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Abstract

We discuss the Hamiltonian dynamics of general relativity with real connection variables on a null
foliation, and use the Newman-Penrose formalism to shed light on the geometric meaning of the various
constraints. We identify the equivalent of Sachs’ constraint-free initial data as projections of connection
components related to null rotations, i.e. the translational part of the ISO(2) group stabilising the
internal null direction soldered to the hypersurface. A pair of second-class constraints reduces these
connection components to the shear of a null geodesic congruence, thus establishing equivalence with
the second-order formalism, which we show in details at the level of symplectic potentials. A special
feature of the first-order formulation is that Sachs’ propagating equations for the shear, away from the
initial hypersurface, are turned into tertiary constraints; their role is to preserve the relation between
connection and shear under retarded time evolution. The conversion of wave-like propagating equations
into constraints is possible thanks to an algebraic Bianchi identity; the same one that allows one to
describe the radiative data at future null infinity in terms of a shear of a (non-geodesic) asymptotic null
vector field in the physical spacetime. Finally, we compute the modification to the spin coefficients and
the null congruence in the presence of torsion.
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1 Introduction

Null foliations play an important role in general relativity. Among their special features, they admit a
gauge-fixing for which the Einstein’s equations can be integrated hierarchically, and constraint-free initial
data identified, as shown by Sachs [1]; and provide a framework for the description of gravitational radiation
from isolated systems and of conserved charges, starting from the seminal work of Sachs, of Bondi, van
der Burg and Metzner (henceforth BMS), Newman and Penrose (NP), Geroch and Ashtekar [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12] (see also [13, 14, 15] and reference therein). These classic results are based on the
Einstein-Hilbert action and the spacetime metric as fundamental variable, and provide a clear geometric
picture of the physical degrees of freedom of general relativity at the non-linear level. In this paper we wish
to understand some of these results using a first-order action principle with real connection variables. In
particular, we will identify the equivalent of Sachs’ free data in terms of some connection components (which
will be related to the translational part of the ISO(2) group stabilising the internal null direction soldered
to the hypersurface), and highlight some properties of their Hamiltonian dynamics.

We have several reasons to be interested in this. First of all, we know from the work of Ashtekar that the
radiative physical degrees of freedom at future null infinity are best described in terms of connections [10, 11].1

We then wish to provide a connection description of the physical degrees of freedom in the spacetime bulk, in
the sense of constraint-free initial data for the first-order action. Secondly, the connection description later
led Ashtekar to the famous reformulation of the action principle of general relativity [19], which is at the
root of loop quantum gravity. This approach to quantising general relativity suggests the use of connections
as fundamental fields, instead of the metric. There exists a canonical quantisation scheme that leads to the
well-known prediction of quantum discreteness of space [20]. This result uses space-like foliations, and the
dynamical restriction to the quanta of space imposed by the Hamiltonian constraint are still not explicitly
known, none-withstanding constant progress in the field. Quantising with analogue connection methods the
constraint-free data on null foliations would allow us to study the quantum structure of the physical degrees
of freedom directly.2 As a preliminary result in this direction, it was shown in [22] that at the kinematical
level, discretisations of the 2d space-like metric have quantum area operators with a discrete spectrum given
by the helicity quantum numbers. A stronger more recent result appeared in [23], based on covariant phase
space methods and a spinorial boundary term, confirming the discrete area spectrum without a discretisation.
What we would like is to extend these results within a Hamiltonian dynamical framework.

The Hamiltonian dynamics of general relativity with real connection variables on a null foliation appeared
in [24],3 and presents a few intricate structures, like the conversion of what Sachs called the propagating
Einstein’s equations into (tertiary) constraints. In this paper, we present three results. First, we use
the Newman-Penrose formalism to clarify the geometric meaning of the various constraints present in the
Hamiltonian structure studied in [24]. Second, we identify the connection equivalent of Sachs’ free data as
the ‘shear-like’ components of an affine4 null congruence; we show how they reduce to the shear of a null
geodesic congruence in the absence of torsion, and how they are modified in the presence of torsion; we use
the Bondi gauge to derive their Dirac brackets, and show the equivalence with the metric formalism at the

1Another class of null hypersurfaces for which the connection description plays an important role is the one of isolated
horizons [16, 17, 18].

2For recent work towards the same goal but in metric variables, see [21].
3For previous studies using complex self-dual connections see e.g. [25, 26].
4In the sense of being given by an affine connection, a priori non-Levi-Civita, not of being affinely parametrised.
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level of symplectic potentials. Third, we explain the origin and the meaning of the tertiary constraints, and
point out that the algebraic Bianchi identity responsible for the conversion of the propagating equations into
constraints is the same one that allows the interpretation of the radiative data at future null infinity I+ in
terms of shear of a (non-geodesic) null vector field ‘aligned’ with I+.

The identification of the dynamical part of the connection with null rotations (related on-shell to the
shear) is a striking difference with respect to the case of a space-like foliation, because these components
form a group, albeit a non-compact one, unlike the dynamical components of the space-like formalism which
are boosts (related on-shell to the extrinsic curvature). We have thus two senses in which a null foliation
gives a simpler algebra: the first-class part of the constraint algebra is a genuine Lie algebra (thanks to the
fact that the Hamiltonian is second class), and the connection physical degrees of freedom form a group.

The paper is organised as follows. We first review useful background material on the Hamiltonian
structure on null foliations: in Section 2, with metric variables, including the use of Bondi coordinates and
identification of constraint-free initial data and their symplectic potential; in Section 3, with real connection
variables. In Section 4, we map the non-adapted tetrad used in the Hamiltonian analysis to a doubly-
null tetrad, we identify the constraint-free data and study the effect of the constraints on an affine null
congruence. We describe the modifications induced by torsion in the case of fermions minimally and non-
minimally coupled, as well as for a completely general torsion. We rederive the conversion of the propagating
equations into constraints using the Newman-Penrose formalism, and single out one algebraic Bianchi identity
responsible for it. In Section 5 we specialise to Bondi coordinates, and discuss the Dirac bracket for the
constraint-free data and the equivalence of the symplectic potential with the one in metric variables. We
finally highlight that the same algebraic Bianchi identity relevant to the understanding of the tertiary
constraints plays an interesting role for radiative data at I+. The conclusions in Section 6 contain some
perspectives on future work. We also provide an extensive Appendix with technical material. This includes
the detailed relation of our tetrad foliation to the 2+2 foliation used in the literature, of the metric coefficients
we use to those of Sachs and of Newman and Penrose, the explicit expression of all NP spin coefficients in
the first-order variables, and some details on the mixing between internal boost gauge-fixing and lapse fixing
via radial diffeomorphisms.

For the purposes of this paper, we will mostly restrict attention to local considerations on a single null
hypersurface. We neglect in particular boundary conditions and surface terms. These carry of course very
important physics, and we will come back to them in future research, when we have in mind among other
things to explore the phase space and BMS algebra on I+ in this formalism.

We use mostly-plus signature (–+++), with greek letters µ, ν, . . . = 0, 1, 2, 3 as spacetime indices, latin
indices from the beginning of the alphabet a, b, . . . = 1, 2, 3 as hypersurface indices, capital ones A,B, . . . =
2, 3 as 2d space-like surface indices; for the internal space, we use I, J, . . . = 0, 1, 2, 3 as internal spacetime
indices, i, j, . . . = 1, 2, 3 internal hypersurface indices, M,N, . . . = 2, 3 internal 2d space-like indices.

2 Sachs’ free data and metric Hamiltonian structure

Before presenting the first-order connection formulation, let us review some basic facts of the metric for-
mulation, that will be useful in the following: the details of the Bondi coordinate gauge-fixing, and the
description of constraint-free data and their associated symplectic potential.

The typical set-up is a 2 + 2 foliation with a doubly-null initial slice, see Fig. 1. Sachs’ constraint-free
data for a local evolution can then be identified with the conformal class of the two-dimensional induced
metric along the initial slice, or alternatively its shear, plus corner data at the 2d space-like intersection.
With some additional regularity assumptions, one can also use a 3 + 1 foliation by null cones radiated by
a time-like world-line. See [27, 28, 29, 30, 31] for the formal analysis of solutions and existence theorems.
Both evolution schemes are typically local because of the development of caustics, however for situations
with sufficiently weak gravitational radiation like those of [32], null cones can foliate all of spacetime. A case
of special interest is the study of radiating isolated gravitational systems in asymptotically flat spacetimes.
In the asymptotic 2 + 2 problem, one puts the second null hypersurface at future null infinity I+, and the
foliation describes null hypersurfaces (or null cones) attached to I+. In this case the assignment of initial
data is subtler (see e.g. [33]), because of the compactification involved in the definition of I. In particular,
I+ is shear-free by construction. Nonetheless, the data are still described by an asymptotic shear, transverse
to I+ [7, 5, 10], and Ashtekar’s result was to show that these degrees of freedom and the phase space they
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describe are better thought of in terms of connections living on I+, a construction which is useful for the
understanding of conserved charges. Notice that one can not take I+ itself as null cone of a 3 + 1 foliation,
because of the ‘hole’ at i+ where tails and bound states escape null infinity (see e.g. [34]), nor I− for
the same reason. We will mostly focuse on local properties of null hypersurfaces, and not discuss the non-
trivial features associated for instance with boundary data at corners, residual diffeomorphisms, caustics and
cone-vertex regularity, for which we refer the reader to literature cited above and below.

Bondi coordinates: (u; r; θ;φ)

@r

@u

r =const

u =const

S0; (θ;φ)

Figure 1: Left: Set-up of the characteristic 2 + 2 initial-value problem. Two null hypersurfaces intersect on a

space-like 2d surface S0. When the two null hypersurfaces are intersecting light cones, as in the picture, S0 has

topology of a sphere. The (partial) Bondi gauge is such that (θ, φ) are constant along ∂r, and ∂r is null for all values

of u. On the other hand, ∂u is null at at most one value of r, unless the spacetime has special isometries. Right:

Further requiring suitable regularity conditions one can consider also a local 3 + 1 foliation of light-cones generated

by a time-like world-line.

2.1 Bondi gauge and Sachs constraint-free initial data

The Bondi coordinate gauge is specified as follows: we take spherical coordinates in a local patch of spacetime,
xµ = (u, r, θ, φ), with the level sets of u to provide a foliation into null hypersurfaces Σ. du is thus a
null 1-form, implying the gauge-fixing condition g00 = 0, and the associated future-pointing null vector
lµ = −gµν∂µu is tangent to the null geodesics of Σ. The second gauge condition is to require the angular
coordinates xA = (θ, φ), A = 2, 3, to be preserved along r, i.e. lµ∂µx

A = 0. This implies g0A = 0 and makes
r a parameter along the null geodesics: the level sets of r thus provide a 2 + 1 foliation orthogonal to the
null geodesics. At this point, the metric and its inverse can be conveniently parametrized as follows,

gµν =

−e2β V
r + γABU

AUB −e2β −γABUB
0 0

γAB

 , gµν =

0 −e−2β 0
e−2β V

r −e−2βUA

γAB

 , (1)

in terms of seven functions (β, V, UA, γAB). Being the coordinates adapted to the 2 + 2 foliation defined by
u and r, gAB ≡ γAB is the metric induced on the 2d space-like surfaces, and we denote its determinant γ
and its inverse γAB . The gauge-fixing has the property that gAB = γAB , so it is analogue to the shift-free
(partial) gauge Na = 0 for a space-like foliation. There still remains one coordinate freedom, for which
two different choices are customary in the literature: we can require as in [3, 4] the radial coordinate to be
an areal parameter R (called ‘luminosity distance’ by Sachs), namely fix

√
γ = R2f(θ, φ); or we can follow

the Newman-Penrose (NP) literature [5, 6] and require g01 = −1, with no restrictions on γ, which makes
r an affine parameter for the congruence generated by lµ. The relation between the two choices is given
by ∂r/∂R = e2β . As we will review below, e2β plays the role of the lapse function in the canonical theory,
and these two choices correspond to two different gauge-fixings of the radial diffeomorphism constraint.
Accordingly, we will denote from now on e2β = N > 0. In the following, we will often keep this last gauge
fixing unspecified, for our results to be easily adapted to both choices. We will then refer to the partial
gauge-fixing g00 = 0 = g0A as partial Bondi gauge.5

5A third option to complete the partial Bondi gauge is to take dr null, so to have also g11 = 0. This choice, used in the
original Sachs paper [1], is not adapted to the asymptotic problem, and will be not considered in the following.
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To set up the characteristic 2+2 initial-value problem, one chooses initial data on two null hypersurfaces
intersecting on a space-like 2d surface S0, see Fig. 1. Working with a null foliation, any fixed value of u
identifies the first null hypersurface. On the other hand, with r affine or areal at most one r =constant
hypersurface will also be null, for a generic spacetime. Its location can be fixed with a measure-zero gauge-
fixing g11|r0 = 0. Then, as shown originally in [1] (see also [35, 36, 13]), constraint-free initial data for
general relativity can be identified with the conformal class of 2d space-like metrics γAB , of which we take
the uni-modular representative γ̌AB := γ−1/2γAB ; supplemented by boundary data at the corner S0 between
the two initial slices.6 Up to the measure-zero corner data, the two independent components of γ̌AB are the
two physical degrees of freedom of general relativity on a null hypersurface. In the associated hierarchical
integration scheme, the Hamiltonian constraint can be solved as a radial linear equation for V , and one can
identify the propagating equations for the constraint-free data as (the traceless part of) the projection of
the Einstein’s equations on the space-like surface. These give the evolution of γ̌AB away from the initial
slice. The price to pay for the identification of constraint-free data is that the dynamical spacetime can be
reconstructed only locally in a neighbourhood of the characteristic surface (neighbourhood that may well be
smaller then the maximal Cauchy development, see e.g. [27]), as caustics develop and stop the validity of
the coordinate patch. See e.g. [29, 37, 38, 13] for various discussions on this.

The geometric interpretation of the constraint-free data is most commonly given in terms of the shear of
null geodesic congruences, which is directly determined by the induced 2d metric. To see this, let us consider
the normal 1-form lµ = −∂µu. Since it is null, it is automatically geodesic and twist-free; and since the level
sets of u provide a null foliation, it is affinely parametrised. The associated congruence tensor coincides then
with the Lie derivative of the induced metric, which in partial Bondi gauge is proportional to the radial
derivative,

∇AlB =
1

2
£lγAB =

1

2N
∂rγAB . (2)

This surface tensor can be familiarly decomposed into shear σAB and expansion θ as the trace-less and trace
parts,

1

2
£lγAB =

√
γ

2
£lγ̌AB +

1

2
γAB£l ln

√
γ = σAB +

1

2
γABθ. (3)

Hence, the shear of the null congruence carries the same information of the conformal 2d metric, up to
zero modes lost in the derivative and which are part of the corner data. The fact that (the bulk of the)
constraint-free data can be described in terms of shear will allow us to easily identify them in the first-order
formalism, where ∇µ is an affine connection.

Here we used the Bondi gauge in order to identify the tangent vector field to the null geodesic congruence
with a coordinate vector, thus simplifying Lie derivatives. A 2d space-like metric in Σ, its Lie derivative
defining a shear, and associated Sachs’ propagating equations, can be identified without this gauge-fixing: it
suffices to use a 2 + 2 decomposition, either in terms of two scalar fields defining a 2 + 2 foliation (one being
u), or in terms of a null dyad (one element being lµ), as we will review below. The role of the gauge-fixing is
nonetheless crucial to specify the explicit integration scheme of the constraints and the other field equations.
Hence, it is possible to talk about physical degrees of freedom in a completely covariant way, as often done in
the literature, although only once the gauge is completely fixed one can truly identify constraint-free initial
data.

2.2 Hamiltonian structure

The fact that the constraint-free data can be either described by the metric or the shear, its null-radial
derivative, captures a well-known property of field theories on the light cone: the momentum conjugated to
the fields does not depend on velocities, but on the null radial derivative of the field. Consider for instance

6Explicitly, Sachs’ also fixes the residual hypersurface gauge, and provides the corner data

(γ, ∂uγ, ∂rγ, ∂rU
A)|S0

.

They provide the area of S0, the initial expansion of the null geodesic congruences along the two hypersurfaces, and the non-
integrability of the two null directions: UA,1 gives in these coordinates the Lie bracket among the two normal vectors ∂u and
∂r at S0.
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a scalar field in Minkowski spacetime. Defining x± := t ± r, and choosing x+ as ‘time’ for the canonical
analysis, the conjugate momentum is

π(x−, xA) :=
δL
δφ̇

= ∂−φ(x−, xA), (4)

where A = 2, 3 are the transverse coordinates. The independence of the momentum from the velocities
gives rise to a primary constraint Φ := π − ∂−φ, which is second class with itself, up to zero modes, see
e.g. [24]. In the following, we will refer to this constraint as light-cone condition. This fact, which is just a
direct consequence of the fact that the normal vector to a null hypersurface is tangent to it, means that the
momentum is not an independent variable, and can then be eliminated from the phase space. The physical
phase space has thus ∞1 dimensions per degree of freedom, instead of ∞2 as in the space-like formulation,
and the fields satisfy Dirac brackets defined by a suitable regularisation of ∂−1

− . Since we are not interested
in this paper in the subtle infrared issues and boundary conditions, let us content ourselves to describe the
symplectic structure of the theory looking at the symplectic potential. To that end, one can use the covariant
phase space method (see e.g. [39]), and read the symplectic potential from the variation of the action in
presence of a null boundary. Consider for simplicity a free scalar field, and a null boundary given by a single
light-cone Σ ruled by x−. Then the variation of the action gives the following boundary contribution,

Θ =

∫
Σ

∂−φ δφ. (5)

This symplectic potential shows that the conjugate momentum to φ satisfies the light-cone condition (4),
and announces the presence of ∂−1

− in the Dirac bracket among the φ’s.
The same structure arises in gauge theories (see e.g. [40]) and linearised general relativity around

Minkowski [41, 42]: the physical phase space has ∞1 dimensions for each physical degree of freedom (a
transverse mode in these examples), and the conjugate momentum is given by the null radial derivative of
the mode itself. Remarkably, it is also true in full, non-linear general relativity, with the momentum given by
the shear, again a null radial derivative of the physical degrees of freedom as shown in (2). The Hamiltonian
analysis of general relativity on a null hypersurface has been performed in [36] using the 2 + 2 formalism
of [35]. Starting with a covariant kinematical phase space of canonical variables (gµν ,Π

µν := δL/δ∂ugµν),
one finds 6 first class and 6 second class constraints, for a resulting 2-dimensional physical phase space, as
expected. The six first class constraints split in 3 hypersurface diffeomorphism generators plus three primary
constraints imposing the vanishing of the conjugate momenta to the chosen shift vectors. The six second
class are: the null hypersurface condition g00 = 0, which in turns gauge-fixes the Hamiltonian constraint
and makes it second class;7 two light-cone conditions, the non-linear version of (4); the vanishing of the
momentum conjugated to the lapse N , and the vanishing of ∂ug

00.8

The analysis of [36] is general and does not require the Bondi gauge: we introduce a 2 + 2 foliation by
two closed 1-forms, nα = dφα locally, with α = 0, 1, normals to a pair of hypersurfaces. Instead of lapse
and shift, we have two shift vectors and a ‘lapse matrix’ Nαβ , with inverse Nαβ := nαµn

βµ, and dual basis

nµα := gµνNαβn
β
ν . The only gauge-fixing is to take a null foliation defined say by the level sets of φ0, so

that N00 = 0 = N11, and the lapse (i.e. the Lagrange multiplier of the Hamiltonian constraint) turns out
to be the off-diagonal component, N01 = −N .9 The induced space-like metric on the 2-dimensional surface
orthogonal to both normals is then γµν = gµν −Nαβnαµnβν . In this formalism, we can identify covariantly the
two physical degrees of freedom with γ̌µν ; their propagating equations as the two components of the Einstein
equations obtained from the trace-less projection onto the 2d surface; and their Hamiltonian counterpart as
the multiplier equations arising from the stabilisation of the two light-cone conditions.

7Up to zero modes: Measure-zero ‘parallel’ time diffeomorphisms are still allowed. For instance, these contain the BMS
super-translations [4] for asymptotically flat spacetimes.

8This last constraint may look puzzling. The problem is that imposing g00 strongly in the action would lead to a variational
principle missing one of the Einstein’s equations. To avoid this ‘missing equation’, the Hamiltonian in [36] is first constructed
with arbitrary g00, and g00 = 0 is later imposed as initial-value constraint on the phase space. The additional constraint
∂ug00 = 0 then simply arises as a secondary constraint preserving the first one under evolution. As explained in [24], an
advantage of working with a first order formalism is that one does not need this somewhat artificial construction: we can
impose the gauge-fixing condition strongly in the action and still have a complete well-defined variational principle, thanks to
the appearance in the action of the variable canonically conjugated to g00. Furthermore, the on-shell value of the Lagrange
multiplier for g00 = 0, which is fixed by hand in [36], comes up dynamically as a multiplier equation.

9The sign we use in this definition is opposite to the one of [36], to match with our earlier choice N > 0.
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If we adapt the null coordinate, φ0 = u, we have nµ1 = N01n
0µ = Nlµ. Unlike lµ, nµ1 has non-vanishing

affinity, given by k(n1) = £n1
lnN , and its shear and expansion are N times those of lµ. The partial Bondi

gauge corresponds to putting to zero one of the two shift vectors, and only in this gauge the coordinate vector
∂φ1 is tangent to the null geodesics on Σ. As discussed above, the gauge-fixing is convenient for many reasons,
principally to provide the explicit integration scheme of the Einstein’s equations, in particular solving the
constraints. Another advantage is that due to the presence of complicated second class constraints, it is
difficult to write the explicit Dirac bracket for the physical phase space. Gauge-fixing gets rid of gauge
quantities and simplifies this problem. It becomes for instance straightforward to write the symplectic
potential purely in terms of physical data. For our purposes, we specialise here the analysis of [36] to the
partial Bondi gauge, adapting coordinates so that φ0 = u and requiring g0A = 0, but keeping r unfixed as
to see explicitly the role of lapse and

√
γ. This partial gauge-fixing eliminates various gauge fields from the

phase space, and one can isolate the induced 2d metric γAB and its conjugate momentum density, which
turns out to be

Π̂AB :=
√
γΠAB =

δL
δγ̇AB

=

√
γ

2
(γABγCD − γACγBD)£n1γ

CD −√γ γAB(£n1 lnN +
1

2N
£n0N

00), (6)

in terms of the dual basis (n0, n1) defined above. Taking the trace-less and trace parts, it is immediate to
identify them as the shear and expansion of the null-geodesic congruence of n1,

ΠAB −
1

2
γABΠ =

√
γ

2
£n1 γ̌AB = σ(n1)AB , (7)

Π := γABΠAB = −θ(n1) − 2k(n1) −
1

N
£n0N

00. (8)

The first equation above is precisely the light-cone condition (4) for non-linear gravity: the two physical
momenta are the null radial derivatives of the two physical modes of the metric, namely, the shear of n1.
The second equation shows that the trace of the momentum does not carry any additional information,
although this may require a few words: first, the expansion can be determined from the dynamical fields
(up to boundary values) using the Raychaudhuri equation; the lapse can always be fixed to 1 with a radial
diffeomorphism as mentioned above, thus removing the non-affinity term;10 finally, the last term vanishes
using the equations of motion.

In this partial Bondi gauge, the symplectic potential computed in [36] reads11

Θ =

∫
Σ

d3x Π̂ABδγAB = −
∫

Σ

d3x
[
σ(n1)ABδγ̂

AB + (θ(n1) + 2k(n1))δ
√
γ
]
, (9)

where we used δγAB = −γACγBDδγBD and defined the densitised inverse metric γ̂AB :=
√
γγAB . Notice

also that the shear term can be rewritten using −σABδγ̂AB =
√
γ σABδγAB . The non-affinity term vanishes

if we fix a constant lapse, and using the explicit metric form of shear and expansion, the symplectic potential
takes the form

Θ = −
∫

Σ

d3x

[√
γ

2
£n1

γ̌ABδγ̂
AB + £n1

ln
√
γ δ
√
γ

]
. (10)

The first term has precisely the form (5) for the 2 physical degrees of freedom, which is the main point we
wanted to make. The second term is just a corner contribution thanks to the Bondi gauge. In this paper we
are interested in bulk degrees of freedom, hence we neglect corner terms in the symplectic potential.

This symplectic potential for the shear, here adapted from [36] to the Bondi gauge, can also be derived
with covariant phase space methods (see e.g. [39]), without referring to a special coordinate system but only
to the field equations. It plays a crucial role in the study of BMS charges at null infinity (see e.g. [12, 14, 15]),
which has recently received much attention for its possible relation to the information black hole paradox

10Canonically, the fact that changing r can be used to fix N = 1 follows from the fact that lapse transforms under radial
diffeos like the radial component of a tangent vector. The alternative gauge-fixing, r areal coordinate with lapse free, turns the
non-affinity term into a corner contribution to the symplectic potential, see e.g. [38]. As mentioned above, we do not discuss
corner terms in the present paper.

11As usual, deriving the symplectic potential requires an integration by part. Although [36] does not give the associated
boundary term, this is known to be 2

∫
Σ(θ+ k)

√
γ, see e.g. [43]. Note the different factors of 2 between the boundary term and

the symplectic potential.
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argued for in [44]. For a careful treatment of caustics, corner data and residual diffeos, see [45, 38], as well
as [46] in a related context. For a more general expression of Θ without a full foliation and a discussion of
corner terms without any coordinate gauge fixing, and its relevance to capture the full information about
the charges, see [47]. See also [43, 48, 49, 50] for additional discussions on corner terms.

3 Canonical structure in real connection variables

3.1 Tetrad and foliation

In this section we briefly review the canonical structure of general relativity in connection variables on a null
hypersurface [24]. In units 16πG = 1, we work with the Einstein-Cartan action

S[e, ω] =
1

2

∫
M
εIJKLe

I ∧ eJ ∧
(
FKL(ω)− Λ

6
eK ∧ eL

)
, (11)

where eI is the tetrad 1-form, and F IJ(ω) = dωIJ + ωIK ∧ ωKJ the curvature of the spin connection ωIJ .
As in the ADM formalism, we fix a 3 + 1 foliation with adapted coordinates xµ = (t, xa), and hypersurfaces
Σ described by the level sets of t. We parametrise the tetrad as follows [51, 52, 53],

e0 = N̂dt+ χiE
i
adx

a, ei = NaEiadt+ Eiadx
a. (12)

The hypersurface normal is then the soldering of the internal direction xI+ := (1, χi):

nΣ
µ := eIµx+I = (−N, 0, 0, 0), N = N̂ −NaEiaχi. (13)

For space-like Σ, the usual tetrad adapted to the ADM coordinates is recovered for vanishing χi, which
makes e0 parallel to the hypersurface normal. Using a non-adapted tetrad may appear as an unnecessary
complication, but has the advantage that allows one to control the nature of the foliation. The metric
induced by (12) on Σ is

qab := eIae
J
b ηIJ = XijEiaE

j
b , Xij := δij − χiχj , det qab = E2(1− χ2), (14)

where χ2 := χiχ
i. It is respectively space-like for χ2 < 1, null for χ2 = 1, and time-like for χ2 > 1. In other

words, we control with χi the signature of the hypersurface normal, while e0 is always time-like.
We are interested here in the case of a foliation by null hypersurfaces. Notice that even though the

induced hypersurface metric is degenerate, we can still assume an invertible triad, with inverse denoted by
Eai . This means that we can use the triad determinant, E := detEia 6= 0, to define tensor densities. We
denote such densities with a tilde respectively above or below the tensor, e.g.

∼
Eai := EEai for density weight

1 and ∼E
i
a := E−1Eia for density weight −1. The triad invertibility is an advantage of the tetrad formalism for

null foliations, and it allows us to write the null direction of the induced metric on Σ as (Eai χ
i)∂a. Further,

although the induced metric qab is not invertible, we can raise and lower its indices with the triad. We define
the projector qab := EaiEjbXij , which projects hypersurface vectors on 2d space-like spaces orthogonal to
the null direction Eai χ

i; and qab := Eai E
b
jX ij , which satisfies qabqbc = qac.

On the other hand, N̂ and Na should not be immediately identified with the lapse and shift functions,
defined as the Lagrange multipliers of the diffeomorphism constraints. The true lapse can be identified from
(13) or by computing the tetrad determinant, which turns out to be e = NE. As for the shift vector, there
is no canonical choice on a null foliation, corresponding to the fact that there is no canonical Hamiltonian.12

Following the canonical analysis of [24], to be recalled below, we keep Na as the shift vector. In terms of
the lapse N , the metric associated with the tetrad (12) reads

gµν =

(
−N2 +NaN bqab − 2NNaEiaχi qbcN

c −NEibχi
qacN

c −NEiaχi qab

)
, (15)

12In the sense that it is not possible to express the Hamiltonian constraint purely in terms of hypersurface data, see for
instance [24] and [36].
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with inverse

gµν =
1

N

(
0 −Ebiχi

−Eai χi NEai E
b
i + (NaEbi +N bEai )χi

)
. (16)

The coordinate t being adapted to the null foliation, gab ≡ qab is the degenerate induced metric on Σ. We
can also write the projector on the 2d space-like spaces in a covariant form, using the null dyad provided by
the internal null vectors xI± = (±1, χi) soldered by the tetrad,

xI± := (±1, χi), x±µ = eIµx±I =

{
(−N, 0)
(N + 2NaEaχ, 2Eaχ)

, x+µx
µ
− = 2. (17)

We then have

⊥µ ν := δµν −
1

2
xµ+x−ν −

1

2
xµ−x+ν =

(
0 0

qabN
b qab

)
, (18)

and

γµν := gµν − x+(µx−ν) =

(
qabN

aN b qbcN
c

qabN
b qab

)
(19)

is the induced metric in covariant form. For later purposes, let us identify here the propagating Einstein’s
equations, which are given by the components

(⊥ GT)ab :=
(
⊥a (ρ ⊥b σ) − 1

2 ⊥
ab⊥ρσ

)
Gρσ = Πab

cd

(
Gcd +NdGc0 +N cG0d +N cNdG00

)
. (20)

Here

Πab
cd := qa(cq

b
d) −

1

2
qabqcd (21)

is the traceless part of the projector on S for symmetric hypersurface tensors, and we used the notation
GµI := GµI + ΛeµI = 0 where GµI is the Einstein tensor in tetrad indices. The explicit form of (20) is given in
[24], and it will not be needed here.

An advantage of the tetrad formulation is that we can perform the canonical analysis with the 3 + 1 null
foliation [24], without the need of introducing a further 2 + 2 foliation like in the metric case. Nonetheless,
it is instructive to review how the two formalisms compare in the absence of torsion. Our coordinates are
adapted to the 3 + 1 foliation by null hypersurfaces with normal 1-form dt, and to match notations with the
literature, we rename from now on t = u; however the 2d space-like spaces defined by (18) are in general not
integrable, hence they do not foliate spacetime. Nonetheless, we can choose a 2 + 2 foliation and adapt our
tetrad to it. For the sake of simplicity let us choose the foliation given by the normals

n0 = du, n1 = dr, (22)

so that our coordinates xa = (r, xA) are already adapted, and the induced 2d metric is γAB ≡ gAB = qAB .
To adapt the null dyad x±µ to this foliation we use the translational part of the ISO(2) group stabilising
xI+ to remove the components x−A = EiAχi = 0. This gauge transformation makes the tangent vectors to
{S} integrable. The same can be done in the Newman-Penrose formalism, see Appendix D for details and
a general discussion. Comparing then the metric coefficients of (1) and (16) we see that the lapse functions
used in the metric and connection formulations differ by a factor Eri χ

i. This can be always set to one with
an internal boost along xI+, as explained in the next Section. Hence, using this boost and the translational
part of the stabiliser we can always reach the internal ‘radial gauge’

Eiaχi = (1, 0, 0) ⇔ Eri χ
i = 1, X ijErj = 0, (23)

where the equivalence follows from the invertibility of the triad. In this internal gauge N coincides with the
lapse of the metric formalism, given by −1/g01 in adapted coordinates, E =

√
γ and

√
−g = NE = N

√
γ,

and the induced metrics coincide, gµν−x+(µx−ν) = gµν−Nαβnαµnβν . Proofs and more details on the relation
between the χ-tetrad and the 2+2 formalism are reported in Appendix E.
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3.2 Constraint structure

On a null hypersurface, each degree of freedom is characterised by a single dimension in phase space, as
recalled above. This means that the constraint structure associated to the gravitational action should lead
to a phase space of dimensions 2×∞3 on Σ (plus eventual zero modes and corner data, not discussed here).
We now review from [24] how this counting comes about, as the result has some peculiar aspects that we
wish to analyse in this paper.

From (11), we see that the canonical momentum conjugated to ωIJa is
∼
P aIJ := (1/2)εabcεIJKLe

K
b e

L
c ,

namely, it is simple as a bi-vector in the internal indices. This results in a set of (primary) simplicity
constraints, which fixing an internal null direction, can be written in linear form as ΦaI := εIJ

KL
∼
P aKLx

J
+ = 0.

Two different canonical analysis were presented in [24]. The first is manifestly covariant, with only χ2 = 1
as a gauge-fixing condition. The second gauge-fixes instead all three components, that is χi = χ̂i for a
fixed χ̂i with χ̂2 = 1. Since in this paper we are interested in the identification of constraint-free data that
arises through a complete gauge-fixing, we recall only the details of the second analysis, and refer the reader
interested in the covariant expressions to [24].

Working with a gauge-fixed internal direction, we can solve explicitly the primary simplicity constraints
in terms of

∼
P a0i =

∼
Eai ,

∼
P aij = 2

∼
Ea[iχj]. The kinetic term of the action is then diagonalised by the same change

of connection variables as in the space-like case [52],

ω0i
a = ηia − ωija χj , ωija = εijk

(
r̃kl +

1

2
εklmω̃

m

)
∼E
l
a, (24)

with r̃ij symmetric. After this change of variables and an integration by parts, the action reads13

S =

∫
dt

∫
Σ

2(
∼
Eai ∂tη

i
a + πij∂tr̃ij + χi∂tω̃

i) + λijΦ
ij + µiϕ

i + nIJGIJ +NaDa + ∼NH, (25)

where
GIJ := Da

∼
P aIJ , Da := −

∼
P bIJF

IJ
ab + ωIJa GIJ , H :=

∼
Eai
∼
EbjF

ij
ab − 2ΛE2, (26)

are the gauge and diffeomorphism constraints, written in covariant form for practical reasons. Notice that as
in the space-like case, the generator of spatial diffeomorphism includes internal gauge transformations (and
accordingly, we have nIJ = ωIJ0 −NaωIJa ). Next, the constraint

Φij = πij (27)

imposes the vanishing of the momentum conjugated to rij , and is the left-over of the primary simplicity
constraints in this non-covariant analysis. Finally, the constraint

ϕi = χi − χ̂i (28)

gauge-fixes the internal vector. In particular, the projection (χi+χ̂
i)ϕi gives the null-foliation condition χ2 =

1, namely g00 = 0, and its stabilisation plays an important role in recovering all of Einstein’s equations.14

The phase space of the theory has initially 36 dimensions, with Poisson brackets

{ηia(x),
∼
Ebj (x

′)} =
1

2
δijδ

b
aδ

(3)(x, x′), (29)

{r̃ij(x), πkl(x
′)} =

1

2
δij(kl)δ

(3)(x, x′), {ω̃i(x), χj(x
′)} =

1

2
δijδ

(3)(x, x′).

The explicit form of the constraints is considerably more compact and elegant than in the metric case [36],
a fact familiar from the use of Ashtekar variables in other foliations. On the other hand, many of the
constraints are second class. The reader familiar with the Hamiltonian analysis in the space-like case will

13In [24] we rescaled the action by a factor 1/2, to avoid a number of factors of 2 when computing Poisson brackets. Here we
restore the conventional units. Accordingly, the parametrization of

∼
PaIJ in terms of

∼
Eai , as well as the explicit expressions for

the constraints presented below in (26), are twice those of [24].
14This plays the role of the ∂ug00 = 0 condition of [36], and the advantage of the first-order formalism is that it can be

imposed prior to computing the Hamiltonian.
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recall that the stabilisation of the primary simplicity constraints leads to six secondary constraints which
are second class with the primary. The secondary constraints thus obtained, together with the six Gauss
constraints, recover half of the torsion-less conditions; the remaining half goes in Hamiltonian equations of
motion. In the null case the situation becomes more subtle: there are again six secondary constraints, given
by

Ψij = −ε(ikl
∼
Eak ∼E

j)
b ∂a

∼
Ebl + ε(ikl

∼
Eakχlη

j)
a −Mij,klrkl, (30)

where
Mij,kl = ε(ikmεj)lnXmn. (31)

These have the same geometric interpretation of being six of the torsion-less conditions. However, only four
of them are now automatically preserved. This is a consequence of the fact that (31) has a two-dimensional
kernel: Πij

klMkl,mn ≡ 0, where Πij
kl is the internal version of the symmetric-traceless projector (21) obtained

via the triad. Then, stabilisation of the two secondary constraints

Ψ̂ij = Πij
klΨ

kl, (32)

requires two additional, tertiary constraints

Υab :=
1

2
Πab
cdE

(c
i ε

d)ef
(
F 0i
ef − χjF

ij
ef

)
= 0. (33)

As pointed out in [24], the two constraints (32) are the light-cone conditions imposing the proportionality
of physical momenta to the hypersurface derivatives in the null direction: As we will show below, they
reproduce precisely the metric relation (7) between momenta and shear. What is peculiar to the formalism, is
that this condition is not automatically preserved under the evolution, but requires the additional constraints
(33). These additional constraints are not torsion-less conditions; they will be discussed in details in Section
4.4 below.

Concerning the nature of the constraints and the dimension of the reduced phase space, we have the
following situation. The hypersurface diffeos Da are first class, but not the Hamiltonian H, which forms a
second class pair with χiϕ

i. The other two components Xijϕj gauge-fix two of the six Gauss constraints,
those that would change the internal direction. The other four Gauss constraints remain first class. This
is different from the canonical analysis on a space-like or time-like hypersurface, where fixing the internal
direction gives a 3-dimensional isometry group. Here instead we have a 4-dimensional isometry group, given
by the little group ISO(2) of the internal direction given by χi, plus boosts along χi. The fact that the
isometry group on a null hypersurface is one dimension larger than for other foliations is of course a well-
known property, that led Dirac himself to suggest the use of null foliations as preferred ones. In the context of
first-order general relativity with complex self-dual variables, it has for instance been pointed out in [25, 26].

However, there is a subtle way in which this extra isometry is realised in our context, because the action
of internal boosts along χi mixes with that of radial diffeomorphisms. Let us spend a few words explaining it.
Notice that right from the start we fixed to unity the 0-th component of the internal null direction xI+. This
choice, implicit in the parametrization (12) of the tetrad, deprives us of the possibility of changing χi with an
internal boost along χi, since in the absence of a variable x0

+ this would not preserve the light-likeness of the
internal direction. Nonetheless, the explicit calculation of the constraint structure shows that Kχ := G0iχ

i

is still a first class constraint: simply, its action is not to change χi, which it leaves invariant, but rather to
rescale the lapse function. Using the transformation properties for Lagrange multipliers (see e.g. [54]), we
find for the smeared constraint the transformation

Kχ(λ) . N = eλN. (34)

In other words, the lapse function is in our formalism soldered to the extent of the internal null direction,
see (17), and this is the reason why it transforms under internal radial boosts. As already discussed at the
end of Sec. 3.1, our lapse coincides with the lapse of the metric formalism only if we fix the radial boosts to
have Eri χ

i = 1. Hence, there is in our formalism a partial mixing of the action of internal boosts along χi

and radial diffeomorphisms.
To complete the review of the constraints structure, it remains to discuss the simplicity constraints. They

are all second class, but in different ways: Ψ̂ij among themselves, just like those encoding the light-cone
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conditions (4), the remaining four Ψij are second class with four of the primary Φij , and the remaining two
Φij are second class with the two tertiary constraints. The overall canonical structure established in [24]
leads to the following diagram, where the arrows indicate which constraints are mutually second class:

primary constraints Φij ϕi
2↔ GIJ Da H

l4
secondary constraints Ψab

�2

tertiary constraints Υab/

o

= ~

2

1

We have 7 first class constraints (forming a proper Lie algebra), and 20 second class constraints, for a
2×∞3-dimensional physical phase space, as expected for the use of a null hypersurface. Among those, the
pair Hamiltonian-null hypersurface condition.

4 Geometric interpretation

4.1 Newman-Penrose tetrad

To elucidate the geometric content of the canonical structure in the first order formalism, it is convenient
to use the Newman-Penrose (NP) formalism. To that end, we want to map our tetrad (12) to a doubly-null
tetrad (lµ, nµ,mµ, m̄µ), where

lµn
µ = −1 = −mµm̄

µ, gµν = −2l(µnν) + 2m(µm̄ν). (35)

We have already partially done so, when we introduced the soldered internal null vectors xµ± = eµI x
I
±, x

I
± =

(±1, χi), which provide the first pair. For the second pair, we have to choose a spatial dyad for the induced
metric (19), that is γµν = 2m(µm̄ν); we can do so taking mµ to be a complex linear combination of the two
orthogonal tetrad directions X ijeµj , normalised by mµm̄

µ = 1. The set

(xµ+,−x
µ
−,m

µ, m̄µ) (36)

so defined is an NP tetrad. Notice that x+µ = −N∂µu, so the first vector chosen is normal to the null
hypersurface. The minus sign in front of the second vector is to follow the conventions to have all vectors
future-pointing.

Before adopting the traditional notation with lµ and nµ for the first two vectors, let us briefly discuss the
frame freedom. Using the nomenclature of [55], we have rotations of class I leaving lµ unchanged, of class
II leaving nµ unchanged, and of class III rescaling lµ and nµ and rotating mµ:

lµ 7→ A−1lµ, nµ 7→ Anµ, mµ 7→ eiθmµ. (37)

Conforming with standard literature on null hypersurfaces, we want the first null co-vector to be normal to
the null hypersurface and future pointing, that is lµ ∝ −∂µu. Concerning its ‘normalisation’, a reasonable
choice is to take it proportional to the lapse function, like in the space-like Arnowitt-Deser-Misner (ADM)
canonical analysis: lADM

µ = −N∂µu. This analogy with ADM is confirmed by Torre’s analysis, which as we

recalled above, identifies in n1µ ≡ lADM
µ the normal relevant to the Hamiltonian structure, namely whose

shear gives the conjugate momentum in the action. However, most of the literature on null hypersurfaces
uses a gradient normal, lµ = −∂µu, and we’ll conform to that, by taking

lµ =
1

N
xµ+, nµ = −N

2
xµ−. (38)

This rescaling of xµ± means paying off a large number of N factors in the spin coefficients, see the explicit
expressions reported in Appendix A. In any case, the relation between the two choices is a class III trans-
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formation, and all NP quantities are related by simple and already tabulated transformations that can be
found in [55], some of which are reported in Appendix A.15

We fix from now on the following internal direction,

χi = (1, 0, 0), (39)

and introduce the notation v± ≡ v± := 1√
2
(v2 ± iv3) for the internal indices M = 2, 3 orthogonal to it.

This choice is done only for the convenience of writing explicitly the tetrad components of mµ and m̄µ when
needed, and we will keep referring to χi in the formulas as to make them immediately adaptable to other
equivalent choices. Summarising, our NP tetrad and co-tetrad, and their expressions in terms of the metric
coefficients (12), are

lµ =
1

N
(eµ0 + eµ1 ) = (0,

1

N
Eai χ

i), (40a)

nµ =
N

2
(eµ0 − e

µ
1 ) = (1,−Na − 1

2NE
a
i χ

i), (40b)

mµ =
1√
2

(eµ2 − ie
µ
3 ) = (0, Ea−), (40c)

and

lµ =
1

N
(−e0

µ + e1
µ) = (−1, 0), (41a)

nµ = −N
2

(e0
µ + e1

µ) = −
(N

2
(N + 2NaEiaχi), NE

i
aχi

)
, (41b)

mµ =
1√
2

(e2
µ − ie3

µ) = (NaE−a , E
−
a ). (41c)

The NP tetrad thus constructed is adapted to a null foliation like the one used in most literature [63, 56, 57].
A detailed comparison and discussion of the special cases corresponding to a tetrad further adapted to a
2 + 2 foliation or to the Bondi gauge can be found in Appendix D and E.

Associated with the NP tetrad are the spin coefficients, namely 12 complex scalars projections of the
connection ωIJµ , e.g. (minus) the complex shear σ := −mµmν∇ν lµ.16 If the connection is Levi-Civita, these
are functions of the metric. In the first order formalism on the other hand, the connection is an independent
variable, and the NP spin coefficients will be functions of the metric and of the connection components. To
distinguish the two situations, we will keep the original NP notation, e.g. σ, for the Levi-Civita coefficients,

and add an apex ◦ for the spin coefficients with an affine off-shell connection, e.g.
◦
σ. On-shell of the torsion-

less condition, ωIJ = ωIJ(e) and
◦
σ = σ. Explicit expressions for all the spin coefficients are in Appendix A,

and we will report in the main text only those relevant for the discussion.

4.2 The affine null congruence

Since the normal vector lµ is null, it would be automatically geodesic with respect to the spacetime Levi-
Civita connection. Furthermore it would have vanishing non-affinity since it is the unit normal to a null
foliation. With an off-shell, affine connection ωIJa on the other hand, these familiar properties do not hold.
Using Newman-Penrose notation with an apex ◦ for the spin coefficients of the affine off-shell connection,
what we have is

lν∇ν lµ =
◦
ε lµ − ◦κ m̄µ + cc, (42)

with ‘non-affinity’ and ‘non-geodesicity’ that are given respectively by

k(l) :=
◦
ε+ cc = − 1

N
Eai χ

i(ηiaχi − ∂a lnN),
◦
κ = − 1

N2
Eai χ

i η−a . (43)

15The rescaling also means that while all Lorentz transformations of (36) are generated canonically via GIJ , this is not the
case for (l, n) defined via (38): we disconnect the canonical action of the radial boost Kχ, which leaves them invariant instead
of generating the class III rescaling. We see then again that lADM

µ = x+µ is a more canonical choice of null tetrad adapted to
the foliation.

16The reader familiar with the NP formalism will notice an opposite sign in this definition. This is a consequence of the fact
that we work with mostly plus signature.
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For the same reason, the congruence ∇µlν is not twist-free, even though lµ is the gradient of a scalar, nor
defined intrinsically on S: it also carries components away from it. Nonetheless, we can still take its projection

⊥ρ µ ⊥σ ν∇ρlσ, and decompose it into irreducible components: we will refer to the traceless-symmetric
◦
σµν ,

trace
◦
θ and antisymmetric parts

◦
ωµν as ‘connection shear’, ‘connection expansion’, and ‘connection twist’.

The components away from the hypersurface Σ, which are all proportional to the shift vector Na, are not
directly relevant for us and we leave them to Appendix B. Using the definition ∇µeIν = −ωIJµ eνJ and the
decomposition (24), we have for the hypersurface components

∇alb =
1

N
XijηiaE

j
b , (44)

and

◦
σ(l) ab :=

1

N
qa
cqb

dXijηi(cE
j
d) −

1

2
qab
◦
θ(l),

◦
θ(l) :=

1

N
XijηiaEaj ,

◦
ω(l) ab :=

1

N
qa
cqb

dXijηi[cE
j
d]. (45)

In NP notation, shear, twist and expansion are described by the following two complex scalars,

◦
σ := −mµmν∇ν lµ = −mµmν ◦σ(l)µν = − 1

N
Ea−η

−
a , (46)

◦
ρ := −mµm̄ν∇ν lµ = −1

2

◦
θ(l) −mµm̄ν ◦ω(l)µν = − 1

N
Ea+η

−
a , (47)

where the real and imaginary parts of
◦
ρ carry respectively the connection expansion and twist. It is also

convenient to introduce the complex shear
◦
σ(l) := mµmν ◦σ(l)µν = −◦σ. This comes up awkwardly opposite in

sign to the NP spin coefficient, but the minus sign is an unavoidable consequence of the fact that we work
with mostly plus signature, the opposite to NP.

The connection shear so computed allows us to identify Sachs’ constraint-free initial data for first-order

general relativity in terms of real connection variables: in the absence of torsion,
◦
σ = σ and we can follow

the same hierarchical integration scheme. From the connection perspective, the relevant piece of information
is thus Ea−η

−
a ; namely the contraction with the triad of η−a , which is the translation part of the ISO(2)

stabilising the null direction xI+. Notice that both connection term and triad term have the same internal
helicity: loosely speaking, it is this coherence that allows to reproduce the spin-2 behaviour in metric
language.

Notice that at the level of Poisson brackets, the shear components commute: trivially in {◦σ(l),
◦
σ(l)} = 0,

but also when the conjugate appears, since17

{◦
σ(l),

◦̄
σ(l)

}
=

2i

NE
Im(

◦
ρ), (48)

which vanishes on-shell of the Gauss law, as we show in the next Section. This is to be expected, since
it is only at the level of the Dirac bracket that the shear components do not commute with themselves,
that is when the light-cone constraints are used. We will show below in Section 5.1 that the Dirac bracket
reproduces exactly the metric structure of (10).

In terms of the covariant connection, the shear, twist and expansion are described as follows,

◦
σ(l) = eνI e

ρ
J m

µmν lρ ω
IJ
µ ,

◦
ρ = eνI e

ρ
J m̄

µmν lρ ω
JI
µ . (49)

Using these covariant expressions, it is easy to see how the congruence is affected by the presence of torsion,
writing ωIJµ = ωIJµ (e) +CIJµ where CIJµ is the contorsion tensor. For instance, consider the case of fermions
with a non-minimal coupling [58]

Sψ = − i
4

∫
eψ̄eµI γ

I(a− ibγ5)Dµ(ω)ψ + cc, a, b ∈ C, Re(a) ≡ 1. (50)

17Using the brackets (29), and notice that {ηia,
∼
Ebj/(NE)} = 1/(2NE)(δbaδ

j
i − E

a
i E

j
b/2).
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(The minimal coupling would be a = 1, b = 0). Solving Cartan’s equation, one gets (restoring for a moment
Newton’s constant G)

CIJµ = 2πeKµ G

[
1

2
εIJKL

(
AL − Im(b)V L

)
− δ[I

K

(
Re(b)AJ] + Im(a)V J]

)]
, (51)

where V I = ψ̄γIψ and AI = ψ̄γIγ5ψ are the vectorial and axial currents. Plugging this decomposition into
(49) we find

◦
σ = σ,

◦
ρ = ρ− πG

[
inµ

(
Aµ − Im(b)V µ

)
− lµ

(
Re(b)Aµ + Im(a)V µ

)]
. (52)

The connection shear recovers its usual metric expression, whereas twist is introduced proportional to the
axial current; for non-minimal coupling, the twist depends also on the vectorial current, and furthermore the
expansion is modified, picking up an extra term proportional to the time-like component of the vectorial and
axial currents. More in general, for an arbitrary contorsion decomposed into its three irreducible components
(3/2,1/2)⊕ (1/2,3/2)⊕ (1/2,1/2)⊕ (1/2,1/2),

Cµ,νρ = C̄µ,νρ +
2

3
gµ[ρČν] +

1

e
εµνρσĈσ, (53)

we have
◦
σ = σ −mµmν lρC̄

µ,νρ,
◦
ρ = ρ− m̄µmν lρC̄

µ,νρ +
1

3
lµČ

µ − inµĈµ, (54)

as well as
◦
κ = κ− lµmν lρC̄

µ,νρ,
◦
k(l) = k(l) − lµnν lρC̄µ,νρ −

1

3
lµČ

µ (55)

for the non-geodesicity and inaffinity.
It is now instructive to see how the various quantities introduced above, and associated with an affine

geodesic, are put on-shell by the constraints present in the Hamiltonian formulation of the theory, and
thus (in the absence of torsion) take their values as in the more familiar metric formalism. As we show in
details in the next subsection, the congruence is made geodesic by the Gauss law, which also puts on-shell
the connection twist and expansion; the non-affinity vanishes as a consequence of the equation of motion
stabilising χ2 = 1, namely the condition of null foliation; and finally, the connection shear is put on-shell by
the two secondary simplicity constraints (32).18

4.3 Torsionlessness of the affine null congruence

In this subsection we use the affine congruence defined above to study the geometric meaning of the various
constraints present in the theory, in particular those responsible for the metricity of the congruence. Let us
begin with the Gauss constraint G in (26). First, we decompose it into rotations Li := 1

2εijkG
jk and boosts

Ki := G0i. Then, we consider the projections along χi, and perpendicular to it, defined by vi⊥ := εijkχjvk
(notice that vi⊥ = −iv−). These various components have the following explicit forms (see Appendix C),

Lχ :=
1

2
εijkχ

iGjk
ϕ
≈ εijkχi

∼
Eajηka , (56a)

Li⊥ := Gijχj
ϕ
≈ ∂a

∼
Eai +

∼
Eaiηaχ− ηia

∼
Eaj χ

j − ω̃i + χi(ω̃jχ
j − ∂a

∼
Eaj χ

j), (56b)

Kχ := χiG0i

ϕ
≈ ∂a

∼
Eai χ

i −Xij
∼
Eaiηja, (56c)

Ki
⊥ := εijkχjG0k

ϕ
≈ εijkχj(∂a

∼
Eak +

∼
Eak η

i
aχi − ω̃k), (56d)

where
ϕ
≈ means on-shell of the ϕ constraint only, namely assuming χi constant.

18Notice that here we are defining the congruence in the presence of torsion using a displacement vector ηµ such that

Bµνην := lν∇νηµ = ην∇ν lµ. This is suggested as to keep the geometric interpretation of the spin coefficients
◦
σ and

◦
ρ, however

it means that the displacement vector is not Lie dragged: £lη
µ = lν∇νηµ − ην∇ν lµ + 2Cµσνησlν = 2Cµσνησlν . In spite of

the fact that in the presence of torsion differential parallelograms do not close, it is natural to still require the Lie dragging
of ηµ (see e.g. [64]). With this definition of the congruence, shear and expansion are never modified by torsion, but only the

twist. The NP spin coefficients
◦
σ and

◦
ρ lose their geometric interpretation.
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The two second class constraints are the linear combinations T̂ i⊥ := Li⊥ − εijkχjKk
⊥, whose action would

change the internal direction χi. On the other hand, T i⊥ := Li⊥ + εijkχ
jKk
⊥ and Lχ belong to the ISO(2)

subgroup stabilising xI+ and are first class, together with Kχ.19 Using the explicit expressions for the spin
coefficients (see Appendix A), we immediately identify the xI+-stabilisers with

Lχ = 2EN Im(
◦
ρ), L−⊥ + ε−jkχjK

k
⊥ = EN2 ◦κ . (57)

These first class constraints are thus responsible for the congruence being geodesic and twist-free. For the
remaining first class constraint, we have

Kχ = E(Eai χ
i∂a ln |E| −N

◦
θ(l) + ∂aE

a
i χ

i). (58)

Recalling that
√
−g = NE and the explicit form of lµ from (41), we see that this constraint puts the

expansion on-shell:
◦
θ(l) ≈ θ(l) = lµ∂µ ln

√
−g + ∂µl

µ. (59)

Let us remark the central role played by the radial boost: as a constraint, it is responsible for the metricity
of the expansion; as a symmetry generator, it rescales lapse as discussed in (34).20 Finally, the second class
constraints fix the two components of ω̃i orthogonal to χi, and have no direct implication for the affine
congruence.

Let us now come to the non-affinity: even on-shell of the Gauss law, the now-geodesic congruence still
carries non-affinity k(l), in spite of lµ being the gradient of a scalar. This is because the Gauss law only
captures half of the torsion-less conditions. Where is then the equation setting k(l) = 0? It must come from
the Hamiltonian equation of motion that gives the stability of ϕiχi, namely the equation capturing the fact
that the level sets of u provide a null foliation. Indeed, this stability condition was identified in [24] as the
multiplier equation expressing lapse in terms of canonical variables,21 which reads

Eai χ
i(∂a lnN − ηiaχi) = 0. (60)

Comparing this expression with the first of (43), we see that it implies the vanishing of the non-affinity.
It remains to put on shell the connection shear. To that end, we look at the light-cone conditions (32).

With our gauge-fixing χi = (1, 0, 0) the two components of Ψ̂ij are Ψ̂23 are Ψ̂22 − Ψ̂33. We combine them
into a single complex equation, which gives

− 1

2

(
Ψ23 +

i

2
(Ψ22 −Ψ33)

)
= Ñ

◦
σ(l) − Ea−E−b ∂a

∼
Eb1 + Ea1E

−
b ∂a

∼
Eb− = 0, (61)

from which it follows that

◦
σ(l) =

1

N
E−b (Ea−∂aE

b
1 − Ea1∂aEb−) = lµmν(∂µmν − ∂νmµ) =

1

2
mµmµ£lγµν ≡ σ(l), (62)

where in the second equality we used the explicit expressions (41) for the NP tetrad. Hence, the two
secondary simplicity constraints corresponding to the light-cone conditions make the connection shear metric.
Comparing this result with the analysis in metric variables of [36], we expect the connection shear to be the
conjugate momentum to the conformal metric. This expectation is indeed borne out, as we will show below
in Section 5.1.

Summarising, the congruence generated by lµ is made geodesic by three first-class Gauss constraints.
The fourth first-class one gives the relation between the connection expansion and the metric expansion. All
these conditions are automatically preserved under evolution in u, since there are no secondary constraints
arising from the stabilisation of the Gauss law. As for the connection shear, its relation to the metric shear
is realised by the light-cone secondary simplicity constraints, and they are not automatically preserved.
Tertiary constraints are required, to whose analysis we turn next.

19Covariantly, the stabilisers can be written as T I := 1/2εIJKLx+JJKL and T̂ I := −1/2εIJKLx−JJKL. With χi = (1, 0, 0)

and M = 2, 3, we have vM⊥ = (−v3, v2); the second class constraints read T̂M = (L2 + K3, L3 −K2), whereas the first class

ones are TM = (L2 −K3, L3 +K2).
20As well as transforming the connection component determining lapse, {Kχ(λ), (ηaχ)(Eaχ)} = ∂rλ. At the level of covariant

field equations, the radial boost constraint corresponds to the equation εabcεijke
j
cχ
kDaeib = 0.

21Recall that on a null hypersurface, the Hamiltonian constraint is second class, therefore its Lagrange multiplier satisfies an
equation of motion, which fixes it up to zero modes. Concerning the zero modes, these are the left-over diffeomorphisms that
on I become the supertranslations of the BMS transformations.
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4.4 Tertiary constraints as the propagating equations

Let us now discuss the tertiary constraints (33), whose presence is something quite unfamiliar within general
relativity, and which is due to the combined use of a first-order formalism and a null foliation: each feature
taken individually introduces a secondary layer of constraints in the Hamiltonian structure. Perhaps even
more surprising is which of the field equations are described by these constraints: the propagating Einstein’s
equations, namely the dynamical equations describing the evolution (in retarded time u) of the shear away
from the null hypersurface. In fact, it was shown in [24] that

Υab = − 1

2N
Πab
cd

[
4g εefh g

0egcf (⊥ GT)dh + Eci (Bdi +NdB0i)
]
, (63)

where in the first term we recognise the propagating Einstein’s equations, and

BµI := εµνρσeνJF
IJ
ρσ (ω) ≡ 0 (64)

denotes the algebraic Bianchi identities. This means that in the first-order formalism, the only time derivative
present in the propagating equations (20) can be completely encoded in algebraic Bianchi equations.

The equivalence (63) may appear geometrically obscure, and it is furthermore not completely trivial
to derive as a tensorial equation. On the other hand, it becomes transparent using the Newman-Penrose
formalism, as we now show. To that end, let us first identify the propagating equations in the Newman-
Penrose formalism. A straightforward calculation of the propagating equations gives

mµmν ⊥ρσµν Gρσ(ω, e) = mµmνGµν(ω, e) = mµmνRµν(ω, e) = −Rlmnm(ω, e)−Rnmlm(ω, e) ≈ 2Rlmmn(e),

where in the last equality ≈ means on-shell of the torsion-less condition.22 Next, let us look at the tertiary
constraints in its form (33), and project it in the same way on S:

mambΥ
ab =

1

2
mambE

(a
i ε

b)ef
(
F 0i
ef − χjF

ij
ef

)
. (65)

First, we have that

F 0i
ef (ω, e)− χjF ijef (ω, e) = − 2

N
nµeiνRµνef (ω, e). (66)

Then, to obtain the hypersurface Levi-Civita symbol, we observe that nµ is the only vector with a u-
component, therefore we can write23

εdef = −e6l[dmem̄f ]. (67)

Finally, using the fact that maE
a
i e
iν = mν , we have

1

E
mambΥ

ab = −1

e
nµmνmdε

defRµνef (e, ω) = 2nµmν lρmσRµνρσ(e, ω) = 2Rnmlm(e, ω), (68)

which coincides with (minus) the propagating equations on-shell of the torsion-less condition,

mambΥ
ab ≈ −EmµmνGµν(e). (69)

It is also instructive to see the explicit role played by the algebraic Bianchi identity. For vanishing torsion
and NP gauge,24 the propagating equation reads

∆σ − δτ + λ̄ρ+ (µ+ γ̄ − 3γ)σ + 2βτ + Φ02 = 0, (70)

where we can further set Φ02 = 0 since we are interested in the vacuum equations. Here ∆ := nµ∇µ and
δ := mµ∇µ is conventional NP notation, see Appendix A. For an expression of this equation in metric
language, see e.g. [13]. The point is that if the connection is initially independent from the metric, this is
a PDE with a single time derivative in the term ∆σ; but this term can be eliminated using an algebraic

22These equations are not be confused with Sachs’ optical equations Rlmlm and Rlmlm̄, which relate Weyl and Ricci to the
variation of shear and twist along the null hypersurface, not away from it.

23With conventions ε0123 = 1, e = −1/4!εIJKLε
µνρσeIµe

J
ν e
K
ρ e

L
σ .

24Namely ρ = ρ̄, κ = ε = π = 0, τ = ᾱ+ β. See Appendix D.2 for details.
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Bianchi identity, or ‘eliminant relation’ in the terminology of [55]. Using equation (g) on page 48 of [55],
which in NP gauge reads

Dλ+ ∆σ̄ − δ̄(α+ β̄) = σ̄(3γ̄ − γ + µ− µ̄)− 2β̄(α+ β̄), (71)

we can replace ∆σ with δ(ᾱ+β)−Dλ̄ plus squares of spin coefficients. In metric variables, this would indeed
be a trivial manipulation, since the time derivative is now simply shifted from ∆σ = −mµmν∂u∂rγµν + . . .
to Dλ̄ = −mµmν∂r∂uγµν + . . .. But used in the first order formalism with an independent connection

(where now (71) holds with all
◦
σ quantities and it is derived from (64)), relates non-trivially the propagating

equations to the tertiary constraint.
Finally, concerning the geometric interpretation of this constraint, recall from Section 3.2 that it is there

to stabilise the light-cone conditions: hence, Einstein’s propagating equations can be seen as the condition
that a metric-compatible connection shear on the initial null slice, remains metric at later retarded times.25

5 Bondi gauge

The discussion in the last two Sections has been completely general: apart from the condition of having a
null foliation, we have not specified further the coordinate system. We now specialise to Bondi coordinates,
presenting the simplified formulas that one obtains in this case. We will then use this gauge to prove the
equivalence of the symplectic potentials of the first-order and metric formalisms, which in particular identifies
the connection shear with the momentum conjugated to the conformal 2d metric; and to discuss a property
of radiative data at I+.

To that end, we completely fix the internal gauge, adapting the doubly-null tetrad to a 2+2 foliation. For
the interested reader, the Bondi gauge for our tetrad without the complete internal gauge-fixing is described
in Appendix E.1. We take χi = (1, 0, 0) as in (39), and use the first-class generators Kχ and TM to fix
Eri = (1, 0, 0). This internal ‘radial gauge’ adapts the tetrad to the 2 + 1 foliation of constant-r slices:

χi = (1, 0, 0), Eri = (1, 0, 0) ⇒ E1
a = (1, 0, 0), E =

√
γ, mµ = (0, 0, EA−). (72)

The determinant of the triad now coincides with that of the induced metric γAB (hence triad and metric
densities now conveniently coincide). This fixes five of the internal transformations, leaving us with the
SO(2) freedom of rotations in the 2d plane of mappings mµ 7→ eiδmµ. We will not use this freedom in the
following, and if desired can be fixed for instance requiring the triad to be lower-triangular. Now we impose
the coordinate gauge-fixing. On top of the null foliation condition g00 = 0, the Bondi gauge conditions are
g0A = 0, plus a condition on r, typically either the areal choice

√
γ = r2f(θ, φ), or the affine choice g01 = −1.

We take here the affine Bondi gauge, and report the details on Sachs areal gauge in Appendix E.2. From
the parametrisation (16), we can read these conditions in terms of our tetrad variables:

g0a = − 1

N
Eai χ

i = (−1, 0, 0). (73)

Using the internal gauge-fixing (72), Eri χ
i = Er1 = 1, hence (73) implies EA1 = 0 and N = 1, as in the metric

formalism. The metric (15) and its inverse reduce to the following form,

gµν =

2U + γABN
ANB −1 γABN

B

0 0
γAB

 , gµν =

0 −1 0
−2U NA

γAB

 , (74)

where we redefined 2U := −1− 2Nr for convenience. The triad and its inverse are

Eia =

(
1 0

−EMA EA1 EMA

)
, Eai =

(
1 0
EA1 EAM

)
, (75)

where as before we use M = 2, 3 for the internal hypersurface coordinates orthogonal to χi, and EAM is the
inverse of the dyad EMA .

25This can be compared with the metric formalism of [36], where the propagating Einstein’s equations also arise from the
stabilisation of the light-cone shear-metric conditions, but as multiplier equations, not as constraints.
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The structure of the null congruence of lµ reduces to:

k(l) = −η1
r ,

◦
κ = η−r , (76)

◦
σ(l)AB = ηM(AEB)M ,

◦
θ(l) = ηMA E

A
M ,

◦
ω(l)AB = ηM[AEB]M . (77)

The lapse equation (60) simplifies to
η1
r = 0, (78)

so this connection component is set to zero by working with a constant lapse. The vanishing of the twist
imposed by Lχ (in absence of torsion) now reads

η[AB] := ηM[A
∼
EMB] = 0. (79)

This equation is the null-hypersurface analogue of the familiar symmetry of the extrinsic curvature in the
spatial hypersurface case, there analogously imposed by part of the Gauss constraint: K[ab] := Ki

[aE
i
b] = 0.

The radial boost Kχ simplifies to

Kχ =
√
γ
(◦
θ(l) − ∂r ln

√
γ
)
, (80)

and its solutions give the affine Bondi-gauge formula for the expansion,
◦
θ(l) = θ(l) := ∂r ln

√
γ. The solution

of the light-cone secondary simplicity constraints (61) now gives

◦
σ(l) = E−A∂rE

A
− , (81)

namely the expression for the shear in affine Bondi gauge, written here in terms of the dyad EAM .

5.1 Equivalence of symplectic potentials

We now show the equivalence between the symplectic potential in connection variables (which we can read
from the pδq part of (25)) and the one in metric variables (9), thereby identifying the canonical momentum
to the conformal 2d metric in the connection language. It will turn out to be the connection shear of the
canonical normal n1

µ = Nlµ, as to be expected from the on-shell equivalence of the first and second order
pure gravity action principles. As in the usual space-like canonical analysis, the equivalence of symplectic
potentials will require the Gauss law. We begin by eliminating χi and πij from the phase space, completely
fixing the internal gauge and using the primary simplicity constraints, and consider then only the first term of
(25) for the symplectic potential. Since our main focus are the bulk physical data, we will neglect boundary
contributions to the symplectic potential, and show the equivalence in the partial Bondi gauge g0A = 0. The
reason not to fix completely the Bondi gauge is to keep both lapse and an arbitrary

√
γ, to show a more

general equivalence holding regardless of the choice of coordinate r. Hence, we want to show that

Θ =

∫
Σ

2
∼
Eai δη

i
a

(g0A=0)
≈

∫
Σ

√
γΠABδγAB , (82)

with ΠAB given by (6).
The partial Bondi gauge is EAi χ

i = EA1 = 0, which implies ηMr = 0 on shell of the Gauss law, see (76).
This eliminates two monomials from the integrand, and we are left with the following two terms:

Θ =

∫
Σ

2
∼
Eai δη

i
a ≈

∫
Σ

2(
∼
EAMδη

M
A +

√
γδη1

r). (83)

Accordingly, here and in the following we will restrict attention to variations preserving the gauge and the
Gauss constraint surface. Let us look at the right-hand side of (82). We expect from the metric formalism
that the conjugate momentum is build from the congruence of nµ1 = Nlµ. Its shear and expansion are just
N times those of lµ, which we can read from (45); its non-affinity is k(n1) = ∂r lnN = η1

r using the lapse
equation (60) in partial Bondi gauge. Accordingly, we consider the following ansatz for the momentum,

ΠAB := ηMA EBM − γAB(EAMη
M
A + η1

r), (84)
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whose decomposition gives

ΠAB −
1

2
γABΠ = ηM(AEB)M −

1

2
γAB

◦
θ(n1) ≡

◦
σ(n1)AB , Π = −

◦
θ(n1) − 2η1

r , (85)

where we used ηMr = 0 = ηM[AEB]M from the Gauss law. This momentum reduces to the one in the metric

formalism (6) by construction, and we now show it satisfies (82). To that end, we first observe that E =
√
γ

is now a 2 × 2 determinant. This means that detEMA = det
∼
EAM , and the inverse induced metric has the

following expression in terms of canonical variables,

γAB =

∼
EAM

∼
EBM

(det
∼
EAM )2

. (86)

A simple calculation then gives

ΠABδγAB = −ΠABδγ
AB = −2

[
Π(AB)E

BM −ΠEMA
]
δ
∼
EAM

= −2
[
ηM(AEB)ME

BNδ
∼
EAN + η1

rE
M
A δ

∼
EAM

]
. (87)

where we used δ det
∼
E = EMA δ

∼
EAM . Next, we use again ηM[A

∼
EB]M = 0 from the Gauss law, so the first

symmetrised term above gives twice the same contribution. Using the fact that δ
√
γ = NEMA δ

∼
EAM , we

finally get
ΠABδγAB ≈ −2

[
ηMA δ

∼
EAM + η1

rδ
√
γ
]
, (88)

and (82) follows up to boundary terms. We have thus verified that in the first order formalism the (traceless
part of the) conjugate momentum to the induced metric is the connection shear of n1 = Nlµ.

We also remark the presence of a term proportional to the 2d area. As in the metric formalism, this is
a measure-zero degree of freedom, that can be pushed to a corner contribution and describes one of Sachs’
corner data. A similar corner term appears in the spinorial construction of [23], where it is shown to admit
a quantisation compatible with that of the loop quantum gravity area operator. See also [59] for related
results on 2d discreteness.

This result provides an answer to one of the open questions of [24], namely that of identifying the Dirac
brackets for the reduced phase space variables. We did so looking at the symplectic potential as in covariant
phase space methods, and completely fixing the gauge: this introduced additional second class constraints
that could be easily solved, e.g (78). Whether it is possible to write covariant Dirac brackets without
a complete gauge-fixing remains an open and difficult question, because of the non-trivial field equations
satisfied by the second class Lagrange multipliers.

It is interesting to compare the situation with the space-like case, where the dynamical part of the
connection is also contained in components of ηia, except now χi belongs to a time-like 4-vector (and we can
always set χi = 0, a choice often referred to as ‘time gauge’, since e0 ∝ dt). These dynamical components
describe boosts and therefore do not form a group. An SU(2) group structure can be obtained via a canonical
transformation, to either complex self-dual variables, as in the original formulation [19], or to the auxiliary
Ashtekar-Barbero real SU(2) connection (see e.g. [60]): the transformation requires adding the Immirzi term
to the action, and the price to pay is either additional reality conditions, or use of an auxiliary object instead
of a proper spacetime connection. Using a null foliation appears to improve the situation: the three internal
components of ηia can be naively26 associated with the radial boost Kχ and the two ‘translations’ T i⊥, or null
rotations, related to the ISO(2) group stabilising the null direction of the hypersurface. But as we have seen
above only the translation components ηMa enter the bulk physical degrees of freedom, which are described
by the connection shear. The component ηiaχi is on a different footing: it enters the spin coefficients α, β, γ
and ε (see Appendix A), and is treated in a way similar to the expansion θ, in that it is fully determined from
initial data on a corner. We plan to develop these ideas in future research, in particular investigating the
relation with a loop quantum gravity quantization based on the translation components of the connection,
representing bulk physical degrees of freedom.

26To make the argument precise, we should embed the dynamical components into a covariant connection whose non-
dynamical parts are put to zero by linear combinations of constraints, see e.g. [61] for an analogue treatment in the space-like
case.
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To complete the comparison between null and space-like foliations, in the latter case the canonical
momentum conjugated to the induced metric is build from the triad projection Ki

a of the extrinsic curvature
(see e.g. [60] for details). For a null foliation, the canonical momentum conjugated to the induced metric is
related to the shear of the null congruence. The comparison is summarised by the following table:27

foliation space-like null

relevant internal group SU(2) ISO(2)

momentum conjugated to metric Πab = Ki
aEbi − qabKi

cE
c
i Πab = Xij(ηiaE

j
b − qabηicEcj)

To help the comparison in the table above, we have used the fact that in our formalism we can define
the raised-indices hypersurface metric qab, and use it to prescribe an extension Πab of (84) on the whole
hypersurface.28

5.2 Radiative data at future null infinity as shear ‘aligned’ to I+

As a final consideration, we would like to come back to the geometric interpretation of the tertiary constraints,
and point out that the very same algebraic Bianchi identity that links them to the propagating equations,
also plays an interesting role in the interpretation of the radiative data at I+.

To that end, we consider in this subsection the case of an asymptotically flat spacetime, and the
u =constant null foliation attached to future null infinity I+. In this setting, we can compare our met-
ric (74) and doubly-null tetrad to those of Newman-Unti [63, 56, 57] mostly used in the literature, and use
the asymptotic fall-off conditions for the spin coefficients there computed.29 We refer the interested reader
to Appendix E.1 for the details, and report here only the most relevant results. In particular,

σ =
σ0

r2
+O(r−4), (89)

and the asymptotic shear −σ0(u, θ, φ) fully characterises the radiative data at I+ [7, 5, 10]. Ashtekar’s result
[10] (see also [12] for a recent review) is that the data can be described in terms of a connection Dµ defined
intrinsically on I+, related to the shear by σ0

µν = Dµlν − 1
2γµνγ

ρσDρlσ. This description has led to a deeper
understanding of the physics of future null infinity, showing among other things that the phase space at I+

is an affine space (there is no super-translational invariant classical vacuum). The connection description at
I+ inspired and is exactly analogous to the local spacetime connection description studied in this paper.

From the perspective of the 2 + 2 characteristic initial-value formulation (with backward evolution – or
we should rather say final-value formulation), this means that one can think of I+ as one of the two null
hypersurfaces, but the relevant datum there is not the shear along it (which vanishes!), but the transverse
asymptotic shear −σ0(u, θ, φ) at varying u, see Fig. 2. However, we now show that thanks to the Bianchi
identity (71), this datum can also be identified as shear of a vector field in the physical spacetime.

To that end, consider the second null vector of the tetrad, nµ. It is null everywhere but non-geodesic,
with

nν∇νnµ = −γ nµ + ν mµ + cc. (90)

In the asymptotic expansion,
nµ∂µ

r 7→∞−→ ∂u − ∂r (91)

is leading-order twist-free and affine, but still non-geodesic:

ω(n) := Im(µ) = m̄µmν∇νnµ = O(r−2), γ = O(r−2), ν =
ψ0

3

r
+O(r−2). (92)

27For the reader interested in the time-like case, see [62].
28The equivalence (82) can then be written with Πabδqab on the right-hand side, and trivially holds because the extra pieces

now present are put to zero by the constraints and/or gauge conditions.
29In using these results, care should be taken in that the authors use a slightly different definition of coordinates: u is now

1/
√

2 the retarded time, and r is
√

2 the radius of the asymptotically flat 2-sphere.
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Figure 2: Characteristic initial-value problem at I+. One prescribes data on a chosen u0 hypersurface of the

foliation attached to future null infinity, plus the asymptotic transverse shear −s0(u, θ, φ). Thanks to the algebraic

Bianchi identity (71), this can also be understood as prescribing a certain shear for the non-geodetic asymptotic null

vector ∂u − ∂r in the physical spacetime.

The non-geodesicity at leading order depends on one of the asymptotic complex projections of the Weyl
tensor, in turn given by the radiative data ψ0

3 = δ ˙̄σ0.30 Since nµ is not geodesic, it is also not hypersurface
orthogonal, in spite of being twist-free at lowest order: the radiative term δ ˙̄σ0 prevents the identification of
a null hypersurface normal to (91) (except in the very special case of completely isotropic radiation at all
times). Consequently, there is no unique definition of shear for the congruence it generates. Using the NP
formalism, it is natural to consider the shear along the 2d space-like hypersurface spanned by mµ, and define

σ(n) := −λ = −m̄µm̄ν∇νnµ =
λ0

r
+O(r−2). (93)

At the same lowest order O(r−1), the algebraic Bianchi identity (71) can be solved to give

λ0 = ˙̄σ0, (94)

which relates the transverse asymptotic shear to the λ-shear of nµ. Hence, the radiative data at future null
infinity correspond to a shear of a non-geodesic vector field ‘aligned’ with I+. The fact that the vector is
non-geodesic shows that the asymptotic 2 + 2 problem can not be formulated in real spacetime. On the
other hand, this is how close one can get, in terms of the interpretation of the main constraint-free data, in
bridging between the local 2+2 characteristic initial-value problem, and the asymptotic one.

6 Conclusions

In this paper we have presented and discussed many aspects of the canonical structure of general relativity in
real connection variables on null hypersurfaces. We have clarified the geometric structure of the Hamiltonian
analysis presented in [24], explaining the role of the various constraints and their geometric effect on a null
congruence. We have seen how the Lorentz transformations of the null tetrad are generated canonically, and
how to restrict them so to adapt the tetrad to a 2 + 2 foliation, and compare the connection Hamiltonian
analysis to the metric one. Lack of canonical normalisation for a null vector means that the equivalence of
the lapse functions can only be given up to a boost along the null direction. Restricting to the Bondi gauge,
we have identified constraint-free data in connection variables, and shown equivalence of the symplectic
potential with the metric formalism. The metric canonical conjugated pair ‘conformal 2d metric/shear’ is
replaced in the first order formalism by a pair ‘densitized dyad/null rotation components of the connection’,
with the null rotations becoming the shear on-shell of the light-cone secondary simplicity constraints. In
the presence of torsion, the connection can pick up additional terms that contribute to the shear, twist and
expansion of the congruence, leading to modifications of Sachs’ optical and Raychaudhuri’s equations.

Even in the absence of torsion, the on-shell-ness is not automatically preserved under retarded time evo-
lution, but requires of tertiary constraints, something unusual in canonical formulations of general relativity.
We have shown that the tertiary constraints encode Sachs’ propagating equations thanks to a specific alge-
braic Bianchi identity, the same one that allows one to switch the interpretation of the radiative data at I+

30This can be seen solving at first order in 1/r the NP components Rnm̄nl and Rnm̄nm of the Riemann tensor, see e.g. (310i)
and (310m) of [55].
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from the transverse asymptotic shear σ0 to the ‘shear’ λ0 of a non-geodetic, yet twist-free, null vector aligned
with I+, suggesting a different perspective on the asymptotic evolution problem. The identification of the
connection constraint-free data as null rotations means that the degrees of freedom form a group, albeit
non-compact, hence one could try to use loop quantum gravity quantization techniques without introducing
the Immirzi parameter. Some of the corner data, which we did not investigate here, have already be shown
to lead to a quantization of the area [22, 50, 59]. A quantization of the connection description of the radiative
degrees of freedom can lead to new insights both for loop quantum gravity and for asymptotic quantisations
based on a Fock space.

We completed the paper with an extensive Appendix, presenting the explicit calculations of the first-order
spin coefficients for the tetrad description used, and a detailed comparison between null tetrad descriptions
and 2 + 2 foliations.

We hope that the connection formalism can provide a new angle on some of the open questions on the
dynamics of null hypersurfaces in general relativity, and we plan to come back in future research to some of
the important aspects left open here: in particular, investigating the symplectic potential and Dirac brackets
among physical data without the Bondi gauge, as well as including boundary terms and identifying the BMS
generators in this Hamiltonian language. We also plan to develop further the indications that the connection
degrees of freedom now form a group and its possible applications to quantisation.
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Appendix

A Spin coefficients

We use χi = (1, 0, 0) and v± := (v2 ± iv3)/
√

2. For the tetrad derivatives we have

D = lµ∇µ =
1

N
Ea1∇a, ∆ = nµ∇µ =

1

2
(∇t − (Na +

N

2
Ea1 )∇a), (A.1)

δ = mµ∇µ = Ea−∇a, δ̄ = mµ∇µ = Ea+∇a . (A.2)

For the spin coefficients we use the standard notation consistent with our mostly plus signature (which
carries an opposite sign as to the notation with mostly minus signature) and use an apex ◦ to keep track of
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the fact that the connection ωIJµ is off-shell. We then have

◦
α := −1

2
(nµδ̄lµ +mµδ̄m̄µ) =

1

2
Ea+η

1
a −

i

2
r1+ −

1

4
ω+ − 1

2
δ̄ lnN (A.3)

◦
β := −1

2
(nµδlµ +mµδm̄µ) =

1

2
Ea−η

1
a −

i

2
r1− +

1

4
ω− − 1

2
δ lnN (A.4)

◦
γ := −1

2
(nµ∆lµ +mµ∆m̄µ) = −1

4
NEa1η

1
a −

1

2
Naη1

a +
i

4
Nr11 +

i

2
NaEjar1j +

i

4
Na(Elaε1lmω

m)+ (A.5)

+
1

2
(ω01

0 − iω23
0 )− 1

2
∆ lnN

◦
ε := −1

2
(nµDlµ +mµDm̄µ) =

1

2N
Ea1η

1
a −

i

2N
r11 −

1

2
D lnN (A.6)

◦
κ := −mµDlµ = − 1

N2
Ea1η

−
a (A.7)

◦
τ := −mµ∆lµ =

1

2
Ea1η

−
a +

Na

N
η−a −

√
2

N
(ω0−

0 − ω1−
0 ) (A.8)

◦
σ := −mµδlµ = − 1

N
Ea−η

−
a (A.9)

◦
ρ := −mµδ̄lµ = − 1

N
Ea+η

−
a (A.10)

◦
µ := m̄µδnµ =

1

2
N
(
Ea−η

+
a − ω1 − ir22 − ir33

)
(A.11)

◦
ν := m̄µ∆nµ = −N

4
(NEa1 + 2Na)η+

a −
(N)2

2
(ω+ − ir1−)− N

2
Na(E1

aω
+ − E+

a ω
1 − 2iEiari+)+ (A.12)

+
1

2
√

2
N(ω0+

0 + ω1+
0 )

◦
λ := m̄µδ̄nµ =

1

2
N
(
Ea+η

+
a + 2r23 − ir22 + ir33

)
(A.13)

◦
π := m̄µDnµ =

1

2
Ea1η

+
a +

1

2
ω+ − ir1− (A.14)

Under the rescaling (lµ, nµ) 7→ (lµ/A,Anµ) (a class III transformation),

α 7→ α− 1

2A
δ̄A, β 7→ β − 1

2A
δA, γ 7→ Aγ − 1

2A
∆A, ε 7→ 1

A
ε− 1

2A
DA, (A.15)

k 7→ 1

A2
k, τ 7→ τ, σ 7→ 1

A
σ, ρ 7→ 1

A
ρ, µ 7→ Aµ, (A.16)

ν 7→ A2ν, λ 7→ Aλ, π 7→ π, (A.17)

Hence, many factors of N disappear in the spin coefficients if we use the ADM-like normal lADM
µ = −N∂µu.

B Congruence

The complete expression of the congruence tensor with an affine connection is

∇0l0 = ω0i
0 (

1

N
XijEjaNa − χi) +

1

N
ωij0 χjE

i
aN

a +
1

N
∂0N, ∇alb =

1

N
XijηiaE

j
b ,

∇0la =
1

N
(ω0j

0 XijEia + ωij0 χ
jEia), ∇al0 = ηia(

1

N
XijNaEja − χi) + ∂a lnN (B.18)

with projection Bµν =⊥ρ µ ⊥σ ν∇ρlσ given by

B00 :=
1

N
qcbN

aN bηMa E
M
c , B0a =

1

N
qbcN

cηMb E
M
a , Ba0 =

1

N
qbaN

cηMb E
M
c ,

Bab =
1

N
qcaq

d
bXijηiaE

j
b . (B.19)
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C Tetrad transformations and gauge fixings

At the Hamiltonian level, the Lorentz transformations are generated by the Gauss constraint GIJ , usually
decomposed into spatial rotations Li and boosts Ki, whose canonical form from (26) reads

Li :=
1

2
εijkGjk = ∂a(εijk

∼
Eaj χ

k)− εijkηja
∼
Eak − εijkω̃jχk,

Ki := G0i = ∂a
∼
Eai + (

∼
Eai χj −

∼
Eaj χi)η

j
a −Xijω̃j . (C.20)

Since we are working on a null hypersurface, it is convenient to introduce the subgroups ISO(2) stabilising the
null directions xI± = (±1, χi), with generators T I := 1/2εIJKLx+JJKL and T̂ I := −1/2εIJKLx−JJKL. Both
groups are 3-dimensional and contain the helicity generator Lχ, plus two independent pairs of ‘translations’,

T i⊥ := εijkχjTk stabilising xI+, and T̂ i⊥ := εijkχj T̂k stabilising xI−. Taking both sets and the radial boost Kχ

we obtain the complete the Lorentz algebra, expressed in terms of canonical variables in (56).
For ease of notation and to make the formulas more transparent, we fix from now on χi = (1, 0, 0), as

we did in most of the main text. We use the orthogonal internal indices M = 2, 3, and write the canonical
form of the generators as follows,

L1 = ε1MN

∼
EaMηNa , TM = −ε1Mi

∼
Ea1η

i
a

K1 = ∂a
∼
Ea1 −

∼
EaMη

M
a , T̂M = −ε1Mi(

∼
Ea1η

i
a − 2∂a

∼
Eai − 2

∼
Eai η

1
a + 2ω̃i). (C.21)

To compute the action on the tetrad, we use the brackets (29). First of all, T̂M change the internal null
direction χi:

{T̂M , χN} = −ε1MN . (C.22)

Since the direction is gauge-fixed by (28) in the action, these constraints are second class.
The stabilisers TM are first class, and can be used to put the triad in (partially) lower triangular form:

{TM ,
∼
Eai } = − 1

2ε1Mi

∼
Ea1 , (C.23)

so we can always reach ErM = 0 with these transformations, and E1
A = 0 follows from the invertibility of the

triad. The radial boost Kχ can be used to fix Er1 = 1, since

{K1,
∼
Er1} = 0, {Kχ, E} = 1

2E, {Kχ, E
r
1} = − 1

2E
r
1 . (C.24)

The triad so gauge-fixed reads

Eia =

(
1 0
EMr EMA

)
, Eai =

(
1 0
EA1 EAM

)
, (C.25)

where EMA is the 2d dyad with inverse EAM , and EA1 = −EAMEMr . In this gauge, dφ1 = dr, so the coordinates
are adapted to the 2 + 2 foliation. Furthermore, E =

√
γ and so

√
−g = NE = N

√
γ. Finally, the helicity

rotation L1, acting as
{L1,

∼
Eai } = 1

2ε1Mi

∼
Eai , (C.26)

can be used to put to zero one off-diagonal component of the dyad and thus complete the triangular gauge
of the triad.

Using hypersurface diffeomorphisms instead, we can put the triad in (partially) upper-triangular form:

Da = 2∂b(η
i
a

∼
Ebi )− 2

∼
Ebi ∂aη

i
b + 2ω̃i∂aχi, {D( ~N),

∼
Eai } = £ ~N

∼
Eai , (C.27)

so we can use DA to fix EAχ = 0, and Dr to fix Er1 = 1. This gives

Eia =

(
1 E1

A

0 EMA

)
, Eai =

(
1 ErM
0 EAM

)
, (C.28)

with ErM = −EAME1
A. In this gauge the hypersurface coordinates are not adapted to the 2 + 1 foliation (the

level sets r =constant do not span the 2d space-like surfaces), on the other hand the tangent to the null
directions is now the coordinate vector ∂r.

For clarity, the various conditions that can be fixed using the various constraints are summarised in the
table below, where by rgf we mean the final gauge fixing on r, for instance affine or areal.
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H DA Dr
g00 = 0 EAχ = 0 ⇔ EMr = 0 Erχ = 1 aut rgf
T̂ i⊥ T i⊥ Kχ Lχ

χi = (1, 0, 0) ErM = 0 ⇔ EAχ = 0 rgf aut Erχ = 1 δ

Notice that if one does not fix the upper or lower triangular form of the triad, the inverse of the 2d dyad
if of course not given by the corresponding entries of the inverse triad. A general parametrisation of the
triad in terms of the dyad can be easily written as follows,

Eia =

(
M̂ EMA fM
EMA γA EMA

)
, Eai =

1

M

(
1 −fM
−γA MEAM + γAfM

)
. (C.29)

Here EMA is the dyad and EAM its inverse, E = EM and M = M̂ − γAEMA fM is a 2 + 1 lapse function. Then
γAB = EMA EMB and

qab =

(
γABγ

AγB γABγ
B

γBAγ
A γAB

)
. (C.30)

The Bondi gauge sets γA = 0, namely qra = 0.

D 2 + 2 foliations and NP tetrads

We collect here various useful formulas relating the tetrad formalism to the 2 + 2 foliation of [35] and [36].
As briefly explained in Section 2.2, the 2 + 2 foliation is induced by two closed 1-forms, nα := dφα locally,
α = 0, 1. These define a ‘lapse matrix’ Nαβ , as the inverse of Nαβ := nαµn

βµ, and a dual basis of vectors

nµα := Nαβg
µνnβν . Note that nµ0 and nµ1 are tangent respectively to the hypersurfaces φ1 = const and

φ0 = const. We assume detNαβ < 0, so that the codimension-2 leaves {S} are space-like. The projector on
{S} is ⊥µ ν := δµν −Nαβnαµnβν , and the covariant induced metric γµν :=⊥µν . The 2d spaces {T} tangent to
nµα are not integrable in generic spacetimes, since ⊥µ ν [n0, n1]ν 6= 0. This non-integrability is often referred
to as twist in the literature. On the other hand, the orthogonal 2d spaces foliate spacetime by construction,
and we can introduce shift vectors to relate the tangent vectors to coordinate vectors, bµα = (∂φα)µ − nµα.

To write the metric explicitly, we take coordinates (φα, σA) adapted to the foliation, then

gµν =

(
Nαβ + γABb

A
α b

B
β γBCb

C
α

γACb
C
β γAB

)
, gµν =

(
Nαβ −NαβbBβ
−NβαbAα γAB +NαβbAα b

B
β

)
. (D.31)

For a null foliation, we fix one diffeomorphism requiring N11 = 0 = N00 = g00, so that the first normal
is null, and N01 = 1/N01, N11 = −N00/N

2
01. The norm of n1 is N11 and we leave it free (it can be both

time-like or space-like without changing the fact that the orthogonal spaces {S} are space-like), but notice
that we can always switch to a null frame (n0, ñ1) with

ñ1 = N01n
1 +

1

2
N00n

0, ||ñ1||2 = 0, n0
µñ

1µ = 1. (D.32)

This can be used to define the first two vectors of a NP tetrad adapted to the foliation, via lµ := −n0
µ,

nµ := ñ1
µ, so that the 2d space-like induced metrics coincide

γµν = gµν −Nαβnαµnβν = gµν + 2l(µnν). (D.33)

Notice that acting with a Lorentz transformation preserving l, we have

nµ 7→ nµ + āmµ + am̄µ + |a|2lµ, mµ 7→ mµ + alµ; (D.34)

one thus obtains a new covariant 2d metric, still space-like and transverse to lµ, but not associated with
the 2 + 2 foliation any longer. In terms of the NP tetrad, the non-integrability of the time-like spaces is
measured by the two spin coefficients τ and π,

mµ[l, n]µ = τ + π̄. (D.35)
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D.1 Adapting a NP tetrad

We can also reverse the procedure: start from an arbitrary NP tetrad, and adapt it to a 2 + 2 foliation. To
that end, recall first that

[m, m̄]ν = (µ− µ̄)lµ + (ρ− ρ̄)nµ − (α− β̄)mµ + (ᾱ− β)m̄µ, (D.36)

so the general non-integrability of (m, m̄) is given by non-vanishing Im(ρ) and Im(µ). To adapt the NP to
the 3+1 null foliation, we choose l := −dφ0. This fixes 3 Lorentz transformation, and implies Im(ρ) = 0 = κ
and τ = ᾱ + β. We can also fix the SO(2) helicity rotation requiring ε = ε̄. This leaves us with two tetrad
transformations left. To have a 2 + 2 foliation induced by the tetrad, we need

µ− µ̄ = 2mµm̄ν∂[νnµ] = 0. (D.37)

This is achieved if in coordinates (φα, σA) adapted to the foliation mµ = (0, 0,mA), hence nµ = (cα, 0, 0)
by orthogonality; this fixes the remaining two tetrad freedoms (And if we fix radial diffeomorphisms to have
N01 = −1, this gauge also implies π = α+ β̄). Inverting this linear system we find

dφ0 = −l, dφ1 =
c0
c1
l +

1

c1
n. (D.38)

This identifies cα = (N00/2, N01), and (D.33) follows again. For more on the characteristic initial value
problem in NP formalism see e.g. [65]. The use of a tetrad adapted to a 2 + 2 foliation is common, e.g.
[1, 66, 13], but not universal. In particular in [1] the partial Bondi gauge is completed with N11 = 0 =
N00 = c0, so to have both 1-forms dφα null.

D.2 The Bondi gauge and Newman-Unti tetrad

A more wide-spread tetrad description, particularly suited to study asymptotic radiation, is the one intro-
duced by Newman and Unti [63], see e.g. [56, 57] for reviews, which is adapted to the 3 + 1 null foliation
and to the Bondi gauge. We take coordinates (u, r, θ, φ) and fix g00 = 0, so that the level sets of u give a
null foliation with normal lµ = −∂µu. Recall that the null hypersurfaces Σ normal to lµ are ruled by null
geodesics, with tangent vector

lµ∂µ = −g0µ∂µ =
1

N
∂r − g0A∂A. (D.39)

This suggests a natural 2+1 foliation of Σ given by the level sets of a parameter along the null geodesics (affine
or not). The description simplifies greatly if we gauge-fix g0A = 0, as to identify the geodesic parameter with
the coordinate r, while simultaneously putting to zero the shift vector of the r = const. foliation on Σ. In
other words, the (partial) Bondi gauge g0A = 0 gives a physical meaning to the coordinate foliation defined
by u and r by identifying it with the foliation defined by the null geodesics on Σ. In the 2 + 2 language of
[35, 36], with adapted coordinate φ0 = u, the gauge corresponds to a vanishing shift vector bµ1 , so that ∂φ1

is tangent to the null geodesics.
Let us complete the Bondi gauge choosing affine parametrization, namely g01 = −1. The metric and its

inverse read

gµν =

0 −1 0
g11 g1A

gAB

 , gµν =

−g11 + gABg
1Ag1B −1 gABg

1B

0 0
gAB

 . (D.40)

The Newman-Unti tetrad adapted to these coordinates is chosen identifying lµ with the normal to the
foliation, and requiring nµ and mµ to be parallel propagated along lµ. It is parametrised as follows,

lµ∂µ = ∂r, nµ∂µ = ∂u + U∂r +XA∂A, mµ∂µ = ω∂r + ξA∂A, (D.41)

with A = ζ, ζ̄ stereographic coordinates for S2 (ζ = cot θ/2eiφ), and

g11 = 2(|ω|2 − U), g1A = ωξ̄A + ω̄ξA −XA, gAB = ξAξ̄B + ξ̄AξB . (D.42)
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The co-tetrad is

lµ = (−1, 0, 0, 0), nµ =
(
U−gABXA(ωξ̄B+ ω̄ξB),−1, gAB(ωξ̄B+ ω̄ξB)

)
, mµ = (−gABξAXB , 0, gABξ

B).

The coefficients are a priori 9 real functions (U ∈ R, XA ∈ R2, ω ∈ C, ξA ∈ C2) parametrising the 6
independent components of the metric plus 3 internal components corresponding to the ISO(2) stabiliser of lµ.
The helicity subgroup generates dyad rotations ξA 7→ eiδξA, and the translations the class I transformations
(D.34). The latter in particular shift ω 7→ ω + a, a ∈ C, and can be used to put ω = 0, so mµ = (0, 0,mA)
with 2d space-like components only. This is the 2 + 2-adapted choice described above, and corresponds to
ErM = 0 as in the lower-triangular form (C.25), that we also used in Section 5 in the main text to make
easier contact with the metric Hamiltonian formalism. Alternatively, this null rotation can be used to achieve
π = 0, so to make nµ and mµ to be parallel propagated along lµ as demanded by Newman and Unti.

In terms of spin coefficients, we have the following simplifications: κ = Im(ρ) = 0, τ = ᾱ+β which follow
from lµ being a gradient, Re(ε) = 0 from fixing the radial diffeos requiring r affine parametrization, and
π = 0 from the parallel transport of nµ and mµ. Finally Im(ε) = 0 if we fix the helicity SO(2) rotation. This
complete fixing is usually referred to as NP gauge, to be contrasted with the 2 + 2-adapted gauge described
above, where the condition π = 0 is replaced by π = τ̄ and Im(µ) = 0.

Hence, when we refer to the Newman-Unti tetrad (D.41) in NP gauge there are only 6 free functions of
all 4 coordinates. The NP gauge is preserved by class I and helicity transformations with r-independent
parameters.

E Mappings to the χ-tetrad

In this Appendix we discuss the detailed relation between the χ-tetrad used to perform the canonical analysis
in real connection variables and the results of the previous Appendix. It provides formulas completing the
discussion in the main text.

At the end of Section (3.1) we introduced the internal ‘radial gauge’ (23), stating that it adapts the
tetrad to the 2 + 2 foliation and identifies the lapse function with the one used in the metric formalism. We
now provide the relevant details and proofs. The χ-tetrad and its inverse are given by

eIµ =

(
N̂ Eiaχi

NaEia Eia

)
, eµI =

1

N

(
1 −χi
−Na NEai +Naχi

)
, (E.43)

where χ2 = 1 to have a null foliation, e = EN and N = N̂ − NaEiaχi is the lapse function. Taking the
soldered internal null directions x±µ = eIµx±I of (17), and defining mµ to be a complex linear combination

of the two orthogonal tetrad directions X ijeµj , e.g. mµ := 1√
2
(eµ2 − ie

µ
3 ) when χi = (1, 0, 0), the basis

(xµ+,−x
µ
−,m

µ, m̄µ)

is a doubly-null tetrad. We then rescale it by

lµ =
1

N
xµ+, nµ = −N

2
xµ−, (E.44)

to define an NP tetrad adapted to the 3 + 1 null foliation as described in the main text, see (40). In general,
the 2d spaces with tangent vectors (mµ, m̄µ) will not be integrable. With reference to (D.36), we see that
integrability requires Im(ρ) = Im(µ) = 0. The first condition is guaranteed by the fact that lµ is a gradient.
The second can be obtained with a class I transformation, generated by the translations XijT j stabilising
lµ, fixing

EAχ = 0 ⇔ X ijErj = 0. (E.45)

In this gauge
mµ = (0, 0, EA−), nµ = (N(N/2 +NrErχ), NErχ, 0, 0), (E.46)

so that the null tetrad is manifestly adapted to the 2 + 2 foliation defined by the level sets of the coordinates
u and r. Then Im(µ) = 0 also follows immediately by explicit calculation of (D.37) using the fact that mµ

only has 2d surface components.
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In a first-order formalism with independent connection, the statement holds in the absence of torsion.

We have already seen in Section 4.2 that on-shell of the torsionless condition Im(
◦
ρ) = Im(ρ). Let us show

here explicitly how Im(
◦
µ) goes on-shell. From (A.11) we have

Im(
◦
µ) = −N

2

2
Im(

◦
ρ)− N

2
(r22 + r33), (E.47)

and from one of the secondary simplicity constraints (30) we have

Ψ11 = −r22 − r33 − ε1MN ∼EaM ∼E
1
b∂a

∼
EbN . (E.48)

The last term vanishes for ErM = 0 = E1
A, hence Im(

◦
µ) = 0 in this gauge.

To complete the comparison with the 2 + 2 formalism, let us fix the internal direction χi = (1, 0, 0), and
use M = 2, 3 to refer to the orthogonal directions. Then (E.45) puts the triad in the form

Eia =

(
E1
r 0

EMr EMA

)
, Eai =

(
Er1 0
EA1 EAM

)
, (E.49)

thus EMA is the 2d dyad and EAM its inverse, and we further have the equalities E1
r = 1/Er1 ,

EMr = −EMA EA1 /Er1 . We then have gAB = qAB = EMA E
BM = γAB = EMA EBM , consistently with the fact that

the metric induced by the dyad is adapted to the coordinates by the gauge-fixing, and qAB = EAME
BM = γAB

is its inverse. Notice that the (partial) Bondi gauge g0A = 0 achieves gAB = γAB , analogously to the
vanishing-shift gauge for space-like foliations.

At this point E = Erχ
√
γ and

√
−g = ErχN

√
γ. A look at the metric shows that

− 1/g01 = ErχN, (E.50)

hence, the lapse function in the metric Hamiltonian analysis of [36] equals the one in the connection formu-
lation up to a factor Erχ. This ambiguity is not surprising due to the null nature of the foliation and the
lack of a canonical normalization of its normal. To identify our lapse with the one in the metric formalism
is sufficient to fix the radial boost Kχ as to have Erχ = 1, as we did with (23). Then also Erχ = 1 because
of (E.45) and the triad takes the form (C.25). We also recover the relation

√
−g = N

√
γ between lapse and

the determinant of the metric Hamiltonian analysis. For completeness, we report below the relation between
the χ-tetrad coefficients and the 2 + 2 foliation with a general radial gauge. The case with coinciding lapse
functions can immediately be read plugging Erχ = 1 = Erχ in the formulas below.

The relation between the foliating normals and the adapted null co-frame is given by

n0 = du = − 1

N
x+Ie

I , n1 = dr =
1

2Erχ

(N + 2NrErχ

N
x+I + x−I

)
eI , n0

µn
1µ = − 1

ErχN
. (E.51)

The dual basis, shift vectors and lapse matrix are

nµ0 = N( N
r

Erχ
+ N

2 )lµ + nµ = (1, 0, NrErχE
Aχ−NA), bA0 = NA −NrErχE

Aχ, (E.52)

nµ1 = ErχNl
µ = (0, 1, ErχE

Aχ), bA1 = −ErχEAχ, (E.53)

Nαβ =

(
−N(N + 2NrErχ) −NErχ

−NErχ 0

)
, Nαβ =

(
0 − 1

NErχ

− 1
NErχ

1
N(Erχ)2 (N + 2NrErχ)

)
, (E.54)

and the formulas for the 2d projector and covariant induced metric coincide,

γµν := gµν − x+(µx−ν) = gµν −Nαβnαµnβν =

(
qabN

aN b qbcN
c

qabN
b qab

)
. (E.55)

From (C.25), we see also that EA1 = −EAMEMr , which provides an alternative characterisation of the second
shift vector in terms of EMr .

The non-integrability of the {T} surfaces is the same as measured by the null dyad,

⊥µ ν [n0, n1]ν ≡ [n0, n1]µ, mµ[n0, n1]µ = −N(τ + π̄). (E.56)
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Having gauge-fixed N00 = 0 to have du null and r affine or areal, we cannot for general metrics simultaneously
take dr to be null. It can be made null on a single hypersurface Σ̃ defined by some fixed value of r = r0,
if we exploit the left-over freedom of hypersurface diffeomorphisms to fix N11 = 0. This is what was done
by Sachs in setting up the 2 + 2 characteristic initial value problem, further fixing NA = 0 on the same
hypersurface, so that the normal vector of Σ̃ at r = r0 is just nµ0 = nµ = ∂u, as in Fig.1.

E.1 The Bondi gauge and Newman-Unti tetrad

In Section 5 in the main text we discussed the Bondi gauge with a null tetrad already adapted to the 2 + 2
foliation. This was motivated by the goal of recovering properties of the metric symplectic formalism. On
the other hand, the Newman-Unti tetrad (D.41) mostly used in the literature is adapted to the 3 + 1 null
foliation only. In this Appendix we present the relation between our metric coefficients and those of (D.41)
without fixing the internal ‘radial gauge’ (72). To that end, we first fix all diffeomorphisms requiring the
Bondi gauge

1

N
Eaχ = (1, 0, 0). (E.57)

We then fix the internal direction χi = (1, 0, 0), and adapt l = −du = x+/N . This leaves the freedom of
acting with the ISO(2) subgroup stabilizing the direction. Because we rescaled the canonical tetrad by N ,
we also gain the freedom of canonical transformations corresponding to the radial boost Kχ, which does not
affect l. This additional gauge freedom should be fixed requiring Erχ = 1, implying N = 1. We are then
left with 9 free functions, 6 for the metric and 3 for the internal ISO(2) stabilising l. Comparing our tetrad
(40) in this gauge with (D.41) we immediately identify

U = −1

2
−Nr, XA = −NA, ω = Er−, ξA = EA− . (E.58)

The 2 + 2-adapted tetrad is recovered with a class I transformation setting ω = EM− = 0.

E.2 Areal r and Sachs’ metric coefficients

Above we used affine r, as usual in literature using the Newman-Penrose formalism. The alternative common
choice is Sachs’, leaving g01 = −e2β free and requiring instead

√
γ = r2f(θ, φ). Again we fix the internal

direction χi = (1, 0, 0) and the radial boosts with Erχ = 1, so to have the identification of our N > 0 with
the metric lapse e2β . The triad has the form (C.28), and the metric reads

gµν =

−N(N + 2Nr + 2NAEAχ) + γABN
ANB −N γABN

B −NEAχ
0 0

γAB

 . (E.59)

Comparing with (1) in the main text, we find

β =
1

2
lnN, UA = −NA +NγABEBχ,

V

r
= 2N1 +N(1 + γABEAχEBχ). (E.60)

Reverting to affine r, N = 1 and the map from Sachs’ metric coefficients to Newman-Unti’s is
V/r = 2(|ω|2 − U), UA = XA − ωξ̄A − ω̄ξA.
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