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DISCRETE ENERGY ESTIMATES FOR THE ABCD-SYSTEMS*

COSMIN BURTEA! AND CLEMENTINE COURTES!

Abstract. In this article, we propose finite volume schemes for the abcd-systems and we establish
stability and error estimates. The order of accuracy depends on the so-called BBM-type dispersion
coefficients b and d. If bd >0, the numerical schemes are O(At+ (Az)?) accurate, while if bd=0, we
obtain an O(At+ Az) -order of convergence. The analysis covers a broad range of the parameters
a,b,c,d. In the second part of the paper, numerical experiments validating the theoretical results as
well as head-on collision of traveling waves are investigated.

Keywords. system abcd; numerical convergence; error estimates
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1. Introduction
Consider a layer of incompressible, irrotational, perfect fluid flowing through a
channel with flat bottom represented by the plane:

{(z,y,2): 2=—h},

with A >0, the depth of the channel. We assume that the fluid at rest occupies all
the region {(z,y,2z): —h<z<0}. We suppose also that the free surface resulting after
a perturbation of the rest state can be described by the graph of some function. Let
A be the maximum amplitude of the wave and [ a typical wavelength. Furthermore,

consider:
A n\? €
=h = (z) S=

e<1l, p<land S=1

The Boussinesq regime

describes small amplitude, long wavelength water waves. In order to study waves that
fit into the Boussinesq regime, Bona, Chen and Saut, [10], derived the so-called abcd-
systems:

(I —pbA)Oyn+divV +apdivAV 4+ ediv(nV) =0, (1.1)
(I —pdA)oV+Vn+cuNVAn+eV-VV =0, '

with I the identity operator. In the system (1.1), n=n(t,z) € R represents the deviation
of the free surface from the rest position, while V.=V (t,z) € R" is the fluid velocity. The
above family of systems is derived in [10] from the classical water waves problem by a
formal series expansion and by neglecting the second and higher order terms. In fact,
one may regard the zeros on the right hand side of (1.1) as the second order terms (i.e.
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having one of €2, ey or u? as a prefactor) neglected in the modeling process in order to
establish (1.1). In [12], Bona, Colin and Lannes prove rigorously that the systems (1.1)
approximate the water waves problem in the sense that the error estimate between the
solution of (1.1) and the solution of the water waves system at time ¢ is of order O (€%t)
(see also [26]).

The parameters a,b,c,d are restricted by the following relation:

1

a+b+tc+d= 3

(1.2)
Nevertheless, if surface tension is taken into account then, the previous relation rewrites

1
a—l—b—i—c—i—d:g—T

where 7>0 is the Bond number which characterizes the surface tension parameter,
see [24] or [30].

In [18], models taking into account more general topographies of the bottom of the
channel are obtained. One has to furthermore distinguish between two different regimes:
small respectively strong topography variations. Time-changing bottom-topographies
are considered in [20]. For a systematic study of approximate models for the water
waves problem along with their rigorous justification, we refer the reader to the work of
Lannes [26]. We point out that the only values of n for which (1.1) is physically relevant
are n=1,2.

The abed systems are well-posed locally in time in the following cases:

a<0, ¢<0, b>0, d>0 (1.3)
ora=c>0and b>0, d>0, (1.4)

see for instance Bona, Chen and Saut [11], Anh [2] and Linares, Pilod and Saut [27].
Global existence is known to hold true in dimension 1 for the ”classical” Boussinesq
system:

a=b=c=0, d>0,

which was studied by Amick in [1] and Schonbek in [32] and for the so-called Bona-Smith
systems:

b=d>0, a<0, c<0,

assuming some smallness condition on the initial data, see [11] and the work of Bona
and Smith [15]. In the remaining cases, the problem is still open.

Lower bounds on the time of existence of solutions of systems (1.1) in terms of the
physical parameters are obtained in [31], [30], [28], [16] for initial data lying in Sobolev
classes, respectively in [17] for initial data manifesting nontrivial values at infinity.

In the following lines, let us recall some important numerical results obtained for
the systems (1.1).

One of the earliest papers in this sense is the work of Peregrine [29], who numer-
ically investigates undular bore propagation using the “classical” Boussinesq system
corresponding to the values a=b=c=0, d=1/3.

In [8], Bona and Chen study the boundary value problem for the BBM-BBM case
(which corresponds to a=c¢=0, b=d=1/6). Using an integral reformulation of this
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problem, they construct a numerical scheme, which is proven to be fourth order accurate
in both time and space. They employ it in order to track down generalized solitary waves
and to study the collision between this numerical generalized solitary waves.

In [13] and [14], Bona, Dougalis and Mitsotakis investigate the periodic value prob-
lem for the so-called KdV-KdV case, which corresponds to b=d=0, a=¢=1/6. They
propose a numerical scheme constructed by using an implicit Runge-Kutta method for
the time discretization and a Galerkin method with periodic splines scheme for the space
discretization. They use this scheme in order to track down generalized solitary wave
solutions and they simulate head-on collision of two such waves.

In [6], Antonopoulus, Dougalis and Mitsotakis study the periodic initial value prob-
lem for a large class of values of the a,b,c,d parameters. More precisely, they obtain
error estimates for semi-discretization schemes (in space) obtained via Galerkin approx-
imation. In [7], the same authors obtain error estimates for a full-discretization scheme
of the initial value problem with non-homogeneous Dirichlet and reflection boundary
conditions for the Bona-Smith system (corresponding to the case a=0, b=d>0, ¢<0).
They use their numerical algorithm to study soliton interactions.

In [3], (see also [4] for more details) Antonopoulos and Dougalis obtain error esti-
mates for a semi-discrete and fully-discrete Galerkin-finite element scheme for the initial
boundary value problems (ibvp) for the “classical” Boussinesq system.

Regarding the two dimensional case [25], Dougalis, Mitsotakis and Saut study a
space semi-discretization scheme using a Galerkin method. In [21], Chen, using a formal
second-order semi-implicit Crank-Nicolson scheme along with spectral method, studies
the 2D case of the BBM-BBM system for 3D water waves over an uneven bottom.

A very recent result of Bona and Chen [9] provides numerical evidence of finite
time blow-up for the BBM-BBM system. The blow-up phenomena seems to occur on
head-on collision of some particular traveling waves solutions of the BBM system.

1.1. Statement of the main results. To the authors knowledge, fully-
discretized schemes for various ibvp for abcd-systems along with error estimates are
available in only four cases :

e the BBM-BBM system a=c=0, b=d >0 treated by Bona and Chen in [8];
e the Bona-Smith system a=0, b=d >0, ¢<0 in [7];

e the “classical” Boussinesq system a=b=c=0, d >0, obtained in [3];

e the shallow water case a=b=c=d=0, see for instance [5].

In this paper, we implement fully-discrete finite volume schemes, and we prove
convergence and stability estimates, using a discrete variant of the "natural” energy
functional associated to these systems. One practical advantage of our approach is that
it allows us to treat explicitly the nonlinear terms.

Let us recall that the Cauchy problem associated with the one dimensional abcd-
systems reads:

I—b02,) 0m+ (I+ad?2,) Opu+ 0y (nu) =0,
I—do2,) yu+ (I+cd2,) 0un+ 30,u” =0, (Sabed)
Mt=0="0, U|t=0 = U0-

We will treat the cases where the parameters verify:

a<0, ¢<0, b>0, d>0, (1.5)
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excluding the five cases:

a=b=0, d>0, c<0,

a=b=c=d=0,

a=d=0, b>0, c<0, (1.6)
a=b=d=0, ¢<0,

b=d=0, <0, a<0.

REMARK 1.1. The Shallow Water case a=b=c=d=0 corresponds to a classical
non-symmetric hyperbolic system. A systematic method to construct appropriate semi-
discrete schemes is presented in [33]. More recently, this case has been studied in [5].
The authors construct a finite-volume-Galerkin numerical scheme, where discrete esti-
mates in L? x L? are obtained.

Given s € R, we will consider the following set of indices:

She =S +sgn (b) —sgn (C) ’
Sad=5+sgn(d) —sgn(a),

where the sign function sgn is given by:

lif x>0,
sgn(z)=< 0ifz=0,
—1if x<0.

We will consider the set of indices defined by (1.7). The notation, Cp (H % x H?%4)
stands for the space of continuous functions (n,u) on [0,7] with values in the space
H#be (R) x H%24 (R). Let us recall in the following lines, the existence result of regular
solution that can be found for instance in [16] and [30]:

THEOREM 1.1. Consider a,c<0 and b,d>0 excluding the cases (1.6). Also, consider
an integer s such that

s> g —sgn(b+d),

and Spe, Sqd defined by (1.7). Let us consider (ng,ug) € H® (R) x H? (R). Then, there
exists a positive time T and a unique solution

(n,u) € Cp(H?b x H%)

Of (Salzcd)~
REMARK 1.2. Note that energy Es is an energy for the system (Saped), see for exemple

[16],

Es(n,u) =|[nllFr- + (0= ) 10an|[37 + (—c)bl|OZn] -
HlullFrs +(d—a)l|0wul 37 + (—a)d][0Ful 3.

Consider At and Az two positive real numbers. We endow ¢? (Z) with the following
scalar product and norm

1
(v,w) ::AxZijj, ||v||€2A =(v,v)2.

JEL
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We sometimes denote this space (3 (Z).
For all v=(v;) ;¢ € (> (Z), we introduce the spatial shift operators:

(S:t’l))j =Uj+1-

If v=(v;) ;o4 €£>°(Z), we denote by Dyv, D_v, Dv the discrete derivation operators:

Div=3(Sv—v),

Dv=3(Djv+D_v) =51 (S4v—S_v).
Also, we consider the following discrete energy functional

def.

E(e,f) = llellza + (=) ID+ellgs +b(—c) [ D+D—el

+1£llz +(d—a) | D1 flig3 +d(~a)[|D+D-fllgs - (1.8)

We will now discuss the main results of the paper. From an initial datum (ng,ug) €
H#ve(R) x H®*<(R) with s large enough, there exists a solution (n,u) of (Supeqd) Which
enables to define 7% ,uk € ¢4 (Z) given by:
flnf(tn+ T) fzj+1

— 1
NA;= Tnf@ " 1, 1) —t" Az Jt (s,y)dyds,

for all j€Z, and for n>1.

n inf(t" 1 T) rxy
Un; = [inf(t"*l,lT)ft”]Az ft fxfl u(s,y)dyds,
(1.9)
Moreover, we define

n;=azly, o (y)dy,
for all j €Z. (1.10)

0o _ 1 Tj+1
Up; =2z Je, o (y)dy,

The results of the paper are gathered in two cases according to the values of the
parameters b and d in (Sypeq)-

The case when b>0 and d>0. The assumption b,d > 0 assures an ¢?-control on
the discrete derivatives: this makes it possible to implement an energy method that
mimics the one from the continuous case. Moreover, it allows us to close the estimates
even without considering numerical viscosity.

We consider the following numerical scheme:

& (I=bDyD_) ("' =)+ (I +aD;D_)D ((1—6)u™+6u") + D (n"u™) =0,
L(I—=dD{D_) ("™ —u™)+ (I +cDy D_) D ((1=0)y" +6n" 1) + 1D ((u”)z) —0,
for all n>0 and =3 or §=1, with the discrete initial datum

(n°,u%) = (n&,ul) - (1.12)
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The convergence error is defined as:

e"=n"—mx and f"=u"—uR. (1.13)

REMARK 1.3. For the linear part of the system, when 9:%, we consider the Crank-

Nicolson discretization whereas for 6 =1, we consider the implicit discretization.

We are now in the position of stating our first result.
THEOREM 1.2. Let a<0, b>0, ¢<0 and d>0. Consider s>6, (n,up) € H® (R) x
H#®4(R) and T>0 such that (n,u)€Cp(H® x H4) s the solution on [0,1] of
the system (Supea). Let N €N, there exists a positive constant 6y depending on

sup |[|(n(t), w(@) || grove s greaa Such that if the number of time steps N and the space
t€[0,T]
discretization step Az are chosen such that

At=T/N <6y and Az <dy,

if we consider the numerical scheme (1.11) with =% or §=1 along with the initial
data (1.12) as well as the approzimation (nx,up ), 7 defined by (1.9)-(1.10), where

1,N={1,..N}, then, the numerical scheme (1.11) is first order convergent in time and
second order convergent in space i.e. the convergence error defined in (1.13) satisfies:

sup E(e", f") SCabcd{(At)2—|—(Aat)4}, (1.14)
ne0,N

where Cypeq depends on the parameters a,b,c,d, on sup ||(n(t),w(t))|| gove « geaa @nd on
te[0,T7]
T

REMARK 1.4. Note that no Courant-Friedrichs-Lewy-type condition (CFL-type con-
dition hereafter) is needed. This is due to the regularity properties of the operators
(I—-bDyD_)"" and (I—dDyD_)"" which ensure stability even if a centered scheme is
used to discretize the hyperbolic part of the system.

REMARK 1.5. If we consider the Cauchy problem with small parameter €:

(I—bed?2,) O+ (I+aed?,) dyu+edy (nu) =0,
(I —ded?,) Opu+ (I +ced?,) Dun+ §0,u? =0,
Nt=0="T0, U|t=0 = U0-

The previous scheme is transformed into
A (I=beDy D) ("t —n™)+ (I +aeDyD_)D ((1—0)u™ +0u""") +eD (n"u") =0,
A (I—deDyD_)(u" ™ —u™)+ (I +ceDyD_) D ((1—0)n™ +6n" ") + $D ((u™)*) =0,

foralln>0 and 0 :% or@=1. The conditions on the time step and space discretization
in Theorem 1.2 become then % <o and % <o and the energy inequality rewrites

At\?  [Az\*
sup €(e", ") < Cabed () +(x) ,
ned.N € €

which impose a strong restriction on Ax and At.
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In order to avoid this inconvenience, one should design an asymptotic preserving
scheme, for which the error estimates are uniform with respect to €. In such a scheme,
both limits e =0 and Ax,At — 0 may be commuted without affecting the accuracy of the
scheme. Moreover, in such a scheme, the limit scheme when € — 0 is consistent with the
limit continuous system when € —0. In the case of the abcd-systems, the limit system
when € — 0 is the acoustic wave system.

However, designing an asymptotic preserving scheme is not the aim of this paper
and we will focus only on System (Supeq) with e=1.

The case when bd=0. We consider the following numerical scheme:

Ar(I=bD D) (" =)+ (I +aDy D) D (u™+) + D (f"u")
S (1—sgn (b)) mAzD D (),
(1.15)
L(I-dD,D_ )(un+1—u")+(1+cD+D,)D(nn+1)+%D((un)2)
:%(1—sgn( ))72A$D+D7 (Un),
for all n >0, with
(n°,u®) = (N ud)- (1.16)

REMARK 1.6. For the case bd=0, we consider only an implicit time discretization for
the linear part of the system.

The convergence error is defined by (1.13). We are now in the position of stating
our second main result.
THEOREM 1.3. Let a<0, b>0, ¢<0 and d>0 with bd=0, excluding the cases (1.6).
Consider s>8, (no,ug) € H (R)x H%(R) and T >0 such that (n,u)€Cyp(H?® x
H#ed) is the solution on [0,T] of the system (Sabed)-

Choose a>0, 71 >0 and 15 >0 such that:

[ull poo oo <1 and [Jul| pec oo + 0 <72

There exists 5o >0 (depending on o, 11, 72 and on sup |[(n(t),u(t))|| gepe x rroaa)
t€[0,T]
such that if the number of time steps N € N and the space discretization step are chosen
in order to verify

At:T/N < 50, Ax < 60,
and
max{(1—sgn(b))m,(1 —sgn(d)) 2} At < Az, (1.17)

if we consider the numerical scheme (1.15) along with the initial data (1.16) with the
numerical viscosities Ty and Ty as well as the approzimation (nx,uR), 7 defined by

(1.9), then, the numerical scheme (1.15) is first order convergent i.e. the convergence
error defined in (1.13) satisfies:

sup (e, f") < Capea (Az)?,

nel,N




8 Discrete energy estimates for the abcd-systems

where Capeq depends on the parameters a,b,c,d, on sup [[(n(t),u(t))| gove « geaa and on
te[0,T

T [0,7]

REMARK 1.7. In this case, one of the two equations of (1.15) does not contain the op-

erator (I —bD,D_)~* or (I—dD, D_)~!. Artificial viscosity together with a hyperbolic

CFL-type condition are thus needed in order to stabilize the numerical scheme. We use

a centered scheme for the first-order derivatives combined with a Rusanov-type diffusion

coefficient and a CFL-type condition (which, of course, corresponds to Relation (1.17)).

REMARK 1.8. In order to have less diffusive schemes, we may in fact update the

Rusanov coefficient at each time step i.e. take 7, =7" depending on n such that

Juk[|ee +a <7 with i€{1,2}.
REMARK 1.9. As mentioned in Remark 1.5, our numerical scheme (1.15) is not suitable

if we consider System (Sapeq) with the small parameter €. Indeed, the energy inequality
changes in this case in

n e Az\?
sup 5(6 af )Scabcd - ;
neo,N €
provided % <do and % <dp.

Our results owe much to the technics developed recently by Courtes, Lagoutiéere and
Rousset in [23]. Let us give some more details. In order to study the Korteweg-de-Vries
equation

O+ vd,v+0> _v=0,

xxx® T

they employ the following #-scheme, with 6 € [0,1],

1 )2 A
AL (0" —v™)+DyDyD_((1—0)v" +6v" )+ D <(U2)) = %D+D_v".

With the aim to study the order of convergence, they consider the finite volume discrete
operators:

1 inf(t" TN T)  pxjia
(va); = (T fAr /t L v(s,y)dsdy

)

and the convergence error
e =v" —vi,
which obeys the following equation:
"Mt +OAtD, D, D_(e"t) = Be™,

with
TATAL

D+D_ e’ — Atﬁn,

n\2
PBe" =" —(1—0)AtD DL D_(e") — AtD (e"va) — AtD ((62) ) +
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where €" is the consistency error. In order to establish /3 -estimates, they show that
under the CFL condition

7> [[0R [[ g »
[+ 1At < A,

3
(1-20) At < B2

the following holds true:

[|ent! —|—9AtD+D+D_(e"+1)HjQA gAtCHe”HEQA + (1+CAY) ||e”+9AtD+D+D_(e”)\|§2A,

(1.18)
provided that |e"[, is sufficiently small. Thus, they are able to use the discrete
Gronwall lemma and close their estimates. The proof of (1.18) is rather technical and
tricky. Loosely speaking, using some clever identities when computing H%’e”H?ZA , they
get several negative terms wich, under the above CFL and smallness conditions, are
used to balance the ”bad” terms.

In Section 2.2.1 we study a discrete operator which appears in hyperbolic systems
and we provide a bound for its ¢4 -norm, the proof being essentially inspired from [23].
As a consequence, we establish a higher-order estimate which proves crucial in the
analysis of some of the abcd-systems. Among the systems in view, we distinguish three
situations:

e when bd >0, establishing energy estimates for the convergence error can be
done by imitating the approach from the continuous case. The structure of the
equations provides enough control such that we do not need to impose numerical
viscosity or CFL-type conditions.

e when at least one of the weakly dispersive operators does not appear, we have
to work only with estimations established in Section 2.2.1 (see for instance the
case a <0, b=c=d=0) either

e combine the technics of Section 2.2.1 with ”continuous-type” estimates like
those established for the case bd >0 (see for instance the case a=b=c=0,
d>0).

In order to illustrate the theoretical order of convergence (see Theorem 1.2 and
Theorem 1.3), we compare the numerical solutions computed with our schemes with
the exact traveling wave solutions which were computed by Chen in [19] and by Bona
and Chen in [8].

Finally, we use our results in order to study exact traveling waves interactions.
Our experiments are inspired from [3], [6], [8] and [9]. We perform two such numerical
experiments. Recently, in [9] Bona and Chen pointed out that finite time blow-up seems
to occur at the head-on collision of the two exact solutions:

N+ (t,z) =2 sech’ (\/% (z—z0F %t)) — %5 sech? (\/ifo (x—xojF%t)) ;

+ (t,z) = 13 sech? (\/iro(:z:f:zoq:%t))
In order to build confidence in our codes, we repeat their experiment, in the same
conditions and we show that we obtain roughly the same results. We observed that
the BBM-BBM system is not the only one having traveling waves of the above form.
In particular, we provide numerical evidence that a blow-up phenomenon might occur
on the head-on collision of the traveling waves for the case when the parameters are
a=c=d=0,b=3/5.
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The plan of the rest of this paper is the following. In the next section, we give a list
of the main notations and identities that we use all along in this manuscript. Section
2.1 is devoted to the proof of Theorem 1.2. The proof of Theorem 1.3 is more involved
as we cannot treat in a uniformly manner all the cases when bd=0. First, we establish
in Section 2.2.1 some estimates for discrete operators appearing in hyperbolic systems.
The rest of Section 2.2 is dedicated to the proof corresponding to the different values of
the abed parameters appearing in Theorem 1.3. Finally, in Sections 3 and 4, we present
our numerical simulations.

1.2. Notations. In the following we present the main notations that will be
used throughout the rest of the paper. Let us fix Az >0. For all v=(v;);_, € (> (Z),
we introduce the spatial shift operators:

(Sxv);=vj41,
For v=(v}) oy, w=(w)), ¢y € £*(Z), we define the product operator:
vw=(Vjw;) ez € (7).
Also, we denote by
2

VT =0v.

We list below some basic formulas, whose proofs can be found in [23].
The following identities describe the derivation law of a product, for v,w € ¢?(Z)

1
D(Uw):va+§(S+wD+U+S_wD_v), (1.19)
D (vw) =S vDw+ DvS_w, (1.20)
D, (vw)=SivDiw+wD . (1.21)

We observe that we dispose of the following basic integration by parts rules, for w,v e
A (Z):

(Dyv,w)=—(v,D_w), (1.22)
(Dv,w) =—(v,Dw). (1.23)

In particular, we see that, for v e % (Z):
(Dv,v) =0,
and

Ax
<UvD+U>:—7||D+U||§2A~

More elaborate integration by parts identities are the following, for w,v € ¢4 (Z),

(0,0 (vw)) = 3 {Dw,08,0), (1.24)
respectively
1 1
(D, D_v,D(vw))= A2 (Dyw,vSyv)+ A2 (Dw,S_vS1v). (1.25)
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When v=w € (% (Z) in the previous equation, some additional simplifications occur and
one has

(D D_0.D (7)) = 5 (D0, (D3)?) ~ 3 (D, (Dv)?). (1.26)

W =

Also, it holds true that, for v € (3 (Z),

Az?

<v,D(v2)>:fT<D+v,(D+v)2>, (1.27)
2
|D<v2>|?g—<wv>2,<&“;“) > (1.28)
and
IDAD_vl[% = || DyvlZs — s || D2 (1.20)
+4+ = EZA_A;[;Q + E2A Ax2 £2A' :

Finally, for v,w € (% (Z), we recall Lemma 5 of [23]

1 3
IDww)]2 <{||w||%w+At||D+w|%m}|Dv||3z+{m||w||%m+4||mw|%x}|v||3zA

(1.30)
and Lemma 8 of [23]

S8Az? 2
(D(ow), D) <2olles lwlle=[1Dv]E, — =5 (Dw, (Do) ) = 2 (DDw,e?). (1.31)
In the following, we will frequently use the notations:

{ €n:’[7n—’l’}z’ Ei(n)zen—‘rlﬂ:@n, (132)

fre=ut—u},  FE(n)=frie

3

We end this section with the following discrete version of Gronwall’s lemma, a proof
of which can be found in [22]:
LemMMA 1.1, Let v=(v"), ey, a=(a"),cn, b=(b");cy be sequences of real numbers
with b™ >0 for all n €N which satisfies

n—1
vnga”Jerjvj,

J=0

for allneN. Then, for any n€N, we have:

n—1
n< k 14+7).
v _]Jcrrel‘ix’);a jl;[o( + )

2. The proof of the main results
This section is devoted to the proofs of Theorems 1.2 and 1.3.
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2.1. The proof of Theorem 1.2. Let us recall the energy functional:

def.

2 2
E(e,f) = |lellis +(b—e) | Dellzz +b(—c) | D+ D—elzy

+ £ 1175, + (d—a) | D fllz2 +d(=a) [ D+ D flz (2.1)
For all n>0, we will consider (e}, €%) € (¢4 (Z))2 the consistency error defined as:
A (I =bDyD_) (X —nR)+2(I+aDyD_)D (uk +uX™) + D (nRuk) =€}

L(I—dD D ) (™ —uk)+ 1 (I+eDyD_)D (nk +ni) + 4D ((ug)Q) —ep.
(2.2)
PrROPOSITION 2.1. For all n€0,N —1, there exist two constants C1 and Co depend-
ing on a,b,c,d, on the £>-norm of (nX,uk) and (D(nk),D(u})) and proportional to
max {||e™||e, || f™]]e }, such that,

E () SOALM [+ (14 AICE (", ™)+ ACoE (M 7Y, (23)

with  (e™, f™) the two convergence errors defined by (1.32) and ||e"||22A:
max { [eFll s €5 5, } defined by (2.2).

Proof. As we announced in the introduction, we will establish energy estimates
imitating the approach from the continuous case.
For the Crank-Nicolson case (6= %) Using the notations introduced in (1.13)
and (1.32), we see that the equations governing the convergence error (e, f™) are the
following:

(I-bD;yD_)(E~ (n))+ 45t (I+aDiD_)D(F* (n))+AtD (e"u})
+AED (nk ™)+ AtD (e f) = — Ate},

(I-dD:D_)(F~(n))+ 4t (I+cDyD_)D(E* (n))+AtD(fu})

+4ED ((f7)7) =~ Ate.
(2.4)
Let n€0,N—1 and observe that by multiplying the first equation of (2.4) by
(I+cDyD_)E*(n), the second by (I+aD;D_)F* (n) and adding up the results, we
find that

((I=bD4D_)(E™(n)),(I+cD D_)E*(n))
+%<(I+aD+D )D(F*(n)),(I+cDyD_)E"(n))
+<(I—dD+D )(F~(n)),(I+aDyD_)F*(n))

< (I+cDyD_)D(E*(n)),(I+aDyD_)F*(n))

At<61, I+¢cD D_)E" (n))—At{e},(I+aDyD_)F*(n))
fAt<D(e uA Y+D (R f"),I+cDs+D_)E (n)>
—At(D(e"f"),I+cDiD_)E* (n))
—At(D(f"uX),(I+aD D_)F*(n)) (2.5)
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At 9 not. >
_7<D ((r")?) . +aD Do) F* (n)) ™ ZT

We begin by treating the left hand side of (2.5). Notice that
(L(B~(n) L (B () = [|1£e™ 12 —|ILe™||%

with £ any linear operator. With this in mind together with Relations (1.22) and (1.23),
it gives,

((I-bD4D_)(E™(n)),(I+cDyD_)E*(n))

+ % ((I+aD4yD_)D(F*(n)),(I+cDyD_)E*(n))
+((I=dDD_)(F~(n)),(I+aDyD_)F*(n))

+ % ((I+¢DyD_)D(E*(n)),(I4+aDiD_)F*(n))

=E( L ) =€, ). (2.6)

e Let us now focus on T7. We recall that

e, =masx{ el g s g }
and we write that, thanks to Cauchy-Schwarz inequality (we recall that ¢ <0 and a <0)
—At(e},(I+cDyD_)E* (n))— At{e},(I+aD D_)F*(n))
<Atlefllg (B @) —el D+ D-E* (), )
+Atlegll (I1F* ()]l ,5 —al| DeD-F* ()], )-
By applied Young inequality, we recover the ¢4 -norm of e™ and f.
—At(e},(I+cDD_)E™ (n))— At{ey,(I+aD D_)F*(n))
<2Atlel? + (Il 2, + 11 +IDs D% +a?| Dy D)

AL (Jle 7 1, + Dy D-e Y +a?Dy D)

a a

<2At||e"||§2A+Atmax{l,_bc,_d}E(e",f")—kAtmax{l,_bc,_d}E(enﬂvfn-kl).
(2.7)
e Let us treat To. Using (1.20), we first write
At[[D(e"ud)ll g = At]|S-e"Duj +S:upiDe" |5
S At DuR [l g [1S-€"ll g +At[[S1uillgee 1 De"ll g

SAtmaX{L DU N €™l + e VE= el D" 5

=i

§Atmax{||u2\|éOC ,||Du2||ew}max{1,ﬁ} (||€"||22A +\/b—c\|De"HZ2A>.
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Proceeding in a similar fashion with the other terms we arrive, thanks to the Cauchy-
Schwarz inequality, at (we recall that ¢<0)

—At(D(e"uX)+Dmxf"),(I+cDyD_)E* (n))
<at(ID @)l 1D ) (1B 0)],5 —ell DD B )], ).
By Definition (1.32) of E*(n), one has
1ET ()l = ¢l|D+D-E* ()|
<[le"*[eg, +lle"[leg, —cllD+-D—(e" )l —cl| D+ D—(e")lleg

< max{l, —c/b} 2 [\/5(6"+1,f"+1) + \/S(e”,f")} .

These together give

—At{D(e"uk)+DMAf"),(I+cDyD_)E* (n)) <AtC11E (", f™) + AtCo 1 € (", f71)
(2.8)

where C,; and Cy; can be written, for example, as a numerical constants multiplied

with:
a {1 1/ c}{ma {|| "ﬁ|| . ||D "|| DC} a; {1 ! }
max< 1,4/ —= x4 ||u S| DuA max< 1, ——
b ¢ ¢ Vb—c

1
+max{||nR || joo s | DA || joo }max< 1, ——— ¢ | . 2.9
(Il 1D a1, 29)

o We treat Ty in same spirit as above in order to obtain that

—At<D(f”uZ) , (I-i—aDJrD,)FJr (n)> <AtCy2E (", f™) + AtCa 2E (e"“,f”“) ,
(2.10)
where C' 2 and Cs 5 are multiples of :

max {04 | o » ||DuZ||€w}max{1,1/\/E} max{l, \/T/d}. (2.11)

e In order to treat T3, we first observe that

1D )l

— | S_e"Df" + 84 f De"

<€l IDS s, + 11 e 1D

<max{1/Vb=c,1/vVd=a} (|le"lle=Va=a | D" + |1/ e=VO—cl|De" 5 )
Thus, we obtain

—At(D(e"f"),(I+cDyD_)E* (n)) <AtCy 5€ (€, f") + AtCy s€ (", 1),
(2.12)

where (' 3 respectively Cs 3 are proportional with

max{u\/ﬁ,u\/m}max{L —c/b}max{||e"||goo,||f"||goo}. (2.13)
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e The same holds for T5, namely, we get that

At

. <D ((f”)2) (I+aDyD_)F* (n)> < ALCHAE (€7, 1) + AtCh 4& (e, 1Y

(2.14)
where C 4 respectively Cs 4 are proportional with

\/C%max{lﬂ/—a/d}Hf"Hgoo. (2.15)

Gathering the informations from (2.5), (2.6), (2.7), (2.8), (2.10), (2.12) and (2.14) we
obtain the existence of two constants C; and Cs that depend on a,b,c,d, and the £°°-
norm of (nX,uR) and (Dnk,Du}k) (dependence which we can track using relations (2.9),
(2.11), (2.13) respectively (2.15)) and that are proportional to max{]||e™||¢=,||f™||¢= }
such that

E (e ) —E (e 1) S2At|€" |75, + ALCLE (€7, f7) + ALCHE (e fm ).

For the implicit case (f=1). The equations governing the convergence error
(e™, f™) are the following

(I-bDyD_)e" ™ +At(I4+aDyD_)Df"H
=(I—bDyD_)e" —AtD(e"ux) — AtD(na f™) — AtD(e" f) — Ate?,

(2.16)
(I—dDyD_)f*"' + At(I4+cDD_)De™**

A
= (I =dDy D) f" = AD(f"u) = S D((f")?) ~ Atel.

For that case, we fix the discret energy

e, f)

(=)d||(I =bDyD_)el|7x +(=a)b||(I —dD+ D) ||
(=c)dllel[75 +2b(=c)d||Dyelljz +b*(=c)d|| D1 D—el|7; (2.17)
+(=a)b|| |75, +2(—a)bd|| Dy f[[75 + (=a)bd®|| D1 D f||7; -

This energy is of course equivalent to the one from (2.1).

Let us multiply the first equation of (2.16) by v/—cd and the second one of (2.16)
by v/—ab. The sum of ¢4 -norm gives in that case

—cd||(I=bDyD_)e" ™ + At(I+aD D)D" ||z
—ab|[(I—dDy D_)f"™* + At(I+cD, D) DemH| %

= —cd||(T~bDy D_)e" ~ AtD(c"u) — AD(a /) ~ AtD(e" ) - Aty |2, (218

A
—ab||(I—dD, D) "~ AD(f"k) ~ S D))~ Atef
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The left hand side of the previous equality gives
—cd||(I—bD+D_)e”+1+At(]+aD+D_)Df”+1|\§2A
—abl|(I—dDy D) f"*1 + At(I +cDy D) De™ |3
:—cd\|(1—bD+D_)e"+1|\§ —2cdAt{(I-bD,D_)e" "' (I+aD{D_)Df"*")
—cdA||(I+aDD-)D |7 —abl|(I —dDy D) f* ||
—2abAt (I —dDy D_) f™*1 (I +eDy D_)De" ™) — abA#?||(I + D1 D-) De™ |75 .
For both cross products, it gives
—2cdAt{(I—bDyD_)e" ' (I+aD D_)Df**h)
—2abAt{(I—dDD_) f"* (I4+¢DyD_)De™ ")
=2(—c)dAt (", Df" ) +2(—a)(—c)dAt(De" !, D, D_ f"t)
+2b(—c)dAt(De" ™ Dy D_ f") +2(—a)b(—c)dAt (D D_e"*' D, D_Df")
+2(—a)bAt ("1, De" ) +2(—a)b(—c) At (D", Dy D_e" )
+2(=a)bdAt (D", D D_e"" )y +2(—a)b(—c)dAt (D, D_ f*** Dy D_De™ ).

Thanks to integration by parts, Young’s inequality together with Cauchy-Schwarz in-
equality, the previous equality simplifies into

—2cdAt{(I-bD;D_)e" ™ (I+aDyD_)Df™*)
—2abAt{(I-dDD_) " (I4+¢cDyD_)De™*)
> —(—c)dAt|le" 7 — (—a)bAt]| f* |
~[(=a)(—c)d+b(—c)d+(—a)b] At|| De" |7,
—c)d+(—a)b(—c) + (—a)bd] At|| D" ||
b(—c)+(—a)bd] At||D, D_e" %
(—c)d+b(—c)d| At]| Dy D_f* |7 .

The left hand side of (2.18) becomes
—cd|\(l—bD+D_)e"+1+At(1+aD+D_)Df"+1|\§2A
—ab||(I—dD+D,)f”+1+At(]+cD+D,)De”+1|\§2A

> (=c)d|[(I =bDyD_)e" |7 +(=a)bl|(I =dD D) f* |7,

—(—e)dAt|[e" "7 — (—a)bAt|f* T |E —[(—a)(—e)d+b(—c)d+(—a)b] At||De" |7

~[(=e)d+(~a)b(—c) +(—a)bd] At|| Df" |7,

~[(~a)b(—¢) +(~a)bd] At|| DL D_e" |7 —[(—a)(—c)d+b(—c)d] At|| Dy D_ f"+|7

+(=0)dALP||[(I+aDy D)D" |7 +(~a)bAt?||(I+eDy D) De |7 .

Due to the definition of the energy (2.17), one has

—cd||(1—bD+D_)e"+1+At(1+aD+D_)Df"+1||§2A
—ab||(T—dDy D) [ + At(I +¢Dy D_)De™ || (2.19)
>E(em L ) — O A (e T frY),
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with

C’—max 1;&_"_1_’_—7@ _76_’_7_’_, 74_ —a —C —¢
L o et e Cad 2 —a)n T2d T2 0d T h(—0) bd T (—a)d

Let us now focus on the right hand side of (2.18). The triangular inequality together
with Young’s inequality give the existence of a constant Cy independent of At, such that

—cd||(I-=bDyD_)e" — AtD(e"ux)— AtD(nAf") — AtD(e" f™) — Ate}| |?2A

—abl|(I—dD.D_)f" - ALD(f"uy) ~ S D((F)?) ~ M|y

< (=)d||(I =bD+-D_)e" |35 (1+CoAt)

(—e)dCo(At+ A D(e"up)|[72 + (—c)dCo(At+At)[|D(nX f*)I
(—e)dCo(At+A?)||D(e" )75 +(—c)dCo(At+At?)||€} [
(—a)b||(I =dD1 D) f*|[72 (1+CoAt)+ (~a)bCo(At+At?)||D(f"uX)|If
(—a)pCo(At+AL%)[D((f")*)I[z2 +(—a)bCo(At+At?)||e3 |7 -

++++

)
a)
Since

ID(e™ Iz, <2lle™ 17 IDS 172, + 211 f" |7 [1 De™ 15
it holds

1
HD(enfn)H?ZA < max{

1 n n n n
o i e (BB e ). 220)
The same holds for other terms to obtain

1D ) <max{ g gy b (A B DU e ), 221

|
&
=Y

and

D08 <max] mase {3 e [IDAA B Y™, 1), (2.22)

2 1
(—a)b’ (—a)bd}

and
2 1
DG 1 <o o e e (I B DU - e, 7)., (229
and finally
2
1Dl <1 e (e ), (221)

Thus, there exists a constant Co (which can be tracked by (2.20)-(2.24)), such that

—cd||(I—=bDyD_)e™ — AtD(e"u ) — AtD(n% f) — AtD(e" f) — Ate?| |§2A
At
—ab|(I—dDy D) f" = AtD(f"ux) = —-D((f")*) — Ateg |7
E(E", [")(L+CoAt) + Co(At+AL%)E(E", f7) + (—c)dCo (At + At2) [} |7,
+(=a)bCo(At+A?)||eg[7 -

(2.25)
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Gathering the informations from (2.19) and (2.25), there exists constants C5 and
C4 such that

(1= CIAYE(e™™, [T S (L +CsAE(e™, f7) + Calrt[e™||7 .

with [|e"]]2, :max{He?Hﬁz s 12 } Proposition 2.1 is a straighforward consequence.
A A A
|
Proof. (Proof of Theorem 1.2.) Let us arbitrary fix n€0,N —1. Suppose the
strong induction hypothesis

|€¥]] ;oo <1 and || f¥],. <1, (2.26)

e~

for all k€0,n.

This is obviously true for n=0, since e? = ]Q, for all j € Z. Let us prove that ||e"T!||p <
1 and || f" | <1. Inequality (2.3) is thus available for any k €0,n and constants C;
and Cy may be upper bounded by C3 and Cy independent of ||¢*||,.. and || f* One
has, for all k€0,n

2At 2 At(Cs+Cy)
£ (ek+17fk+1) S m Hek“éz + (1"‘%) £ (ek7fk) .

=

Namely, it becomes

2A L Aty +Cy)
5(€k+1afk+1) ( 7f )_1 AtC ||€kH£2 ﬁde(ek,fk)

Thus, taking the sum of all these inequalities, and noticing that €® = f =0, we end up
with

n n 2(n+1)A At(C3+Cy)
g(e Jrl’f +1)S 1— AtC4 I:rengHckH[“ 1— Zt04 Zf ’fk

Applying the discrete Gronwall lemma 1.1 and using the fact that the consistency error
is first-order accurate in time and second-order accurate in space, see Appendix A, we
get

£ (e, f11) < 2(n+1)At exp ((”+1)At(03+c4)> kEOX HGkH[Z

1-AtCy 1-AtCy

TC (no,uo) T(C3+Cy) 4 2
<
= T1oA, eXp( 1-AtC, {ao'+@n?},

where C'(10,u0) is some constant depending on the initial data (n9,ug). Thus, for Az, At
small enough and using the inequality:

e+l m <Cllem & D111
with C' a constant, we get that for sufficient small Az and At :
lle" e <1 and ||f" e <1

We can assure that the inductive hypothesis (2.26) holds for all k€0,n+1.
Obviously, this allows to close the estimates and provide the desired bound. This
concludes the proof of Theorem 1.2. O
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2.2. The proof of Theorem 1.3. As announced in the introduction, in this
section, we aim at providing a proof for our second main result. As opposed to the
previous result, the proof of Theorem 1.3 is rather sensitive to the different values of
the abcd parameters.

We recall that we will treat the case where the parameters verify:

a<0, ¢<0, b>0, d>0, and bd=0,

excluding the five cases:

For all n>0, we will consider (e},€%) € (¢4 (Z))2 the consistency error defined as:

‘ [l

(I=bDD_) (3" =) +(I+aDy D_) D (ux™) + D (3u’)
e +1(1—sgn(b))m1 AxDy D_ (1),

Il >

(2.27)

L (I—dDy D) (uX™ —u})+ (I+c¢DyD_)D (nk) +1D ((ugf)

€5+ 1 (1—sgn(d)) 2AxD D_ (uk).

Il >

In this section, we only detail the derivation of the energy inequality for &, the
equivalent of (2.3). This inequality is summarized as follows.

PROPOSITION 2.2. Assume |[€™||ge, || f"]]e,|sgn(a)|[| Dy (f)"||eee < Az2 =7, with v €
(O,%), for allne0,N. Then the following energy estimate holds true, for n€(0,N —1

(1—max{sgn(b),sgn(d)} CAt)E (", 1) < (1+CALE (e", f™)

+ (At +max{|sgn(c)|,1 fsgn(b)}Atz) Cllet| |§Z

+ (At +max{|sgn(a)|,1 fsgn(d)}Atz) C||er| \?ZA

+ (At +At?) max{|sgn(cd)|, |sgn(c)| (1 — max {sgn(b),sgn(d) })} Cl| D+ (e1)" (173

+ (At + At*) max{|sgn(ab)|, |sgn(a)| (1 — max {sgn(b),sgn(d)})} C[| D (e2)" 175 ,
(2.28)

with C a positive constant depending on |1 lle=, | D(na )" lle=, |16} e 11D ()" lle=
and || Dy D(ua)™|| e

In order to close the estimates and ensure the convergence proof (as the one made in
Subsection 2.1, for the case b>0 and d > 0) we perform as usual an induction hypothesis
on the smallness of |[e" [ oo, || f"|[e=, || D+ (f)"]|¢= according to the cases. It is sufficient
to assume by induction

n n n 1_ 3 1
lle™ e [ [le=, Isgn(@)[[| D+ ()" [e= < Az=™7,  with 7€ (0, 5). (2.29)

Hypothesis (2.29) is sufficient to assure the hypothesis of Proposition 2.2. The energy
estimate (2.28) is thus satisfied and the convergence rate (Theorem 1.3) is a consequence
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of the discrete strong Gronwall inequality, Lemma 1.1 and the study of the consistency
error (2.27) detailed in Appendix A (all the previous guidelines are detailed in Subsection
2.1 for the case b>0 and d>0).

First, we establish a technical result that interfers in a crucial manner in establishing
the a priori estimates.

2.2.1. Burgers-type estimates. Let us state the first result of this subsection:
PROPOSITION 2.3. Let u€(>°(Z) such that (D4 (u);)jez €L°(Z) and A>0. Fiz a>0
and T such that

||l poe +x <.

Then, there exists a sufficiently small positive number &g such that the following holds
true. Consider two positive reals At,Ax such that

TAL
<1,
Az —

A.I?Séo
and a € (?(Z), such that
1 ) 1
AMlalljoo <Az277, with 76(0,5).

Then, there exists a positive constant C' depending on the £>°-norm of u and D4 (u)
such that

Ha—AtD <(u+)\g> a) + %AxAtDJrD,aHZQ <(1+CAt) HQHFA'

A

Proof. We define
Ba=a—AtD (a <u+ A%)) + %AxAtD+D,a.

We compute the ¢4 -norm of Ba :
2 2 2 2 242 a®\ 2 T2 a2 2
1Ball?, ~llall?, ~ APIID(@w)] 2, ~ ARNY|D (5 ) 13, ~ - APAP| D, D_al?,

2
=—2At¢ <a,D <au+)\a2> > +7AzAt{a,D;D_a)

+2)\A¢ <D(au) ,D <a22) > —7AzAt*(D(au),D,D_a)

2 3
—TAAZAL <D (“2) ,D+Da> not- ZRZ-.
=1
(2.30)

e For Ry, Relations (1.24), (1.27) and (1.22) give

2
—2At <a,D (aqu)\(;) > +7AzAt{a,D;D_a)

2
=—At{(Dyu,aS a)+ Av Al

A <D+a, (D+a)2> —7AtAz||Dall%
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Az2At

< AHD-ullelal 3 + == (Dsa,(D1a)’) —TAtAT|| Dyal ;.

e For the Rs-term, one has, thanks to Relations (1.31) and (1.25),

2

2AAL <D (au),D (“2 ) > —rAxA (D (au), Dy D_a)

SAt2Ax? 2A2

<2AAL||al g | [l e || Dal 2, - )\<Du,(Da)3>—

[1Dul|e=lallz

)\<DDu,a3>
TAt2 TAL?
=D ulle Nl + T
SATZAL?
< 2/\AtQHOLl e |[ulle== || Dal[7; + —5AIDullex || Dalle< || Dal 72

2At2 A TAtQ
A lall 1Dl ol + T2 1Dl el + o

_|_

[1Dulle lal 7 -

e Eventually, for R3, one has, thanks to (1.26)

2 2 2
“TAAZAR <D (%) ,D+D,a> _ At 6A"” (Dia,(Dia)?)+ %A(Da, (Da)?).

For the left hand side of the ¢4 -norm of Ba, Equation (2.30), we know, thanks to (1.30)
2 2 2 2 2 2 2 3At 2 2
AL|D (au) [[z5, <A {[ulle +Atl[Dull } || Dallyg + At [[ulleee + =11 Drullee o [lally -
Thanks to (1.29), one has
T2 A2 2 2 A 42 2 2 A 42 2
ZAt AJ} ||D+D_a||é2A =T At HD+0’||£2A_T At HDaHng,
and, thanks to (1.28),
At2)\2||D< )HF <At2/\2||Da||Zz ||| -
Finally, we gather all these results

3AL2 2At2
|Djul |7 + MIDulleoollalleoo

IBalfy <l {1+ AeDulle -+ Al + 25

AN At2 AzZAt
2 Do+ }+ A<D+a,<D+a>2>fmtmnmanig
A2 Azt

TA<D+a,<D+a>2>+72At2||D+a||§zA+At2||Da||z2 {1l [2 + At|| Dl

8A£E QTA:U
+2A[|alf e |u] [ + Al[Dul| || Dalle= + X?|[al[70 + —5—Al|Dal|g= — 77 }
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Thus

1Bl <l {1+A1D sl + Al + 5010wl + 220N Do
T Do + T D}

+<AI2At>\D+a—7AtAx1—At26AxT>\D+a+72At21,(D+a)2>

SAzx
+At%||Dall7, {IUHeac + At |D g ul[fo 42 [al e |[u] e + 7>\||DUHK<>° |lalfe=

2T
Xl + 5 Aol 7 .

where
=(...1,1,1...).
However,
Az?At At2A A
x6 ADia—71AtAzl — TWAD+a+72At21 = (61;)\D+a_7-1> (Az—TAt) At.

By hypothesis, TAt <Az and ||u||ge + < T, thus for §p such that

80 < (3l ulle=) T, (2.31)
one has
Az Mallgw Azt §277
This implies
Az At At2A
< ° )\D+a—TAtAm1—6”)\D+a+72At217(D+a)2> <0.

In the same way, for At and Az small enough and ||a||¢~ small enough, for §y satisfying

1) 1_ 8
||D+(u)|\?m70+255 WHulleoongllD( )88 08 2, 2 52 TT<a?, (232

the condition ||u||g=~ +a <7 implies

SAx
[[ul |7 + At]| Dyu|[7 + 27| oo [t e + =5~ AllDulle[lalle=

97
+2?||a|[2e +?/\||a||goo —r2<0.

Proposition 2.3 results from the fact that there exists C; such that /14+CAt <14+ C; At
with
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3¢
4

2At
D 2 o+ —\||Dul|p=e -
1Dl + 2 Al Dl
TAL

T Az

C =||Dyullge +||ul |7 +
TAL

D oo N D oo,

1D ulle + 22 Dl

The upper bound §y must be chosen such that Conditions (2.31) and (2.32) be satisfied.
O

The next result is an immediate consequence of the preceding one.
PROPOSITION 2.4. Consider ue (> (Z) such that (D4 (u);)jez €£°°(Z) and A\>0. Fiz
T such that

[ull oo <

Then, there exist two sufficiently small positive numbers dg,01 such that the following
holds true. Consider two positive reals At,Ax such that

TAL

é]-; A$§5O

and a € ?(Z), be > (Z) such that
1
Mall e A3, with 7€ (0.5), bl <81 and Db <1

Then, there exists a positive constant C' depending on the £>°-norm of u and D4 (u)
such that:

Ha—AtD (a (u+b+)\g))+%A:cAtD+D,aH < (1+CAY a5 (2.33)
KA
Proof. Let us consider 7> ||ul/,~. Let us suppose that d; is chosen small enough
such that
[+l oo <01+ [[teflgoe <7

Then, taking a smaller At and Az if neccesary, we may apply Proposition 2.3 with u+b
instead of u in order to establish the estimate (2.33). O

PROPOSITION 2.5. Consider uw€ (> (Z) such that (Di(u);)jez €£°(Z) and A>0. Fiz
T such that

[l oo <7

Then, there exist two sufficiently small positive numbers 09,01 such that the following
holds true. Consider two positive reals At,Ax such that

TAL
<1, Az<
Ag = =%
and a € *(Z), be (> (Z) such that
1
Mallw MDsale <AcE7, with 1€ (03),  (234)

[Bllgoe <01 and [ Dbl goc , [|D-D— ()| oo [[ D4- D (w) [ poe <1 (2.35)
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Then, there exist positive constants C1,Co depending on the £>°-norm of u, Dy (u) and
DD, (u) such that:

a T
HD+a7AtD+D (a (u+b+)\§)) +§Ao:AtD+D+D_aHZ2A
<CiAtall s +(1+CoAt) [ Dyalls -
Proof. Let us observe that
Dya—AtD,D (a (u+b+Ag)) +%AxAtD+D+D, (a)
a a
—D.a—AtD (D+ (a) <u+b+)\§)) _AID <S+ (a) Dy (u+b+)\§))
+ %AmAtD+D, (D (a))
—Dya—AtD <D+ (a) <u+b+;\S+ (a)+>\g>) +%AmAtD+D, (D (a))
—AtD(S4 (a) D+ (uw)) = AtD (S84 (a) D+ (b)).
Owing to the hypothesis (2.34)-(2.35) and Proposition 2.4 with b+ 23S a+A% instead

of b and 0 instead of A, we may choose §y small enough which ensures the existence of
a positive constant Cs such that:

Moreover, using the derivation formula (1.20), it transpires that
|~AtD (84 (@) D ()~ ALD(S: (a) D (5)) 2

SAL(IDDy ()l g + DD+ (B)ll g ) lall gz + At (| D+ ()l goo + D4 (0 o0 ) 1D+ (@)l 2, -
(2.37)

Dia—AtD <D+ (a) (u+b+ gs+ (a)+ ;a)> + %AxAtDJrD_ (D4 (a))

2 (2.36)
< (14+CoA1) | Dy (a)] -

The conclusion follows from estimates (2.36) and (2.37). O

2.2.2. The case b=d=0. We distinguish many different settings for a,b,c and
d.
The case a <0, b=c=d=0. The convergence error satisfies:

et 4 AtD 1 4 aAtD, D_D 7+
=e" —AtD (e"uX ) — AtD (" f") = AtD (nR f") + T AtArD D_e" — Ate, (2.38)
P AtDen = — AD (f™ (uR + 5 7)) + R AtAzD D_ f" — Atey,

with

max {1,72 } At < Az,
{ Ikl <min{r s}, SOV
We consider the energy functional

def.
E (e, f) " Nlell +11f122 + (—a) |D4 £ -
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Proof. (Proof of Proposition 2.2 in the case a<0, b=c=d=0). In order
to recover a H!'-type control for f™ (necessary for the control of &(e, f)), let us apply
v—aDy to the second equation of (2.38). We get that:

V—aD, f" + Atv/—aD, De" ' =\/—aD, f" —\/—aAtDD (f" (uz + ;f”) >
+ \/—a%mmmm[), Fr—/—alAtD, €. (2.39)

We consider now the three equations system comprised of system (2.38) with added
equation (2.39). As previously, we square the equations and add them together. Young’s
inequality enables us to obtain, with Cjy a constant

e+ 4 At +aD, D) D + 7 4+ A

+||[V=aDy f+ +At\/faD+D(€"+l)Hji
< (At+AL2) Co |ef %, + (At+Ar2) o le %, +(—a) (At+(A6)2) Co [ Dy (e2)" 1%

2
+(1+CoAt)||e" — AtD (e"uk) — AtD (" f”)+%AtAxD+D_e"
A
+(At+(A)*) Co | D (A ™)l
2
+(1+C’0At)’ f"—AtD (f" (uz+ %f")) + %AtA:cD+D,f”
2

+(1+CoAt)(—a)

D4 f"—AtDD, ( " (uz + % f”)) + %AtAxD+D+D_ o

(2.40)

2
ZA

Let us consider the right hand side of (2.40). Owing to Proposition (2.4)
and Proposition (2.3) we have that, thanks hypotheses of Proposition 2.2 on
(€™ [leoe s [1F "™ [leoe s [| Dy f 7' [0 < A2

respectively

Proposition 2.5 ensures the existence of constants Cs,Cy such that:

2
e"—AtD(e"uZ)—AtD(e"f”)+%AtAmD+D,e" §(1+C’1At)||e"|\§z, (2.41)
(2

“A

2
<L+ CoAD | f 7 - (2:42)

1
fm"— AtD (f" (ug T 2f")) + %AtAa:D+D,f"

A

fm 2

(—a) ’D+f” —AtD,D (f” (wg + 2)) + %Ammmpm,f"

A

< (14 C3A1) () [ D f*| +Ca(—a) At % . (2.43)
Finally, we have, thanks Relation (1.20),
1D () <21DnR 1% 1572 + 21 2 DS

_—
<2max{||Dnzn5w ,miﬂf“}aen,fﬂ. (2.44)
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Next, we compute the left hand side of (2.40). First of all, we observe that
lV=aDy f" !+ Atv/=aDy D,
=—a|| Dy £ 3, —a(A8)? || D D}, +2aA4(Dy. D_f*+ D).

Moreover, one has
et + At (T+aDy Do) D™l +[|774 + ADE [y =l Iy

+2aAt(e"", D D_Df" ) + A ||(I+aD+ D)D" |5 +11f" G + AL De" |7 -

Eventually, we get, for the left hand side,

|e" ! + At(I+aD D) D2, +|| /" + AtDem |12, (2.45)
A A
+[lV=aDy f" !+ Atv=aDi D,
=& (" )+ AR | (I +aDo D_) D2, + A D17, (2.46)
A A

—aA?||Dy D2,
A
> £ (enth iy, (2.47)
Gathering relations (2.40), (2.41), (2.42), (2.43), (2.44) and (2.47) yields
£ (e fH) < (At—&—(At)?)CO(He{LH?ZA+Heguii—i—(—a)HDJreSH?i)+(1+ClAt)g(e"7Jm).

d

2.2.3. The case b=0,d>0. Three configurations are studied in this subsubsec-
tion.
The case a=b=c=0,d>0. In this case, without any difficulties, we are able to
prove a more general result. Indeed, we will show that the following general #-scheme:

A (T =) + D (1= 0)u" +0u™ 1) + D (n*u") = “2ED, D (n"),
(2.48)
L (I—dD;D_)(u" —um)+D (1= )" +6n"+1) + 1D ((u")Q) ~0

is adapted for studying the classical Boussinesq system, with 6 € [0,1]. The convergence
error verifies:

E~(n)+AtD ((1=0) fr+0f"t) + AtD (e"uR ) + AtD (% f™)
+AtD (e f") = FAtAxzD D_ (e") — Ate7,
(2.49)
(I-dDyD_)F~ (n)+AtD ((1 —6‘)e"+96”+1) +AtD (fu)
+51D (7)) =-Ate.
Recall that in this case:

E (e, f)=llellzs + 1 fllzs, +all D+ fz2 - (2.50)
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Proof. (Proof of Proposition 2.2 in the case a=b=c¢=0,d>0). Multiply the
second equation of (2.49) with F* (n) and proceeding as we did in Section 2.1 (Identity
(2.14) with a=0), we obtain that there exist two constants C4 ; and C 2 depending on
d, [[uX |lyes [|DUA || jo and @, such that:

L1 +d Do = 1707 — D

__ <F+ (n), ALD (1) €" +0e") + AtD (f ulk) + % ((f”)z) - Ate'§> (2.51)

< AtHeSHEQA +ALC 1 E (e, f1) + ALC & (e, )
—At(1-0)(De™, F* (n)) —0At(De" ' F*t(n)).

Notice that Relation (1.22) combined with the Cauchy-Schwarz inequality, the Young’s
inequality and the upper bound [|D(.)[|sz <|[D+(.)||sz simplifies the previous last term

n n n 1 n
(De, T (n)) <lle” |l + 51Dl + 511D Iz

1
5!
<max{1—|—1}5(e",f")+1S(en'+1,f"+1).
- 2d 2d

A similar inequality holds true for (De™ ™! F* (n)).
Next, we rewrite the first equation of (2.49) as

et ="~ AtD (" (up + ")+ 5 AtAzDy D_ (€)= AtD ((1—6) f"+ 0"+
—AtD (nA f") — Ate?.
Thus, using the Proposition (2.4) and Relation (1.20), we get that

le e <

" — ALD (e" (uk + f™)) + %Amwm_ (e")

A

+ALD((1=0) S+ 07" || o +ALID MRSl + At 2
< Atllefll +(1+CAY I | + At (1= D) +0]ID (54,5 )

o+ Atmax {3l 10 0l (17 e, + 1D ™))

ALl + 1+ CAL)[[€"] 12 +ALCrER (€7, f7) +Cap ALE? ("1, f1H1),
(2.52)

with C1 2 and Cy 2 depending on ||k ||e= and || DnX||ee. From (2.52), we deduce that
He"“ngA < (At+ (At)2> Co ||€?||?2A + (14 C1 3At) Hen”?g
(A (AD?) CrsE (e, ) + (At + (A1) Ca€ (", 7). (2.53)
Adding up the estimates yields
(1=CLAE (e, 174) < (At+ (A7) Collel Iy + At 317 +(1+C2ADE (e, 1),

d
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The case a<0,6=0,c=0,d>0. In this case, the convergence error satisfies:

e+ AtDf " +aAtD,. D_D fr !
=e" —AtD(e"u))—AtD (e f") = AtD (R ")+ 5 AtAx D D_e" — Atey,
(I—dDyD_) f"' + AtDe" ™ =(I—dD; D_) f" — AtD (™ (uk + 5 /™)) — Ate}.
In this section, we will work with the energy functional:
Ee.f)=dlel +(~a)|(I—dD4D_) fII%

which is better adapted to the system corresponding to the particular values of the
parameters in view here. Of course, £ is equivalent to the energy from (2.1).

Proof. (Proof of Proposition 2.2 in the case a <0,b=c=0,d >0). By summing
up the square of the ¢4-norm of the first equation by d, the square of the 34 norm of
the second one by (—a), we get that, thanks to Relations (1.22) and (1.23),

E (e"“,f”“) +2(d+a)At<Df”+1,e”“> +dAt2||Df"+1||?2A
+2AP (~a)d|[ D4 DBy + (—a) AR Dem
+APad|| D DDy < (At+AP)Cod [ +(At+AR)Ch(~a) 5%

+(1+AtCy)d

2
e —AtD (e" (uxr+ "))+ %AtAmDJrD,e"HZQ

A

+ (At+A#2) Cod || D (A )72
+(1+AtCo) (~a) | (I —dD4D_) f|1%

o(r(301)

2At(d+a) (f*1!, De" ) > —At(d—a)||Df"+1||§2A - At(d—a)||e”+1||§Z
> —AtCi€ (e ).

2
+ (At+At?) Co(—a)

A

‘We notice that

Using Proposition 2.4 we get that

(14 AtCo)d

2
e —AtD(e" (ux + ™)+ %AtAxD+D_e” P
A

<(1+CoAt)d||e" |2

Also, we have, due to (1.20)

D& S <D R 171+ [nR Bl D™ I3 < CaE (e 7).

Proceeding as above, we get that:

2

n n 1 n n n n n n n
[(r (ua+5rm) )| <m0 e 0 e DS 7 i ).
ZA

Adding up the above estimate gives us:

(1= CLADE (M, F7) < (At + (A1) Cod||ef [ + (At + (A1) Co(~a) 512
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+(1+C5A)E (e, f7).
The case a<0,6=0,c<0,d>0. In this case, the convergence error satisfies:

et L AtD "t faAtD, D_D !

=e" —AtD(e"u} ) — AtD (e" f") — AtD (i f*) + 5 AtAzD D_e" — AteY, .50
2.54

(I—dDyD_) "'+ AtDe™ ! + ¢AtD, D_Demt!

= —dDyD_) f"—AtD (f" (uk + 3 f")) — Atej.

Again, in order to close the estimates and prove the convergence of the scheme, we will
be using the following energy functional:

E(e. /)" (—a)lle|lz2 +(—ed) | Daell s +(~a) |(I—dDy D) fl[73 .

which is equivalent to that one from (2.1).
Proof. (Proof of Proposition 2.2 in the case a<0,b=0,c<0,d>0). In order
to derive a H'-control on e"*1, let us apply v/—cdD, in the first equation, to obtain

V—=cdDye" T + Atv/—cdD D f*+ +v/—cdaAtD, D, D_D o+

=V —cdDye" — Atv/—cdD, D (e"u})

— AW —cdD4 D (" f7) + %\/—Tdmmmmp_en

—V—=cdAtD, D (nk f) — vV —cdAtD €} (2.55)

We focus now on the system composed of both equations of (2.54) with Equation (2.55)
in addition. We will multiply the first and second equations of (2.54) by (—a) thereafter.
As before, we square the three equalities to compute the 3 -norm. Let us observe that

I =(=a) [ + AtD ™ +aAtD D_D ™[,
= (=a) [le" [y +(=a) (A1) [ D[, —a® (A0)? [ D DD,
+20%(A02(| Dy DF 7, +2(—a)At (e DY) — 20 At (", Dy DD,
(2.56)
along with
Iy=(—cd)||Dye™™ +AtD, D" +aAtD+D+D_Df”+1Hj2A
= (—ed) [ D"y +(—cd) (A | Dy DF*[5, +(—ed)a® (A)? || D1 Dy DD || 5
+2acd(At)?|| D+ D_Df"*? ng —2cdAt(Dye™ Dy DY
—2acdAt{Dy "', DD, D_Df""), (2.57)
and

Is=(—a)||(I-dDyD_) f**' + AtDe"*' +cAtDy D_De™ |

’2
2
EA

(—a)||(T—dDyD_) fr+ sz +(—a)é (At)? || Dy D_De™ ! ||j2A +(—a) (At)? || De"*! Hji
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+2ac(At)*||Dy D™, +2(—a)At{(I—dDyD_) f*** De" )
A
—2acAt(f*"*, Dy D_De" )+ 2acdAt (D D_f"*' D, D_De" ). (2.58)

Observe that the last term from (2.57) cancels with the last term of (2.58), ac-
cording to Relations (1.22) and (1.23). The same is true for 2A¢(e™™! Dfm+1)

in (2.56) and 2At(f"T! De™*') in (2.58). Therefore, by integrating by part
2aAt(e"™, Dy D_D 1) in (2.56) and —2acAt (", D, D_De™ ) in (2.58), it yieds

L+L+13>E (" ) + 20> At (De™ Dy D_f7 )
—2cdAt(D e Dy DY +2daAt(Dy D_ f" De™ )
—2acAt <D+D,f”+17De"+1> .

Young’s inequality enables to lower bound the previous inequality:

Lt + 1> E (" f") = (—a® —cd+d(—a) +ac)At{||D+e”“||§2A + |ID+D—f"“II§2A}
>(1-CrAYE (" ).

Let us now focus on the right hand side of the squared equations. Using Cauchy-Schwarz
inequality and Proposition 2.4, we get that

11 = (—a)

2
" — ALD (e"uX) — AtD (e f™) + %Amwm, " — AtD(nk f") — Ate}

LA

IN

(—a) L (1+CoAt)
A

+(—a)(AL+ AP)Co D (A S ™%, + (~a) (At +AE)Co et 1

<

(1+CAY) (=a) [le" |72 + (At +At*) (=a)Co | D (na f") |72, + (At +At*) (=a)Co €] 173 -
(2.59)

2
e" —AtD(e"up) —AtD(e" f™)+ %AtAxD+D,en
¢

Using Proposition 2.5 and Young’s inequality, we get

I<—cd HD+e” ~ AtDL D ("W + f*) + %AtAxD+D+D_e" — AtDLD(n% f*)

—AtD ()17

< —cd(14CoAMt) [ Dye” ~ AtD, D(e"uh) = AtD, D(e" ) + T AtAwD, Dy D" Hj
2

—cd(At+A8)Co | Dy D (A f™) |72, — cd(At+A8)Col| D€} |7

< —cd(At+A)Col| Dy e[|z —ed (AtCl le™ 17 + (1+CaAt) \|D+e”llfg)

—cd(At+ At ) max {[[nR |[7 ,[| DenA [ s | D+ DR |7 } (I\f”\l?z (2.60)

1D £ + 1D DI )

< —cd(At+AP)Co|| Dyl || +AtCE (€, ")+ (—cd)|| Dy |7 - (2.61)

Using once again the Young’s inequality, it holds

2
13:—(1

(I—dD,D_) f"—AtD <f” (ug+f2n>> — Atel

A
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—a(1+CoAt)|[(T—dDyD-) f* |3
2
_a(At+At2)Co|\eg\|§2A

o (ear))
A

< —a(At+ AP)Cy |51 +CAtmax (L, |[ud] o=, [[Dyui I }E (", /™)
+(~a)l|(I ~dD4D_) |2 . (2.62)

—a(At+ At Cy

From (2.56) - (2.62), we obtain

(™ ") (1= CrA) < (At+AP) ((=a) I8 17 + (—a) €5 |17, + (—e)d | Dyel[7z)
+(14+AtCo)E (e, ).

2.2.4. The case d=0,b>0. Once again, three configurations are considered
according to the parameters a,b,c and d.
The case a=c=d=0,b>0. In this case, as for the classical Boussinesq system
(the case a=b=c¢=0,d >0, page 26) we derive estimates for a more general scheme:
the following #-scheme where the advection term is discretized according to a convex
combination of n and n+1

a7 ([ =D D_) (" =) + D (1= 0)u" +0u" ') + D (n"u™) =0,

(2.63)
Ao =) D (1= 0+ 65 1) + 4D (u)?) = 22D, D ().
The convergence error verifies:
(I-bDyD_)E~ (n)+AtD ((1—0) f* +0f"*+1) + AtD (e"uR)
+ALD (53 f7) + AtD (" f7) =~ Atef,
(2.64)
F~ (n)+AtD ((1—0) €™ +0e"+1) + AtD (frud) + ALD ((f”)2>
=ZAtAzDD_(e")— Atey.
We work with
E (e, f)=llels +ID ()% +I1£1% - (2.65)

Proof. (Proof of Proposition 2.2 in the case a=c=d=0,b>0). We multiply
the first equation by E* (n) in order to get

(e 20D ) = (e 401, )
=—At(D((1=0) f"+0f" ") +D(e"up) + DX f*)+ D (" ") + €, EF (n)).
Integration by parts (1.22) gives

(lle 112 o] Dyen ) = (e i +blDs e )
= —At(e}, BT (n) + At{(1=0) f" +60" " +e"uk +nA f" +e" [, DE* (n))
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< At[|€} |7 +ALCILE (€7, f7) + ALCHE (e, [, (2.66)

with C7 and Cy two constants proportional to
1 n n
1+gmaX{HUAHé°°7|\77AH2°°}~

Using the second equation of (2.64), the triangle inequality along with Proposition 2.3,
one obtains:

At
£ e < ‘ fr=AtD(fup) = =D ((f")Q) +ZAtAeD, D (f")
+ At +At1=0)[D(e")lg +A10[ D ()] 0

< AU + (14 CA 17y +AL1=0) D) +At0][D (")

02

ez
(2.67)

Thus, by adding up estimate (2.66) with the square of the estimate (2.67), we get that

(1—CADE (emH, [ 1) < At||€} [y + (At+A%)Co e |7 + (1 +CaADE (", f).
The case a<0,6>0,c=d=0. The convergence error satisfies:

(I-bDyD_)e" '+ AtDf"*1 +aAtD,.D_Df"*1=(I—-bD,.D_)e"
—AtD (e"u})—AtD (e f) = AtD (nk f™) — Atel,

(2.68)
Sr 4 AtDer = fm — AtD (f™ (uR + 5 ™)) + R AtAzD D_ (f™) — Atey.
Consider the energy functional we will work with will be

E (e f) = lellZy +lIDselZy + £ +(~a) Dy f12

Proof. (Proof of Proposition 2.2 in the case a<0,6>0,c=d=0). Let us
multiply the first equation of (2.68) with 2e"*! to obtain:

2[[em 4[5, +2b][ D e, + 288D ™) 42aAH (D4 DD )
=2((I-bDyD_)e™,e" )y —2At(D(e"uR)+D(e" f*)+D(nk f") +ef,e" )
<[lem |7 + bl D™ty +llem 7 +bl D el

+2At]|D(e"up )+ D(e" f*) + D f*)|lez 1€ e, +Atl[e} |17z +At][e™ |7 -
(2.69)

The last inequality is due to Cauchy-Schwarz and Young’s inequalities. Notice that
ID(e"uR) +D(e" f*) + Dk f")lez, <CLEV2(e™, ),

with Cy proportional to

e[ 1Dl e D o= {1, 2 .
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Thus, Equation (2.69) becomes
[e" Y7, +b][Dae™ |7 +2AH{D " ") 4 2aAt (D D_D " en )
“A A
gHe"||j2A+bHD+e"||?2A+C’1AtS%(e”,f”)||e”+1||éi+At||e?||§z+At||e"“||§2A. (2.70)

Next, taking the square of the ¢A-norm of the second equation of (2.68) and using
Proposition 2.4, we obtain

1774 s +2A8 (£, Dem )+ (A6)? || Dem [,

< (At+(At)2> C’o||€§’||f2A

2

1
+(14+CoAt) ‘ fr=AtD <f" (uz + 2f”>) + %AtA:ED+D_ (f™
‘A
< (Ar+(A0°) Colles iy + (1ot |77 - (271)
When we will sum up Equations (2.70) and (2.71), both terms
20t (D" emt) and  2At(fH De )
will cancel each other, thanks to Relation (1.22). We have to cancel

2aAt (D D_D f+1 e" 1) in (2.70) too. This is the aim of the following computa-
tion.

Applying /—aD. into the second equation of (2.68) and taking the square of the ¢3-
norm of the resulting equation yields (with Proposition 2.5)

(=) | D f™ Y [fy +2(=a) At(D f"*, D1 D)+ (=a) (At)*|| D1 D,

< (at+(A0*) Co(-a) DI,
+(1+CoAt) (—a)

Dy f"—AtD,.D <f” (ug + ;f”» + %AtAa:D+D+D_ (f™)

‘A
< (At+(a8)?) Co(—a) D457 +(1+ CAt) (—a) | D "7y + AtCi (—a) £ 1 -
(2.72)
Adding up the estimates (2.70), (2.71) and (2.72) leads to

(1= C5ADE (e, fm+) < Atlef |75 + (At+(At>2) Co (Ileé’llig +(—a) ||D+65‘H?ZA)
+(1+CeAL)E (e, f™).

d
The case a<0,b>0,c<0,d=0. Finally, in this case, the convergence error
satisfies:

(I—bDyD_)e™ ' + AtDf** 4+ aAtD D_Df* = (I—bD,D_)e"
—AtD (e™u}) —AtD (e f) — AtD (nx ) — Atey,
(2.73)
[P+ AtDe M+ cAtD D_De™tl
= 1= AtD (f7 (uh + 1 7)) + 2 AtAZD, D_ (f7)— Atel.
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In this case, we will use the energy functional:
2 2 2
E(e, ) =(~O)|(T-bD.D)el% +I 1% +(~a)b| DSl

Proof. (Proof of Proposition 2.2 in the case a<0,b>0,c<0,d=0). Taking
the square of the first equations of (2.73) and multiplying the result with (—c) yields

Ji=(=0) [ (1=bD1 D)™ |7, +(=e) (A0 [ DS}, +(=e)a* (A)? | D4 DD,
+2ac(At)2||D+Df"“||'; —2cAt{(I-bDyD_)e" ' D"+
A
—2acAt{e"" Dy D_Df") +2acbAt (D D_e" ', Dy D_D ). (2.74)

Taking the square of the 3 -norm of the second equation of (2.73) leads to
o= [l + @0 D+ (ean? [ Dy DD, —2e(an? DD
+2At<f”+1,De"+1>+2cAt<f”+1,D+D_De”+1>. (2.75)
Let us observe that the terms
2At (" De" ™) and  2cAt(f""', D D_De™*'), in (2.75)
and
—2acAt(e"™', Dy D_Df") and —2cAt{(I-bDyD_)e"' Df"t1), in (2.74)

can be lower controlled by the energy —AtCE (e™+1, f7+1) (by using integration by parts
(1.22) and Cauchy-Schwarz inequality) such that they do not raise any issues. In order
to get rid of the term

2acbAt (D D_e"*' D, D_Df") in (2.74) (2.76)

we will apply 1/(—a)bD_ into the second equation of (2.73) and consider the square of
the ¢4 -norm of the result. First, let us compute:

J3=(—=a)b||Ds f" + AtD4 De™ 4 eAtDL Dy D_De" |2,
A
—a)b[ D £ [y +(—a)b(At)?[| D D [7, +(=a)bleat)® | Dy Dy D-De™ |7,
+2(=a)bAt(Dy f**, Dy De™ ) +2(=a)beAt (D4 " Dy Dy D_De™ )
+2abe(At)?|| Dy D_De" |2, . (2.77)
A
Of course the problematic term from (2.76) will cancel with
—2abeAt(D f**', Dy Dy D_De™t)

appearing in (2.77). The additional term 2(—a)bAt{D, f**!, Dy D(e)"*1) in (2.77)
can be once again controlled by the energy —AtCE(e™+!, f7+1) (by using integrations
by parts (1.22) and Cauchy-Schwarz inequality).

Let us now interest to the right hand side. For the first equation of (2.73), we obtain
by Young inequality

T < (=) (At +AP) Collet % +(1+ Coht) ()| (T ~bDy D_)e" [ +CLALE (" 1),
(2.78)
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In the previous inequality, we have upper bounded At||—D(e™u}x)—D(e"f")—
D 1) by

max{||uA|eoo,||DuA|eoo,nnAnem,||DnA||eoo,}max{ - }ae ).

—
S
=

>
V)
=
~
|
o
=

The second equation of (2.73) gives
J2 < (At+At?) Co ||e§||§2A

1 2
+(1+CoAt)’ (f" <u2+§f")) +%AtA:cD+D,(f")
A
< (At+A8) Colles |73 + (1 +CrAn)||f* 17 - (2.79)
Moreover, using Proposition (2.5), we obtain
J < (~a)b(At+ (A1) Coll D117, +Catdt(-a)bl| £ 7,
+ (L4 CaAt) (—a) || D £ - (2.80)

Putting together Estimates (2.74), (2.75) and (2.77) with (2.78), (2.79) and (2.80) gives
(1—CyAt)E (en T, frH) < (At+At2)Oo o)tz

+ (804 (807) o (e, +(~ab) D517, )
(14 CADE (", ).

3. Experimental results

In order to illustrate our theoretical results, we compare in this paragraph, known
exact solutions (i.e. traveling waves) with the discrete solutions computed with the
numerical schemes. We fix [0,L] the space domain with L=40. Moreover, we use
periodic boundary conditions. Those conditions are not absorbing boundary conditions,
which would mimic perfectly the behavior on Z, but we fix the final time 7" small enough
and we take the initial conditions localized enough in order to minimize boundary effects.

In Figures 3.2-3.10, we plot the exact and the numerical solutions which are com-
puted with a space cell size Ax= 2% and the time step At=0.001.
The convergence results are gathered in Tables 3.1-3.5. The computations are performed
with a number of cells J for the values J € {640,1280,2560,5120,10240}. The time step
is chosen to be At" = ﬁ in order to verify the CFL-type condition. We perform
computations up to the final time T'=2 or T'=4. In the case where bd=0, we chose
the Rusanov coefficients ; = 77" verifying 7" > ||u/d ||¢~ and 73" > ||uk ||¢e=, when they are
needed.

3.1. Linear case. = We begin by a test for the linear case:

I—b02,)0m+ (I +ad?2,) O,u=0,
I— daim) 8{[14 + (I+ caﬁx) 8177 = Oa (Labcd)
Mt=0="To0, Ujt=0=U0-
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More precisely, we take a=—
with the initial datum

7 _ 7 _ 2 _1 e el 1.
30> b=15, c=—% and d= 5 and initialize the scheme

In this case, the discrete energy must be conserved if we use the Crank-Nicolson scheme

(i.e. = %) We perform computation up to the final time T'=2 with space and time
steps Az = 2% and At=0.001 with 6= % The conclusion is that the discrete energy is

conserved, more or less up to a factor of order 10711, as it is illustrated by Figure 3.1.

0.9714500

0.9714400

0.9714300

Energy

0.9714200

0.9714100

0.9714000
0 0.5 1 1.5 2
time

Fic. 3.1. Energy conservation in the linear case

3.2. Case b>0, d>0. This section is divided in two parts. In the first part,
we will illustrate experimentally the rates of accuracy obtained in Theorem 1.2. In the
second part, we investigate in details the traveling-wave solutions.

Numerical convergence rates. We first take a look at the BBM-BBM system

with a=0, b= %, c=0, d:% for which two different exact solutions are known, see [8]

and [19]. We perform a first experiment for the following family of exact solutions:

)= oo (2 (- 5 2 ) ot (35 (= - 3)).

u(t,x) = %sech2 <\/?%O <x— g — ;t)) .

The results are represented in Figure 3.2.
We perform a second experiment for the following family of solutions:

(4)

n(t,z)=-1,
-2y (o))

6

with Cs =2 and p=1.1. The corresponding result can be found in Figure 3.3.
In order to compute a numerical rate of convergence, we perform computations with
increasingly smaller space meshes. The results are gathered in Table 3.1.
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——exact
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time : t= 2.000
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——exact
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time : t= 4.000 3
——exact
25
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Fi1c. 3.3. Case (B) where a=0, b:%, c=0,d
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time : t= 0.000
exact
/\
0 5 10 15 20 25 30 35 40
time : t= 1.000
T T T T T T
exact
/\ — — numerical
0 5 10 15 20 25 30 35 40
time : t= 2.000
exact
A — — numerical
0 5 10 15 20 25 30 35 40
X
1. .
§ ¢ results for n (left) and u (right)
time : t= 0.000

——exact
.5 — — numerical| 4

I3

3 35 4

15 20 25
time : t= 2.000
T T T

S

5

T T T T
——exact
r / \ — = numerical| 4
5 10
llme t— 4. 000
0 5 10 15

: results form (left) and u (right)

6
Case (A) Case (B)
Ax

energy error | exp. rate | energy error | exp. rate
6.25000.10~2 | 4.48993.10° 8.51815.102
3.12500.10~2 | 2.05132.10° 1.13270 | 4.14750.1072 | 1.03830
1.56250.1072 | 9.80969.10~! | 1.06450 | 2.04332.1072 | 1.02133
7.81250.1073 | 4.79738.10~' | 1.03181 | 1.01409.102 | 1.01073
3.90625.1073 | 2.37234.10~' | 1.01580 | 5.05189.1073 | 1.00529

TABLE 3.1. Ezperimental rates of convergence for b,d#0
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A third example that we treat concerns the case when a= —%, b= 1—75, c= —% and
d=1 which is discussed in [19] for which the exact solution reads:
3 of1 /5 L _V2
n(t,z)=—-sech” [ =4/ z—=—-5—2] |,
8 2V 7 2 6
(@)
1 o1 /5 L V2
u(t,x)=—=sech” [ -4/ |z —=—=5—¢t] |.
2v/2 2V 7 2 6
The results are gathered in Figure 3.4 and Table 3.2.
06 time : t= 0.000 06 time : t= 0.000
So2r /—-\ — 202t / N\ —
0t ! ! I [ I ! ! 1 0t ! ! I [ I ! ! it
0 5 10 15 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
06 ‘tlme : t‘= 2.000‘ i 08 i i ‘llme : t‘= 2.000 i i i
o2t 4 202t /N 4
0t ! ! 1 [ [ I ! 1 0t ! ! 1 [ [ ) ! it
0 5 10 15 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
06 ‘ ‘ ‘tlme : t‘= 4.000‘ ‘ ‘ 08 ‘ ‘ ‘llme :t‘= 4.000‘ ‘ ‘
To2t /N 4 202t /N 4
0t ! ! ! I [ I ! 1 0t ! ! ! i [ ) ! it
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
X X

FIG. 3.4. Case (C) where a=—--, b=

307 c:—%, d=1 : results forn (left) and u (right)

e
157 2

Case (C)

Az
energy error | exp. rate

6.25000.1072 | 2.27860.1072
3.12500.1072 | 1.126019.1072 | 1.01692
1.56250.1072 | 5.612993.10~2 | 1.00439
7.81250.1072 | 2.847910.1073 | 0.97887

TABLE 3.2. Experimental rates of convergence for a,b,c,d#0

The fourth and last example that we present in this paragraph is the case when
a=0,b= %, c= —% and d= %, for which the exact solution writes:

(D) n(t’x):_lvp 2(VP( L _
=Dt (2 (o L))

We take C's =3 and p=2 in order to perform our computations. The results are gathered
in Figure 3.5 and Table 3.3.
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05 ‘ ‘ ‘tlme : t‘= 0.000‘ ‘ ‘ s ‘ ‘ ‘llme :t‘= 0.000‘
o
— — numerical exact
= -1 s 4} |= = numerical
2
15 . I I I I . I ol | | | . | | |
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time : t= 2.000 time : t= 2.000
0.5 T T T T T 8 T T T T T T
exact 6l
— — numerical exact
ol
15 . . . . . . . 0 | | | | . . |
0 5 10 15, 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time : t= 4.000 time : t= 4.000
0.5 T T T T T 8 T T T T T T T
exact L 1
— — numerical exact
= 1 s 4 | = = numerical JL
15 . . . . . . . 1 1 . 1 . . .
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
x X

Fi1G. 3.5. Case (D) where a=0, b:%, c:—%, d:% : results for n (left) and w (right)

Case (D)
Az

energy error | exp. rate
6.25000.1072 | 6.39353.10~*
3.12500.1072 | 3.09159.10~1 | 1.04826
1.56250.1072 | 1.52031.10~! | 1.02399
7.81250.107% | 7.53884.1072 | 1.01195
3.90625.10~2 | 3.75388.1072 | 1.00596

TABLE 3.3. Ezperimental rates of convergence for b,c,d#0

REMARK 3.1. In these four examples, our numerical schemes do no contain artificial
viscosity i.e. 71 =0 and 7o =0. As we explained in the introduction, the parameters b,d
enable us to control and stabilize the scheme as the results of Figures 3.2-3.5 show.
The schemes used to perform these experiments are O(At+ Ax?) accurate so, if we take
At=Az2, we should be able to observe a second order convergence rate. The results
when performing the above experiments with At=Ax? are gathered in Table 3. and
confirm our intuition.

Case (A) Case (C)
Ax
energy error | exp. rate | energy error | exp. rate
2.5000.10~! | 3.29137.10 © 2.52768.1072
1.2500.107! | 7.75742.10~' | 2.08504 | 6.08893.1073 | 2.05355
6.2500.10~2 | 1.90828.10~! | 2.02330 | 1.50692.1073 | 2.01459
3.1250.1072 | 4.75112.1072 | 2.00594 | 3.81640.10~* | 1.98131

TABLE 3.4. Ezperimental rates of convergence with At= Ax?
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Behavior of the numerical scheme for traveling wave solutions. All the
test cases studied previously are in fact traveling wave solutions and it is worth pushing
forward our analysis for such particular solutions with the numerical schemes. First of
all, since bd >0, the Rusanov coefficients 71 and 75 are taken equal to 0, which restricts
the numerical diffusion of the scheme and provides a relatively good numerical solution
in long temporal intervals, as seen in Figures 3.6 and 3.7. For test case (B), we have
chosen Az =0.01 and a space domain [0, L] = [0,122], whereas for test case (C'), we have
chosen Az =0.05 and [0,L] =[0,400]. In both simulations, the changes in amplitude are
limited : the relative error on the maximum amplitude of u is equal to 1.8732% at t =34
for the case (B) and 1.4632% at t=100 for the case (C).

o time : t= 34.000 time : t= 34.000
2.8 '
—exact
- i —exact
-0.5
24
= -1 J22
2
1.5 1.8
1.6
-20 20 40 60 80 100 120 0 20 40 60 80 100 120

X X

F1G. 3.6. Long time behavior for case (B) with a=0, b:%, c=0,d= %: results for n (left) and
u (right)

time : t= 200.000 time : t= 200.000
035 035
0.3 0.3
0.25 0.25
0.2 0.2
= s
0.15 0.15
0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
0 100 200 300 400 0 100 200 300 400
X X
F1G. 3.7. Long time behavior for case (C) with a:—%, b=c=0,d= %: results for m (left) and u

(right)

The oscillatory dispersive tails which may be visible in a zoom after the solitary wave
are a numerical artifact. Thinner is the space mesh grid Az, smaller is the amplitude of
these oscillations. For instance, the amplitude of this tail is divided by approximately
2.15 when Az is halved, see Figure 3.8.

3.3. Case bd=0. We perform the same kind of numerical simulations : on the
one hand, the validation of the convergence rates and on the other hand the behavior
of the numerical schemes.

Numerical convergence rates. In the following two examples, we have chosen
b=0 while d > 0. First, we consider the case when a=b=c=0, d= %. The exact solution
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’ %107 time : t= 100.000 <10 time : t= 100.000
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!
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F1a. 3.8. Dispersive tails for case (C) due to a numerical artifact
Az =0.05 (right)

: results for Az=0.1 (left) and

obtained in [19] writes:
n(tax) = _1a

(E) u(t,z)= (1 - g) Cs+

C’S'OsechQ (\/'5 (:E £ C’st>> .
2 2 2

Our computations are done with Csy =1 and p=2. We represent the numerical and the
exact solutions in Figure 3.9.

M time : t= 0.000
05 time : t=0.000 ‘ 2 ‘ ‘ ; ‘ : : :
exact
— Rimerea & (il |
= A El
1F 4
15 . . . . . . . 05 " N N . N N n
5 10 15 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
time : t= 2.000 > time : t= 2.000
0.5 T T T r T T T T T T r -
exac
—— Rimenca 8t [l |
= A >
1k
15 . . . . . . . 05 " " " . . " "
5 10 15 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
time : t= 4.000 time : t= 4.000
0.5 T T T T T 2 T T T T T T r
JR— exact
= - El
1F 4
15 05

Fic. 3.9. Case (E) where a=b=c¢=0, d:é

In the second example, we treat the case a=

1
—%

15 20 25

b=c=0and d=

30

: results for n (left) and u (right)

1
29

35

40

for which the

exact solution obtained in [19] is:

2 2 /15
(F) 7 /3 N4 L 1
u(t,x)=—= Zsech? | —— [z — =+ —t
5 2 2 V15

We obtain Figure 3.10.

The experimental rates of convergence of the two previous cases with b=0 are
gathered in Table 3.5

Observe that the first order convergence is recovered which, of course, is in accor-
dance with the theoretical results.
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‘ ‘ time : t: 0.000 ‘lime :t‘= 0.000‘
0 0
4l
Tt \/’ -- ﬁzﬁér\cal 1 " af \[ = ﬁﬁacérical 1
KECEEED O ) B N JO- T T e
‘ ‘ tlme t—2000 ‘llme:t‘z 2.000‘
0 0
1 4
Tt ~ ’ - ﬁi?r%rica\ 1 > 2F \/ -- ﬁﬁrancérical 1
3 |
20 5 10 30 35 40 0 5 10 15 20 25 a0 3 40
tlme 1_4000 time : t= 4.000
0 ‘ ‘ ‘ 0 . ] :
=40 \/ B =5 v ool
I T T O B I
Fia. 3.10. Case (F) where a:—%, b=c=0, d:% : results for m (left) and u (right)
Case (F) Case (F)
Ax
energy error | exp. rate | energy error | exp. rate
6.25000.1072 | 5.94214.1072 3.62176.107 ¢
3.12500.1072 | 3.01052.1072 | 0.98097 | 1.92823.10~! | 0.93164
1.56250.1072 | 1.51573.1072 | 0.99000 | 1.00366.10~' | 0.94780
7.81250.1072 | 7.60581.1073 | 0.99483 | 5.16267.1072 | 0.95784
3.90625.10~2 | 3.80985.10~3 0.99737 | 2.63453.1072 0.96715
TABLE 3.5. Experimental rates of convergence when b=0 and d>0

Behavior of the numerical scheme for traveling wave solutions. Because
of the numerical diffusion, the scheme creates light shifts of the position and of the
amplitude of the traveling wave solution in long time. We detail below these aspects
for the test case (F'), where the numerical solution is computed with Az=0.005 up to
the final time T'=20. Quantitative results concerning the relative errors in position and
amplitude are gathered in Figure 3.11 (respectively in Table 3.6).

05 time : t= 20.000 time : t= 20.000
| °
- - numerical
0 -0.5
——exact
-0.5 1
= b =
N -1.5
]
2 1
-1.5
-2.5
-2
0 10 20 30 40 0 10 20 30 40
X X
F1G. 3.11. Long time behavior for case (F) with a= 7%, b=0, c=0, d= % : results for n (left)

and u (right)
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Position Amplitude
Numerical | Exact | Relative error | Numerical | Exact | Relative error
n 15.105 14.840 1.7857% 1.7544 1.7500 0.2501%
U 15.100 14.840 1.7520% 2.6227 2.7111 3.2594%

TABLE 3.6. Relative errors on position and amplitude of the traveling wave in long time behavior
(T =20) for case (F)

4. Traveling waves collision
Recently, in [9], the authors simulate the collision of two traveling waves moving
in opposite directions in [—L,L] in the BBM-BBM case (a=0, b:%, c=0, d:%).
Motivated by their results, we simulated the same phenomenon but for different values
of the abcd parameters.
Two behaviors are observable:
e the collision leads to phase shifts and visible dispersive tails which follow each
solitary wave,
e the collision suggests a possible blow-up of the L°°-norm in finite time either
on the density n or on the derivative of u.
Our numerical study is restricted to one type of traveling waves collision : the head-on
collision when the solitary waves travel in opposite directions and collide. We do not
study the overtaking collision (when the solitary waves propagate in the same direction)
and we refer the reader for example to [3] for a review of such collisions in the case
a:b=c=O,d=%.

4.1. Finite time blow-up. First, we used our numerical results and performed
the same experiment described in [9] for (a=0, b= %, c=0, d=}). The initial condition
is fixed to

u(t,x) =uy(t,z)+u_(t,x),

{n(tvx) ="+ (tvx) +1- (t,l’),

with

1 4
ne(t,x)= ;)sech2 <\/?)E <x —ryE Zt)) - Z5sech4 (210 (m —xryt ;t)) ,

1
u(t,x) ::|:?5sech2 (\/% (:vzi:t;t)> ,

where x4 = i%.
The space domain is fixed at [—14,14] and initially, the traveling-waves are centered in
x4 =7 and x_ =—7. We choose the same space size and time step as in [9], namely
Az =0.02 and At=0.0001. The simulation suggests that a blow-up occurs while the
explosion time appears to be around ¢t =4.5 as shown in Figure 4.1, result which is very
close to the one obtained in [9].

In a second time, we have observed that for the case a=0,b= %,c =0,d =0, solutions
of a similar structure as those above are available. The experiment is performed with
At=0.001, Axz=0.01 and taking the initial value

{U(Oaf) :77+(07T/)+77— (va)’

(@)

u(0,2) =u4(0,2) +u_(0,z),
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F1G. 4.1. Explosion for case (G) with a=0, b= %, c=0, d:% : results for n (left) and u (right)
with
ni(t,x):Esech2 1 zfxi:l:ﬁt fﬁsechll - a:fxi:Fﬁt ,
2 2 2 4 2
(H)
3V10 . (1 V10
Ui(t,$):iTseCh 5 x—xi:FTt y

where x4 =45. The results are gathered in Figure 4.2. We interpret this figure as a
possible blow-up of the L*°-norm on the derivative of u.

time : t= 0.000 5 i time : t; 0.000
T

-4 L I L - - r - L
10 5 0 5 10 10 5 0 5 10
time : t=1.50 5 time : t=1.50

-10 -5 0 5 10

-10 -5 0 5 10
5 time :‘t=3.00 i ‘ 5 time :‘l=3.00
=0 >
s L L L L L
-10 -5 0 5 10
x
time : t=4.50 time : t=4.50

EQ 5 0 5 10
time : t=4.83
ol T
10+
- 20+
300

F1G. 4.2. Ewvidence suggesting the explosion of the derivative of u for the case (H) with a=0,
b:%, ¢=0, d=0: results for n (left) and u (right)
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REMARK 4.1. The initial data leading to the “numerical” blow-up are not physical
because the quantity 1+mn, which is the height of the water column, should be a positive
quantity.

4.2. Head-on collision. In this subsection, we studied two cases where the
collision of traveling waves leads to phase shifts and visible dispersive tails which follow
each of the waves.

For (a:—%7 b:1—75, c:—%, d:%), the experiment is performed on the space
domain [—L,L]=[—14,14], the space- and time-meshes Az=0.01, At=0.001 and the
following initial value

77(0793) :77+(0755) +1n- (0737)7
u(0,2) =u4(0,2) + u_(0,2),

with

1 2
N (t,z)= gsech2 (2\/§<x—xi$5\6[t>> ,

(1)
1 1 /5 5v/2
ug (t,x) :i2—\/§sech2 (2 = (x—xi:FGt)) ,

where x4 = j:%.
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F1c. 4.3. No ezplosion for case (I) with a:—%, b:lls, c:—%, d=1 : results for n (left) and
w (right)

Figure 4.3 is an overview of the situation, which clearly illustrates that traveling
waves emerge from the collision (which occurs at t~5.94) without major changes. In
reality, some local changes are expected to be produced after the interaction of the
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waves such as phase-shifts, slight changes in amplitude and dispersive tails. Figures
4.4-4.7 illustrate all this expected consequences.

More precisely, Figure 4.4 illustrates the phase-shift which arises from the collision.
The paths of the maximum amplitude of both traveling waves are represented in the
(t,z)-plane, with or without collision. As expected, the traveling waves are delayed by
the head-on collision since the phase-shifts are in the opposite direction of their motion.
These phase-shifts are characterized by a relative error in velocity equals to 4.8383%
for the traveling waves moving from the right to the left and a relative error in velocity
equals to 4.1043% for the traveling wave moving from the left to the right.

To visualize the other expected behaviors caused by the head-on collision, we have
increased the final time of the numerical simulations. The parameters are now L =200,
x+ =150 and the final time T'=150. With these new parameters, the collision occurs
at t=42.43. A little modification in the amplitude of the traveling waves is expected
from the head-on collision and numerical simulations match this expectation as shown
in Figure 4.5. Indeed, the maximum amplitude of n for each traveling wave is lower
after the collision than before. For instance, the relative error in maximum amplitude at
t=47 is 1.1003%. It is worth noting also that the maximum amplitude at the collision
(t=42.43) is bigger than the sum of the maximum amplitudes of the two traveling waves
before the collision. The maximum elevation during the collision is about 7.29% bigger
than the sum.

Eventually, the collision is inelastic and thus produces some oscillatory dispersive
tails, visible in Figure 4.6 which are magnified in the close up of Figure 4.7. We point
out that this dispersive tail is not due to an instability of the numerical scheme because
its amplitude remains constant, regardless of At and Ax.

Xmax
Xmax

Paths of the traveling waves in the (t,z)-plane Magnification around the collision time (t~5.94)

F1G. 4.4. The phase shift of the traveling waves caused by the head-on collision case (I) (dashed
line : both paths without collision, solid line : both paths with collision)

Last but not least, we have performed a numerical experiment to illustrate the
head-on collision for (a=0,b=%,c=0,d=4%). This test case is drawn from [8]. The

numerical parameters are fixed to L=75, Az = %, At=0.002 and the initial value :

U(Oaf) :77+(07Tf) +n- (va),
u(0,2) =u4(0,2) +u_(0,z),
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Mazimum amplitude of n against time Magnification around the collision time

Fi1c. 4.5. Changes in amplitude of 1 caused by the head-on collision case (I)
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F1a. 4.6. Dispersive tails following the traveling waves and created by the head-on collision case (I)

time : t= 150.000

E )

-0.005

-0.01
-200 -100 0 100 200

X

Fi1c. 4.7. Magnification of the dispersive tails for case (I)

with
1 (1 [6
ni(O,x)—isech 3 g(x—xi) ,
) 1 1 /6 1 1 /6
ui((),:c)::lzisech2 2\/;(x—mi) :Fﬁsech4 3 g(x—xi) )

where x4+ =467. The traveling waves collide at t~54.88 and emerge with only few
changes in phase, amplitude and shape. Figure 4.8 illustrates for instance the phase-
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shift by a representation in the (¢,z)-plane of the paths of the maximum amplitude
of both waves with (solid line) or without (dashed line) the collision. Once again, a
consequence of the collision is a delay of the wave propagation because the phase-shift
is oriented in the opposite direction of the motion. The relative error on the velocity
of the traveling wave moving from the left to the right is 0.1883%, whereas the relative
error on the velocity of the traveling wave moving from the right to the left is equal to
0.2353%.

Xmax

F1G. 4.8. Phase-shift due to the head-on collision case (J) in the (t,z)-plane (dashed line : paths
without collision and solid line : paths with collision)

The changes in maximum amplitude of n are summarized in Figure 4.9. On one
hand, both traveling waves have a smaller maximal elevation after the collision (the rel-
ative error of maximum amplitude at ¢t =62 for instance is equal to 0.6538%). Secondly,
the maximal elevation during the collision is bigger than the sum of both maximum am-
plitudes (10.28% bigger than the sum). Eventually, the dispersive tails resulting from

0 1‘0 2‘0 3‘0 A‘O 5‘0 6‘0 7‘0 8‘0 9‘0 100 5‘2 5‘4 5‘6 5‘8 G‘U 6‘2
Mazimum amplitude of n against time Magnification around the collision time

F1G. 4.9. Changes in amplitude of 1 caused by the head-on collision case (J)

the head-on collision is illustrated in Figure 4.10 at final time 7= 80.
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time : t= 80.000 «107 time : t= 80.000
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-0.1t
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X X

F1G. 4.10. Dispersive tails following the traveling waves and created by the head-on collision case (J)

Appendix A. Consistency error.
A.1. Consistency error €. By definition of the consistency error, one has
natt —na
ef=(I—-bDyD_) <AA1£A> +(I+aDyD_)D (Ouk™ +(1—0)uR) + D (nAux)

— % AzDyD_nX.
We define

n+1 n

A —7A
Eim - I*bD D_ ==,
time = (10D )( At )
Biinear = (I+aDy D) D (Bux*! +(1-0)u3),
Enon linear — D (HZUZ) s

T1
Eviscosity = ?A$D+D_UZ.

We define Q = [z;,x;41] x [t",t"T!]. We will only develop the non linear part and
enonce the results for the other parts. By Taylor expansions and Cauchy-Schwarz
inequality, one has

tn+1

Zj+1
2
BuneS iz [ 0o ~bon(s sy

Ax At
+4/ E”atanL?(Q)"‘bAw\/ EHaiatUHH(Q) +by/ EHaiafﬁHm(Q)-

In the same way, we develop the Ejjear-term.

xj+1 tn+1
Elinear Dpu(s,y)dsd 9\/ 0:0
) NAtAx/ /t (s,y)+adyu(s,y)dsdy+ || hull2 (@
- [Ax At
+A$C\/Z|6§U||L2(Q)+|(J,Al‘ At||aiu|L2(Q)+|a|9\/;||atagu|L2(Q)
Az
+a|Ax\/;|53u||L2(Q)



50 Discrete energy estimates for the abcd-systems

We will develop the non linear part. We denote K the following function on [0,1]

gntt

Tj+1 Ti+1
v) :/ / / / (s,y+vAz)u(t,x+vAz)dedydsdt.
Zj tm tn
ot

wjpr " ewi
/ / / / Axdyn(s,y+vAz)u(t,x+vAx)
tn in

+ Axn(s, y—|—1/AJ: VO u(t x—|—qu)da:dydsdt

Jj+1 j+1
:/ / / / Azd.n(s,y+vAx) [ (s,z+vAx)+ / Opu(T x—i—Z/Ax)dT]
T tn

+ Azdu(t,z+vAx) [n(t, y+vAz)+ / om(r,y+ I/Al‘)dT] drdydsdt
t

Thus,

Tj+1 wjpr
:/ / / / Axdyn(s,y+vAz)[u(s,y+rvAx)
Zj tm tm

t
—(y—x)@aju(&m—i—uAm)—/ aiu(s,z—l—uAm)(y—z)dz—&—/ atu(r,x—i—Z/Ax)dT]
+Axdyu(t,x+vAx) [n(t,x+vAz) — (z—y)0.n(t,y+vAzx)
/ 2n(t,z +vAz)(z—2 dz+/ om(t y—|—1/A:1:)d7'} dxdydsdt

zjp1 "ttt

—szAt/ / L (nu)(s,y+vAz)dsdy
tn

Ti+1 Tj+1

foAt/ / / / e (8,y +vAx)0?u(s, 2 +vAzx)(y — 2)dzdrdyds

Tj+1 Tj+1 [T
—AxAt/ / / / Opu(t,x+vAx)0?n(t, 2 +vAz) (x — 2)dzdrdyds

Tj4+1 Tj41
+A$/ / / / / Oun(s,y+vAz)Oyu(T,x +vAzx)drdedydsdt
T tn

Tj+1 zjpr it
e[
Zj tn tm

Moreover,

/ Ozu(t,x +vAz)om(T,y+vAz)drdedydsdt
¢

zip1 "t
K'(v)= AxZAt/ / [2Az (0,udym) (s,y+vAx)
+Az (ud2n) (s,y—i—uAm) + Az (ndiu) (s,y+vAz)] dsdy
Tjt1 Tjt1
+AacAt/ / / / [AzdZn(s,y+vAz)0u(s,z+vAx)
in

+Az0.n(s y+VAx)8 u(s,z+vAz)| dzdedyds

j+1 Tj+1
—|—AxAt/ / / / [AzdZu(t,s+vAz)0,n(t,z+vAx)
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+Azdult, x—I—VAx )02 (t z—|—1/A$)} dzdxdyds

Titt Tj+1
+A$/ / / / / [Axain(s,y+1/Ax)8tu(77x_~_yAx)

+Az0n(s,y +vAT) O u(T, + vAz)|drdzdydsdt

T4 Tt
+Ax/ / / / / [Azd2u(t,x+vAz)om(r,y+vAz)
T tm tm t

+Az0u(t,x+vAx)0pn(T,y + vAz)|drdedydsdt.

We have the same type of equality for K. Applying once again the Cauchy-Schwarz
inequality gives

K" ()] S Aa* At]|03ul | L2 (@) 1071l 12 (@) + Aa* Atl|dzul [ L2 (@) 1021l 12 ()
+ Azt Atl|ul| 20y 1020 12 (@) + Art At]|03ul| 20y 10 L2 (@)

+ A2 At||0ul| 2 (o) 1020l |12 (@) + Ax® At||0Ful |2 (o) 1070l |2 (@)

+ Az At||03ul| £2(0) 1027 L2(Q) + Azt At?||0zeul | L2(0) 10201 L2 ()

+ Az A |0ul| L2 ) 105ml| 12 (@) + Aa At?|0: 07 ul | 12 ()] |02l 22 @)
+ AT AL |02l L2 (o) 10 | 2 (@) + Az AL |02ul | L2 (o) |0een] L2 )

+ Az A |0y ul| L2 () |10:971] | L2 (@)

Thus, the Fnon linear-term rewrites

1
on linear S m

1 1 2
s (KO [ 1w +/ )
Tjt1 t”“
AmAt/ / JUDICH dey"‘Ax\/ ||8z77”L°° @19ull 2
tm

+Aw\/7|| 21| L2 |au||Loo(Q)+\/7I3wIILoo 10rullr2(Q)
+\/;|3t77||L2(Q)|ax“HL”(Q)"‘Am\/E”ai“|L2(Q)||8I77||L°°(Q)
+Ax\/g|laxulm<cz>llain|L2(Q)+M\/g||U|le<Q>|53’7||L2<Q>
+A$\/E||agu||ﬂ(@)”77|L°°(Q)+A$2\/§|6zu||L°°(Q)||6277||L2(Q)
+Ax2@|@%unmcma§n||L2<Q>+Ax2\/gllaiullm>|5’w’7“L°°<Q>

+ ArVATATBartllo @102l + A AT Byl 1%L
—|—Axv Al‘Aﬂ \8t8§u\ |L2(Q) ||8177||L°°(Q) —|—A$\/ A.Z‘Aﬂ |6§’u| |Loo(Q) ‘ |8t7]| |L2(Q)
+Azxv A.’I?Aﬂ \8§u||Loc(Q) | IamthLz(Q) +Azxv A.I?Aﬂ |6$u| ‘LOO(Q) | |6t6§77| |L2(Q)

Finally, one has

By (K(l)*K(*l))

IV Ax
Ev1sc051ty ~ - || 77| ‘Lz (Q)
2VAt
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Then, when we sum up all the previous results, we obtain

tn+1

Tj+1
. / [ dento) =b020um(s.)+ De(s.0) +adius.9) + 0u ) (s.9) sy

n \/AixHathHL"‘(Q) +be\/;f||aﬁam\|Lz(Q> +b\/§ii||8§8?nllmcz>

+e\/g||azatu||g@+Am\/%llf}2ullmq>

n \am\/%llagunm@ + |a\9\/gllataiullm<@ + IaIM\/%HaiuHm@

+Aw\/%||azn||m<@)|\8§u||L2<Q) +A$\/%||8377||L2(Q)HazuHL‘”(Q)

+ \/g\|8xn||Loo<Q>||3zUHL2<Q) + \/%HQWHL?(Q)Haﬂc“HL‘x’(Q)

—|—A1:\/%Haiu‘|L2(Q>||ax’l7”Loo(Q)+Al’\/%”8:cu”L°°(Q)||892:"7HL2(Q)
Am\/%||u|\m@||a§n||m(@+Aw\/%H@iu\lm(@llnllm(@

;f\/iifnazunmmHain||L2<Q>+Aw2\/iifllaiul\mc»|‘35"'|L2<Q>

Ax
+A0% | T 102ul 2 [10aml | 12 (@) + AxV A AL Orrul |2y 1021l [ (@)
+ Aav/ATAH[00ul| L2 (0) 1020l | (@) + Axv Az A |8:02ul| 2 g 101l L= (@)
+Azv AIAtH&;U”Lw(Q)Hat’f]||L2<Q) +AJJ\/ AJ?AtHaQUHLoo<Q) ||8wm||Lz<Q)

+ AV AT A0 ul| Lo ()]0 wnHLz(Q)"" \/— Haz77HL2(Q)

We recognize the initial equation on the first line. We recall the relation

S Al flZei) = Az /

JEZL

zn+1

/le(syy)\gdydsSAxAttes[uoyT]\If(ty-)l\ifz(R):AwAtIIf(t,~)llig<>Lg-
(A1)
Eventually, when we compute the ¢4 -norm, we obtain
|€X1172 = AE[[0F 0] Lo L2 +0° Az (|05 |Foo 2 + b2 AL]|0207 | |20 12
02 AP0, 003 - 1z + A 030l 3 + ol A0 00l 3 2
+al?02A8([0,05ul [ L2 + |al* Aat||07ul[] e 2 + Az||0sl | Lge 12|07l Lo 2
+ Az |30 | L 12 |0ul| g Lo + AL||0pn|| 5o Lo 1Oyl | Lo 2
+ A||0pul| Lo oo 10| Lee 12 + Az (|07ul| oo 12|02l Lo L0
+A$4||6a:u||L§°Lg°||8§77||L;?°L?T +A394||u||Lchg°H3§77||Lg°Lg
+Az|3ul| g rz |0l Lo + Az ||0pul| oo poe |03 Lo 2
+ Az8)|02ul| Lo Lo [|020]| oo 12 + Ax®[|03u|| oo 12]|0am] | Loo L0
+ Az AL |Oprul| e 21020 Lo Lo + Aat At Oyul| Lo 211020 | Lo L0
+ Az AL?||0,0%ul| oo 12 |00l | Lo oo + Az AP0 oo Lo |0l | Leo 12
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+ A AL 02ul| e || Daenl e 12 + A AL(10,ul| e 1 10,020 | e 12
2
+(r1)? 2?0202 2

Thus, one has

el < C(At+Azx), if 14 #0,
S = o(At+ Ag?), if 7 =0,

with C a constant depending of u,  and their derivatives.

In some cases, D€} is needed. To obtain an upper bound, we perform the same
computations and find

ID1€M|[72 S A2?||070u|[ e 12 + AL[|007 0|70 L2 +° Azt ||070011] [T e 1.2
+O2 AL 307 [T oo L2 + A2?(|3ul | Toe 12 +al? Az®||02ul [T oo 2 +6° AL?||07Opul [T 12
+]al?0? A0, 0z ul (7 2 + Ax|0yul | Toe 12 +al* Az |O0ul[F oo 12

+ 022|020 [+ 12 100 ul | L (@) + A2 |01 L= () 107l T 2

+ A2 D oo oo 10l [T L2 + AL 0un] |7 poe [10rul T oo 12

+ AUl (L e oo 1067 00 12 + AL (|00t [T e oo [|Oranl[7 0 .2

+ A2 |07l oo 121020 T oo poo + A2 |00l [T e oo 1030 [T 0 12

+ Az [ul[T e 1 10507 e 12 + A2®[[1] | Do Lo [0l |70 12
+A374||a§77”%g%gHaacUHQLgOL;o +A$4H8§u||%§>°Lg||a§77”2Lg°Lgo
+Ax4||8m77”%§°L;°||8§UHQL§>°L§ +At2A$2||a§77||2Lg°Lgo||8tu||2L;>°L§

+ A A (|07 ] e o 1000l |7 e 2 + AL AZ?| |01 T oo Lo 10:07ul | T o0 12
+ A AZ?|| 0[] e 12]107ul [T oo oo + A AZ?]|00un| [0 2|07l [ oo 1

+ AP A0yl 0 L 10:070] | T e 12 + (71)? A || O3] e 12

A.2. Consistency error ¢;. By definition of the consistency error, on has

n ut
e =(I—dD,D_) (AAtA

A2
)+(I+0D+D>D(@772“+(1—9>n2)+D<(u§) )

— %AmD.,_D_uZ.

We adapt the previous computations with (d,c,nk,ux) instead of (b,a,uk,nX). The
only difference is concerning the non linear term

1 [rir "t pmin et
Ky(v)= 5/ / / / u(s,y+vAx)u(t,x+vAz)dedydsdt.
:E] t/n/ ZL’J t'Vl

So one has
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Tj+1
non hnearN A$At/ / S y dey+Ax\/>||8 uHLx ||82UHL2
T
+\/;Haxullm(@||atu||L2(Q)+Ax\/;|a§u||L2(Q)|azu”LQC(Q)
Az . Ax
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The consistency error verifies

Tj4+1
n g 2 3
2 AtAx/ /t" 3tu(s y) — d0;0u(s,y) + 0zn(s,y) +cOyn(s,y)

+8xu2(8>y)] dsdy+ \/;|8§U||L2(Q) +dAx\/E||a§8t“””<Q>
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+ IC|Aw\/§f| [02nllL2 (@) + |C|9\/g| 10931l 22@)

+ |C|A$\/§|8§H|L2(Q) +A!E\/§H8§“HL2(Q)”81“|L°°(Q)

n \/gwwunm@natunw@ +A$\/§|8§U||L2(Q)|az“HL”(Q)
+A$\/§||“||L‘”(Q) 103ullz2(0) +Ax2\/gl [02ul| o (@) 19020l 12()
+Ax2\/g |07l (@) 107ul | L2(q)

+Azv A%At‘ |8ztu||L2(Q) | |8§u||Loo(Q) +Azxv AJJAt‘ |8tu| ‘LQ(Q) | |8§u| ‘LOC(Q)

oV Ax
2v At

+ AzvV AxAt| |8t0§u| ‘Lz(Q) |0zl ‘LOO(Q) + \|8§u| |L2(Q)

Finally, one has, thanks to the relation (A.1)
3117 S A(|07ul | ee 1z +d® Ax? |0z Ol [ 1o +d* A2]|0207ul [ < 12
02 A0, 02 12 + A [0 3 + 1P AT 2
16262 A2 00| 13 + |2 A0 10301 2 1 + A0t 1020l 3 |9yt e 1
+ A8 [0z ullL o oo ||0pul ] e 12 + A |02l Lo 2 [10sul| Lo Lee
+A134HU||L$°L;°||3£UHL$°L3 +A:z:6||3xu||L;>°L;°Hai“HL;OLg
+ A0l | e 1= |03l | L £z + Azt AL| Oyl [ Lo 12| 0wl | 5o L=

+ Azt At?||9yul |Lsor2 |02ul| oo Lo + Azt At?|[0,02ul | Lsor2 |[0zu|Loo Lo
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+(72)? A2® (|07l [] = 12

As for the €] case, there exists a constant C' depending on u, n and their derivatives
such that

C(At+Az), if 75 #£0,

€y <
e ley < C(At+Azx?), if 7, =0.

For D, e}, the results are similar to those for D, €.
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