only a finite number of terms of the continued fraction expansion. Moreover, it is less the instantaneous
ratio of frequencies that matters but rather the relative phase. We have found using numerical simulations
that avoiding Moiré patterns is achieved when the ratios are maintained with a relative accuracy of 1 part in
103, although the exact accuracy needed will depend on the particular application.

– 20 –



J
C
A
P
1
2
(
2
0
1
7
)
0
1
5

Figure 13. Hitcount map and azimuthal average for fiducial scanning pattern. The hitcount map is
roughly uniform except for some localized spikes of high density around the ecliptic poles and at the
caustics at ecliptic latitude ±(α− β) = ±(65◦ − 30◦) = ±35◦. In the bottom plot the horizontal axis
is cos θ where θ is the angle from the north ecliptic pole.

Figure 14. Crossing moment maps for the fiducial scanning pattern. The four relevant crossing
moment maps 〈cos 2ψ〉 , 〈cos 4ψ〉 , 〈sin 2ψ〉 , 〈sin 4ψ〉 (left to right, top to bottom) are shown for the
fiducial scanning pattern (defined in the text) for a single detector whose polarization axis is oriented
along the line running from the center of the beam to the spin axis. The corresponding maps for other
polarizer orientations can be obtained trivially using the property that the first two maps transform as
a spin-2 vector and the second two as a spin-4 vector under rotations of the polarization orientation.
We observe that the cosine maps have structures coherent on large scales and azimuthally symmetric
in ecliptic coordinates, whereas the sine maps include only small-scale noise (which is also present in
the cosine maps) but have no structure coherent on large angular scales.
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Figure 15. Crossing moment map power spectra. We show the power spectra of the maps of figure 14.
The spectra of the two cosine maps, because of the azimuthally symmetric large power coherent on
large scales shown in figure 2, have power spectra scaling similar to `−2 for the even moments, whereas
the two sine maps (bottom) row exhibit spectra resembling pure white noise.

We now consider the effect of a continuously rotating HWP on the second- and fourth-
order crossing moment maps, as shown in figures 16 and 17. We see that the azimuthally
symmetric structures coherent on large angular scales disappear as a consequence of the
continuously rotating HWP. The main consequence is to beat down by many orders of mag-
nitude the (`−2.5)-like power present on large angular scales in cosine maps, but there is also
substantial reduction in the power at all multipole numbers compared to the no-HWP case.

We point out that much the same beneficial effect could also be obtained using a dis-
cretely stepped HWP (with a stepping pattern tailored to produce the necessary cancel-
lations). Alternatively, less complete cancellations could also be obtained by stepping the
orientation of the focal plane about its optical axis. These rotations are called “deck rota-
tions” in the BICEP2 papers (see e.g., [8]), a terminology that we shall also adopt. Allowing
for such deck rotations, however, would also require additional complexity in the satellite
design beyond the simplest no HWP design. Moreover, for the deck rotations alone, the
cancellations would be imperfect because the values of β for the individual detector scanning
patterns change as the focal plane is rotated (except possibly for one detector situated at the
optical axis, assumed to coincide with the deck rotation axis).
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Figure 16. Crossing moment maps (with rotating HWP). We show the same maps as in figure 14
except that there is a rotating HWP, as explained in the main text. We observe that the coherent
power in the cosine maps has been scrambled as a result of the presence of the HWP and the overall
power in all the maps has greatly been reduced.

Figure 17. Crossing moment map power spectra (with rotating HWP). We show the power spectra
for the maps in figure 16. The power spectra of the 〈cos 2ψ〉 and 〈cos 4ψ〉 have a white noise-like
spectrum rather than an (`−2)-like spectrum because the HWP has scrambled azimuthally symmetric
component coherent on large-scale present in the case with no HWP.
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4 Conclusions

This paper presented estimates of the contribution of bandpass mismatch error to the final
determination of the tensor-to-scalar ratio r, both for the window situated at the ‘re-ionization
bump,’ and for the window at the ‘recombination bump’, for a set of observation strategies
considered for future CMB polarization experiments. In the case without a HWP, requiring in
the optimal case the combination of multi-detector data, we show that the bandpass mismatch
error in polarization has a red power spectrum resembling `−2.5. The contribution to r is of
the order of 10−3 at the reionization bump, assuming random variations of the detector filters
for typical arrays at 140 GHz, such that the variation of the dust component amplitude is of
the order of 0.6 %. However, with a continuously rotating HWP the spectrum is similar to
that of white noise, with the power on the largest scales many orders of magnitude smaller
than without a HWP. This is due to the fact that an ideal HWP allows nearly uniform
angle coverage in each pixel, and hence the multi-detector solution is almost equivalent to
the combination of single detector maps of Q and U . The HWP also cancels correlations
in the non-uniformity in the angular coverage between different pixels, hence the efficient
reduction in power of the bandpass mismatch on large angular scales. We further note
that a stepped HWP would reduce bandpass mismatch in a similar way provided that its
discrete rotations are properly synchronized with the scan pattern. We show that even with
a simplistic multi-detector map-making approach, the HWP suppresses the bandpass leakage
power by several orders of magnitude on large scales. We note however that this conclusion
ignores the problem of HWP imperfections, in particular chromaticity effects, which would
generate bandpass mismatch systematics of its own.

To obtain accurate estimates of the bandpass mismatch error, more precise information
would be needed concerning (1) the scan pattern assumed, (2) the variations in the bandpass
functions from detector to detector, and (3) the foreground removal process. For (1) we
used one of the LiteBIRD candidate scan patterns. Likewise, for (2) we based our model for
variations in the bandpass function from preliminary results that have actually been achieved
in the laboratory between different detectors without a HWP, but there may be effects not
properly taken into account that could lead to larger errors, or conversely further technological
development could lead to reduced mismatch between bandpass functions. With respect to
(3), we simply calculated the bandpass error in a 140 GHz map, assuming that but for this
error, the dominant dust and synchrotron components could be removed by subtraction using
a perfect foreground component templates. This is certainly a simplification which provides
a simple estimate that can be described in a simple term. If the foregrounds turn out to
be very complicated, the CMB clean map might be the result of a linear combination of
maps whose coefficients (or varying sign) are much larger than one (assuming the maps are
normalized to the CMB). A foreground cleaning of this sort (if necessary) may lead to larger
bandpass errors than our estimate. Finally, we mention one caveat of our analysis: we did
not include 1/f noise in our modeling, a feature that allowed us to carry out pixel-by-pixel
map making and avoid including extra model parameters.

In this paper we have estimated bandpass mismatch error assuming that no measures
have been taken to correct for or otherwise mitigate this systematic error. In the companion
paper ref. [20] we explore paths to correct for and mitigate bandpass mismatch error with a
dedicated data processing step.
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