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ABSTRACT

We carry out a joint analysis of redshift-space distortions and galaxy-galaxy lensing, with the aim of measuring the growth rate of
structure; this is a key quantity for understanding the nature of gravity on cosmological scales and late-time cosmic acceleration.
We make use of the final VIPERS redshift survey dataset, which maps a portion of the Universe at a redshift of z ' 0.8, and the
lensing data from the CFHTLenS survey over the same area of the sky. We build a consistent theoretical model that combines non-
linear galaxy biasing and redshift-space distortion models, and confront it with observations. The two probes are combined in a
Bayesian maximum likelihood analysis to determine the growth rate of structure at two redshifts z = 0.6 and z = 0.86. We obtain
measurements of fσ8(0.6) = 0.48 ± 0.12 and fσ8(0.86) = 0.48 ± 0.10. The additional galaxy-galaxy lensing constraint alleviates
galaxy bias and σ8 degeneracies, providing direct measurements of f and σ8:

[
f (0.6), σ8(0.6)

]
= [0.93 ± 0.22, 0.52 ± 0.06] and[

f (0.86), σ8(0.86)
]

= [0.99±0.19, 0.48±0.04]. These measurements are statistically consistent with a Universe where the gravitational
interactions can be described by General Relativity, although they are not yet accurate enough to rule out some commonly considered
alternatives. Finally, as a complementary test we measure the gravitational slip parameter, EG, for the first time at z > 0.6. We find
values of EG(0.6) = 0.16 ± 0.09 and EG(0.86) = 0.09 ± 0.07, when EG is averaged over scales above 3 h−1 Mpc. We find that our
EG measurements exhibit slightly lower values than expected for standard relativistic gravity in a ΛCDM background, although the
results are consistent within 1 − 2σ.

Key words. Cosmology: observations – Cosmology: large scale structure of Universe – Galaxies: high-redshift – Galaxies: statistics

1. Introduction

The origin of the late-time acceleration of the universal expan-
sion is a major question in cosmology. The source of this ac-
celeration and its associated energy density are crucial in un-
derstanding the properties of the Universe and its evolution and
fate. In the standard cosmological model, this cosmic accelera-
tion can be associated with the presence of a dark energy com-
ponent, a cosmological fluid with negative pressure, which op-

Send offprint requests to: S. de la Torre,
e-mail: sylvain.delatorre@lam.fr
? Based on observations collected at the European Southern Obser-

vatory, Cerro Paranal, Chile, using the Very Large Telescope under pro-
grammes 182.A-0886 and partly 070.A-9007. Also based on obser-
vations obtained with MegaPrime/MegaCam, a joint project of CFHT
and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT),
which is operated by the National Research Council (NRC) of Canada,
the Institut National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the University of
Hawaii. This work is based in part on data products produced at TER-
APIX and the Canadian Astronomy Data Centre as part of the Canada-
France-Hawaii Telescope Legacy Survey, a collaborative project of
NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/.

poses the gravitational force on large scales. However, this ap-
parent acceleration can conversely be interpreted as a failure of
the standard relativistic theory of gravity. A key goal for cosmol-
ogy is therefore to investigate the nature of gravity empirically.
To be clear, what can potentially be falsified is the validity of
Einstein’s field equations, rather than General Relativity itself;
this sets a broader framework within which Einstein gravity or
modified alternatives can operate.

The large-scale structure of the Universe has proved to be
very powerful for testing the cosmological model through the
use of various observables such as the two-point statistics of the
galaxy distribution and its features (e.g. Peacock et al. 2001;
Cole et al. 2005; Tegmark et al. 2004; Eisenstein et al. 2005;
Guzzo et al. 2008; Percival et al. 2010; Beutler et al. 2011; Blake
et al. 2012; Anderson et al. 2014; Alam et al. 2017, and refer-
ences therein). In this context, a unique probe of gravitational
physics is the large-scale component of galaxy peculiar veloci-
ties affecting the observed galaxy distribution in redshift surveys
(Guzzo et al. 2008), sensitive to the growth rate of structure f
defined as d ln D/d ln a, where D and a are respectively the lin-
ear growth factor and scale factor. In turn, the growth rate of
structure tells us about the strength of gravity acting on cosmo-
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logical scales and is a direct prediction of gravity theories. The
distortions induced by peculiar velocities in the apparent galaxy
clustering, the so-called redshift-space distortions (RSD), are a
very important cosmological probe of the nature of gravity. In
the last decade, they have been studied in large galaxy redshift
surveys, showing a broad consistency with ΛCDM and General
Relativity predictions (e.g. Blake et al. 2012; Beutler et al. 2012;
de la Torre et al. 2013; Samushia et al. 2014; Gil-Marín et al.
2016; Chuang et al. 2016).

Although galaxy redshift surveys are powerful cosmological
tools for understanding the geometry and the dynamics of the
Universe, they are fundamentally limited by the inherent uncer-
tainty related to the bias of galaxies, the fact that these are not
faithful tracers of the underlying matter distribution. Gravita-
tional lensing represents a powerful probe that is complemen-
tary to galaxy redshift-space clustering. In the weak regime
in particular, the statistical shape deformations of background
galaxies probe the relativistic gravitational deflection of light by
the projected dark matter fluctuations due to foreground large-
scale structure. There are several techniques associated with
weak gravitational lensing; one that is particularly useful for
combining with galaxy clustering is galaxy-galaxy lensing. This
technique consists of studying the weak deformations of back-
ground galaxies around foreground galaxies, whose associated
dark matter component acts as a gravitational lens. This is par-
ticularly useful for probing the galaxy-matter cross-correlation,
which in turn provides insights on the bias of foreground galax-
ies and the matter energy density Ωm, although the projected na-
ture of the statistic makes it insensitive to redshift-space distor-
tions. The combination of galaxy-galaxy lensing with redshift-
space galaxy correlations is therefore a very promising way to
study gravitational physics, given that both lensing information
on background sources and spectroscopic information on fore-
ground galaxies are available on the same field.

Beyond the determination of the growth rate of structure, one
can define consistency tests of gravity that are sensitive to both
the Newtonian and curvature gravitational potentials, Ψ and Φ
respectively (e.g. Simpson et al. 2013). One is the gravitational
slip, EG, which was originally proposed by Zhang et al. (2007)
and implemented by Reyes et al. (2010) in terms of the ratio
between the galaxy-galaxy lensing signal and the redshift-space
distortions parameter β = f /b times the galaxy clustering signal
of the lenses. Here b is the galaxy linear bias. EG effectively tests
whether the Laplacian of Ψ+Φ, to which gravitational lensing is
sensitive, and that of Ψ, to which galaxy peculiar velocities are
sensitive, are consistent with standard gravity predictions. In the
standard cosmological model, EG asymptotes to Ωm/ f on large
linear scales. A failure of this test would either imply an incor-
rect matter energy density or a departure from standard gravity.
This test has been performed at low redshift in the SDSS sur-
vey by Reyes et al. (2010) and more recently at redshifts up to
z = 0.57 by Blake et al. (2016) and Pullen et al. (2016).

The EG statistic is formally defined as EG = Υgm/(βΥgg),
where Υgm and Υgg are filtered versions of the real-space pro-
jected galaxy-matter and galaxy-galaxy correlation functions re-
spectively, and β is the RSD parameter. In practice, its imple-
mentation involves measuring β and the ratio Υgm/Υgg sepa-
rately, to finally combine them. But since β and Υgg are extracted
from the same observable, namely the anisotropic two-point cor-
relation function of lens galaxies, this is suboptimal and does
not account for the covariance between them. In this analysis,
we follow a different approach. We combine the galaxy-galaxy
lensing quantity Υgm and the redshift-space anisotropic correla-
tion function monopole and quadrupole moments ξ0 and ξ2 (from

which β can be estimated) in a joint likelihood analysis, to pro-
vide constraints on f and gravity at redshifts above z = 0.6. We
note that we do not include Υgg because of the redundant cosmo-
logical information shared with ξ0 and ξ2.

The VIMOS Public Extragalactic Redshift Survey (VIPERS)
is a large galaxy redshift survey probing the z ' 0.8 Universe
with an unprecedented density of spectroscopic galaxies of 5 ×
10−3 h3 Mpc−3 and covering an overall area of 23.5 deg2 on the
sky. The prime goal of VIPERS is an accurate measurement
of the growth rate of structure at redshift around unity. A first
measurement has been performed using the Public Data Release
1 (PDR-1), setting a reference measurement of fσ8 at z = 0.8
(de la Torre et al. 2013). The survey is now complete and several
analyses including this one are using the final dataset to produce
the VIPERS definitive growth rate of structure measurements,
but following a variety of approaches. The present analysis aims
at maximizing the cosmological information available and takes
advantage of the overlapping lensing information provided by
CFHTLenS lensing survey, to provide a precise gravity test at
redshifts 0.5 < z < 1.2 by combining RSD and galaxy-galaxy
lensing.

The paper is organized as follows. The data are described
in Sect. 2; Sect. 3 describes our methods for estimating galaxy
clustering and galaxy-galaxy lensing; Sect. 4 describes the the-
oretical modelling that is tested in Sect. 5; Sect. 6 presents
how the likelihood analysis is constructed; Sect. 7 describes the
cosmological results, and Sect. 8 summarizes our findings and
concludes.

Throughout this analysis and if not stated otherwise, we as-
sume a flat ΛCDM (Λ-Cold Dark Matter) cosmological model
with (Ωm,Ωb, ns) = (0.3, 0.045, 0.96) and a Hubble constant of
H0 = 100 h km s−1 Mpc−1.

2. Data

2.1. Combined VIPERS-CFHTLenS dataset

The VIPERS galaxy target sample was selected from the optical
photometric catalogues of the Canada-France-Hawaii Telescope
Legacy Survey Wide (CFHTLS-Wide, Goranova et al. 2009).
VIPERS covers 23.5 deg2 on the sky, divided over two areas
within the W1 and W4 CFHTLS fields. Galaxies are selected to a
limit of iAB < 22.5, applying a simple and robust gri colour pre-
selection to efficiently remove galaxies at z < 0.5. Coupled with
a highly optimized observing strategy (Scodeggio et al. 2009),
this allows us to double the galaxy sampling rate in the red-
shift range of interest, with respect to a pure magnitude-limited
sample. At the same time, the area and depth of the survey re-
sult in a relatively large volume, 5 × 107 h−3 Mpc3, analogous
to that of the Two Degree Field Galaxy Redshift Survey (2dF-
GRS) at z ' 0.1 (Colless et al. 2001, 2003). Such a combination
of sampling rate and depth is unique amongst current redshift
surveys at z > 0.5. VIPERS spectra are collected with the VI-
MOS multi-object spectrograph (Le Fèvre et al. 2003) at mod-
erate resolution (R = 220) using the LR Red grism, providing
a wavelength coverage of 5500-9500Å and a redshift error cor-
responding to a galaxy peculiar velocity error at any redshift of
σvel = 163 km s−1. The full VIPERS area of 23.5 deg2 is cov-
ered through a mosaic of 288 VIMOS pointings (192 in the W1
area, and 96 in the W4 area). A discussion of the survey data
reduction and management infrastructure is presented in Garilli
et al. (2014). A complete description of the survey construction,
from the definition of the target sample to the actual spectra and
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redshift measurements, is given in the survey description paper
(Guzzo et al. 2014).

The data used here correspond to the publicly released PDR-
2 catalogue (Scodeggio et al. 2017) that includes 86 775 galaxy
spectra, with the exception of a small sub-set of redshifts (340
galaxies missing in the range 0.6 < z < 1.1), for which the red-
shift and quality flags were revised closer to the release date.
Concerning the analysis presented here, this has no effect. A
quality flag has been assigned to each object in the process of
determining their redshift from the spectrum, which quantifies
the reliability of the measured redshifts. In this analysis (as with
all statistical analyses presented in the parallel papers of the fi-
nal science release), we use only galaxies with flags 2 to 9 inclu-
sive, corresponding to objects with a redshift confidence level of
96.1% or larger. This has been estimated from repeated spectro-
scopic observations in the VIPERS fields (see Scodeggio et al.
2017). The catalogue used here, which we will refer to just as
the VIPERS sample in the following, includes 76584 galaxies
with reliable redshift measurements.

In addition to the VIPERS spectroscopic sample, we make
use of the public lensing data from the Canada-France-Hawaii
Lensing Survey (Heymans et al. 2012), hereafter referred to as
CFHTLenS. The CFHTLenS survey analysis combined weak
lensing data processing with theli (Erben et al. 2013), shear
measurement with lensfit (Miller et al. 2013), and photomet-
ric redshift measurement with PSF-matched photometry (Hilde-
brandt et al. 2012). A full systematic error analysis of the shear
measurements in combination with the photometric redshifts is
presented in Heymans et al. (2012), with additional error analy-
ses of the photometric redshift measurements presented in Ben-
jamin et al. (2013).

2.2. Sample selection

For this analysis, we define two redshift intervals covering the
full volume of the VIPERS survey: 0.5 < z < 0.7 and 0.7 < z <
1.2. The number density of galaxies in the combined W1 and W4
fields is presented in Fig. 1, after correction with survey incom-
pleteness weights wC (see Sect. 3.1). It is worth emphasizing
that after application of survey incompleteness corrections, the
VIPERS spectroscopic sample represents a statistically unbiased
subset of the parent iAB < 22.5 photometric catalogue (Guzzo
et al. 2014; Garilli et al. 2014; Scodeggio et al. 2017). The red-
shift distribution is modelled using the Vmax method (Cole 2011;
de la Torre et al. 2013) and shown with the solid curve in the
figure. In this method, we randomly sample 500 times the Vmax
of each galaxy, defined as the comoving volume between the
minimum and maximum redshifts where the galaxy is observ-
able given its apparent magnitude and the magnitude limit of
VIPERS, iAB = 22.5. The redshift distribution thus obtained is
regular and can be straightforwardly interpolated with a smooth
function, showed with the solid curve in Fig. 1.

In addition to VIPERS spectroscopic galaxies, photometric
galaxies from the CFHTLenS survey on the overlapping areas
with VIPERS survey, have been used for the galaxy-galaxy lens-
ing. The lens sample satisfies the VIPERS selection iAB < 22.5
and uses VIPERS spectroscopic redshifts when available (i.e. for
about 30% of objects) or CFHTLenS maximum likelihood pho-
tometric redshifts otherwise. The sources have been selected
to have iAB < 24.1 and thus have a higher surface density.
Sources inside the mask delimiting bad photometric areas in the
CFHTLenS catalogue have been discarded. We also make use
of the individual source redshift probability distribution func-
tion estimates obtained from bpz (Hildebrandt et al. 2012) as de-

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
z

10−4

10−3

10−2

n(
z)

[h
3

M
pc
−3

]

Model n(z) for W1+W4 fields

VIPERS W1

VIPERS W4

CFHTLenS/VIPERS zphot (i< 24.1)

Fig. 1. Number densities of VIPERS galaxies in the individual W1 and
W4 fields and of CFHTLenS/VIPERS photometric redshift galaxies, as
a function of redshift. The number densities of VIPERS galaxies are
corrected for the survey incompleteness by weighting each galaxy in
the counts by its associated inverse completeness weight wC . The solid
curve corresponds to the model n(z) used in the analysis. It was obtained
by randomly sampling galaxy redshifts within their Vmax (see text for
details).

scribed in Sect. 3.2. Source galaxies extend above zphot = 1.4
and their number density is represented with the unfilled his-
togram in Fig. 1.

3. Galaxy clustering and galaxy-galaxy lensing
estimation

3.1. Anisotropic galaxy clustering estimation

We estimate the redshift-space galaxy clustering by measuring
the two-point statistics of the spatial distribution of galaxies in
configuration space. For this we infer the anisotropic two-point
correlation function ξ(s, µ) using the Landy & Szalay (1993) es-
timator:

ξ(s, µ) =
GG(s, µ) − 2GR(s, µ) + RR(s, µ)

RR(s, µ)
, (1)

where GG(s, µ), GR(s, µ), and RR(s, µ) are respectively the
normalized galaxy-galaxy, galaxy-random, and random-random
number of pairs with separation (s, µ). Since we are interested
in quantifying RSD effects, we have decomposed the three-
dimensional galaxy separation vector s into polar coordinates
(s, µ), where s is the norm of the separation vector and µ is the
cosine of the angle between the line-of-sight and separation vec-
tor directions. This estimator minimizes the estimation variance
and circumvents discreteness and finite volume effects (Landy
& Szalay 1993; Hamilton 1993). A random catalogue needs to
be constructed, whose aim is to accurately estimate the num-
ber density of objects in the sample. It must be an unclustered
population of objects with the same radial and angular selection
functions as the data. In this analysis, we use random samples
with 20 times more objects than in the data to minimize the shot
noise contribution in the estimated correlation functions, and the
redshifts of random points are drawn randomly from the model
n(z) presented in Fig. 1.
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In order to study redshift-space distortions, we further ex-
tract the multipole moments of the anisotropic correlation func-
tion ξ(s, µ). This approach has the main advantage of reducing
the number of observables, compressing the cosmological in-
formation contained in the correlation function. This eases the
estimation of the covariance matrices associated with the data.
We adopt this methodology in this analysis and use the two first
non-null moments ξ0(s) and ξ2(s), where most of the relevant in-
formation is contained, and ignore the contributions of the more
noisy subsequent orders. The multipole moments are related to
ξ(s, µ) as

ξ`(s) =
2` + 1

2

∫ 1

−1
ξ(s, µ)L`(µ)dµ, (2)

where L` is the Legendre polynomial of order `. In practice the
integration of Eq. 2 is approximated by a Riemann sum over the
binned ξ(s, µ). We use a logarithmic binning in s with ∆ log(s) =
0.1 and a linear binning in µ with ∆µ = 0.02.

VIPERS has a complex angular selection function which has
to be taken into account carefully when estimating the correla-
tion function. This has been studied in detail for the VIPERS
Public Data Release 1 (PDR-1) (Guzzo et al. 2014; Garilli et al.
2014) and particularly for the galaxy clustering estimation in de
la Torre et al. (2013) and Marulli et al. (2013). We follow the
same methodology to account for it in this analysis with only
small improvements. We summarize it in the following and re-
fer the reader to the companion paper, Pezzotta et al. (2017),
for further details and tests of the method when applied to the
VIPERS final dataset.

The main source of incompleteness in the survey is intro-
duced by the VIMOS slit positioner, SSPOC, and the VIPERS
one-pass observational strategy. This results in an incomplete
and uneven spectroscopic sampling, described in detail in Guzzo
et al. (2014); Garilli et al. (2014). In terms of galaxy clustering,
the effect is to introduce an underestimation in the amplitude of
the measured galaxy correlation function, which becomes scale-
dependent on the smallest scales. We demonstrate in de la Torre
et al. (2013) that this can be corrected by weighting each galaxy
in the estimation of the correlation function. For this we define a
survey completeness weight, wC , which is defined for each spec-
troscopic galaxy as well as an angular pair weight, wA, which is
applied only to GG pair counts. The latter is obtained from the
ratio of one plus the angular correlation functions of targeted and
spectroscopic galaxies, as described in de la Torre et al. (2013).

The improvements compared to the PDR-1 analysis only
concern the estimation of survey completeness weights wC .
These in fact correspond to the inverse effective sampling rate,
ESR, and are defined for each galaxy as

wC = ESR−1 = (SSR × TSR)−1, (3)

where SSR, TSR are respectively the spectroscopic and target
sampling rates (for details, see Guzzo et al. 2014). A signifi-
cant effort has been invested in improving the estimation of the
SSR and TSR. In particular the SSR, which characterizes our
ability of measuring the redshifts from observed galaxy spectra,
has been refined and now accounts for new galaxy property de-
pendencies, as described in Scodeggio et al. (2017). The TSR,
defined as the fraction of spectroscopically observed galaxies in
the parent target catalogue, has been recomputed with better an-
gular resolution, on rectangular apertures of 60 by 100 arcsec2

around spectroscopic galaxies. In order to mitigate the shot noise
contribution in the galaxy counts in such small apertures, we use
the Delaunay tesselation that naturally adapts to local density of

points (for details, see Pezzotta et al. 2017). The accuracy of this
new set of weights is tested in the next section and in Pezzotta
et al. (2017).

By applying these weights we effectively up-weight galaxies
in the pair counts. It is important to note that the spatial distribu-
tion of the random objects is kept consistently uniform across the
survey volume. The final weights assigned to GG, GR, and RR
pairs combine the survey completeness and angular pair weights
as

GG(s, µ) =

NG∑
i=1

NG∑
j=i+1

wC
i wC

j wA(θi j)Θi j (s, µ) (4)

GR(s, µ) =

NG∑
i=1

NR∑
j=1

wC
i Θi j (s, µ) (5)

RR(s, µ) =

NR∑
i=1

NR∑
j=i+1

Θi j (s, µ) , (6)

where Θi j(s, µ) is equal to unity for log(si j) in [log(s) −
∆ log(s)/2, log(s) + ∆ log(s)/2] and µi j in [µ − ∆µ/2, µ + ∆µ/2],
and null otherwise. We define the separation associated with
each logarithmic bin as the median pair separation inside the bin.
This definition is more accurate than using the bin centre, partic-
ularly at large s when the bin size is large.

One can also extract real-space clustering information from
the anisotropic redshift-space correlation function. This can be
done by measuring the latter with the estimator of Eq. 1, but
where the redshift-space galaxy separation vector is decomposed
in two components, rp and π, respectively perpendicular and par-
allel to the line-of-sight (Fisher et al. 1994). This decomposition
allows the isolation of the effect of peculiar velocities as these
modify only the component parallel to the line-of-sight. This
way, redshift-space distortions can then be mitigated by inte-
grating ξ(rp, π) over π, thus defining the projected correlation
function

wp(rp) =

∫ πmax

−πmax

ξ(rp, π)dπ. (7)

We measure wp(rp) using an optimal value of πmax =

50 h−1 Mpc, allowing us to reduce the underestimation of the
amplitude of wp(rp) on large scales and at the same time to
avoid including noise from uncorrelated pairs with separations
of π > 50 h−1 Mpc. From the projected correlation function, one
can derive the following quantity

Υgg(rp, r0) = ρc

 2
r2

p

∫ rp

r0

rwp(r) dr − wp(rp) +
r2

0

r2
p

wp(r0)
 , (8)

where r0 is a cut-off radius, ρc = 3H2/(8πG) is the critical den-
sity, H(a) = ȧ/a is the Hubble parameter, and G is the gravi-
tational constant. This quantity is equivalent to Υgm, which is
measurable from galaxy-galaxy lensing (see next section), but
for galaxy-galaxy correlations instead of galaxy-matter ones. It
enters the definition of the gravitational slip parameter EG. In
order to measure it in practice, since the logarithmic binning in
rp is rather large in our analysis, we interpolate wp(rp) using cu-
bic spline interpolation before evaluating the integral in Eq. 8
numerically. We find that Υgg is more accurately measured with
this technique than by modelling wp(rp) as a power law to per-
form the integral, as is often done (e.g. Mandelbaum et al. 2013).
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3.2. Galaxy-galaxy lensing estimation

We use in this analysis the weak lensing technique usually re-
ferred to as galaxy-galaxy lensing, in which one infers the tan-
gential shear of background sources γt around foreground ob-
jects (lenses) induced by the projected matter distribution in
between. This quantity is sensitive to the projected cross-
correlation between lens galaxies and the underlying matter dis-
tribution. Since the shear signal is weak and the intrinsic el-
lipticity of galaxies is unknown, one has to average the former
over a large number of foreground sources. The quantity that is
effectively measured is the differential excess surface density

∆Σgm(rp) = Σcrit

〈
γt(rp)

〉
, (9)

where

Σcrit =
c2

4πG
DS

DLSDL
. (10)

In the above equations, rp is the comoving transverse distance
between lens and source galaxies, DS, DLS, DL are the angu-
lar diameter observer-source, lens-source, and observer-lens dis-
tances, and c is the speed of light in the vacuum.

We use the inverse variance-weighted estimator for the dif-
ferential excess surface density (e.g. Mandelbaum et al. 2013):

∆Σgm(rp) =

∑NS
i=1

∑NL
j=1 wS

i et,iΣ
−1
crit, i jΘi j

(
rp

)
∑NS

i=1
∑NL

j=1 wS
i Σ−2

crit, i jΘi j

(
rp

) , (11)

where the i and j indices run over source and lens galaxies re-
spectively, NS and NL are respectively the number of source and
lens galaxies, et,i is the tangential ellipticity for each lens-source
pair, wS are statistical weights accounting for biases in the deter-
mination of background source ellipticities, and Θi j(rp) is equal
to unity for rp, i j in [rp − ∆rp/2, r + ∆rp/2] and null otherwise.
The projected separation rp is calculated as rp = θχL, where θ
and χL are respectively the angular distance between the lens and
the source, and the radial comoving distance of the lens. This es-
timator includes an inverse-variance weight for each lens-source
pair Σ−2

crit, which downweights the pairs at close redshifts that
contribute little to the weak lensing signal (Mandelbaum et al.
2013).

This estimator is unbiased if the redshifts of the sources are
perfectly known, but here we have only photometric redshift es-
timates: the maximum likelihood photometric redshift and the
normalized redshift probability distribution function for each
source ps(z). Using the maximum likelihood photometric red-
shift of sources in Eq. 11 and restricting the sum to pairs with
zS > zL can possibly lead to a dilution of the signal induced by
the non-negligible probability that zS < zL. This effect can be
mitigated by replacing Σ−1

crit in Eq. 11 by its average over the
source redshift probability distribution function ps〈
Σ−1

crit

〉
=

∫ ∞

zL

dzS ps(zS)Σ−1
crit(zL, zS), (12)

which leads to the following estimator (e.g. Miyatake et al. 2015;
Blake et al. 2016):

∆Σgm(rp) =

∑NS
i=1

∑NL
j=1 wS

i et,i

〈
Σ−1

crit, i j

〉
Θi j

(
rp

)
∑NS

i=1
∑NL

j=1 wS
i

〈
Σ−1

crit, i j

〉2
Θi j

(
rp

) . (13)

In principle, those estimators hold in the limit where the lens
redshift distribution is narrow and lens redshifts accurate (Naka-
jima et al. 2012). To better understand the importance of the
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Fig. 2. Relative difference between various estimates of ∆Σgm, based
on different assumptions for source and lens redshifts, and the fiducial
estimate in the data at 0.5 < z < 0.7. The quantity shown in the figure is
∆Σgm/∆Σ

f id
gm −1 as a function of the projected separation rp. The fiducial

estimate ∆Σ
f id
gm is that obtained by using Eq. 13, which includes the indi-

vidual redshift probability distribution function ps(z) of the sources, and
for the lenses, the VIPERS spectroscopic redshift (zspec) when available
or the CFHTLenS maximum likelihood photometric redshift (zphot) oth-
erwise (see text). It corresponds to the adopted estimate for the analysis.
The grey shaded area represents the relative statistical error expected in
the survey.

effects introduced by an imperfect knowledge of the source and
lens redshifts in the data, we perform a comparison of different
estimates using Eq. 11 or Eq. 13, and various assumptions on
the source and lens redshifts. This is presented in terms of the
relative difference with respect to a fiducial estimate in Fig. 2.
The fiducial estimate is that obtained by using Eq. 13, which
includes the individual redshift probability distribution function
ps(z) of the sources, and for the lenses, the VIPERS spectro-
scopic redshift when available or the CFHTLenS maximum like-
lihood photometric redshift otherwise.

We find that the estimate based on Eq. 11, which only
uses maximum likelihood photometric redshifts for both lenses
and sources, underestimate the signal on all probed scales by
about 15% with respect to the fiducial case. Here, we im-
pose zS > 0.1 + zL, including the additive term of 0.1 to ac-
count for typical photometric redshift errors (e.g. Coupon et al.
2015). Further including the source redshift probability distribu-
tion function through the estimator of Eq. 13 allows a slight im-
provement, reaching an underestimation of about 10% with re-
spect to the fiducial case. The two previous estimates are still af-
fected by the uncertainty on the lens redshifts, which effectively
tends to dilute the overall signal. If we now use as lenses only
VIPERS spectroscopic galaxies, which represents about 30% of
all galaxies with iAB < 22.5, we find a remarkably good agree-
ment with the fiducial estimate. In principle, this estimate may
be considered as the reference unbiased estimate, however on the
largest scales probed by the data, i.e. at rp = 10 − 20 h−1 Mpc,
the signal drops significantly. This can be imputed to the lack
of source-lens pairs induced by the reduced number of lenses,
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directly affecting our ability to probe the largest scales signal.
However, we find that this effect can be mitigated by adding
photometric lenses from the CFHTLenS catalogue, taking the
maximum likelihood photometric redshifts: this corresponds to
the fiducial estimate. We note that the expected statistical uncer-
tainty, which is shown in Fig. 2 with the grey shaded area, is not
negligible particularly above rp = 10 h−1 Mpc, and higher than
any residual systematic effect. This test makes us confident that
our fiducial estimate of ∆Σgm(rp) is robust, given the expected
level of statistical error in the data. Similar results are found at
0.7 < z < 1.2, leading to the same conclusions.

A non-negligible source of systematics in weak lensing mea-
surements is related to the measurement of background galaxy
shapes. This can lead to systematic biases in the lensing mea-
surements. The CFHTLenS collaboration has studied these ex-
tensively in Miller et al. (2013) and Heymans et al. (2012), and
we follow their method to correct our measurements. We used
the additive and multiplicative shear calibration corrections c and
m, as well as the optimal weights wS provided by lensfit, which
are available in the CFHTLenS catalogue. In particular, to cor-
rect for the multiplicative bias we applied the correction factor(
1 + K(rp)

)−1
to ∆Σgm(rp) as described in Miller et al. (2013)

and Velander et al. (2014). We found this correction to boost the
galaxy-galaxy lensing signal by about 5% independently of the
scale.

For the purpose of constraining the cosmological model, it
can be difficult to use ∆Σgm as its modelling is non-linear. One of
the difficulties is to model the non-linear scales and the intrinsic
mixing of small-scale non-linear and large-scale linear informa-
tion (Baldauf et al. 2010). This is achievable but at the expense
of introducing additional nuisance parameters in the model (e.g.
Cacciato et al. 2013; More et al. 2015). An alternative approach,
which we use in this analysis, consists of using a derived statistic
that allows the mitigation of non-linearities: the annular differ-
ential surface density Υgm, which is defined as (Baldauf et al.
2010)

Υgm(rp, r0) = ∆Σgm(rp) −
r2

0

r2
p
∆Σgm(r0). (14)

This statistic removes the small-scale non-linear contribution of
∆Σgm below a cut-off radius r0. We use this quantity in our anal-
ysis and study the impact of the choice of r0 in Sect. 5.1.

4. Theoretical modelling

4.1. Galaxy biasing

Galaxies are not faithful tracers of the underlying matter dis-
tribution and this has to be taken into account in cosmologi-
cal analyses, since cosmological models primarily predict matter
observables. The modelling of galaxy biasing is simplified when
focusing on large scales, where bias can be considered as linear
and simply be represented as a constant multiplicative factor in
front of the matter power spectrum. This is a common assump-
tion in RSD analyses. In our case, however, the relatively small
survey volume means that much of our information lies below
fully linear scales; for this reason, and because of the intrin-
sic non-linearities in the excess surface density ∆Σgm, additional
care must be taken to model galaxy biasing. We use a non-linear
prescription for galaxy bias based on the cosmological pertur-
bation theory that allows describing it more accurately down to
translinear scales. We adopt the non-linear non-local bias model

of McDonald & Roy (2009) that relates the galaxy overdensity
δg and matter overdensity δ as:

δg(x) = b1δ(x) +
1
2

b2[δ2(x) − σ2] +
1
2

bs2 [s2(x) − 〈s2〉]

+O(s3(x)), (15)

where b1 and b2 are the linear and second-order non-linear bias
terms, bs2 the non-local bias term, s is the tidal tensor term from
which non-locality originates. The σ2 and 〈s2〉 terms ensure the
condition 〈δg〉 = 0.

4.2. Annular differential excess surface density

The galaxy-galaxy lensing quantity that we observe is the differ-
ential excess surface density. It is defined as

∆Σgm(rp) = Σgm(rp) − Σgm(rp), (16)

where

Σgm(rp) =
2
r2

p

∫ rp

0
Σgm(r) r dr (17)

and Σgm(rp) is the projected surface density defined as

Σgm(rp) = Ωmρc

∫ ∞

−∞

(
1 + ξgm(

√
r2

p + χ2
)

dχ. (18)

In the above equation, Ωm is matter energy density and χ is the
radial comoving coordinate. Υgm can be predicted from ∆Σgm by
using Eq. 14 or directly from the galaxy-matter cross-correlation
function as (Baldauf et al. 2010)

Υgm(rp) =

∫ ∞

0
ξgm(x)WΥ(x, rp, r0)dx, (19)

where WΥ(x, rp, r0) is the window function (Baldauf et al. 2010):

WΥ(x, rp, r0) =
4x
r2

p

(√
x2 − r2

0Θ(x − r0) −
√

x2 − r2
pΘ(x − rp)

)

−
2x
r2

p

 r2
pΘ(x − rp)√

x2 − r2
p

−
r2

0Θ(x − r0)√
x2 − r2

0

 , (20)

where Θ(x) is the Heaviside step function.
From these equations one can see explicitly that Υgm is

related to the galaxy-matter cross-correlation function ξgm or
cross-power spectrum Pgm. If we assume the biasing model of
Eq. 15, Pgm can be written as (McDonald & Roy 2009)

Pgm(k) = b1Pδδ(k) + b2Pb2,δ(k) + bs2 Pbs2,δ(k)

+b3nlσ
2
3(k)Plin(k), (21)

where Pδδ is the non-linear matter density-density power spec-
trum, b3nl is a third-order non-local bias term, Plin is the lin-
ear matter power spectrum, and Pb2,δ, Pbs2,δ are 1-loop integrals
given in Appendix A. In the local Lagrangian picture where one
assumes no initial non-local bias, one can predict that the non-
local bias terms at later time are related to b1 such that (Chan
et al. 2012; Saito et al. 2014)

bs2 = −
4
7

(b1 − 1) (22)

b3nl =
32

315
(b1 − 1). (23)

We adopt these relations and our model has finally two galaxy
biasing parameters: b1 and b2, b1 being the standard linear bias
parameter.
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4.3. Redshift-space distortions

The most general formalism describing the redshift-space
anisotropies in the power spectrum derives from writing the mat-
ter density conservation in real and redshift space (Kaiser 1987).
In particular, in the plane-parallel approximation that is assumed
in this analysis, the anisotropic power spectrum of matter has the
general compact form (Scoccimarro et al. 1999)

Ps(k, ν) =

∫
d3r

(2π)3 e−ik·r
〈
e−ik f ν∆u‖×

[δ(x) + f∂
‖
u
‖
(x)][δ(x′) + f∂

‖
u
‖
(x′)]

〉
(24)

where ν = k‖/k, u‖(r) = −v‖(r)/( f aH(a)), v‖(r) is the line-of-
sight component of the peculiar velocity, δ is the matter density
field, ∆u‖ = u‖(x) − u‖(x′) and r = x − x′. It is worth noting that
in Fourier space, for an irrotational velocity field, ∂

‖
u
‖

is related
to the divergence of the velocity field θ via ∂

‖
u
‖
(k) = ν2θ(k). Al-

though exact, Eq. 24 is impractical and we use the approxima-
tion proposed by Taruya et al. (2010). In the case of perfect
matter tracers, the latter model takes the form

Ps(k, ν) = D(kνσv)
[
Pδδ(k) + 2ν2 f Pδθ(k) + ν4 f 2Pθθ(k)

+CA(k, ν, f ) + CB(k, ν, f )
]
, (25)

where D(kνσv) is a damping function, Pδδ, Pδθ, Pθθ are re-
spectively the non-linear matter density-density, density-velocity
divergence, and velocity divergence-velocity divergence power
spectra, and σv is an effective pairwise velocity dispersion that
we can fit for and then treat as a nuisance parameter. The ex-
pressions for CA(k, ν, f ) and CB(k, ν, f ) are given in Taruya et al.
(2010); de la Torre & Guzzo (2012). This phenomenological
model can be seen in configuration space as a convolution of
a pairwise velocity distribution, the damping function D(kµσv)
that we assume to be Lorentzian in Fourier space, i.e.

D(kνσv) = (1 + k2ν2σ2
v)−1, (26)

and a term involving the density and velocity divergence corre-
lation functions and their spherical Bessel transforms.

This model can be generalized to the case of biased tracers by
including a biasing model. By introducing that of Eq. 15, one
obtains for the redshift-space galaxy power spectrum (Beutler
et al. 2014; Gil-Marín et al. 2014)

Ps
g(k, ν) = D(kνσv)

[
Pgg(k) + 2ν2 f Pgθ(k) + ν4 f 2Pθθ(k)

+CA(k, ν, f , b1) + CB(k, ν, f , b1)
]

(27)

where

Pgg(k) = b2
1Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2 b1Pbs2,δ(k)

+b2
2Pb22(k) + 2b2bs2 Pb2s2(k) + b2

s2 Pbs22(k)

+2b1b3nlσ
2
3(k)Plin(k) + N, (28)

Pgθ(k) = b1Pδθ(k) + b2Pb2,θ(k) + bs2 Pbs2,θ(k)

+b3nlσ
2
3(k)Plin(k). (29)

In the above equations Pδθ is the non-linear matter density-
velocity divergence power spectrum, Plin is the matter linear
power spectrum, and Pb2,δ, Pbs2,δ, Pb2,θ, Pbs2,θ, Pb22, Pb2s2, Pbs22,
σ2

3 are 1-loop integrals given in Appendix A.
The final model for ξs

`
(s) is obtained from its Fourier coun-

terpart Ps
`
(k) defined as

Ps
`(k) =

2` + 1
2

∫ 1

−1
Ps

g(k, ν)L`(ν) dν, (30)

where

ξs
`(s) = i`

∫
k2

2π2 Ps
`(k) j`(ks) dk. (31)

In the above equation, j` denotes the spherical Bessel functions.
The ingredients of the model are the non-linear power spec-

tra of density and velocity divergence at the effective redshift
of the sample. These power spectra can be predicted from per-
turbation theory or simulations for different cosmological mod-
els. The non-linear matter power spectrum can also be obtained
to a great accuracy from semi-analytical prescriptions such as
HALOFIT (Smith et al. 2003), for various cosmologies. In par-
ticular, HALOFIT allows the prediction of Pδδ from the lin-
ear matter power spectrum and the knowledge of the scale of
non-linearity at the redshift of interest, knl(z). We note that at
fixed linear matter power spectrum shape, variations of σ8(z)
can be straightforwardly mapped into variations of knl(z) (see
Smith et al. 2003). In this analysis, the linear matter power spec-
trum is predicted using the CLASS Boltzmann code (Lesgour-
gues 2011), and we use the latest calibration of HALOFIT by
Takahashi et al. (2012) to obtain Pδδ. To predict Pθθ and Pδθ, we
use the nearly universal fitting functions of Bel et al. (2017) that
depend on the linear power spectrum and σ8(z) as

Pθθ(z) = Plin(z)e−km1σ
m2
8 (z) (32)

Pδθ(z) =
(
Pδδ(z)Plin(z)e−kn1σ

n2
8 (z)

)1/2
, (33)

where Plin is the linear power spectrum and (m1,m2, n1, n2) are
free parameters calibrated on simulations. We adopt here the
values (m1,m2, n1, n2) = (1.906, 2.163, 2.972, 2.034). These pre-
dictions for Pθθ and Pδθ are accurate at the few percent level up
to k ' 0.7 (Bel et al. 2017). Therefore, the overall degree of non-
linearity in Pδδ, Pδθ and Pθθ is solely controlled by σ8(z), which
is left free when fitting the model to observations.

In the model, the linear bias and growth rate parameters, b1
and f , are degenerate with the normalization of the matter power
spectrum parameter σ8. Generally with RSD, only the combina-
tion of b1σ8 and fσ8 can be constrained if no assumption is
made on the actual value of σ8. However in the Taruya et al.
(2010) model, b2

1 fσ4
8, b1 f 2σ4

8, and f 3σ4
8 terms appear in the cor-

rection term CA (see Taruya et al. 2010; de la Torre & Guzzo
2012). Accordingly, in the general case, ( f , b1, b2, σ8, σv) are
treated as separate parameters in the fit and we provide marginal-
ized constraints on the derived fσ8.

4.4. Redshift errors

Redshift errors can potentially affect the anisotropic RSD sig-
nal. In the anisotropic correlation function they have a similar
effect as galaxy random motions in virialized objects: they in-
troduce a smearing of the correlation function along the line of
sight at small transverse separations. If the probability distribu-
tion function of redshift errors is known, their effect can be for-
ward modelled by adding another multiplicative damping func-
tion in the redshift-space galaxy power spectrum of Eq. 19. In
that case, the damping function should be the Fourier transform
of the error probability distribution function. We follow this ap-
proach and the final model is obtained by multiplying Eq. 19 by
a Gaussian with standard deviation set to the estimated pairwise
redshift dispersion of VIPERS galaxies such that the final RSD
model P̂s

g reads

P̂s
g(k, ν) = G(kνσz)Ps

g(k, ν), (34)
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Fig. 3. Probability distribution function of redshift errors at 0.5 <
z < 0.7 and 0.7 < z < 1.2 in the VIPERS data. This is obtained from
the redshift differences of reobserved galaxies, for which there are two
independent redshift measurements. The dotted and dashed curves are
best-fitting Gaussians for the redshift intervals 0.5 < z < 0.7 and 0.7 <
z < 1.2 respectively.

where Ps
g(k, ν) is taken from Eq. 27, G is the Fourier transform

of the Gaussian kernel

G(kνσz) = exp
(
−

k2ν2σ2
z

2

)
, (35)

and σz is the pairwise standard deviation associated with the red-
shift error probability distribution function.

The Gaussian form is motivated by the data themselves as
shown in Fig. 3. In this figure are shown the distributions of red-
shift differences at 0.5 < z < 0.7 and 0.7 < z < 1.2 in VIPERS
reobservations (1061 at 0.5 < z < 0.7 and 1086 at 0.7 < z < 1.2),
for which we have two independent redshift measurements for
the same galaxies (see Scodeggio et al. 2017). These distribu-
tions can be rather well modelled by Gaussians, and by doing
so, we obtain values of σz = 1.31 × 10−3 and σz = 1.36 × 10−3

for the pairwise redshift standard deviations at 0.5 < z < 0.7
and 0.7 < z < 1.2 respectively. These are further converted in
comoving length assuming the fiducial cosmology to enter the
model in Eq. 34.

4.5. Alcock-Paczynski effect

Additional distortions can arise in galaxy clustering because of
the need to assume a fiducial cosmology to convert redshift and
angular positions into comoving distances, and the fact that this
fiducial cosmology is not necessarily the true one. This is the
Alcock & Paczynski (1979) effect (AP). More specifically, since
the line-of-sight separations require the knowledge of the Hub-
ble parameter, H(z), and transverse separations that of the angu-
lar diameter distance, DA(z), any difference in H(z) and DA(z)
between the fiducial and true cosmologies, translates into an
anisotropic clustering, independently of RSD. Although AP and
RSD anisotropies are degenerate to some extent in the observ-
ables (Ballinger et al. 1996; Matsubara & Suto 1996), they have
a fundamentally different origin: AP is sensitive to the geom-

etry whereas RSD are sensitive to the growth of cosmological
perturbations.

We follow Xu et al. (2013) and model AP distortions us-
ing the α and ε parameters, which characterize respectively the
isotropic and anisotropic distortion components associated with
AP. These are given by

α =

 D2
A

D′2A

H′

H

1/3

(36)

ε =

(
D′A
DA

H′

H

)1/3

− 1, (37)

where quantities calculated in the fiducial cosmology are de-
noted with primes. Those parameters modify the scales at which
the correlation function is measured such that

r′‖ = α(1 + ε)2r‖ (38)

r′⊥ = α(1 + ε)−1r⊥. (39)

Therefore, for the model correlation function monopole and
quadrupole in a tested cosmology, the corresponding quantities
in the fiducial cosmology are obtained as (Xu et al. 2013)

ξ′0(s′) = ξ0(αs) +
2
5
ε

[
3ξ2(αs) +

dξ2(αs)
d ln(s)

]
(40)

ξ′2(s′) = 2ε
dξ0(αs)
d ln(s)

+

(
1 +

6
7
ε
)
ξ2(αs) +

4
7
ε

dξ2(αs)
d ln(s)

+
4
7
ε
[
5ξ4(αs) +

dξ4(αs)
d ln(s)

]
. (41)

In the case of the galaxy-galaxy lensing statistic that we are con-
sidering, since it is a function of the transverse separation rp, the
corresponding Υgm in the fiducial cosmology is simply given by

Υ′gm(r′p) = Υgm

(
α(1 + ε)−1rp

)
. (42)

4.6. Cosmological insights from galaxy clustering and
galaxy-galaxy lensing

Gravitational physics on cosmological scales can be tested from
measurements of the growth rate of structure, which is well mea-
sured from RSD in the galaxy clustering pattern. We have seen
that in practice, the correlation function multipole moments de-
pend not only on the growth rate of structure f , but also on the
shape and amplitudeσ8 of the matter power spectrum, the galaxy
bias parameters b1 and b2, and the pairwise velocity dispersion
σv. To derive the growth rate of structure, one then needs to
marginalise over those nuisances. This is of course a source of
uncertainty in the determination of the growth rate of structure.
Moreover, since there is a degeneracy between the amplitude of
the matter power spectrum σ8, the growth rate of structure f ,
and the linear bias parameter b1, RSD alone are sensitive to the
fσ8 and b1σ8 parameter combinations.

On the other hand, galaxy-galaxy lensing probes the real-
space galaxy-matter correlations that are described by the shape
and amplitude σ8 of the matter power spectrum, the galaxy bias
parameters b1 and b2, and the matter density parameter Ωm. Pro-
jected galaxy-galaxy correlations are also sensitive to σ8, b1, and
b2. But by looking in detail at those dependencies, we can see
that in the linear regime Υgm ∝ Ωmb1σ

2
8, while Υgg ∝ b2

1σ
2
8,

such that by combining the two we can break the degeneracy
between b1 and σ8. We note that ξ(s, µ), from which ξ0 and ξ2
are derived, has the same parameter dependences as Υgg, except
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for the additional f dependence. Therefore, additional galaxy-
galaxy lensing information brings an independent handle on the
bias parameters b1 and b2, and the power spectrum amplitude
σ8, reducing the uncertainties on the growth rate of structure in-
duced by the lack of knowledge on the bias of galaxies, as well
as a supplementary sensitivity to Ωm.

5. Tests on simulated data

5.1. Simulated data

To test the robustness of redshift-space galaxy clustering,
galaxy-galaxy lensing, and associated error estimates, we make
use of a large number of mock galaxy samples, which are de-
signed to be a realistic match to the VIPERS final dataset. We
used the mock lensing lightcones presented in Giocoli et al.
(2016). These have been built upon the Big MultiDark dark
matter N-body simulation (Klypin et al. 2016), which assumes
a flat ΛCDM cosmology with (Ωm, ΩΛ, Ωb, h, n, σ8) =
(0.307, 0.693, 0.0482, 0.678, 0.960, 0.823) and covers a volume
of 15.625 h−3 Gpc3. These lightcones contain the shear in-
formation associated with simulated background galaxies dis-
tributed uniformly on the sky but following the redshift dis-
tribution of CFHTLenS galaxies. More specifically, the light-
cones have been built to match the effective number den-
sity and redshift distribution of the CFHTLenS lensing cata-
logue. We added Gaussian random errors with standard devia-
tion σe = (σ2

e1
+ σ2

e2
)1/2 = 0.38 to the ellipticities to mimic those

in the CFHTLenS data. The size of the simulation allowed us to
create 54 independent lightcones for W1 and W4, spanning the
redshift range 0 < z < 2.3 (for details, see Giocoli et al. 2016).

We populate these lightcones with foreground galaxies using
the halo occupation distribution (HOD) technique and apply the
detailed VIPERS selection function and observational strategy.
The haloes were identified in the simulation using a friends-of-
friends algorithm with a relative linking length of b = 0.17 times
the inter-particle separation. The mass limit to which the halo
catalogues are complete is 1011.95 h−1 M�. Because this limit-
ing mass is too large to host the faintest galaxies observed with
VIPERS, we use the method of de la Torre & Peacock (2013)
to reconstruct haloes below the resolution limit. This method
is based on stochastically resampling the halo number density
field using constraints from the conditional halo mass function.
For this, one needs to assume the shapes of the halo bias fac-
tor and halo mass function at masses below the resolution limit
and use the analytical formulae obtained by Tinker et al. (2008,
2010). With this method we are able to populate the simula-
tion with low-mass haloes with a sufficient accuracy to have un-
biased galaxy two-point statistics in the simulated catalogues
(for details, see de la Torre et al. 2013). The minimum re-
constructed halo mass we consider for the purpose of creating
VIPERS mocks is 1010 h−1 M�.

In this process, we populate each halo with galaxies accord-
ing to its mass, the mean number of galaxies in a halo of a given
mass being given by the HOD. It is common usage to differ-
entiate between central and satellite galaxies in haloes. While
the former are put at rest at halo centres, the latter are randomly
distributed within each halo according to a NFW radial profile
(Navarro et al. 1996, 1997). The halo occupation function and
its dependence on redshift and luminosity/stellar mass must be
precisely chosen in order to obtain mock catalogues with realis-
tic galaxy clustering properties. We calibrated the halo occupa-
tion function directly on the VIPERS data, as presented in de la
Torre et al. (2013). We add velocities to the galaxies and mea-

sure their redshift-space positions. While the central galaxies are
assigned the velocity of their host halo, satellite galaxies have
an additional random component for which each Cartesian ve-
locity component is drawn from a Gaussian distribution with a
standard deviation that depends on the mass of the host halo.
Details about the galaxy mock catalogue construction technique
are given in Appendix A of de la Torre et al. (2013).

The final step in obtaining fully realistic VIPERS mocks
is to add the detailed survey selection function. We start by
applying the magnitude cut iAB < 22.5 and the effect of the
colour selection on the radial distribution of the mocks. This
is achieved by depleting the mocks at z < 0.6 so as to repro-
duce the VIPERS colour sampling rate (see Guzzo et al. 2014,
for detail). The mock catalogues that we obtain are then similar
to the parent photometric sample in the data. We next apply the
slit-positioning algorithm with the same setting as for the data.
This allows us to reproduce the VIPERS footprint on the sky,
the small-scale angular incompleteness and the variation of TSR
across the fields. Finally, a random redshift error is added to the
redshifts as in the data. We are thus able to produce realistic
mock galaxy catalogues that contain the detailed survey com-
pleteness function and observational biases of VIPERS, which
we refer to as the ‘observed’ mock catalogues in the following.

We note that another set of VIPERS mock catalogues span-
ning the redshift range of 0.4 < z < 1.2 have been constructed.
This set, which comprises 306 and 549 lightcones of W1 and
W4 fields respectively, has not been explicitly used in this analy-
sis, but in accompanying VIPERS PDR-2 analyses (e.g. Hawken
et al. 2017; Pezzotta et al. 2017; Wilson et al. 2017; Rota et al.
2017).

5.2. Systematics on the correlation function monopole and
quadrupole

The mock samples are crucial for testing the redshift-space clus-
tering estimation in VIPERS, which is not trivial given the com-
plex selection function of the survey. We first study the im-
pact of the survey selection function on the measurement of the
monopole and quadrupole correlation functions. We measured
these quantities in the observed mocks, applying the different
weights defined in Sect. 3.1, and compare them to the refer-
ence measurements obtained from the parent mocks, including
VIPERS typical spectroscopic redshift errors. The relative dif-
ferences in ξ0 and ξ2 as a function of separation and averaged
over the mocks are shown in Figs. 4 and 5, respectively for the
two samples at 0.5 < z < 0.7 and 0.7 < z < 1.2. First of
all, it is clear from these figures that without any correction the
spectroscopic strategy introduces biases in the estimation of the
galaxy clustering. But when applying the survey completeness
weights wC , one can recover within a few percent the correct am-
plitude of the correlation functions on scales above 5 h−1 Mpc.
By further applying the angular weights wA, we obtain an al-
most unbiased estimate of the monopole and quadrupole down
to a few h−1 Mpc. The statistical relative error induced by sam-
ple variance and estimated from the dispersion among the mock
samples, is shown with the shaded area in these figures. It is
important to note that it is much larger than any residual sys-
tematics over the range of scales considered. Finally, it is worth
mentioning that in the quadrupole, the apparent higher level of
systematics at around s = 10 h−1 Mpc is an artefact due to the
zero crossing of the functions at slightly different separations.
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Fig. 4. Relative systematic errors on the correlation function monopole
(top panel) and quadrupole (bottom panel) at 0.5 < z < 0.7 and effects
of target sampling rate (TSR) and angular pair weighting (wA) correc-
tions. The grey shaded areas represent the relative statistical error ex-
pected in the survey, while light grey band mark ±1% relative uncer-
tainties for reference.

5.3. Systematics on the growth rate of structure

We further study our ability to determine fσ8 when combining
RSD and galaxy-galaxy lensing measurements in a maximum
likelihood analysis. For this purpose we perform several analy-
ses of the mean RSD and galaxy-galaxy lensing measurements
in the observed mocks, for different minimum separations smin
in the correlation functions and different cut-off scale r0 in the
annular differential excess surface density. These analyses are
performed on the mean quantities to reduce the impact of statis-
tical errors and concentrate on systematics. The precision matrix
is estimated from the mocks as explained in Sect. 6, except that
each element is further divided by the number of mocks to char-
acterize the error on the mean. As an illustration, we present in
this section only the case of the sample at 0.5 < z < 0.7. The
sample at 0.7 < z < 1.2 provides very similar systematic levels.

Fig. 6 presents the systematic errors on fσ8, i.e. the rel-
ative difference of recovered values with respect to the fidu-
cial value of the mocks, as a function of smin and for r0 =
(1h−1Mpc, 1.5h−1Mpc). We consider rather small minimum
scales and cut-off radii to explore the extent to which our mod-
elling is robust in the translinear regime. We can see in this
figure that our model allows the recovery of the fiducial value of
fσ8 down to smin = 6.3 h−1 Mpc, with systematic errors below
5%, independently of the choice of r0. In principle, values of r0
smaller than the typical radius of haloes hosting these galaxies
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Fig. 5. Same as in Fig. 4 but for the redshift interval 0.7 < z < 1.2.
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Fig. 6. Relative systematic error on fσ8 at 0.5 < z < 0.7 as a function
of smin, for different values of r0 (r0 = 1 h−1 Mpc and r0 = 1.5 h−1 Mpc)
and when including or not redshift error. The error bars represent the
relative statistical error associated to analysing the mean mock predic-
tions. The shaded area shows the 1σ confidence region associated with
the relative statistical error expected in VIPERS. The squares and trian-
gles are artificially shifted along smin axis to improve the clarity of the
figure.
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nal among the mock realizations (points) and its associated 1σ error
(shaded region). The curves show the theoretical predictions for the
fiducial parameters of the mocks, varying only the b2 parameter as la-
beled.

may not be optimal, since the non-linear contribution to correla-
tions may dominate on those scales, which are more difficult to
describe (Baldauf et al. 2010). However, this also depends on the
galaxy type and the redshift. For VIPERS galaxies and the con-
sidered biasing model, we find that r0 = 1 h−1 Mpc can be well
described by our model (see also Blake et al. 2016). This can be
seen in Fig. 7 where is shown the comparison between the mean
mock ∆Σgm and Υgm obtained with r0 = (1h−1Mpc, 1.5h−1Mpc)
and the predictions of our model, when b2 is allowed to vary and
b1 is fixed to its fiducial value. We can see that although the
model fails to reproduce ∆Σgm on scales below about 3 h−1 Mpc,
it provides a good description of Υgm for b2 = −0.1.

We finally test the impact of redshift errors on the recovery of
fσ8 in Fig. 6. This figure shows the relative systematic error on
fσ8 as a function smin in the case where r0 is fixed to 1 h−1 Mpc
and typical VIPERS redshift errors are added randomly to mock
galaxy redshifts. By comparing it to the case without redshift
errors, we can see that for the RSD model where a Gaussian
damping term is added to account for redshift errors, the recov-
ery of fσ8 is achieved without additional bias, with only a small
relative bias of about 3% at smin = 6.3 h−1 Mpc and −5% above.
We note that this is the ideal case where the redshift error prob-
ability distribution function is perfectly known.

Overall, these tests demonstrate that our model with smin =
6.3 h−1 Mpc and r0 = 1 h−1 Mpc is robust enough to provide a
precise measurement of fσ8 with VIPERS data, with residual
systematics of the order of a few per cent only, but only repre-
senting about one fifth of expected statistical error on the mea-
surement as shown with the grey shaded region in Fig. 6. Based
on these tests, we adopt (smin, r0) = (6.3 h−1Mpc, 1 h−1Mpc) val-
ues for the following analysis.

6. Likelihood analysis and precision matrix

In order to derive cosmological parameters from the combination
of RSD and galaxy-galaxy lensing measurements, we perform a
maximum likelihood analysis in which we define the likelihood
function L such that

−2 lnL =

Np∑
i=1

Np∑
j=1

∆iĈ−1
i j ∆ j, (43)

where Np is the number of data points in the fit, ∆ is the data-
model difference vector, and Ĉ−1 is the inverse data covariance
matrix. ∆ is defined such that each element is ∆i = di − mi,
where d and m are respectively the data and model predic-
tion vectors. In our case, d is the concatenation of ξ0, ξ2, and
Υgm, for the set of considered separations. The parameter space
of the model is explored using a Monte Carlo Markov Chain
(MCMC) method implementing the Metropolis-Hastings algo-
rithm (Metropolis et al. 1953).

A robust estimation of the inverse data covariance matrix, or
precision matrix, is crucial in order to achieve realistic poste-
rior likelihood functions of the parameters. The different bins in
ξ0, ξ2, and Υgm are correlated to some degree and this must be
allowed for in the likelihood analysis. We measure these three
quantities in the 54 mocks and estimate the covariance matrix C.
The generic elements of the matrix can be evaluated as

Ci j =
1

Nm − 1

Nm∑
k=1

(
dk

i − d̄i

) (
dk

j − d̄ j

)
, (44)

where Nm is the number of mock realizations and the indices i, j
run over the data vector d elements. An unbiased estimate of
the inverse covariance matrix, Ĉ−1, is obtained as (Hartlap et al.
2007)

Ĉ−1 =
Nm − Np − 2

Nm − 1
C−1, (45)

for Nm > Np − 2. The resulting inverse covariance matrix ob-
tained from mock realizations can be noisy, depending on how
large Nm is with respect to Np. In our case, Nm = 54 and
Np = 16, which suggests the presence of a non-negligible noise
in the inverse covariance matrix. In order to reduce the level of
noise, we adopt the tapering technique of Kaufman et al. (2008).
This technique has been introduced in the context of cosmolog-
ical analysis by Paz & Sánchez (2015). This technique relies on
the assumption that large-scale covariances vanish, and consists
of tapering the covariance matrix around the diagonal using a
specific positive and compact taper function. Contrary to other
estimators such as shrinkage (e.g. Pope & Szapudi 2008), the
two-tapers estimator has the advantage of being unbiased. The
inverse tapered covariance matrix is obtained as

ĈT
−1

=

(
Nm − Np − 2

Nm − 1

)
(C ◦ T)−1 ◦ T, (46)

where ‘◦’ denotes the element-wise matrix product and T is the
tapering matrix. We follow Paz & Sánchez (2015) and use the
tapering matrix defined as

Ti j = K(|xi − x j|), (47)

where xi is the ith measurement position in the data vector, and
K is the taper function that we take to be a Wendland function:

K(x) =


(
1 − x

Tp

)4 (
4 x

Tp
+ 1

)
if x < Tp

0 otherwise.
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This taper function has one free parameter, the tapering scale Tp,
which essentially represents the typical scale difference above
which covariances are nullified.

In our case, the covariance matrix is associated with three
different quantities as well as two different separation types, s
and rp. One would then potentially need to use a combination of
several taper functions, since one does not expect the large-scale
covariance to vanish at the same scales for all quantities. Al-
though it may be sub-optimal to use a single taper function, we
still expect to increase the signal-to-noise, and since the estima-
tor is unbiased, one cannot introduce additional bias or error. We
therefore decided to use a single taper function for simplicity.

In the general case, it is not straightforward to define a priori
the optimal tapering scale. Paz & Sánchez (2015) introduced a
simple empirical method, which consists of performing several
maximum likelihood analyses of the data varying only the taper-
ing scale, and taking as the optimal Tp the one that minimizes
the error on the parameter of interest. We perform the same ex-
ercise on the mean mock predictions. The marginalized 1σ error
on fσ8 as a function of Tp is presented in the top panel of Fig. 8.
We can see that the Tp value that minimizes the error is around
15 h−1 Mpc, and we adopt this value in our analysis. We also
verified that the maximum likelihood values for fσ8 remain un-
changed for any value of Tp as shown in the bottom panel of Fig.
8.

To illustrate the method, we present in Fig. 9 the corre-
lation matrix and normalized precision matrix, for the com-
bined RSD and galaxy-galaxy lensing data in the redshift inter-
val 0.5 < z < 0.7, when applying or not the tapering technique
(lower and upper triangles respectively). Those matrices are de-

fined as Ci j/
√

CiiC j j and C−1
i j /

√
C−1

ii C−1
j j respectively, where Ci j

and C−1
i j refer to covariance and precision matrix elements re-

spectively. We can see the reduction of noise, which is par-

ticularly clear in the normalized precision matrix for most off-
diagonal terms.

The tapering technique allows a significant reduction of the
noise level in the precision matrix, but cannot completely re-
move it. The remaining noise can propagate through the like-
lihood analysis into derived parameter uncertainties. In order
to obtain realistic confidence limits on parameters one needs to
account for the additional uncertainties coming from the preci-
sion matrix estimation (Taylor & Joachimi 2014). Percival et al.
(2014) showed that this additional error can be described as a
rescaling of the target parameter covariance, in the case when
the precision matrix is estimated with the standard estimator of
Eq. 45. But the appropriate degree of rescaling is unclear when
the tapering estimator is used. The improvement on the error that
we find with the tapering estimator (i.e. 26.5%) is similar to or
larger than what we would expect with the standard estimator us-
ing 300 mocks or more as predicted by (Dodelson & Schneider
2013; Percival et al. 2014). This gives us confidence that only a
small correction, if any, would be necessary.

7. Cosmological results

The comprehensive tests of the methodology described in pre-
vious sections make us confident that we can perform a ro-
bust combined analysis of RSD and galaxy-galaxy lensing with
VIPERS and CFHTLenS dataset, and infer cosmology from it.
We present in this section the data measurements, growth rate of
structure constraints, and derived gravitational slip parameters at
0.5 < z < 0.7 and 0.7 < z < 1.2.

7.1. Galaxy clustering and galaxy-galaxy lensing
measurements

The correlation function measurements are performed on the full
VIPERS galaxy sample in the redshift intervals 0.5 < z < 0.7
and 0.7 < z < 1.2. We select all VIPERS galaxies above the lim-
iting magnitude of the survey, and measure the monopole and
quadrupole correlation functions in both W1 and W4 fields. The
combined W1+W4 measurements are obtained by summing up
the pairs in the two fields, contributing to the anisotropic two-
point correlation functions ξ(s, µ), before deriving ξ0 and ξ2 from
Eq. 2. The full anisotropic two-point correlation functions are
presented in Fig. 10, and the monopole and quadrupole mo-
ments in Fig. 11. In the latter figure, the individual mock mea-
surements are superimposed, giving a visual appreciation of the
error associated with these measurements in VIPERS. We can
see that the combined W1+W4 monopole and quadrupole cor-
relation function measurements enable us to probe accurately
the redshift-space galaxy clustering signal on scales below about
s = 50 h−1 Mpc.

The differential excess surface density measurements are
obtained by combining W1 and W4 individual field measure-
ments in a similar fashion. The lens galaxies are taken from the
VIPERS catalogue or the CFHTLenS catalogue if no spectro-
scopic redshift is available. They are selected to have iAB < 22.5
and a redshift in the intervals 0.5 < z < 0.7 and 0.7 < z < 1.2.
The source galaxies are taken from the CFHTLenS catalogue
and are selected to have iAB < 24.1. The differential excess sur-
face density and annular differential excess surface density mea-
surements for r0 = 1 h−1 Mpc are presented in Fig. 12. As in
Fig. 11, the individual mock measurements are superimposed.
We can see that with the combined W1+W4 annular differential
excess surface density measurements we can reach scales up to
about rp = 20 h−1 Mpc.
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Our Υgm measurements are more uncertain than the ξ0 and
ξ2 ones. This is essentially related to the way the former are
estimated. Weak lensing is fundamentally limited by the un-
known intrinsic ellipticity of the sources, which dominates the
error budget. This can be mitigated by means of a larger number
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Fig. 11. Monopole (circles) and quadrupole (triangles) correlation
functions of VIPERS galaxies at 0.5 < z < 0.7 (top panel) and 0.7 <
z < 1.2 (bottom panel). Solid curves correspond to individual mock
measurements.

of sources. Given the surface density of sources in our sample
and its rather modest angular coverage of 23.5 deg2, we obtain
relative errors on Υgm of about 25%, estimated from the mock
samples. In contrast, the typical relative error that we obtain on
ξ0 is of 5%. Therefore, in our combined analysis of the RSD
and galaxy-galaxy lensing we expect Υgm to have a much lower
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weight in the likelihood. We finally remark that the observed
Υgm tend to exhibit lower amplitudes than expected in the mock
samples, in particular in the highest redshift interval. We discuss
the cosmological implications of this in Sect. 7.3.

7.2. Growth of structure constraints

We perform a combined maximum likelihood analysis of the
monopole, quadrupole, and annular differential excess surface
density to derive constraints on the growth rate of structure at
0.5 < z < 0.7 and 0.7 < z < 1.2. The effective redshifts as-
sociated with these intervals are z = 0.6 and z = 0.86. They
correspond to the average redshift of pairs contributing the most
to monopole and quadrupole correlation functions in these red-
shift intervals (Samushia et al. 2014). The theoretical model
that we use is described in Sect. 4; it depends on 11 param-
eters, p = ( f , b1, b2, σv, σ8, ε, α,Ωm,Ωmh2,Ωbh2, ns). The last
three describe the shape of the matter power spectrum and these
are determined most accurately by CMB data. Since our galaxy
clustering and weak lensing measurements cannot provide such
tight constraints on these parameters, we fix them to the best-
fitting Planck 2015 TT+lowP+lensing parameters (Planck Col-
laboration et al. 2016). Consistently, Ωm is kept fixed to the
Planck value in Υgm. Possible departures from those parameter
values are only allowed through variations of the AP distortion
parameters ε and α. In the following, we first consider measure-
ments of fσ8, as a derived parameter, and later study the pos-
sibility of deriving independent measurements of f and σ8. All
those measurements are obtained by marginalizing over the nui-
sance parameters: pn = (b1, b2, σv, ε, α). The adopted uniform
priors on the likelihood parameters are summarized in Table 1

Table 1. Adopted priors on the likelihood parameters.

Parameters Uniform prior
b1 [0.5, 2]
b2 [−1, 1]
σv [0, 8]
f [0.2, 1.4]
σ8 [0, 1.2]
ε [−0.1, 0.1]
α [0.9, 1.1]

and the full posterior likelihood contours for the cases presented
in the next section are given in Appendix B.

7.2.1. fσ8 measurements

In our standard configuration, the linear matter power spectrum
shape is fixed to the best-fitting ΛCDM model from Planck 2015
TT+lowP+lensing data (Planck Collaboration et al. 2016). AP
distortion parameters are set to (ε, α) = (0, 1) and are not allowed
to vary. In this configuration we obtain fσ8 values of

fσ8(z = 0.6) = 0.48 ± 0.12 (48)
fσ8(z = 0.86) = 0.48 ± 0.10, (49)

after marginalizing over other parameters. Associated reduced
chi-squared values are χ2

ν = 1.52 and χ2
ν = 1.62 respectively.

These measurements use both RSD and galaxy-galaxy lensing
information. It is instructive to see the impact of adding the
galaxy-galaxy lensing on the measurement of fσ8. Thus if we
use the standard RSD approach without including galaxy-galaxy
lensing information, we obtain

fσ8(z = 0.6) = 0.48 ± 0.11 (50)
fσ8(z = 0.86) = 0.46 ± 0.09, (51)

with a reduced chi-squared value of χ2
ν = 1.12 for both redshifts.

In that case, we fixed b2 = bs2 = b3nl = 0 in the RSD model,
as bias non-linearities are negligible for VIPERS galaxies bias
given the minimum scale used in the fit (Pezzotta et al. 2017).
Moreover, the shape of non-linear power spectra in the model is
fixed by setting σ8 to its fiducial value at the effective redshift of
the sample, as is commonly done (e.g. de la Torre et al. 2013).
The recovered values and associated errors are very similar to
the previous case. We do not find an improvement on fσ8 ac-
curacy when galaxy-galaxy lensing is included, in fact errors are
marginally larger. This can be explained by the lower number
of degrees of freedom in the RSD-only case and the significant
uncertainty associated with our galaxy-galaxy lensing measure-
ments compared to the galaxy clustering ones in the VIPERS
fields. In fact the real gain is on contraining f and σ8 separately
as discussed in Sect. 7.2.4.

7.2.2. Inclusion of Alcock-Paczynski distortions

As a robustness test, we relax the assumption on the shape of
the linear matter power spectrum. We allow the AP distortion
parameters (ε, α) to vary, considering flat priors on ε, α parame-
ters, extending by ±0.1 around (ε, α) = (0, 1). After marginaliz-
ing over those parameters as well, we obtain the following fσ8
measurements:

fσ8(z = 0.6) = 0.51 ± 0.13, (52)
fσ8(z = 0.86) = 0.52 ± 0.11, (53)
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with reduced chi-squared values of χ2
ν = 1.58 and χ2

ν = 1.3 re-
spectively. As expected from the additional degrees of freedom
introduced in the likelihood, the marginalized 68% errors on fσ8
are increased, although the constraints remain completely com-
patible with previous measurements when ε and α were fixed.
This test thus removes any potential concern that our measure-
ments of fσ8 might lack robustness though being dependent on
the assumption of a ΛCDM expansion history.

7.2.3. Comparison with other measurements

In Fig. 13 we compare our fσ8 measurements with previous
measurements from the literature, as well as predictions of the
standard relativistic model for gravity. Our measurements are
consistent with previous measurements at lower or similar red-
shifts from VVDS (Guzzo et al. 2008), SDSS LRG (Cabré &
Gaztañaga 2009; Samushia et al. 2012), WiggleZ (Blake et al.
2012), 6dFGS (Beutler et al. 2012), VIPERS PDR-1 (de la Torre
et al. 2013), MGS (Howlett et al. 2015), FastSound (Okumura
et al. 2016), BOSS-LOWZ (Gil-Marín et al. 2016), and BOSS-
CMASS (Gil-Marín et al. 2016; Chuang et al. 2016). In particu-
lar, our measurement at z = 0.6 is compatible within 1σ with the
WiggleZ z = 0.6 (Blake et al. 2012) and BOSS-CMASS z = 0.57
(Gil-Marín et al. 2016; Chuang et al. 2016) measurements. Our
results are also very close to the standard cosmological model
predictions: they are consistent within 1σ with General Relativ-
ity predictions in a ΛCDM model with cosmological parameters
set to Planck CMB results (Planck Collaboration et al. 2016).

These results are part of a combined effort of the VIPERS
collaboration to estimate the growth rate of structure from the
same data but using different complementary techniques. Specif-
ically, in Pezzotta et al. (2017) we provide a thorough investiga-
tion of the performances of different RSD models in configura-
tion space, using a general consistent modelling of non-linear
RSD; in Wilson et al. (2017) we use the clipping technique in
Fourier space to minimise the impact of non-linearities; finally
in Hawken et al. (2017) we use cosmic voids as RSD tracers. In
particular in Hawken et al. (2017), we make use of the void cata-
logue built from the VIPERS PDR-2 data and resulting from the
earlier work by Micheletti et al. (2014), to estimate the void-
galaxy cross-correlation function in redshift space. By mod-
elling its anisotropy we obtain an estimate of fσ8 at z = 0.73 and
derive a value of fσ8(z = 0.73) = 0.296+0.075

−0.078, which is lower
than those obtained here. However, this technique is still in its
infancy, with potential systematic errors not yet fully understood.
This and the other VIPERS measurements are all fully compati-
ble within statistical errors. More discussion is presented in the
specific papers.

7.2.4. f , b1, σ8 degeneracy breaking

As discussed in Sect. 4, the use of RSD in the galaxy clus-
tering pattern allows a measurement of the parameter combina-
tions fσ8, b1σ8, or β = f /b1. But with the additional constraint
of galaxy-galaxy lensing, which exhibits different parameter de-
pendencies, we expect to be able to break the f − b1 −σ8 degen-
eracy inherent to galaxy-galaxy correlations. We investigate this
by studying the posterior likelihood contours at 68%, 95%, 99%
for the various pairs of f , b, σ8 parameters in our data. This is
done for the likelihood analyses presented in the previous sec-
tions, i.e. when including or not galaxy-galaxy lensing. The
posterior likelihood contours are presented in Figs. 14 and 15
for the two considered redshift intervals.

These figures show strong degeneracies in the f −b1, f −σ8,
and b1−σ8 planes when considering only RSD. In particular, we
can see in the f −σ8 plane the distribution of the likelihood con-
tours along the regions with constant fσ8, marked with solid
and dashed curves in the figures. Now with the inclusion of
galaxy-galaxy lensing, we can see a shrinking of the contours,
in particular along the σ8 direction, and to a lesser extent along
the b1 one. Galaxy-galaxy lensing thus effectively provides a
strong handle on the σ8 parameter. This allows the f − σ8 de-
generacy to be broken and therefore leads to the possibility of a
direct measurement of the growth rate of structure, f . The f −b1
degeneracy is also partially broken, even if the effect is milder.

We find that the f −σ8 degeneracy breaking is more efficient
in the high-redshift interval, with measurements of ( f , σ8) =
(0.93±0.22, 0.52±0.06) and ( f , σ8) = (0.99±0.19, 0.48±0.04)
at z = 0.6 and z = 0.86 respectively. These direct mea-
surements of the growth rate of structure and σ8 are in agree-
ment within 1σwith Planck ΛCDM + GR predictions, which are
( f , σ8) = (0.79, 0.60) and ( f , σ8) = (0.85, 0.53) respectively at
z = 0.6 and z = 0.86. Planck ΛCDM + GR predictions are repre-
sented with the stars in Figs. 14 and 15. In Fig. 16, we compare
our ( f , σ8) constraints with those from Gil-Marín et al. (2017),
obtained by combining redshift-space galaxy power spectrum
and bispectrum information in the BOSS survey at z = 0.57.
In Gil-Marín et al. (2017), they use the galaxy bispectrum in-
stead of galaxy-galaxy lensing to bring additional constraints on
galaxy bias. Although those measurements are quite uncertain,
this parameter space and how it can be used as a cosmological
model diagnostic, will be very interesting to explore for next-
generation cosmological surveys, such as Euclid, which will al-
low a dramatical improvement on such measurement accuracy.

Independent measurements of σ8 at different redshifts also
carry information about the growth rate of structure. Since σ8
grows with time proportionally to the growth factor, the growth
rate can be written as d lnσ8/d ln a. In the case of two σ8 mea-
surements at a1 and a2, as in our analysis, this equation can be
approximated through finite difference by

f '
ln (σ8(a1)/σ8(a2))

ln (a1/a2)
. (54)

By applying this to our σ8 measurements we obtain an addi-
tional, independent measurement of f = 0.57± 0.96 at the mean
redshift of z = 0.73. It is clear that this type of measurement is
not compelling in our dataset, but can potentially be useful as an
additional constraint to be combined with direct measurements
in next-generation cosmological surveys.

Finally, we notice in Figs. 14 and 15 that the addition of
galaxy-galaxy lensing constraints significantly modifies the pos-
terior probability distribution function of the linear bias parame-
ter, b1, becoming more compact and skewed towards larger val-
ues. This means that adding galaxy-galaxy lensing information
reduces the uncertainties on b1, and pushes its maximum likeli-
hood value towards values that are in excellent agreement with
previous linear bias estimates that are not solely based on two-
point statistics (Di Porto et al. 2016; Cappi et al. 2015; Granett
et al. 2015).

7.3. Gravitational slip

In addition to the growth rate of structure, we can measure the
gravitational slip parameter EG. This is done by taking the ra-
tio of the measured Υgm and Υgg, and multiplying it by β−1.
The RSD distortion parameter β is estimated from the combined
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Fig. 13. fσ8 as a function of redshift, showing VIPERS results contrasted with a compilation of recent measurements. The previous results from
VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al. 2012), WiggleZ (Blake et al. 2012), 6dFGS (Beutler et al.
2012), VIPERS PDR-1 (de la Torre et al. 2013), MGS (Howlett et al. 2015), FastSound (Okumura et al. 2016), BOSS-LOWZ (Gil-Marín et al.
2016), BOSS-CMASS (Gil-Marín et al. 2016; Chuang et al. 2016), and VIPERS PDR-2 voids (Hawken et al. 2017) are shown with the different
symbols (see labels). The solid curve and associated shaded area correspond to the expectations and 68% uncertainty for General Relativity in a
ΛCDM background model set to TT+lowP+lensing Planck 2015 predictions (Planck Collaboration et al. 2016).
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Fig. 14. Two-dimensional marginalized posterior likelihood contours
for f and σ8 at 0.5 < z < 0.7, showing the impact of the additional
galaxy-galaxy lensing constraint on the f − σ8 degeneracy. The black
curve shows the region of constant fσ8 associated with Planck Collab-
oration et al. (2016) ΛCDM + GR best-fit, while the combined ( f , σ8)
constraint is marked with the star.

maximum likelihood analysis of the monopole and quadrupole
correlation functions (the same as for the RSD-only case pre-
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Fig. 15. Same as Fig. 14 but for the redshift interval 0.7 < z < 1.2.

sented in Sect. 7.2.1). After marginalizing over nuisance param-
eters we obtain

β(z = 0.6) = 0.66 ± 0.17 (55)
β(z = 0.86) = 0.63 ± 0.14. (56)
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Fig. 16. Joint ( f , σ8) constraints at different redshifts. The combined
RSD and galaxy-galaxy lensing posterior likelihood contours at 1σ and
2σ and those from Gil-Marín et al. (2017), obtained by combining
redshift-space power spectrum and bispectrum information in the BOSS
survey, are presented. The solid curve and associated grey shaded area
correspond to the expectations and 68% uncertainty for General Rela-
tivity in a ΛCDM background model set to TT+lowP+lensing Planck
2015 predictions (Planck Collaboration et al. 2016), as a function of
redshift from z = 2 to z = 0.

The 68% error on the EG measurements is obtained by adding in
quadrature the fractional error on Υgm/Υgg estimated from mock
samples and the fractional error on β−1.

The EG(rp) measurements are presented in Fig. 17 for the
two redshift intervals under consideration, and compared with
the linear predictions for ΛCDM + GR (horizontal line and as-
sociated 68% contour). We find that our measurements at z = 0.6
are compatible within 1σ with the standard model, although the
central values tend to be slightly lower. We also report in this
figure the averaged gravitational slip parameter over the range
3 h−1 Mpc<rp<50 h−1 Mpc, EG, obtained by Blake et al. (2016)
in the similar redshift range 0.43 < z < 0.7. It is represented
with a stripe in the figure, with horizontal extent corresponding
to the range of rp used to measure EG and vertical extent showing
the ±1σ error on the measurement. By averaging our EG over
3 h−1 Mpc<rp<20 h−1 Mpc we obtain EG(z = 0.6) = 0.16± 0.09
and EG(z = 0.86) = 0.09 ± 0.07. Our results are in good
agreement with this measurement and also with that by Pullen
et al. (2016) at much higher scales, which also exhibits a slightly
lower value compared with ΛCDM + GR prediction. The EG
measurements are lower than ΛCDM + GR at rp > 3 h−1 Mpc
but remain within 1 − 2σ, depending on the scale. At z = 0.86,
the agreement with ΛCDM + GR is poorer than at lower red-
shift.

The origin of the tendency of our EG measurements to be
smaller than expected at rp > 3 h−1 Mpc remains unclear. Par-
ticularly given our statistical errors, we have to be cautious in
interpreting this trend. In any case, such a result could arise as
a result of residual observational systematics or a misinterpreta-
tion of the observables, rather than any break-down of standard
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Fig. 17. Gravitational slip parameter as a function of scale as measured
at 0.5 < z < 0.7 (top panel) and 0.7 < z < 1.2 (bottom panel). In both
panels, the solid curves and associated shaded areas correspond to the
expectations and 68% uncertainties for General Relativity in a ΛCDM
background model set to TT+lowP+lensing Planck 2015 predictions
(Planck Collaboration et al. 2016). In the top panel, the horizontal stripe
shows the averaged EG over the range 3 h−1 Mpc<rp<50 h−1 Mpc ob-
tained by Blake et al. (2016) at 0.43 < z < 0.7. EG asymptotes to
Ωm/ f in the standard model, and the simplest way of erasing the mod-
est discrepancy with the model prediction would be to lower the density
parameter.

gravitational physics. From the construction of EG, these low
values of EG seem to be most probably caused by the rather low
measured amplitude of Υgm at rp > 3 h−1 Mpc, and seen in Fig.
12. If this discrepancy is upheld by further data, one possible in-
terpretation is that weak lensing prefers a lower value of Ωm than
that determined by CMB data. It is worth noticing that a simi-
lar tension has already been identified in the CFHTLenS cosmic
shear analysis of Heymans et al. (2013), as well as in the more
recent analysis performed in the KiDS lensing survey (Hilde-
brandt et al. 2017). It is clear that this point needs to be inves-
tigated in detail in the future, in particular in the preparation of
next-generation very large surveys combining galaxy clustering
and weak lensing observables.

8. Conclusion

This paper has presented a combined analysis of redshift-
space distortions and galaxy-galaxy lensing in the final VIPERS
dataset, making use of complementary data from the CFHTLenS
lensing survey over the same area. We have built a consistent
theoretical model of the two observables, which includes pre-
scriptions for non-linear, non-local galaxy bias, as well as quasi-
linear redshift-space distortions. This model has been shown to
enable robust measurements of the growth rate of structure. The
model robustness and adopted methodology have been tested by
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using a series of realistic mock surveys constructed for this pur-
pose.

The main goal of VIPERS has been to provide an accurate
measurement of the growth rate of structure using redshift-space
distortions in a redshift regime where the growth is not well de-
termined. With the first data release we were able to provide
an initial measurement of fσ8 at z = 0.8 (de la Torre et al.
2013). The final dataset increases the survey volume by a fac-
tor of 1.6, and by further adding galaxy-galaxy lensing informa-
tion, we have been able to provide new accurate measurements
of fσ8 at both z = 0.6 and z = 0.86. We have found values of
fσ8(z = 0.6) = 0.48 ± 0.12 and fσ8(z = 0.86) = 0.48 ± 0.10,
which are consistent with previous measurements at lower or
similar redshifts.

The additional galaxy-galaxy lensing constraint and the spe-
cific treatment of σ8 to describe the non-linearity level of the
real-space power spectra entering the model alleviate the de-
generacy between the galaxy bias parameter, σ8, and f , and
has allowed direct measurements of these two parameters. We
have obtained values of ( f , σ8) = (0.93 ± 0.22, 0.52 ± 0.06) and
( f , σ8) = (0.99 ± 0.19, 0.48 ± 0.04) at z = 0.6 and z = 0.86,
respectively. These measurements put new constraints on grav-
ity at the epoch when the Universe was almost half its present
age. Our measurements are statistically consistent with a Uni-
verse where the gravitational interactions between structures on
cosmological scales can be described by General Relativity, al-
though they are not yet accurate enough to rule out some com-
monly considered alternatives to General Relativity.

In addition to measuring the growth rate of structure, we
have been able to measure the gravitational slip parameter, EG,
for the first time at z > 0.6. This quantity, which can be
directly constructed from galaxy clustering and galaxy-galaxy
lensing observables, is sensitive to the growth rate of struc-
ture and mean matter density in the Universe. We have ob-
tained averaged values of the gravitational slip parameter of
EG(z = 0.6) = 0.16 ± 0.09 and EG(z = 0.86) = 0.09 ± 0.07.
Our EG measurements are consistent within 1 − 2σ, although
they exhibit slightly lower values than expected in the standard
model for gravity in a ΛCDM background.

Overall, this analysis has demonstrated the importance of the
combination of galaxy clustering in redshift space and galaxy-
galaxy lensing in order to probe the origin of cosmic acceler-
ation. This combination can alleviate the inherent uncertainty
related to galaxy bias in RSD analyses and provide new in-
sights into the gravitational physics at work on cosmological
scales. This analysis and adopted methodology can be seen
as a proof-of-concept in the context of the preparation of next-
generation cosmological surveys such as Euclid (Laureijs et al.
2011), which will allow galaxy clustering and galaxy-galaxy
lensing to be combined with exquisite precision.
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Appendix A: Theoretical power spectra for biased
tracers

This appendix presents the models describing the real-space
galaxy-galaxy, galaxy-velocity divergence, and galaxy-matter
power spectra, which enter the modelling of RSD and galaxy-
galaxy lensing. We adopt the non-linear non-local bias model of
McDonald & Roy (2009) that relates the galaxy overdensity δg
and matter overdensity δ as:

δg(x) = b1δ(x) +
1
2

b2[δ2(x) − σ2] +
1
2

bs2 [s2(x) − 〈s2〉]

+O(s3(x)). (A.1)

In this equation, b1 and b2 are the linear and second-order non-
linear bias terms, bs2 the non-local bias term, s is the tidal tensor
term from which non-locality originates. The σ2 and 〈s2〉 terms
ensure the condition 〈δg〉 = 0. From the bias model of Eq. A.1
one can derive the following power spectra for galaxy-galaxy,
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galaxy-velocity divergence (θ), and galaxy-matter correlations:

Pgg(k) = b2
1Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2 b1Pbs2,δ(k)

+b2
2Pb22(k) + 2b2bs2 Pb2s2(k) + b2

s2 Pbs22(k)

+2b1b3nlσ
2
3(k)Plin(k) + N, (A.2)

Pgθ(k) = b1Pδθ(k) + b2Pb2,θ(k) + bs2 Pbs2,θ(k)

+b3nlσ
2
3(k)Plin(k), (A.3)

Pgm(k) = b1Pδδ(k) + b2Pb2,δ(k) + bs2 Pbs2,δ(k)

+b3nlσ
2
3(k)Plin(k), (A.4)

where (e.g. Beutler et al. 2014; Gil-Marín et al. 2014)

Pb2,δ(k) =

∫
d3q

(2π)3 Plin(q)Plin(|k − q|)F2(q,k − q), (A.5)

Pbs2,δ(k) =

∫
d3q

(2π)3 Plin(q)Plin(|k − q|)F2(q,k − q)

S 2(q,k − q), (A.6)

Pb2,θ(k) =

∫
d3q

(2π)3 Plin(q)Plin(|k − q|)G2(q,k − q), (A.7)

Pbs2,θ(k) =

∫
d3q

(2π)3 Plin(q)Plin(|k − q|)G2(q,k − q)

S 2(q,k − q), (A.8)

Pb2s2(k) = −
1
2

∫
d3q

(2π)3 Plin(q)
[
2
3

Plin(q) − Plin(|k − q|)

S 2(q,k − q)
]
, (A.9)

Pbs22(k) = −
1
2

∫
d3q

(2π)3 Plin(q)
[
4
9

Plin(q) − Plin(|k − q|)

S 2(q,k − q)2
]
, (A.10)

Pb22(k) = −
1
2

∫
d3q

(2π)3 Plin(q)
[
Plin(q) − Plin(k − q|)

]
,(A.11)

σ2
3(k) =

∫
d3q

(2π)3 Plin(q)
[
5
6

+
15
8

S 2(q,k − q)

S 2(−q,k) −
5
4

S 2(q,k − q)
]
. (A.12)

In the above equations, S 2, F2, G2 perturbation theory kernels
are defined by (e.g. Goroff et al. 1986; Bernardeau et al. 2002)

S 2(ki,k j) =
(ki · k j)2

(kik j)2 −
1
3
, (A.13)

F2(ki,k j) =
5
7

+
1
2

ki · k j

kik j

(
ki

k j
+

k j

ki

)
+

2
7

[
ki · k j

kik j

]2

, (A.14)

G2(ki,k j) =
3
7

+
1
2

ki · k j

kik j

(
ki

k j
+

k j

ki

)
+

4
7

[
ki · k j

kik j

]2

. (A.15)

Appendix B: Posterior likelihood contours

In this appendix are provided the posterior likelihood contours
of all pairs of parameters appearing in the likelihood analyses
presented in Sect. 7.2.1. Fig. B.1 shows the posterior likelihood
contours in the case of the RSD-only analysis, while Fig. B.2 in
the case where RSD and galaxy-galaxy lensing are combined. In
both figures, the three types of shaded regions in each subpanel
correspond to the posterior likelihood contours at 68%, 95%, and
99%.
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Fig. B.1. Posterior likelihood contours for f , σ8, b1, and σv parameters at z = 0.6 (left panel) and z = 0.86 (right panel) in the case where RSD
are considered alone (see Sect. 7.2.1).
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Fig. B.2. Posterior likelihood contours for f , σ8, b1, b2, and σv parameters at z = 0.6 (left panel) and z = 0.86 (right panel) in the case where
RSD and galaxy-galaxy lensing are combined (see Sect. 7.2.1).
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