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1 Introduction

The Boussinesq regime deals with long wave, small amplitude gravity surface water waves: consider a layer of
incompressible, irrotational, perfect fluid flowing through a canal with flat bottom represented by the plane:

{(SL’,y,Z) 2= _h}v

with h > 0. We suppose that perturbing the equilibrium state, the resulting free surface describes the graph of
some function over the flat bottom. Let A be the maximum amplitude of the wave and [ a typical wavelength.

Furthermore, consider:
A R\ 2 €
= -, = — 5 S - —.
Tt (l ) I

e<l, p<land S~ 1

The following asymptotic regime

is used to take into account small amplitude, long wavelength water waves. In order to study waves that fit into
the Boussinesq regime, Bona, Chen and Saut, [9], derived the so-called abcd-system:

(I — pbA) Oyn + divV + apdiv AV + ediv (nV) =0, (1.1)
(I — pdA) 0,V +Vn+cuVAn+ eV -VV =0, ’

with I the identity operator. In the system (1.1)), » = n(¢,2) € R is an approximation of the deviation of the free
surface of the water from the rest state while V= V (t,2) € R" is an approximation of the fluid velocity. The
above family of systems is derived from the classical mathematical formulation of the water waves problem by a
formal series expansion and by neglecting the second and higher order terms. In fact, one may regard the zeros on
the right hand side of as the second order terms (i.e. having one of €2, eu or u? as prefactor) neglected in
establishing , from the modeling process. The parameters a, b, ¢, d are also restricted by the following relation:

a+b+c+d=%. (1.2)
Nevertheless, if the surface tension is considered, the previous relation rewrites a +b+c+d = % — 7 where 7 > 0
is the Bond number which characterizes the surface tension parameter, see [22] or [28]. This is why, in this paper,
we consider a, b, ¢, and d which do not verify .

In [II], Bona, Colin and Lannes show that the systems approximate the water waves problem proving
that the error estimate between the solution of and the water waves system at time ¢ is of order O (EQt), (see
also [24]).

In [T6], models taking into account more general topographies of the bottom are derived. One has to furthermore
distinguish between two different regimes: small respectively strong topography variations. Time variating bottom-
topographies are considered in [I§]. For a systematic study of approximate models for the water waves problem
along with their rigorous justification we refer the reader to the work of Lannes, [24]. We point out that the only
values of n for which is physically relevant are n = 1, 2.

IInstitut Camille Jordan, Batiment Braconnier, Bureau 224, 21 avenue Claude Bernard 69622 Villeurbanne CEDEX,
burtea@math.univ-lyonl.fr.
2Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France, courtes@math.unistra.fr.



The abed systems are well-posed locally in time in the following cases:

a<0,¢<0,b>0,d>0 (1.3)
ora=c>0and b>0, d>0,

see for instance Bona, Chen and Saut [I0], Anh [2], or Linares, Pilod and Saut [25]. Global existence is known to
hold true in dimension 1 for the "classical" Boussinesq system:

a=b=c=0,d>0,
which was studied by Amick in [I] and Schonbek in [30] and for the so-called Bona-Smith systems:
b=d>0,a<0, c<O0,

assuming some smallness condition on the initial data, see [I0] and the work of Bona and Smith, [I3]. In other
cases, the problem is still open.

Lower bounds on the time of existence of solutions of systems in terms of the physical parameters are
obtained in [29], [28], [26], [I5] for initial data lying in Sobolev classes respectively in [I4] for data manifesting
nontrivial data at infinity.

Given the practical importance of systems in concrete physical situations, works regarding their numerical
aspects are abundant. One of the earliest papers devoted to numerical feature is the work of Peregrine, [27] who
investigated undular bore propagation using the classical Boussinesq system, a =b=c¢=0,d =1/3.

In [7], Bona and Chen consider the boundary value problem for the BBM-BBM case (which corresponding to
a=c=0,b=d=1/6). Using an integral reformulation of this problem, they implement a numerical algorithm
which is fourth order accurate in both time and space. They employ it in order to track down generalized solitary
waves and to study the collision between this numerical obtained generalized solitary waves.

In [12] and [6] Bona, Dougalis and Mitsotakis study the periodic value problem for the so-called KAV-KdV case
(which corresponding to b = d = 0, a = ¢ = 1/6) using an implicit Runge-Kutta for time discretization and a
Galerkin method with periodic splines scheme for the space discretization. They track down generalized solitary
wave solutions and they simulate the head-on collision of two such waves.

In [4], Antonopoulus, Dougalis and Mitsotakis study the periodic problem for a large class of values of the
a,b, c,d parameters. They use Galerkin approximations combined with a Runge-Kutta method in order to provide
a full time-space discretization of the systems and perform several interesting numerical experiments. In [5], the
previous authors extend their results regarding the nonhomogeneous Dirichlet and reflection boundary conditions
for the Bona-Smith family of systems corresponding to the case a = 0, b = d > 0, ¢ < 0. They use their
numerical algorithm to study soliton interactions. In [3], Antonopoulos and Dougalis provide error estimates using
the semidiscrete and discrete Galerkin-finite element method for the boundary value problems for the classical
Boussinesq system.

Regarding the two dimensional case, [23], Dougalis, Mitsotakis and Saut study the space semi-discretization
using Galerkin methods. In [I9], Chen, using a formal second-order semi-implicit Crank-Nicolson scheme along
with spectral method studies the 2D case of the BBM-BBM system for 3D water waves over an uneven bottom.

A very recent result of Bona and Chen [8] provides numerical evidence of finite time blow-up for the BBM-BBM
system. The blow-up phenomena seems to occur on head-on collision of some particular travelling waves solutions
of the BBM system.

1.1 Statement of the main results

In this paper, attention is given to the numerical analysis for some of the abcd systems for the 1D case. We
implement finite volume schemes, and we prove convergence and stability estimates, using a discrete variant of the
"natural" energy functional associated to these systems. One practical advantage of our approach is that it allows
us to treat explicitly the nonlinear terms.

Let us recall that the Cauchy problem associated with the one dimensional abcd-systems reads:

(I —b02,) 0+ (I +ad?,) dpu+ 0y (nu) =0,
(I —do2,) pu+ (I+cd2,)0,m+ 30,u* =0, (Saped)
Nit=0 = Mo, Ujt=0 = Uo-



We will treat the case where the parameters verify:
a<0,¢c<0,b>0,d>0, (1.5)

excluding the five cases:
a=b=0,d>0, c<O0,
a=b=c=d=0",
a=d=0,0>0, c<O0, (1.6)
a=b=d=0, ¢<0,
b=d=0, ¢c<0, a<0.

Given s € R we will consider the following set of indices:

She = S +sgn (b) —sgn (C) ) (1 7)
Sad = 5 + sgn (d) —sgn (a) , '
where the sign function sgn is given by:
1 if x>0,
sgn (z) = 0 if =0,
-1 if z<0.

We will consider the set of indices defined by (1.7)). The notation, Cp(H®* x H®?) stands for the space of
continuous functions (n, ) on [0,T] with values in the space H®* (R) x H?®< (R). Let us recall in the following
lines, the existence result of regular solution that can be found for instance in [I5] and [28]:

Theorem 1.1. Consider a,c¢ <0 and b,d > 0 excluding the cases (IQ). Also, consider an integer s such that
5
§> 5~ sgn(b + d),

and Spe, Sqq defined by (1.7)). Let us consider (ng,ug) € H®= (R) x H%+ (R). Then, there exists a positive time T
and a unique solution
(n,u) € Cr(H? x H?*?)

of (Sabed)-

Remark 1.1. Note that energy & is an energy for the system (Saped)), see for exemple [15],
Es(n,u) = [l + (b= )|0un][7: + (=)bl|Znl|Fra + [Jullfe + (d — @)[|0zul|Fa + (—a)d]|O7ul | F-.

Consider At and Az two positive real numbers. We endow /2 (Z) with the following scalar product and norm

1
(v, w) == AmZvjwj, ||v||42A = (v,v)2.
JEL

We sometimes denote this space ¢ (Z).
For all v = (vj), € £°° (Z) we introduce the spatial shift operators:

(Sj:’l))j = ’Uj:tl,

If v = (vj) ey € £>° (Z) we denote by Dyv, D_v, Dv the discrete derivation operators:
Dyv =2 (Siv—v),
D_v=2 (v-=5_v),

Dv =3 (Dyv+ D_v) = 52 (S4v — S_v).

IThis case corresponds to a full hyperbolic system, then there exists a local in time solution. An example of discrete entropy for
hyperbolic system are studied in [3T].



Also, we consider the following discrete energy functional

def. | 12 2 2
E(e, ) L lleldy + (b ) [Dyel +b(~<) Dy D-el}

1%, + (@ = a) 1Dy flZ, +d(=a) [D4D_ I3 (1.8)

We will now discuss the main results of the paper. From an initial datum (1, ug) € H®<(R) x H%<(R) with s
large enough, there exists a solution (1, u) of (Suped) Which enables to define nk, uk € ¢4 (Z) given by:

M, = s e [ 0 (s, y) dyds,
for all j € Z, and for n > 1. (1.9)
UA; = m fti:f(tnﬂ’T) f;”l u(s,y) dyds,
Moreover, we define
;= az Jo o (y) dy,
for all j € Z. (1.10)

ud; = a5 [, uo (y) dy,

The results of the paper are gathered in two cases according to the values of the parameters b and d in (Sgped))-

The case when b > 0 and d > 0: The fact that b,d > 0 assures an £?-control on the discrete derivatives: this
makes it possible to implement an energy method that mimics the one from the continuous case. Moreover, it allows
us to close the estimates even without considering numerical viscosity.

We consider the following numerical scheme:

(I —=bDD_) ("t — ™) + (I +aDyD_) D ((1 - )u™ + 6u™+1) + D (n"u™) =0,

L (I —dD,D_) (u™*' —u") + (I + Dy D_) D ((1— )" + 0y"+1) + 1D ((u”)Q) —0, )
foralln>0and 6 = % or § = 1, with the discrete initial datum
(n"u”) = (nA,u}) - (1.12)
The convergence error is defined as:
e"=n"—nx and f"=u"—uR. (1.13)

Remark 1.2. For 6 = %, we consider the Crank-Nicolson time discretization whereas for 0 = 1, we consider the
implicit discretization.

We are now in the position of stating our first result.

Theorem 1.2. Let a < 0,b >0, c <0 and d > 0. Consider s > 6, (no,up) € H* (R) x H%4 (R) and T > 0

such that (n,u) € Cp(H®< x H%d) is the solution on [0,T] of the system (Saped). Let N € N, there exists a

positive constant 0o depending on sup ||(n(t), w(t))|| gope x greaa Such that if the number of time steps N and the
te[0,T]

)

space discretization step Ax are chosen such that
At =T/N < d¢ and Ax < o,

if we consider the numerical scheme (L.1I)) with @ = % or § = 1 along with the initial data (1.12) as well as the

approzimation (MA,UR ), 1 defined by (L.9)-(1.10), where 1, N = {1,...N}, then, the numerical scheme (1.11)) is
first order convergent in space and time (or second order in time for 6 = %) i.e. the convergence error defined in
(1.13) satisfies:

sup £ (", ) < Clapea {’9 _ ;‘ (AD? + (A1) + (Am)4} , (1.14)

nel0,N

where Cqpeq depends on the parameters a,b,c,d, on sup |[(n(t), w(t))| gope s greaa and on T.
t€[0,T]



Remark 1.3. Note that no Courant-Friedrichs-Lewy-type condition (CFL-type condition hereafter) is needed. This
is due to the regularity property of both terms (I — bD+D_)_1 and (I — dD+D_)_1.
These two terms are also reqularizing enough for the center scheme on the hyperbolic part to be stable.

Remark 1.4. If we consider the Cauchy problem with small parameter €:

(I —bed2,) om+ (I + aed?,) dpu + €8, (qu) =0,
(I — ded?,) Qyu+ (I + ced?,) O,n+ S0,u* =0,
Mt=0 = Mo, U|t=0 = UQ-

The previous scheme is transformed into

A (I =beDD_) ("' = ™) + (I + aeDyD_) D ((1 — )u" + 6u" ) + €D (n"u™) = 0,

A& (I —=deDyD_) (u"™ —u™) + (I 4+ ceDD_) D ((1— )" + 6" ') + £D <(un)2) =0,

forallm >0 and 6 = % or @ = 1. The conditions on time step and space discretization in Theorem become then
% < dg and % < 09 and the order of convergence writes

1] /at\? /AN /Az\?
sup & (e", f™) < Caped ’9 - 2’ () + () + (m) ;
nEON € € €

which imposes the strong condition Ax, At < € and prevents the parameter € to be too small.

To avoid this strong restriction, we need to design a scheme with a uniformly rate of convergence with respect
to € and in particular, we need to design an asymptotic preserving schemes (for which the stability requirement on
At and Az is independent of €). In such a scheme, both limits ¢ — 0 and Az, At — 0 may be commuted without
loss of generality for the accuracy of the scheme. Moreover, in such a scheme, the limit scheme when € — 0 is
consistent with the limit continuous system when € — 0. In the case studied in this paper, the limit system when
€ — 0 corresponds to the acoustic wave equation. The asymptotic scheme has to be consistent when € — O with this
acoustic equation.

However, designing an asymptotic preserving scheme is not the aim of this paper and we will focus only on System

(Suped) with e =1

The case when bd =0 We consider the following numerical scheme:

+ (I =bDyD_) ("' =)+ (I + aD1D_) D (u"*') + D (n"u™)
=3 (1 —sgn(b))nAzDyD_(n"),
(1.15)
L (I—dD,D_)(u™*' —u")+ (I +¢DyD_) D ("+') + 1D ((u")Q)
=35 (1 —sgn(d)) nAzDy D (u"),
for all n > 0, with
(no,uo) = (nOA,uOA) (1.16)

Remark 1.5. For the case bd = 0, we consider only the implicite time discretization.
The convergence error is defined by (II3]). We are now in the position of stating our second main result.

Theorem 1.3. Let a < 0, b > 0, ¢ < 0 and d > 0 with bd = 0, excluding the cases (1.6). Consider s > 8,
(Mo, ug) € He (R) x H4 (R) and T > 0 such that (n,u) € Cp(H® x H*%) is the solution on [0,T] of the system

(Sabed)-

Choose o > 0,7, > 0 and 70 > 0 such that:

lull oo poe + o <71 and [[ull e poc + 0 < 7.



There exists 69 > 0 (depending on a, 71, 2 and on sup |[(n(t), w(t))|| gepe « goaa) Such that if the number of
t€[0,T]
time steps N € N and the space discretization step are chosen in order to verify

At = T/N < 60, Az < 50,
and
max{(1 —sgn(b)) 71, (1 — sgn(d)) = }At < Az, (1.17)

if we consider the numerical scheme (1.15]) along with the initial data (L.16|) with the numerical viscosities 71 and
Ty as well as the approximation (nx,uR), 1 defined by (L.9), then, the numerical scheme (L.15)) is first order
convergent i.e. the convergence error defined in (L.13|) satisfies:

sup g (en’ fn) S Cabcd (Ax)Q 9
ne0,N

where Cqpeq depends on the parameters a,b,c,d, on sup |[(n(t), w(t))| gope s greaa and on T.
te[0,T]

Remark 1.6. In this case, one of the two equations of does not contain the operator (I —bD,D_)~1 or
(I —dD.D_)"1. A discrete diffusion together with a hyperbolic CFL-type condition are thus needed to stabilize
the hyperbolic part of the equations. We then choose a center scheme combined with a Rusanov diffusion and the
CFL-type condition corresponds to Relation .

Remark 1.7. We could choose the viscosities T; = 7' depending on n such that
ldll +a <78 with 72 —a> Jull s

Remark 1.8. As mentioned in Remark[1.4, Scheme (L.15)) is not suitable if we consider System (Sabcd) with the

small parameter €. Indeed, the obtained convergence order is

Az\?
sup € (e", ") < Caped <6> ;

ne0, N

provided % < g and % < dg. Once again, we have to use an asymptotic scheme to recover a rate of convergence
which is uniform in €.

Remark 1.9. In the first case, b > 0 and d > 0, the discrete energy £ corresponds to a H?-discrete norm on both u
and n, if a and c are non zero. In the case where b =0 or d = 0, it corresponds to a H'-discrete norm and possibly
even a L%-discrete norm according to the value of parameters a and c.

Our results owes much to the technique developed by Courtés, Lagoutiére and Rousset in [2I]. Let us give some
more details. For the Korteweg-de-Vries equation

O+ v0,0+ 02 _v=0

they employ the following 6-scheme, with 6 € [0, 1]

1

n\2
=~ ("' —0") + Dy DL D_((1 =)™ + 60" )+ D ((”)) = %mD,v”.

2

With the aim to study the order of convergence, they consider the finite volume discrete operators:

1 inf(t"+1,T) Tjq1
" dsd
(va); = o, 1) —ias /t /QE v(s,y) dsdy

J

and the convergence error

e’ =0v" — R,



which obeys the following equation:
" L OALD, D, D_(e"th) = Be™,

with

DiD_e™ — Ate™,

n\2 AzA
PBe" = ™ — (1 — 0) AtDJrDJrDi(e”L) — AtD (e”vz) — AtD ((6 ) ) + TATAL

2 2
where €" is the consistency error. In order to establish /2 -estimates, they show that under the CFL condition

7> VRl

[r + 3] At < Ax,
A3

(1—260) At < B2S

the following holds true:

|e"+ 4+ 0AtD, Dy D_ (")

a < AtC He”||?zA + 1+ CAL) |le" + 9AtD+D+D,(e”)||?Z , (1.18)
provided that |e"|, is sufficiently small. Thus, they are able to use the discrete Gronwall lemma and loop
their estimates. The proof of (LI8) is rather technical and tricky. Essentially, using some clever identities when
computing H%’e"”?z they get several negative terms wich, under the above CFL and smallness conditions, are used
to balance the "bad" terms.

In Section 2:2.1] we study a discrete operator which appears in hyperbolic systems and we provide a bound on
its /2 norm, the proof being largely inspired from [21]. As a consequence, we establish a higher order estimate

which proves crucial in the analysis of some of the abcd systems. Among the systems in view, we distinguish three
situations:

e when bd > 0, establishing energy estimates for the convergence error can be done by imitating the approach
from the continuous case. The structure of the equations provides enough control such that we do not need
to impose numerical viscosity or CFL-type conditions.

e when at least one of the weakly dispersive operators does not appear, we have to work only with estimations
established in Section [2.2.1] (see for instance the case a < 0,b = ¢ = d = 0) either

e combine the techniques of Section with "continuous-type" estimates like those established for the case
when bd > 0. (see for instance the case a =b=c¢=0, d > 0)

In order to validate the theoretical results regarding the order of convergence and reproduce the numerical
experiences we compare the numerical solutions with the exact travelling wave solutions established by Chen in [17]
and [7].

Finally, we use our results in order to study exact traveling waves interactions. We perform two such numerical
experiments. Recently, in [8] Bona and Chen pointed out that finite time blow-up seems to occur at the head-on
collision of the two exact solutions:

s (t,2) = L2 sech? (\/% (x—20F %t)) — 45 sech? ( (z—z0F %t)> )

ﬁ‘w
(e}

uy (t,z) = £12 sech’ (\/ifo(x —x0 F %t)) :

In order to validate our codes, we repeated their experiment and roughly obtained similar results. We performed a
second experiment by changing parameters a, b, ¢, d and do not observe any blow up.

The plan of the rest of this chapter is the following. In the next section we give a list of the main notations and
identities that we use all along in this manuscript. Section is devoted to the proof of Theorem The proof
of Theorem is more involved as we cannot treat in a uniformly manner all the cases when bd = 0. First, we
establish in Section some estimates for discrete operators appearing in hyperbolic systems. The rest of Section
[2:2)is dedicated to the proof corresponding to the different values of the abed parameters appearing in Theorem [T.3]
Finally, in Sections [3]and [} we present our numerical simulations.



1.2 Notations

In the following we present the main notations that will be used throught the rest of the paper. Let us fix Az > 0.

For all v = (vj),c, € £°° (Z) we introduce the spatial shift operators:
(SiU)j S VES
For v = () ey, w = (wj) ez € 02 (Z) we define the product operator:
vw = (VjW;) oy € (7).

Also, we denote by

1)2 = V0.

We list below some basic formulas, whose proofs can be found in [21].

The following identities describe the derivation law of a product, for v, w € £? (Z)

D (vw) = vDw + % (SywDyv+ S_wD_v),

D (vw) = SyvDw + DuvS_w,
Dy (vw) = SyvDyw + wDyv.

We observe that we dispose of the following basic integration by parts rules, for w,v € ¢% (Z):

<D+v,w> = <UvD7w> )
(Dv,w) = — (v, Dw).
In particular, we see that, for v € ¢34 (Z):
(Dv,v) =0,
and

Az
(v, Dyv) = —7||D+U||?2A-

More elaborate integration by parts identities are the following, for w,v € ¢4 (Z)
1
(v, D (vw)) = 3 (Dyw,vS4v)

respectively

(Dy+D_v,D (vw)) =

N < Az?

When v = w € ¢4 (Z) in the previous equation, some additional simplifications occur and one has

(DyD_v,D (v*)) =

Wl =

Also, it holds true that, for v € (% (Z)

<v, D (1)2)> = —ATQCQ <D+v, (D+v)2> ,

D)l = <(Dv)2’ (S+v—2kS_v>2>

4 4
1D+ Dl = 5511D+ullfy — 5 51DvllZ -

and

1
Diw,vS,v) + — (Dw, S_vS,v) .

(Dyv,(Dyv)?) — % (Dv, (Dv)?).

(1.19)

(1.20)
(1.21)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)



Finally, for v,w € ¢4 (Z), we recall Lemma 5 of [21]

1 3
10w, < {llulf~ + ADowl-} Dol +{ Fllull + 10wl } ol (1.30)
and Lemma 8 of [21]
8Ax? 2
(D(vw), D)) < 2ol el = DIy — =5 <Dw, (Dv)3> — < (DDw?). (1.31)

In the following we will frequently use the notations:

e 277"—7727 Ei (TL) :en—&-lien’ (1 32)
freut -k, FE ()= |

We end this section with the following discrete version of Gronwall’s lemma, a proof of which can be found in
[20]:

Lemma 1.1. Let v = (V") ey, a = (a"), ey, b= (0"),cy be sequences of real numbers with b™ > 0 for alln € N

which satisfies
n—1

" <a"+ Z bl
=0
for alln € N. Then, for any n € N, we have:
n—1
V" < max a 14+
- keln 31;[() ( )

2 The proof of the main results

2.1 The proof of Theorem
Let us recall the energy functional:

def

E (e, ) el + (b= ) [ Dyellfz +b(—c) [DyD-e|zy

2 2
1% + (A=) [Ds Iy +d(=a) |D4D_ I - 1)
For all n > 0, we will consider (e, €}) € (€% (Z))2 the consistency error defined as:

At (L= 0D D) (KT = k) + 5 (I +aDy D) D (uk +ux™) + D (nRuk) = €f,
(2.2)
A~ (I—dDiD_) (uX™ —uR)+ 5 (I +cDyD_)D (nk +nx™) + 4D ((uZ)z) =€l

Proposition 2.1. For alln € 0, N — 1, there exist two constants Cy and Co depending on a,b, c,d, on the £>-norm
of (Nk,uRk) and (D(nR), D(u})) and proportwnal to max {||e"||e=, || f™||e=}, such that,

g (en—i-l7 fn+1) < 2At ||€n||?2 + (1 + At01)5 (en’ f") + AtCLE (en—&-l, fn+1) , (23)

with (e™, f™) the two convergence errors defined by (1.32)) and ||6”H52A = maux{”e?”egA , ||63H52A}, defined by (2.2)).

Proof of Proposition[2.1, As we announced in the introduction, we will establish energy estimates imitating the
approach from the continuous case.



For the Crank-Nicolson case (6 = 1). Using the notations introduced in (LI3) and ([32) we see that the
equations governing the convergence error (e”, f™) are the following:

(I -bDyD_)(E~ (n)) + &t (I +aD4+D_) D (F* (n)) + AtD (e"uR)
+AtD (nR f™) + AtD (e™ f™) = —Ate?,

2.4
(I —dDiD_)(F~ (n))+ &t (I +¢DyD_) D (E* (n)) + AtD (f uR) (24)

atp ((fn)“') — —Aten.

Let n € 0, N — 1 and observe that by multiplying the first equation of (2.4) by (I +c¢D,D_) E* (n), the second by
(I +aDyD_)F* (n) and adding up the results, we find that

(I —bDD_)(E~(n)), (I +¢DyD_)E*(n)) + % ((I+aDyD_)D(F*(n)),(I +cD;D_)E*(n))

+ (I —=dDyD_)(F~(n)),(I+aDyD_)F*(n)) + % ((I+¢DyD_)D(E*(n)),(I+aDyD_)F*(n))

= —At{e},(I+cDyD_)E' (n)) — At (e, (I+aD D_)F" (n))

— At (D (e"uR) + D (mxf"),(I + cDiD_) E* (n))

— At(D(e"f"),(I+cDyD_)E" (n))

—At<D (f"uR),I +aDyD_)F* (n)) (2.5)

A (0 () 1+ 0D1 D) P () "2 Y0,
i=1
We begin by treating the left hand side of . Notice that
(L(E~(n),L(E*(n)) = ||~C€"“||§2A —[1Le"||Z -

with £ any linear operator. With this in mind together with Relations and -, it gives,

((I=bDyD_)(E~(n),I +cDyD_)E*(n))+ % ((I+aDyD_)D(F*(n)),(I+cDyD_)E*(n))

+{((I —dDyD_)(F~(n)),(I +aDyD_)F*(n)) + % ((I+c¢DyD_)D(E*(n)),(I+aDyD_)F*(n))
— g, ) — e, ), (2.6)
e Let us now focus on T7. We recall that
el = max { bl ek g }
and we write that, thanks to Cauchy-Schwarz inequality (we recall that ¢ < 0 and a < 0)
—At(el, (I +cDy D) E* (n)) — At (e, (I +aD, D_) F* (n)) <At |} 2 (HE+ (m)],5 = | D+ D-E* (n)HeZA)
At (IF* @) —alDeD-F*@)],q ) -
By applied Young inequality, we recover the ¢4 -norm of e™ and f™.
— At(el,(I+cDyD_)ET (n)) — At{ey, (I +aD D_)F" (n))
< 2A¢ [lel|7y + At (He”||§2A + 1, + || Dy D_e™[[; + a2\|D+D_f”||sz)

+ At (HenHHEZ 4 an+1Hj2A + CQHDJFD_enHH?QA +a2|\D+D_f"+1||§2A>

Cc —a c —a

< QAtHe”H?QA + Atmax{l, %, d} Ee™ M+ Atmax{l, %, d} E (et . (2.7)
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e Let us treat T5. Using (L20), we first write

AL||D (¢"uf) |z = At [|S—e"Duk + Sy ui De”|| 5
S At Dug|lpee 1S-€"ll 2 + AL[IS1uAll = [[De™ [l 2

1 n n n n
<t {1, L b (1Dl 1] + ol VB <D

1 n n
b1l + V=< lDenly).

vb—c

Proceeding in a similar fashion with the other terms we arrive, thanks to the Cauchy-Schwarz inequality, at (we
recall that ¢ <0)

< At mas {3 | | Dt [ } max {1,

AL (i) + DA™ (I + Dy D) B (n)
<At (D ()l + 1D g ) (1B @) = || D+ D-E* )], ) -
By Definition of ET(n), one has
[E* ()] g = c[|D4+D-E* (n)]| 5 < lle™ ez +1le"lleg = ellD4D-(e")lleg = ellD4-D- (")l

< max {1, \/—c/b} 2 {\/E(e"+17 7o) 4 /E(en, f")] .

These together give
—At (D (e"ux) + D (mxf™),(I +cDiD_)Et (n)) < AtC11E (e", f") + AtCo € (", f71) (2.8)

where C; and C5; can be written, for example, as a numerical constants multiplied with:

maoc {1, /=5 v 100 oY {1, bt ([P e {1, = ] 29

e We treat T, in same spirit as above in order to obtain that

— At(D (f™uR), (I +aDyD_)F* (n)) < AtC)2& (€, f) + AtCyo& (e, fF1) (2.10)

where C 2 and Cs 2 are multiples of :
max {|[u3[| o , [ Du'4]|poe } max {1, 1/\/ﬂ} max {1, fa/d} . (2.11)
e In order to treat T3, we first observe that
ID(e"f")lz = [1S-e"Df" + 51 f"De™ |z < [le™[goe DSz, 4 11" oo 1D [l 2
< max {1/vo =, 1/Vd=a} (l[e"le=Vad=alDf i3 + |1 le= Vo= clIDe" 3 )

Thus, we obtain

—At{(D (" f™"),(I+cDyD_)ET (n)) < AtCy 3 (€", ") + AtCa3E (e, 1), (2.12)

where C 3 respectively C 3 are proportional with

max{l/\/b e 1Vd - a} max{l, —c/b} max {[[€"[[gwe | f"|[ee } - (2.13)
e The same holds for T, namely, we get that
At
-5 <D (( f”)z) (I +aDyD_)F* (n)> < AtCLAE (€7, f7) + AtCy 4E (en T, frT1Y (2.14)
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where C 4 respectively C5 4 are proportional with
1
max {1,/—a d} | e 2.15
T max {1 v/=a/d} 7" (2.15)
Gathering the informations from @), (2.6), &1), 238), @I10), (212) and ([ZI4) we obtain the existence of two

constants C7 and Cs that depend on a, b, ¢, d, and the ¢>°-norm of (n%,wX) and (Dn%k, Du’k) (dependence which we

can track using relations (Z9)), (ZI1), 2I3)) respectively (ZI5])) and that are proportional to max{||e™||¢=, || f™||¢= }
such that

E(enth [ —E (e, [7) < 28t €[y + ALCLE (€, f7) + AtCHE (e, f7H)

For the implicit case (§ = 1). The equations governing the convergence error (e", f™) are the following
(I —=bDyD_)e"™ + At(I +aDyD_)Df"* = (I —bD D_)e" — AtD(e"ux) — AtD(nA f™)
— AtD(e" f") — Atey,

(I —dDyD_)f"' 4+ At(I + cD D_)De" = (I —dDyD_)f™ — AtD(f "u}) — %D((f")% — Atel.

(2.16)

For that case, we fix the discret energy
(e, f) = (=o)d||(I = bDyD_)ellz + (—a)bl[(I — dD+D_)fl[2
= (=o)dllellz + 2b(=c)d||Dxel[f + b*(—c)d|| Dy D—ell; (2.17)
+ (—a)bll 12 +2—a)bdl|D- £ + (—a)bd?| [ Dy D_ %
This energy is of course equivalent to the one from .

Let us multiply the first equation of (2.16)) by v/—cd and the second one of (2.16)) by v/—ab. The sum of ¢4 -norm
gives in that case

—cd||(I =bDyD_)e™ + At(I + aD+D_)Df”+1|\§2A —ab||(I —dDyD_)f™ + At(I + cD+D_)De”+1|\§2A
=—cd||(I —bDsD_)e™ — AtD(e"uR) — AtD(nx f™) — AtD(e" f™) — Ate?“?i

A
—abl|(T —dD, D) " AD(fM) ~ SED((F)) ~ A,

(2.18)
The left hand side of the previous equality gives
— cd||(I = bDy D_)e™ + At(I + aDy D)D" |2 — abl[(I — dD,D_) ™' + At(I + Dy D_)De" ||
= —cd||(I = bD+D_)e" |2 — 2edAt (I —bD.D_)e" ™, (I +aDsD_)Df"*) — cdAt*||(I + aDy D_)D f" "7,
—abl|(I = dDyD_) f" |7z —2abAt((I —dDy D) ", (I + Dy D_)De" ™) — abAt?||(I + Dy D_)De" |7, .
For both cross products, it gives
—2¢dAt ((I —bDD_)e" (I +aDyD_)Df") —2abAt (I —dD;D_)f" ', (I + eD;D_)De™)
= 2(—c)dAt (", D) + 2(—a)(—c)dAt (D™, Dy D_ f*) + 2b(—c)dAt (De" ', Dy D_ f71)
+2(—a)b(—c)dAt (D D_e"*', D, D_Df"*")
+2(=a)bAt (f"1, De" ) + 2(—a)b(—c) At (D f**1, Dy D_e™th) 4+ 2(—a)bdAt (D f*+*, Dy D_e" )
+2(—a)b(—c)dAt (D D_f**' D, D_De"").

Thanks to integration by parts, Young’s inequality together with Cauchy-Schwarz inequality, the previous equality
simplifies into

—2cdAt ((I —bD D )™ (I +aDyD_)Df") —2abAt (I —dDD_) f"*, (I + cDyD_)De™)
> —(—c)dAt|le" T [7 — (—a)bAt]| [

—[(=a)(=c)d + b(—c)d + (—a)b] At||[ De" |7 — [(—c)d + (=a)b(—c) + (—a)bd] At|| D[,

— [(=a)b(~¢) + (=a)bd] At|| D+ D_e" "7 —[(=a)(—c)d + b(—c)d] At|| Dy D_ fHH[7, .
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The left hand side of (2.18) becomes

—cd||(I =bD1D_)e™ ! + At(I +aDy D)D" Y| — abl|(I —dD D) "' + At(I + cDy D_)De" [,

> (—e)d||(I = bD4 D_)e" H||Fz + (=a)b||(I —dD D) f* |7 — (—c)dAt|le" 7 — (—a)bAt]|f"+|F

(—a)(=c)d +b(=c)d + (—a)b] At||[De" |7 — [(—c)d + (—a)b(—c) + (—a)bd] At||D f"+H[7

(—a)b(~c) + (=a)bd] At|| Dy D_e" |7 — [(—a)(=c)d + b(—c)d] At|| Dy D f* ||
)dAE[|(I + aDy D)D" H|E + (=a)bA||(I + Dy D) De" |7, .

ll

-
+ (=
Due to the definition of the energy (2.17)), one has

—cd||(I —bDyD_)e" ™ + At(I + aD+D,)Df”+1|\§2A —ab||(I —dDyD_) " + At(I + cD+D,)De”+1||§2A

2 g(en-‘rl, fn+1) - ClAt6(6n+17 fn+1)7
(2.19)

with

c axd1 fa+1+ —a —c +fc+1 —a+ —a fc+ —c
= Imax —_— — —_— —_— _, — —_—
! "2 2 2(—e)d’ 2(—a)b ' 2d ' 2°bd | b(—c) bd ' (—a)d

Let us now focus on the right hand side of (2.18)). The triangular inequality together with Young’s inequality
give the existence of a constant Cj independent of At, such that

—cd|[(I =bDyD_)e™ — AtD(e"ur) — AtD(nx f") — AtD(e™ f™) — Ate’fH?ZA

~ ab|(I —dDLD)f" — AD(fuk) — S D)) - Mgl

< (=)dl|(I — bD1D_)e" |3 (1 + CoAt) + (—e)dCo(At + AP)|D(" )| + (~e)dCo(At + AR)||D(n& )13
+ (—)dCo(AL + AR)||D(e" )3 + (—e)dCo(At + A)|[€} 2

T (—a)bl|(T — dD4 D) f" |y (14 CoAMt) + (~a)b Co(At + AP D" u)|[% + (~a)bCo(At + AR)ID(F"))] 2,
T (~a)b Co(At + Ar2) |3 1,

a

Since
DG F) % < 20l Zl[DF" 2 + 21721 De” 2 .

it holds

n eny |2 1 1 ni|2 n||2 n n
ID(e™ f™)Izz, Smax{“@)bd’b(c)d max {le” |z, [lf"[l7 } E(e™, ™). (2.20)
The same holds for other terms to obtain
1D < max{ o grmarg f o (e e DU - b eter ), (2:21)
and ) .
1D < mox{ o i b (1 DA - e 1), (2.22)
and ) )
||D(qu")|\§2A < max {(—a)b’ (—a)bd} max {[[ul ||, [[DuR|[7=} E(e", f), (2.23)
and finally
2
D n\2 22 < n 2Do n n . 2.94
DA < IV oy £7) (224)



Thus, there exists a constant Cy (which can be tracked by ([2.20)-(2.24))), such that
—cd||(I = bDyD_)e" — AtD(e"up) — AtD(n7 f") — AtD(e" f*) — Atel||7,

A
—abl|(I —dD, D) " — AD(f"u) ~ DY) ~ At

E(e", [+ CoAt) + Ca(At + AL)E(e", f) + (—c)dCo(At + AL?) || |[72 + (—a)d Co(At + At?)]|e][7 -
(2.25)

Gathering the informations from (2.19)) and (2.25)), there exists constants C3 and Cy4 such that

(1= CIAYE(™ ™ [ < (1 + C3ANE(e™, f7) + Calst|[e" |7,

with [|e"||%, = max {||e7f||?2 les |2 } . Proposition is a straighforward consequence.
A A A

Proof of Theorem[I1.3 Let us arbitrary fix n € 0, N — 1. Suppose the strong induction hypothesis

[€¥ |, <1and ||f¥,. <1, (2.26)

I~ <
for all k € 0, n.

This is obviously true for n = 0, since e = f7, for all j € Z. Let us prove that [[e""!][; <1 and |[f" ||~ < 1.
Inequality (2.3) is thus available for any k € 0,n and constants C; and C3 may be upper bounded by Cs and C,

independent of HekHem and || f* One has, for all k € 0,n

At (Cs + Cy) E k
(1 SO ).

le

2At 2
EEN I < e xer 1€l
Namely, it becomes

£ (M1, 1Y) — £ ek, fF) < 248 At (C3 4+ Cy)

k k rk
< =a 1€l + A € ()

Thus, taking the sum of all these inequalities, and noticing that e = f* = 0, we end up with

n+1)At At (Cs+Cy)

£ n+l pntl) ~ ( k 5

(e f ) = 1-AtC, kei || HP At(] Z

Applying the discrete Gronwall lemma [T.T] and using the fact that the consistency error is order one accurate in
time and and space, see Appendix[A] we get

2(n+1)At (n+1) At (Cs + Cy)
n+1 n+1 < k
S < T8, eXp( 1 - AtCy hea ”6 ||£2
T'C (o, uo) T (C5+ Cy) 4
< T oy (HE ) {an 4o - 5+ ant).

where C' (19, ug) is some constant depending on the initial data (ng, ug). Thus, for Az, At small enough and using
the inequality:
1 1
+1 +1||% +1)|%
e g < Clle™ 5 [1Dve™ |2

with C' a constant, we get that for sufficient small Az and At :
le" Hlee <1 and  [|f"Hlew < 1.

We can assure that the inductive hypothesis ([2:26]) holds for all & € 0,n + 1.
Obviously, this allows to close the estimates and provide the desired bound. This concludes the proof of Theorem
1.2l O
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2.2 The proof of Theorem (1.3

As announced in the introduction, in this section we aim at providing a proof for our second main result. As opposed
to the previous result, the proof of Theorem is rather sensitive to the different values of the abed parameters.
We recall that we will treat the case where the parameters verify:

a<0,¢<0,b>0,d>0, and bd =0,

excluding the five cases:
a=b=0,d>0, c<O,
a=b=c=d=0,
a=d=0,b>0, c<O,
a=b=d=0, c<0,
b=d=0, c<0, a<0.

For all n > 0, we will consider (e, €}) € (/& (Z))2 the consistency error defined as:

Il >

& (1= bDD) (0™ —nR) + (1 +aD D) D () + D (n3ud)
el + 3 (1 —sgn(b)) mAzD D (nA),
(2.27)
L (I—dDyD_) (uk —u}) + (I+cDyD_)D (&™) + 1D ((ug)z)
=€} + 1 (1 —sgn(d)) 2AzD D_ (u}).
In this section, we only detail the derivation of the energy inequality for £, the equivalent of ([2.3]). This inequality
is summarized as follows.

Proposition 2.2. Assume ||€"||s<, || f"||e, | sgn(a)|||Dy(f)"]|e~ < Azz=7, with v € (0, 1), for alln € O,N.
Then the following energy estimate holds true, forn € 0, N — 1
(1 — max {sgn(b),sgn(d)} CAt) € (", f*1) < (14 CAL)E (e", f)
+ (At + max {|sgn(c)|, 1 — sgn(b)} Atz) C’||e’f||?2A
+ (At + max {|sgn(a)], 1 — sgn(d)} At*) Clleg || (2.28)
+ (At + At?) max {| sgn(ed)], [ sgn(c)] (1 — max {sgn(b), sgn(d)})} Cl| D4 (e1)" |l
+ (At + At?) max {| sgn(ab)|, | sgn(a)| (1 — max {sgn(b),sgn(d)})} C|| D+ (e2)" [I73 ,

with C a positive constant depending on ||nx||eee, ||D(na)™||eoe, ||k |]eoo, [|[D(ua)™||eee and || DyD(un)™||ee-

In order to close the estimates and ensure the convergence proof (as the one made in Subsection for the case
b > 0 and d > 0) we perform as usual an induction hypothesis on the smallness of ||e™||g, [|f™||e=, || D+ (f)™]]es
according the cases. It is sufficient to assume by induction

1_ . 1
lle™ e 1F™ e, [sgn(@) 1D+ (£)"[le= < Az=™7,  with v € (0, 7). (2.29)

Hypothesis is sufficient to assure the hypothesis of Proposition The energy estimate is thus satisfied
and the convergence rate (Theorem is a consequence of the discrete strong Gronwall inequality, Lemma
and the study of the consistency error detailed in Appendix |A] (all the previous guidelines are detailed in
Subsection for the case b > 0 and d > 0).

First, we establish a technical result that interfers in a crucial manner in establishing the a priori estimates.

2.2.1 Burgers-type estimates

Let us state the first result of this section:
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Proposition 2.3. Let u € {>°(Z) such that (D4 (u);)jez € {°(Z) and X > 0. Fiz oo > 0 and T such that
lull oo + <.

Then, there exists a sufficiently small positive number dg such that the following holds true. Consider two positive
reals At, Az such that

TAL
<1, Az<§
Az — 7 v=00
and a € ¢ (Z), such that
1
Mallw < A2, with y € (0, 5).

Then, there exists a positive constant C' depending on the £°°-norm of u and D4 (u) such that

Ha — AtD ((u + /\%) a) + %AmAtD+D_a”ezA < (1+CAt) ||a||€2A .

Proof. We define
Ba =a— AtD (a (u + )\%)) + %AJ;AtD+D,a.

We compute the ¢4 -norm of Ba :
2 2 2 2 242 a®\ T2 NP2 A L2 2
IBall, — llally - AR ~ APNID (G ) Iy - TARA|D,D-ally
2
=—2At <a, D <au + )\a2> > + 7AzAt{a, Dy D_a)

+2) At <D (au),D <a22>> — 7AzAt? (D (au), Dy D_a)

2 3
2 a not. _
—TAAzAL <D (2) 7DJrDa> = 2_1 R;.
e For Ry, Relations (|1.24]), (1.27) and (1.22) give

2
—2At <a, D (au + )\0,2) > + 7AzAt(a, Dy D_a) = —At(Diu,aS;a) +

(2.30)

Az2At

A <D+a, (D+a)2> — TAtAZ||Dy a7
AzZAt

< At|Dullexllally + ==A(Da, (Dra)? ) —rAtAa]|Dalffy.

e For the Ry-term, one has, thanks to Relations (1.31)) and (1.25)),

20AL? <D (au),D (“;) > — 7AzAt? (D (au), Dy D_a)

At? Az? 2A¢?

< 20AL||al| gl [p || Dal 3, — 8%)\ <Du7 (Da)3> - 5 (DDu,a”)

TAL? TAL?
+ AiwHD+U||E<>°||a||52‘A + Tx||DUHZO°HaH32A

SAz?At? 2At2

< 2XA2||al| g [ulle= || Dal |7z + %AHDUHW||Da||eo°||Da||?2A t 35, MallZz 1Dyl e= ||al|¢=

A2 9 TAL? 9
+ xy 1P+ ulle=llallig + —~[1Dulle=]lallis -

e Eventually, for R3, one has, thanks to (1.26])
2

ALZA 2A2A
—TAATAL <D <“2> ,D+D_a> - —/\TM <D+a, (D+a)2> + %/\ <Da, (Da)2> .
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For the left hand side of the ¢4 -norm of Ba, Equation (2.30)), we know, thanks to (1.30)

3At
AP||D (au) %y < A {J[ull? + At|Dyul2} |Dal % + At { a3 + 22 D+u||zw} lalfZ -

T
Thanks to ((1.29), one has
2
-
ZAtQA:I;QHD{FD?aH?Z = TQAt2‘|D+aH?2A — TQAt2||Da||§2A7
and, thanks to (|1.28)),
a2
21D (5 ) Iy < AR Dal gl
Finally, we gather all these results

3AL? 2A¢t?
1Ballz < llall7; {1 + At||Dyul | + Atllul|f= + TI|D+uH?m + EAIIDullemHasz

Az2 AL
6

TAL? TAL? 9
S Dzl + S Dl |+ 22Dy (D2a)?) - rtasl|Dyaly

A2A
- == (Dsa, (D10)*) + 72A8 Dialffy + At Dalfy {Ilulff + AtlIDullf
8Az2 27 Ax

2 - oo
2 e e + == :

M[Dulle= || Dal = + N?|lal[7 + AllDal|ge — 72} :

Thus

3AL2 2A¢2
1Ballzy < llal % {1 + M| Dyl + At]ul e + == [|Dsullfe + S3— M Dulle<lal |~

At? At? Az?At A2A
+ = | Dy ullg + 7—|Du|goo} + < a ADia — TAtAzl — TNAD_ML + T2 A1, (D+a)2>

Ax | Ax 6

8Ax
+At%||Dal [, {|u||§m + At||Dyul[Fe + 2X|[al o [~ + T/\HDUHZMMHZOO + X?|al[7=

2T
—A o —T2 %,
+ 3 M= — 7}
where
1=(.1,1,1...).
However,

2 2
A””6Atw+a — rAtAzl — #ww I (A(),””Ama - T1> (Az — TAt) At

By hypothesis, 7At < Az and ||u||¢~ + a < 7, thus for dy such that

2
S0 < 3l[ulle=) ™=,

one has )
Az Mlallg=  Azz=r 5277
—ADa < < < < - .
ADpa < S < 2 < O < fum <7
This implies
Az At At2A
< xﬁ ADia — TAtAz1 — Tm)\D+a +T2A81, (D+a)2> <0.

In the same way, for At and Az small enough and ||a||¢~ small enough, for d§, satisfying

0 1_ 8 3_ _ 27 1_
1D ()l 2 + 205 lulle= + SlID@)lled5 " + 677" + 86" <,

17
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the condition ||u||s~ 4+ o < 7 implies

8Ax 27
[ull7o + AL|Dyul 7o + 2X]|ales||ul]r~ + —3 MIDulle=lalle= + 2all7= + — AMlalle~ — 72 <0.

Proposition [2.3| results from the fact that there exists C; such that v/1 4+ CAt < 14 C,At with

At 2At TAL TAL
C = |IDsulle= + |lullf- + THDHLH?OO + g MPullesllalles + Z=[Diulles + = [[Dulle.
The upper bound J§p must be chosen such that Conditions (2.31) and (2.32) be satisfied. O

The next result is an immediate consequence of the preceding one.

Proposition 2.4. Consider u € £*° (Z) such that (Dy(u);)jez € £>°(Z) and A > 0. Fiz T such that
lullpoe < T

Then, there exist two sufficiently small positive numbers &g, 01 such that the following holds true. Consider two

positive reals At, Ax such that
TAL

Az

S]-; AxS(SO

and a € (% (Z), b € £ (Z) such that
Mall g € 237, withy € (0,3), My <6 and Dbl < 1.
Then, there exists a positive constant C' depending on the £°°-norm of u and Dy (u) such that:
Ha —atD (o (u+b+ Ag)) + %AINMD—“H@ < (1+CAY) [al - (2.33)

Proof. Let us consider 7 > [Jul|,«. Let us suppose that ¢; is chosen small enough such that
[+ bllgoe < 01+ Jlullpoe <7

Then, taking a smaller At and Az if neccesary, we may apply Proposition with u + b instead of u in order to
establish the estimate (2.33). O

Proposition 2.5. Consider u € £*° (Z) such that (Dy(u);)jez € £°(Z) and A > 0. Fiz T such that
lullpoe < 7.

Then, there exist two sufficiently small positive numbers &g, 01 such that the following holds true. Consider two
positive reals At, Ax such that
TAt <1

Azr — 7

A(ES(SO

and a € (* (Z), b € £>° (Z) such that

1
Mallpe s A1 all < Azt 7, with 7 € (0, 5), (2.34)
bl < 81 and Dbl 1D+ D (B)]l g D3 D (u) g < 1. (2.35)

Then, there exist positive constants C1,Cy depending on the £2°-norm of u, Dy (u) and DD, (u) such that:

HD+a —atD. D (a(utb+ Ag)) + gAmtmmD_aHF < C1At|al s + (1+ C2A) || Dyall s -
A
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Proof. Let us observe that
Dia—AtD.D (a(u+b+ /\%)) + 2 ATAtD, DD (a)
a a T
= Dya—AtD (Dy (o) (utb+ A§>) — AtD (84 (a) Dy (u+b+ Ai)) + ZAzAD, D (Dy (a)
= Dia— AtD (D+ (a) (u Ty %s+ (a) + /\;)> + %AxAtD+D, (D4 (a)) — AtD (S (a) D (u))
— AtD (S (a) D= (b))

Owing to the hypothesis (Z34)-(235]) and Proposition with b+ 35, a+ A% instead of b and 0 instead of A, we
may choose dg small enough which ensures the existence of a positive constant Cs such that:

HD+G — AtD <D+ (a) (u +b+ %S+ (a) + ;\a)> + gAxAtD+D_ (Dy (a)) i < (1+ CAt) || Dy (a)||€2A .
- (2.36)
Moreover, using the derivation formula , it transpires that
|~ALD (S, (a) Dy (u) — AD (S, (@) D (5))ll2
S AL(IDD (W)llge + DD+ 0)lg) llalleg, + AL ([[D+ (w)llgoe + 1D+ 0)lgoe) 1D+ (@)l g, - (2.37)
The conclusion follows from estimates (2.30]) and (2.37). O
2.2.2 Thecaseb=d=0
The case a <0, b=c=d =0 The convergence error satisfies:
et + AtD "+ + aAtD, D_D frtl
=" — AtD (e"u}) — AtD (e" f") — AtD (nx f") + FAtAzD D_e™ — Ate7, (2.38)

o+ AtDemt = fr — AtD (f™ (ui + 3/7)) + ZAtAzD D_ f™ — Ate,
with

{ max {7y, 72} At < Az, n el N,

[urllpe <min{r", 7},
We consider the energy functional

def.
E(e, 1) lellzz + 1117 + (—a) | Dy fII7s -

Proof of Proposition[2.9 in the case a <0, b=c=d = 0. In order to recover a H'-type control for f™ (necessary
for the control of £(e, f)), let us apply v/—aD4 to the second equation of (2.38)). We get that:

V—aD f" 4+ Aty/—aD, De"t! = /—aD, f* — v/—aAtDD, ( #n <ug + % f”>)
+ V= %Amwmw_ F— /ZaAtD €n. (2.39)

We consider now the three equations system comprised of system (2.38]) with added equation (2.39). As previously,
we square the equations, and add them together. Young’s inequality enables us to obtain, with Cj a constant

le™** + At (1 + aD D) DF" g + (17" + AtD G, + [[V=aDe T+ Atv/=aDy D" ||
< (At +AE) Coll€l 7z + (At + AL%) Co |5l + (—a) (At + (A)?) Co[|D+(e2)" 173

2

+ (At + (AD?) Co D A )7,

e" — AtD (e"up) — AtD (e" ") + %AtAzD+D_ e”
‘A

+ (1 + CoAt)
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2

+ (14 CoAt) ‘

f* — AtD (f" (ug + %f")) + %AtAxD+D_f"

2
EA

2

+ (14 CoAL) (—a) (2.40)

Do f™ — AtDD, ( fm (uz + % f")) 4 %Amwmw, fm

2
EA

Let us consider the right hand side of (2.40). Owing to Proposition (2.4) and Proposition (2.3) we have that,
thanks hypotheses of Proposition 2.2 on ||€™||gee, || f™||e, || D4 f™||e0e < Azz ™7

2

e" — AtD (e"ux ) — AtD (e f") + %AtAxD+D_e” < (14 CyAY) ||e”||§2A , (2.41)
5N
respectively that
1 T 2
‘ "= AtD (f" (uz + 2f">> + %AtAxD+D_f” < (14 CyAD) ||f”H?2A . (2.42)
5N
Proposition [2.5] ensures the existence of constants C3, C4 such that:
fn n 2
(—a) ‘D.,.fn — AtD,D <f" <ug + 2)) + %Amxmmp_f"
€A

< (1+ C3At) (—a) | Dy f™[Ig + Ca(—a)At[|f" 7 - (243)
Finally, we have that, thanks Relation (|1.20))
Dnn2<2Dn2 n||2 2n2 Dn2
1D (RS Mz, < 21DnR Mg 1/ ez, + 2 mR oo 1D Iz
" [EAIRS —
< 2max{|DnA||§m Sl CACOVIOR (2.44)
Next, we compute the left hand side of (2.40)). First of all, we observe that
2
[V=aDy [**" + Aty/=aD, De ||
= —a|| D1 ", — a (A0’ [|DsDe |, + 2088 (DD f", Dt
Moreover, one has

n n 2 n n 2 n
e+ + At (I+aD D) D" o + [ f"F + AtDe™ |, = [le" I
+2aAt (", Dy D_D ") + AR||(I + aD+ Do)D" |F + |1/ 7 + A De™ |7 -

Eventually, we get, for the left hand side,

|e" ™ + AL(I +aD Do) D2, + || £+ AtDem 1%, + |[V=aDy f"* + Aty/=aDy De™ [},
A A A
= (e fH) + AR ||[(I+ aDy Do) DF™[p, + A2 | Dem |7, —ade? || Dy Dem 5,
> & (emth ). (2.45)

Gathering relations (2:40), 241), 242), (43), (244) and (2.45) yields

& (1, ) < (At + (A07) Co (et + lellly + (~a) ID4eblz ) + (1+ CLA E (", 7).

20



2.2.3 The case b=0,d >0

The case a =b=c=0,d > 0. In this case, without any difficulties, we are able to prove a more general result.
Indeed, we will show that the following general #-scheme:

A" ="+ D ((L = 0)u” + 6um ) + D (n"u") = “pEDLD_ ("),

(2.46)
& (I =dDyD_) (u™ —u™) + D ((1 = 0)n™ + 6n" ) + 1D ((u”)2) =0.
is adapted for studying the classical Boussinesq system, with @ € [0,1]. The convergence error verifies:
E~ (n)+ AtD (1 —0) f* + ") + AtD (e"uk ) + AtD (gx f™)
+ALD (e ) = B AtAxD D_ (e") — Atey,
(2.47)
(I —dDyD_)F~ (n)+ AtD ((1 —6) €™ + fe™ ™) + AtD (f"uR)
+51D (/7)) = ~Ateg.
Recall that in this case: , , ,
Ee.f) = llels + IfI% +d D1 fI% - (2.48)

Proof of Proposition[2.3 in the case a =b = c=0,d > 0. Multiply the second equation of (Z47) with F'* (n) and
proceeding as we did in Section (Identity (2.14) with a = 0), we obtain that there exist two constants C; ; and
C1,2 depending on d, ||uk || e, [|[DUX ||o and 6, such that:

£ 5 + Dy fr s = 707 — d 1Dy £ 7,
—_ <F+ (n), AtD ((1—6) ™ + e *1) + ALD (frul) + %D ((f”)Q) - Ateg> (2.49)
< Atle5|ls + AtCL1E (€7, 1) + AtC1oE (e, f7H) = At(1 — 0) (De™, F* (n)) — 9AL (D™t F* (n)).

Notice that Relation (1.22)) combined with the Cauchy-Schwarz inequality, the Young’s inequality and the upper
bound |[D(.)[[sz < |[D+(.)[lez simplifies the previous last term

(De™, F*(n)) < le ||§2A+§\|Df \|§2A+§||Df i
1 1
< 1 . n n - n+1 n+1 .
_max{ +2d}5(e,f)+2d5(e N

A similar inequality holds true for (De™ ™!, FT (n)).
Next we rewrite the first equation of (247 as

"t =" — AtD (e" (uk + f)) + %AtA:CD+D, (") — AtD ((1 —-0) "+ 9f”+1) — AtD (R f™) — Ate?.
Thus, using the Proposition ([Z:4]) and Relation (1.20]) we get that

le™ g <

e — AtD (e" (ux + f™)) + %AtAxDJrD, (e")

€A

+AL|D (1= 6) " +0F) 15 + AtID MRSl + At €]
< Al + (L CAD e+ At (1= 0)ID ()l + 0D (7))

+ Atmax {[|n [l , 1D (R[] } (Hf"ngA +|D (fn)Heg)
S ALl + (1+ CAL) ||| ;5 + ACLE? (€7, f7) + CopAtEF (", f771) (2.50)
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with C1 2 and Cs 2 depending on ||nR||¢ and ||[DnR||e. From ([Z350) we deduce that
n 2 n n
e+t 5y < (At (20)2) Collefly + (1 + Cust) e
v (At n (At)z) C15E (e, f™) + (At + (At)z) Co5E (en*, fr+1Y. (2.51)
Adding up the estimates yields

(L= CLADE (@, 741) < (At+ (A0)°) Colefllfy + At [l + (14 CoADE (", 7).

The case a < 0,b=0,c=0,d >0 In this case, the convergence error satisfies:

et + AtD "t 4 aAtD, D_Df7t!
=e" — AtD (e"u}) — AtD (e" f) — AtD (nx f*) + FAtAxzD D_e™ — Ate},

(I —dDyD_) f*' + AtDe"t' = (I —dD,D-) " — AtD (f* (u} + 1f7)) — Atey.

In this section, we will work in the following with the energy functional:
E (e, f) = dllellzz, + (=a) [I(I —dD4 D) fl7 ,

which is better adapted to the system corresponding to the particular values of the parameters in view here. Of
course, £ is equivalent to the energy from (21).

Proof of Proposition[2.3 in the case a < 0,b=c=0,d > 0. By summing up the square of the ¢4 -norm of the first
equation by d, the square of the /3 norm of the second one by (—a), we get that, thanks to Relations (1.22) and

(1.23),
E (e M) +2(d + a) At (D ) + dAE (DY |7+ 248 (=a)d|[ D4 DY |7 + (—a)AL||Dem 7,
+ AP d|| Dy D-Df [y < (At + AP)Cod |[€7 |7 + (At + A*)Co (—a) [le5 Iz

+(1+ AtCo) d

2
e — AtD (e" (uRk + ™)) + %AtAxDJrD,e”H ,
¢

A

+ (At + A#) Cod || D (3 F)Ip,
+ (1+ AtCo) (—a) [[(I = dD D) f"72

P (arar))

28t(d + a) (f**1, De"* ) > —At(d — a)||DF | — At(d - a)lle" I
> —AtCL€ (e, ).

+ (At + At?) Co (—a)

A

We notice that

Using Proposition 2.4 we get that

(1 + AtCO) d

e" — AtD (" (W + f)) + %AtAxD.,_D_e"

2
n2
g S (U Gt dle

Also, we have, due to ((1.20)

1D @A) < 11D R 177112 + [In& 1 1D (/%) I, < Co€ (€, 7).
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Proceeding as above, we get that:

1 2
P (),

Adding up the above estimate gives us:

< max {[[Dux ||, [[ual[7oe 1 DS [[7o, [17]7 } Ca€ (€, f™) -

(1= CLAD E (e, f™H) < (At + (A1)®) Cod [|€} |72 + (At + (A1) Co (—a) [leg 7
+ (1+ C5A) E (€, f7).

O
The case a < 0,0 =0,c<0,d >0 In this case, the convergence error satisfies:
e+ AtD "+ aAtD, D_D frtl
=e" — AtD (e"u}) — AtD (e" f") — AtD (nx f") + FAtAzD D_e™ — Atey, (2.52)

(I —dDyD_) f*' 4 AtDe" + eAtDy D_De"t = (I —dDyD-) f* — AtD (f* (u} + 1)) — Atey.

Again, in order to close the estimates and prove the convergence of the scheme, we will be using the following energy

functional: des
E(e.f) "L (=a)llell?s + (—cd) [ Daell®s + (=a) (I —dD-D_) fI% .

which is equivalent to that one from (2.1).

Proof of Proposition[2.4 in the case a < 0,b=0,c < 0,d > 0. In order to derive a H?' control on e, let us apply
v —cdD, in the first equation, to obtain

V—cdDie™™ + At/ —cdDy D" +/—cdaAtD, D, D_Df" " =\/—cdD e" — Atv/—cdD D (e"u’})
— AtV —cdD4 D (" f*) + %\/ —cdAtAxD D D_e" —/—cdAtD D (nX f") — V—cdAtD,€}. (2.53)

We focus now on the system composed of both equations of (2.52)) with Equation (2.53) in addition. We will
multiply the first and second equations of (2.52)) by (—a) thereafter. As before, we square the three equalities to
compute the ¢4 -norm. Let us observe that

I = (=a) [[" " + AtDF™ 4 aAtD DD ™[5,
= ()| + (—a) (A0 [ D[y —a® (807 [[DD-DF
+20%(At)? | Dy D ”?i +2(—a)At ("1 DFY) — 22At (" Dy DD, (2.54)
along with
Iy = (—ed) | Dye™™ + AtDL D™ + aAtD+D+D_Df"+1H?2A
= (—cd) | D™ [7; + (—ed) (AD |D4DF 7, + (=ed) a® (At)? | Dy D4 D-DF™ | 5
+ 2acd(At)? | Dy D-Df™|[j, —2¢dAt (Dye™ !, Dy DY)
— 2acdAt (Dye™, DDy D_Df"t) (2.55)
and
Iy = (=a) (I = dDyD-) f**' + AtDe™*! + cAtD, D-De™ |,

= (=a) |1 =Dy D) 155 + (—a) * (A1)* | D D_De" |7, + (—a) (A8)" | Dem [,
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+ 2ac (At)? | Dy De™ | o +2(—a)At{(I — dDyD_) "+, De™ ™)
A
— 2acAt (f"*, D, D_De™ ') + 2acdAt (D D_f"*, D, D_De™ ). (2.56)

Observe that the last term from (Z53]) cancels with the last term of ([Z56]), according to Relations (1.22)) and (1.23).
The same is true for 2At (e" ™1, D f"+1) in (2.54) and 2At (f"*!, De" 1) in ([2.56). Therefore, by integrating by

part 2aAt ("™, D, D_D fm+1) in (2.54) and —2acAt {f***, D, D_De" 1) in (2.56), it yieds

L+ I+ 13 > € (", ") + 2a° At (De™ D, D_ f*+h)
— 2cdAt (Dye" ™, Dy Df") + 2daAt (DyD_ f", De™ )
— 2acAt (D D_ f**' De™ ).

Young’s inequality enables to lower bound the previous inequality:
L+ I+ 13> (" f") — (—a® — ed + d(—a) + ac) At {||D+e"“||§2 + ||D+D—f”+1|\?g}
> (1= CiAL)E (enT, ).

Let us now focus on the right hand side of the squared equations. Using Cauchy-Schwarz inequality and Proposition

we get that

Il = (—a)

2
" — AtD (e"uk) — AtD (e"f7) + %AtmmD_e” — AtD(R f") — Ate?

2
A

IN

(~a)
T (—a)(At+ AP)CO 1D (A ) + (~a) (AL + ARYCo [ 1%
< (14 CAY (=a) e [2 + (At + A) (=a)Co [ D (i f)]1% + (At + A)(=a)Co e} 2 - (2.57)

e — AtD (e"ux) — AtD (e f™) + %AtAxDJrD,e”

2
(1+ CoAt)
A

Using Proposition and Young’s inequality, we get that

I

IN

2
—ed HD+en ~ MDD (e (u + ") + 5 MtAaD. Dy D_e" — AtD, D(nA[") — AtDs (egl)H o (258)
4

A

IN

—cd(1 + CoAt) HD+6” ~ AtDLD (™) — ALD4D (" f*) + %Amxmmp,en‘);
2
— cd(At + A)Co [ D1-D (& ™)l — cd(At + A*)Co || D€t |7
< —cd(At+ A*)Co | Dy efljz — cd (At(h le™ 175, + (14 C2Al) HD+€"||52A)
— cd(At + At?) max {[[nR |[7, [[D4nX |7, [[ D+ D7 } (IIf”II?zA +ID+ NIz + HD+Df"|I?2A)
< —cd(At+ A)Co | Dyt |fy + AtCsE (e, f) + (—ed)|| Dy || (2.59)
Using once again the Young’s inequality, we get that

2
13:—0,

(I —dD,D_) f" — AtD (f" (uz + J;)) — Atel
A
1
(e (4+3r)
2 v
A
< —a(At + AP)Cy ||eg |7z, + CAtmax {1, [[uf |[e=, || Dy |le=} € (€7, f7) + (=a)[|(T - dDD-) "Iz . (2.60)

From (2.54) - (Z60) we get that
£ (€1, 7Y (1 - CLAD < (At + A8) (—a) ] + (~a) 3% + (~OdID4el) + (1+ ALCo) E (e, f).

2

< —a(1+ CoAt) |[(I —dDyD-) "33 — a(At+ A*)Co — a(At+ A)Co [le5 |17,

O
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2.2.4 The case d=0,b>0

The case a =c=d =0,b> 0. In this case, as for the classical Boussinesq system (the case a =b=c¢=0,d > 0,
page we derive estimates for a more general scheme: the following 6-scheme where the advection term is
discretized according to a convex combination of n and n + 1

2 (I =bDyD_) ("t — ™)+ D ((1 = O)u™ + 6u™) + D (n"u") =0,

(2.61)
@ =) 4 D (L= 0 + 0y ) + 3D (")) = 282D D ().
The convergence error verifies:
(I -bDiD_)E~ (n)+ AtD ((1 —-0) ™+ Qf"“) + AtD (e™u}k) + AtD (nR f™) + AtD (e f) = —Ate7,
(2.62)
F~ (n) + AtD (1 - 0) €” + 6e™+1) + AtD (frud) + ALD ((f")z) = 2AtAzD,D_ (") — At}
We work with , , ,
Ee.f) = lleld +b1D4 @l + 171 - (2.63)

Proof of Proposition in the case a = ¢ =d = 0,b> 0. We multiply the first equation by E* (n) in order to get
that

(H@ . +0||Dye +1||Z2) — (||e |7 +b||Dye ||§2)
= —AH(D (1= 0) f" + 0f") + D (e"ul) + D (A f™) + D (" ") + €, B+ (n))
Integration by parts (1.22) gives
(e 8% + o D215 ) = (el + 51D e 3
= At (e}, ET (n)) + At ((1 = 0) f" + 0" + e"uk +nxf* +e"f", DET (n))
< At e} |ls + ACLE (€, f7) + AtCE (e, [ (2.64)
with C7 and Cs two constants proportional to
1 n n
1+ max {[[ui |l [[1A]e=}
Using the second equation of ([Z62)), the triangle inequality along with Proposition we get that:
At T
£ < |7 = D () - 5E0 (7)) + FaeasD. D ()
+ At ||6£LH€2A +At(1-0)||D (e")||€2A + At ||D (e"“) HIV,QA
< At ”63“52 + (1+ CAY) ||]‘"ngA +At(1-0)|D (e”)||£2A + At HD (e"“) HPA . (2.65)

02

Thus, by adding up estimate (264]) with the square of the estimate (Z.65) we get that
(1 CaA)E (", fH) < At ez + (At + AP)Co |5l + (1+ CaAt) E (€7, f) .

O
The case a < 0,b > 0,c=d=0. The convergence error satisfies:
(I —bDyD_)e™ ™t + AtDf! + aAtD,.D_Df"t = (I —bD,D_)e"
—AtD (e"u}) — AtD (" ) — AtD (nX ) — Atey, (2.66)

FrHl o AtDent = fr— AtD (f (uk + 1fM)) + Z2AtAZD, D_ (f7) — Ate.

Consider the energy functional we will work with will be

2 2 2 2
£ (e.f) = lelldy +bIDsel + 1713 + (~a) DI -
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Proof of Proposition in the case a < 0,b > 0,c =d = 0. Let us multiply the first equation of (2.66) with 2e"+!
to obtain:

n+1 2 n+1 2 n+1 n+1 n+1 n+1
2| g 420 ([ Dye [y + 248 (DF ") + 2048 (D DD, €™
=2((I=bDyD_)e", ") —2At (D (e"uX) + D (" f") + D (nx f") + €t e™*h)
n 2 n 2 ni2 n| 2
< e, + bl + eIy +b1Dse"
+2A¢8||D(e™uR) + D(e" ") + DX f*)llez |le" Iz, + Atller||7z + Atfle 7 - (2.67)
The last inequality is due to Cauchy-Schwarz and Young’s inequalities. Notice that
ID(e"uk) + D(e" ™) + DA f") g, < C1EV2(e, 1),

with C; proportional to

e ems 1D e 1 s 1D Y e {1, 5, 2

Thus, Equation becomes

et 3 +b[[Dyem 2[5, + 2L (DFF ") + 2aAt (Do DD e )

<[l +bIDse |y + CLated (e, f) [|enH |y + At [l€h]F + At e+, . (2.68)
Next, taking the square of the £ -norm of the second equation of (Z.66) and using Proposition we get that

L/, + 248 (F75, Den ) + (A || Dem |7,
2
< (At + (At)Q) Co lle3lIfs, + (1+ CoAt)

7~ AtD (f" (ug + ;f”» + %Amxmp, (f™)

A

< (At +(A07) Co gy + 1+ Catt) |71y (269)

When we will sum up Equations (2.68) and (2.69), both terms
2At (Df™Hh et and  2At (f"T, Dem )

will cancel each other, thanks to Relation . We have to cancel 2aAt <D+D,Df”+1, e"+1> in too. This
is the aim of the following computation.

Applying v/—aD. into the second equation of (2:66]) and taking the square of the £% -norm of the resulting equation
yields (with Proposition

(=) [|D4 "3, +2(=a) AL(Dy 2, Dy D) + (—a) (A0 || Dy D7,

< (At+(8°) Co(=a) D3l
+ (14 CoAt) (—a)

‘D+f" — AtD,D (f" <ug + ;f”>) + %AtAxD+D+D_ (f™

7

< (At +(A0%) Co (~a) [ D+ ll7y + (14 ) (—a) [ Dy [y + AMCa (=) [/7Fy - (2:70)
Adding up the estimates (ZG68]), [2:69) and (270) leads to

(1= GADE (™4, f741) < At + (At + (A7) Co (bl + (—a) D131 )
(14 CsAb) E (e, f1).
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The case a < 0,b > 0,c < 0,d =0. Finally, in this case, the convergence error satisfies:

(I —bDyD_)e™ + AtDf* + aAtD,D_Df™' = (I —bD,D_)e"
—AtD (e"u}) — AtD (" ) — AtD (nX ) — Atey,

(2.71)
T+ AtDe™t! 4+ ¢cAtDyD_De™tt = fm — AtD (f" (uz +3™) + ZAtAzD D_ (f") — Atey.
In this case, we will use the energy functional:

E(e.f) = (~0) | (I ~bD2D_Yel% + 1% + (~a)b DIl -

Proof of Proposition[2.9 in the case a < 0,b > 0,¢ < 0,d = 0. Taking the square of the first equations of ([271)) and
multiplying the result with (—c) yields

=) |[(1 =D D) e 5, + (=) (A [ DF 5, + (=) a? (A0)° | Dy D-DF™+||7,
+ 2ac (At)* || Dy Df”“HeQ —2cAt ((I —bD,D_)e" ™, Df"th)
—2acAt (e", D D_Df"*) + 2acbAt (DyD_e" ™, Dy D_Df"t) . (2.72)
Taking the square of the £4-norm of the second equation of (7)), we get that
= Hf"“”ez + (At) HD&“HF + (cAt)? || DyD_ De”“HeQ —2¢(At)? || Dy De”“HFA
+ 2A¢ (f7T, De™ty  2eAL (f*1, Dy D_De ). (2.73)
Let us observe that the terms
2At (f"T1, D™ ') and  2eAt (f"*', D D_De"'), in

and
—2acAt (", Dy D_Df"') and  —2cAt{(I —bD D_)e" T, D", in [2.72)

can be lower controlled by the energy —AtCE (e, f**1) (by using integration by parts (1.22)) and Cauchy-Schwarz
inequality) such that they do not raise any issues. In order to get rid of the term

2acbAt (DyD_e"*', D, D_Df"*) in [2.72) (2.74)

we will apply /(—a) bD. into the second equation of ([ZT1) and consider the square of the ¢A-norm of the result.
First, let us compute:

Js = (=a)b|| Dy f + AtDy D" 4 eAtD, Dy D_De |7,
A
—a)b |]D+f”“||§2A + (—a)b(At)? |\D+De”+1]|zz + (—a)b(cAt)? ||D+D+D_De"+1Hj2A
+2(—a) bAt (D4 ", Dy De™ ™) + 2(—a)beAt (D4 ", D, Dy D_De™ ™)
+ 2abe (At)? | D4 D De"HHp : (2.75)
Of course the problematic term from (Z74]) will cancel with
—2abeAt (D f**', Dy D D_De"t)

appearing in (Z75). The additional term 2 (—a) bAt (D4 f"**, D, D(e)"*') in (2.75) can be once again controlled
by the energy —AtCE(e™ L, f*+1) (by using integrations by parts (1.22) and Cauchy-Schwarz inequality).
Let us now interest to the right hand side. For the first equation of (Z71]), we obtain by Young inequality

Ji < (—¢) (At + At?) Co ||e’f||§2A + (1 + CoAt) (=) ||[(I —bDyD_) e"||§2A + C1ALE (e, f1). (2.76)

27



In the previous inequality, we have upper bounded At|| — D(e™u}) — D(e™ ™) — D(nk f™)||% by
A

e ( om: 1D e e 1D e D { o e, )

The second equation of ([Z7T]) gives

2
Jo < (At =+ Atz) Co ||e§||§i —+ (1 + C()At) ’

f" — AtD (f" <uz + %f”)) + %Amwm_ (f™)

A
< (At + AE%) Colles 73 + (1+Cra8) [[f"1]7 - (2.77)
Moreover, using Proposition (Z3]) we get
J3 < (=a)b (At + (A1) Co | Dy eIy + Catrt(—ab | £ |7, + (1 + CsAt) (—a) ]| Dy f (2.78)

Puting togheter Estimates [2.72), (Z73) and (Z70) with (2.76]), (2.77) and (2.78) we get that
(1= CHlAD E ("4, f71) < (At + A2) Co (—0) et I, + (At + (A7) Co (€517 + (~ab) D1 e5117 )
+ (14 CsA) E (e, ).

3 Experimental results

To illustrate our numerical results, we compare in this paragraph the exact solution and the numerical one, for
several values of a, b, ¢ and d. The simulation is done by fixing [0, L] the space domain with L = 40. Moreover,
we use periodic boundary conditions. Those conditions are not absorbing boundary conditions, which would mimic
perfectly the behavior on Z, but we fix the final time 7" small enough and we take the initial conditions localized
enough in order to minimize boundary effects.

The comparisons between the exact solution and the numerical one (Figures are done with the space cell
size Az = 2% and a time step At = 0.001. The convergence results (Tables are computed with a number of
cells J satisfying J € {640, 1280, 2560, 5120,10240}. In these tables, we choose the final time 7' = 2 and the time
step is At™ = HuZAﬁ to verify the CFL-type condition. In the case where bd = 0, we chose the Rusanov scheme for
the hyperbolic part and the Rusanov coefficients 7" verify 7" > ||uk||¢= and 75" > ||uX ||¢=, when they are needed.
In the case where bd # 0, the choice # = 1 combined with the relation A" impose that the expected

experimental order is 1.

T uR e

Linear case

First of all, we test the linear case

(I —b02,) O+ (I+ad?,)d,u=0,
(I —do2,) dyu+ (I + cd?,) 0,m =0, (Labed)
Nit=0 = Mo, Ujt=0 = U0-

For that case, the discrete energy is conserved when b and d are non zero and when 6 = 1 (ie for the Crank-

2
Nicolson scheme), and indeed, we illustrate this conservation in Figure|l] We choose a =

f%, b= C:,% and
d= % and initialize the scheme with
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For Az = 2%, At = 0.001 and nor 7{* neither 7' we obtain the conservation of the discret energy, more or less
1011, as illustrated in Figure

0.9714500

0.9714400

0.9714300

Energy

0.9714200

0.9714100

0.9714000
0

0.5 1 1.5 2
time

Figure 1 — Energy conservation in the linear case

Case b>0,d>0

First we consider the BBM-BBM system (a = 0, b = %, c=0,d= %) for which two different exact solutions are

known. The first of them is obtained in [7] and corresponds to the exact traveling-wave solution of [I7] :

S e T e ) | = C A G )]

u(t,r) = gsech2 (\/317) (x — % - gt)> .

The results are represented in Figure
Next, we consider the exact solution obtained in [I7], whose expression is

_g_cst».

We choose Cs = 2 and p = 1.1 in order to construct the numerical solution. The corresponding result can be found
in Figure

In order to illustrate our theoretical rate of convergence, we perform the previous examples with increasingly
smaller space meshes. The experimental rates are gathered in Table

(4)

77(75733) = _17

u(t,z) = Cj (1 — g) + C;psechQ (\éﬁ <:c

(B)

Case (A) Case (B)
Ax

energy error | exp. rate | energy error | exp. rate
6.25000.10~2 | 4.48993.10° 8.51815.102
3.12500.10~2 | 2.05132.10° 1.13270 | 4.14750.1072 | 1.03830
1.56250.1072 | 9.80969.10~! | 1.06450 | 2.04332.1072 | 1.02133
7.81250.1073 | 4.79738.10~! | 1.03181 | 1.01409.10~2 | 1.01073
3.90625.1073 | 2.37234.10~' | 1.01580 | 5.05189.1073 | 1.00529

Table 1 — Experimental rates of convergence for b,d # 0
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ime : t= 0. imi =
5 ' 't e t' 0000' ' 10 ' ' t e : t 0000
exact
0
s xact 5 5
2F numerical |+
_4 1 1 1 1 1 0 - I -
0 10 15, 20 25 30 35 40 0 5 10 30 35 40
time : t= 1.000 tlme t- 1. 000
2 T T T T T T 10 T T T T
exact
0
er — = numerical| 7
-4 1 1 1 1 1 0 - I . -
0 10 15, 20 25 30 35 40 0 5 10 30 35 40
5 time : t= 2.000 tlme t— 2. 000
-4 - L I . L
0 5 10 0 25 30 35 40
: results for 7 (left) and w (right)
time : t= 0.000 time : t= 0.000
-0.5 T T T T T T 3 T T T T
xact
25} | Riercal{
= 1 >
o 4
15 1 1 1 1 1 1.5 1 1 1 1
0 10 15, 20 25 30 35 40 5 10 30 35 40
time : t= 2.000 tlme t- 2. 000
-0.5 T T T T T T 3 T T T T
251
= 1 =1
2+
.1 5 1 1 1 1 1 15 1 1 1 1 1 1 1
0 10 15, 20 25 30 35 40 5 10 15, 20 25 30 35 40
05 time : t= 4.000 time : t= 4.000
= -1
-1.5
0

Another example regards the case a =

solution is

The results are gathered in Figure [4] and Table 2]
The last example of this paragraph isa =0, b = %, c

—a5, b=+, c=—2 and d = § which is discussed in [17]. The exact
3 1 /5 L 2
n(t,x) = gsech2 Vzle—5- 5%1& )
© 1 1 /5 L V2
t,x) = —=sech? [ =4/ = Z _5X%y
u(t, ) 2\/§SQC 5\ = 5 5 5
= —% and d = 1, studied in [I7]. The exact solution writes
77(1571) = 717
D L
(D) u(t,z) = (1 — g)CS + C, psech? (2p <:c —5 = Cst)> )

with Cs = 3 and p = 2 to obtain Figure [5] and Table
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ime : t= 0. ime : t= 0.
0.6 T T 't ° t' 0 000, T T 0.6 T T 't ° t' 0 000, T T
exact exact
04y [ Reeal o4 [ Rbeal
To2f /—\ : 202t / N\ i
0¢ { 0¢ {
0 5 10 15, 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
time : t= 2.000 time : t= 2.000
0.6 T T T T 0.6 T T T T T
exact exact
0.4r — = numerical| ] 0.4r — = numerical| ]
Tozr ‘A“ Toz2f ‘A—‘
0 { 0 {
0 5 10 15, 20 25 30 35 40 0 5 10 15, 20 25 30 35 40
time : t= 4.000 time : t= 4.000
0.6 T T T T 0.6 T T T T T
exact exact
0.4r — = numerical| 0.4r — = numerical|
= 02k ‘/L s 0ok ‘/\————;
0 { 0 {
L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
X X

Figure 4 — Case (C) where a = —35, b= 15, c = —2, d = § : results for n (left) and u (right)

Az
energy error | exp. rate

6.25000.10~2 | 2.27860.10~2
3.12500.1072 | 1.126019.1072 | 1.01692
1.56250.1072 | 5.612993.10~3 | 1.00439
7.81250.1073 | 2.847910.1073 | 0.97887

Table 2 — Experimental rates of convergence for a,b,c,d # 0

Remark 3.1. In this four examples, there is nor viscosity 7{" neither 73'. The terms b and d enable to control and
stabilize the scheme, even for the nonlinear Rusanov term, as shown in Figures[3{3

With the previous choices of At™ and Az, we recover the first order convergence, but notice that the schemes would
be second order accurate in space and first order in time. When At = Ax?, the second order is well found as
illustrated in Table [}

Case bd =0

We decide to cancel b by testing two examples. First, we takea =b=c=0,d = %. The exact solution is detailed
in [I7] :

77(t7 J}) = _1a

B v (1- g) .4 CPoap? <\/7’ <x L C’st)> .

2 2 2

For Figure [6] we have fixed Cs =1 and p = 2.

In the second example, we choose the case a = —%, b=c=0and d= %, for which we know the exact solution
developed in [17]

31



05 'time : t'= 0.000' ' s 'time : t'= 0.000'
exact 6l 4
— — numerical exact
= -1 5 4+ | = = numerical 1
-1.5 L v L L 0 - - - - - -
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
05 ‘time : t‘= 2.000‘ ‘ s ‘time : t‘= 2.000‘
exact 6l 4
— — numerical exact
= -1 541 | = = numerical 1
2+ 4
-1.5 : : : : 0 . L . . .
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
05 'time : t'= 4.000' ' 8 'time : t'= 4.000'
exact X 6 4
— = numerical exact
= -1 s 4+ [ = = numerical 4
2+ 1
1.5 L L L L L L L 0 L L L L L L L
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
X X
Figure 5 — Case (D) where a =0, b= %, c=—%, d = § : results for  (left) and u (right)
Case (D)
Ax
energy error exp. rate
6.25000.1072 | 6.39353.107!
3.12500.1072 | 3.09159.107" | 1.04826
1.56250.1072 | 1.52031.10~! 1.02399
7.81250.1073 | 7.53884.1072 | 1.01195
3.90625.1072 | 3.75388.102 1.00596

Table 3 — Experimental rates of convergence for b, ¢, d # 0

We obtain Figure

The experimental rates of convergence in the two cases b = 0 are gathered in Table

In all the previous experimental results, the first order convergence is recovered, which matches to the theoretical
results.

4 Traveling waves collision

Recently, in [§], the authors simulate the collision of two traveling waves moving in opposite directions in [—L, L] in
the BBM-BBM case (a =0, b = %, c=0,d= %) Motivated, by their results, we simulated the same phenomena
but for different values of the abcd parameters.

First, we used our numerical results and performed the same experiment described in [8]. The initial condition
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time : t= 0.000

05 ‘time : t'= 0.000' ' > i i :
exac
- - ﬁﬁ?r%rical 1.5 ~
= 1 >
1t i
_15 1 1 1 1 1 1 1 05 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15t % 2000 40
05 'time : t'= 2.000' ' 2 ime : -
X
—— Rimerca 5]
= -1 E]
1k
15 L L L L L L L 05 1 1 i
0 5 10 15 20 25 30 35 40 0 5 10 40
time : t= 4.000 tlme t_ 4, ooo
-0.5 : : : : 2
t
Sl st
= -1 B
1k
15 I I I I I I I 05 1 1 i
0 5 10 15 20 25 30 35 40 0 5 10 40
X
Figure 6 — Case (E) where a =b=c =0, d = £ : results for 7 (left) and u (right)
is fixed to
n tv x) = 77+(t7 x) + n*(tv ZZ’),
u(t, ug(t, ) +u_(t, o),
with
15 5 45 3 5
2 4
+(t,x) = —sech r—T+E*-t) | ——sech” | —=|z—24 £+ -t
et ) =5 V10 2 4 10 2°) )"
15 3 5
ut(t,z) = F—sech? | — (z —azy + =t ) ),
2 V10 2

where z4 = :i:%.
The space domain is fixed at [—14, 14] and initially, the traveling-waves are centered in 1 =7 and x_ = —7. We
choose the same space size and time step as in [8], namely Az = 0.02 and At = 0.0001. The simulation suggest
that blow-up occurs while the explosion time appears to be around ¢t = 4.5 as shown in Figure [§] result which is
very close to the one obtained in [8].

We believe that it is an interesting feature that performing the same kind of experiments for different values of
the parameters suggests different qualitative behaviour. Indeed, for (a = 730, b= 15, c=—-%2,d= 7), Figure |§|
suggests that there is no blow-up resulting from the collision of two traveling waves. The experlment is performed

Case (A) Case (C)
Ax
energy error | exp. rate | energy error | exp. rate
2.5000.10~! | 3.29137.10 © 2.52768.102
1.2500.10~1 | 7.75742.10~1 | 2.08504 | 6.08893.10~% | 2.05355
6.2500.1072 | 1.90828.10~' | 2.02330 | 1.50692.10~3 | 2.01459
3.1250.1072 | 4.75112.1072 | 2.00594 | 3.81640.10~* | 1.98131

Table 4 — Experimental rates of convergence with At =

Az?
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time : t= 0.000 time : t= 0.000
T T T 0 T T T
. exact
=]
1 1 1 1 -3 1 1 1 1 1 1 1 1
15, 20 25 30 35 40 5 10 15, 20 25 30 35 40
time : t= 2.000 time : t= 2.000
T T T 0 T T T
-1 4
exact = exact
= = numerical| ] -2 — — numerical| 4
1 1 1 1 -3 1 1 1 1 1 1 1
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time : t= 4.000 time : t= 4.000
T T T 0 T T T
-1 - 4
=l exact
3 4
| | | | | | | | | | | |
15 20 25 30 35 40 5 10 15 20 25 30 35 40

Figure 7 — Case (F) wherea = —1, b=c=0,d =

: results for n (left) and w (right)

6’
Case (E) Case (F)
Az
energy error | exp. rate | energy error | exp. rate

6.25000.1072 | 5.94214.10~2 3.62176.107!
3.12500.1072 | 3.01052.1072 | 0.98097 | 1.92823.10~' | 0.93164
1.56250.1072 | 1.51573.1072 | 0.99000 | 1.00366.10~! | 0.94780
7.81250.1072 | 7.60581.1073 | 0.99483 | 5.16267.1072 | 0.95784
3.90625.1072 | 3.80985.1073 | 0.99737 | 2.63453.1072 | 0.96715

Table 5 — Experimental rates of convergence when b =0 and d > 0

for the same value of At and Az as in the previous case. This time, the initial value is

77(15755) = 77+(t7x) + 77—(75@)7
u(t,z) = ug(t, ) + u_(t, x),

1 2
rats2) = goee? (2\/5 ( ST 5\6@» |

1 1 /5 5vV2
ug(t,z) = imsech2 (2\/; (x —TL F ‘6[t>> ,
where x4 = j:%.

For (a =0,b= %, c=0,d=0), Figuresuggests that the blow up is due to the derivative of u. The experiment
is performed with At = 0.001, Az = 0.01 and the initial value is

with

= 77+(t7'T’) + n—(t71‘)a
=uy(t,z) + u_(t,x),
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Figure 8 — Explosion for (a =0,b=}, c=0, d = §) : results for n (left) and u (right)
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time : t= 0.000

-10 -5 0
time : t=1.50

-10 -5 0 5 10

time : t=3.00
5 T
=~ 0j
5 |
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X

time : t=4.50
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Figure 10 — Explosion for the derivative of u for (a =

with

15 1 v 10
ne(t,x) = ?sech2 <2 (:r — T4 F ——t

where r4 = £5.

A Appendix : Consistency error

1.1 Consistency error €}
By definition of the consistency error, on has
n+1

n 1
el _(I—bD+D_)( A A

0,b

)

1 1 1
ug(t,x) = :i:@sech2 (2 (m — T4 F gt
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We define

n+1 n
FEtime = (I = 0Dy D_) (nAAtnA) )

Btinear = (I + aD1D-) D (ux™ + (1 = 0)u3) .
Enon linear — D (nZUZ) s

T1
Eviscosity = 5A$D+D_UZ.

We define Q = [z, ;1] x [t",¢"T1]. We will only develop the non linear part and enonce the results for the
other parts. By Taylor expansions and Cauchy-Schwarz inequality, one has

P U ) At N At oo
Etimewm 5 . O (s,y)—b0;0m(s,y)dsdy+ EH@UHL?(Q)H)AﬂU EH@C@WHH(Q)‘*‘I} EH@C@MHH(Q)

In the same way, we develop the Fjjyear-term.

Tjt1 t"“
Flinear < AtAm/ / (s,y) +a83 u(s,y dsdy+0\/ ||8 Owul| L2 (@) +Am/ ||8 ul| L2 (@)
tn
[ Ax | At | Az

We will develop the non linear part. We denote K the function on [0, 1]

Tl gt T gt
- / / / / 0(s,y+ vAz)u(t, © + vAz)drdydsdt.
5 tn z; tn

Thus,

j+1 j+1
K'(v)= / / / / Azd.n(s,y + vAz)u(t,x + vAz) + Azxn(s,y + vAx)d,u(t, z + vAz)dxdydsdt

/$j+1/ /x]+1/
Zj tn tm

+ Axdyu(t,z + vAz) [n(t, y+vAz) + / on(t,y + VAx)dT] dxdydsdt
t

gntt

Axd.n(s,y + vAz) [ (s, 4+ vAx) + / Opu(T, = + I/Ax)dT]

Tjp1 wjpr "t
= / / / / Axdn(s,y + vAz) [u(s,y + vAz) — (y — z)0zu(s,x + vAx)
z; tm T tm
y ¢

. / O2u(s, z + vAx)(y — 2)dz + / ou(r, z + vAz)dr

+ Axdyu(t, z + vAx) [n(t, x+vAz) — (x — y)0un(t,y + vAzx) — / O2n(t, z + vAzx)(x — 2)dz
y
+/ on(r,y+ Z/Ax)dr] dxdydsdt
t

t+1

Ti+1
= A:CzAt/ / () (s, y + vAz)dsdy
tn
Tj+1 Tit+1
— AxAt/ / / / 0. (8,y + vAT)O2u(s, 2 + vAZ)(y — 2)dzdzdyds
j+1 Tj+1 T
- AxAt/ / / / Opu(t, x + vAX)O2n(t, 2 + vAx)(z — 2)dzdrdyds

Tj+1 wjpr "t
A A
Zj tn tn

/ 0:1(8,y + vAz)Osu(T, x + vAx)drdrdydsdt
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wip1 Y pmiin Tl s
* Ax/ / / / / (%cu(t’ T+ VAm)atn(Ta Y+ VAZL')de:L‘dydsdt
i A z; tn t

Moreover,

tn+1

j+1
K" (v) = Aa:QAt/ / 20z (8,udyn) (s,y + vAz) + Az (udin) (s,y + vAz) + Az (ndiu) (s,y + vAz)dsdy
Tjt+1 Tj4+1
+ AacAt/ / / / Axd?n(s,y + vAx)du(s, z + vAx) + Axdyn(s,y + vAx)0>u(s, z + vAx)dzdrdyds
i
Tj+1 Tj+1
+ AxAt/ / / / Axd?u(t,s + vAz)dun(t, z + vAz) + Axd,u(t, x + vAz)d2n(t, z + vAz)dzdrdyds
T tn T T
Tj+1 Tj+1
+ Aw/ / / / / Azd?n(s,y + vAz)0u(T, x + vAx) + Axdyn(s,y + vAz)Osu(T, v + vAz)drdedydsdt
T tm T tm s

Tj+1 Tit+1
+ Aa:/ / / / / Axd2u(t,z + vAz)Om(T,y + vAz) + Axd,u(t, x + vAZ) 0w (T, y + vAz)drdrdydsdt.
x; tn @ tn t

We have the same type of equality for K"’. Applying once again the Cauchy-Schwarz inequality gives

(K" (v)| S Azt At]|07ul| L2 () 102l | 2(q) + Az At]|0pul| 2 |21l | L2 (@) + Ax* Atl[ul | 2(@) [103n]] L2 (@)
+ Azt A 03ull 2 @) |10l 22 @) + Az At]|0pul| 12(@) 1031 12 (@) + Az At]|5ull 2 |0Zn]| 22(@)

+ A$5At||a§“|‘L2(Q)||az77||L2(Q) + At AL| 0yl 12 1020 12(@) + Azt AL[|0yul| 121020 12(q)

+ Azt AL|0:0ul| 12(@) 1021 L2 (@) + Azt AP||0Ful| L2 () 106 L2 (@) + A AL?||0Ful| 12

)0zenl| L2 (@)
+ Az AL |0 ul| L2 10:02ml | L2(0)

Thus, the Fuon linear-term rewrites

2

zip1 T
S [ ontmits.pdsy + | Sl ol + Ay R 102010~ e
:17

+/ IxHazn”L‘x’(Q)HatuHLQ(Q) +4/ EE||3t77|\L2(Q)||3mUHLw(Q) + Az E||a£u”L2(Q)||aac77||L°°(Q)

Ax Az Ax
+ Az T l0eul [ L) 1020l L2(@) + Awy | o ullL= @ 102nl] L2 (@) + Az F71107ull 2@ |l =)

Ax Ax Az
+ Az?y/ Euamunm@\|a§n||L2(Q) + Az?y/ Enagunm@\|8§n\|Lz<Q> + Az?y EII3§U|\L2(Q>|I3zn|lm(@)

+ Azxv AxAt\|8ztu||Lz(Q)|\33n||Loo(Q) + Axv AmAt|\8tu\|Lz(Q)||8§n||Loc(Q) + Azxv AmAt||8t8iu||L2(Q)||8$n\|Loo(Q)

Finally, one has

oo e 5 gz U0 = K00) = g (2000 + [ 107w 5w | K”’<—w>(_1_w)dw)

TV Az

Ev150051ty ~ 2\/7 || 9317||L (Q)

Then, when we sum up all the previous results, we obtain

tn+1

ZTj+1
T 3
a= AtAx / /t 0in(s,y) — bO20ym(s,y) + Bzu(s, y) + adiu(s,y) + 0x(nu)(s, y)dsdy

VAL Hat277||L2(Q) + bAﬂC\/ Ha4at77||L2 + b\/ ||828t277”L2(Q) + 9\/ ||8 Orul|L2(q) + Aw\/ ||8 ul|22(Q)
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+ |G|A$\/E||3§U||L2(Q) + a|9\/Tt|3t5§U|L2(Q + |G|A$\/§j|aiu||w(@)
+Aw\/7||3w|mo ) |l02ul] L2 )+Am\/7|| 91| 2@ 10t L= (@
+ \/;Iawnlhm(@)l@tulm(@ + \/;Ilﬁmle@)II@xule(Q)
+ AfU\/EHai“HL?(Q)HaHﬂL°°(Q) + Aw\/EIIamUIILw@)ll@inllL%Q)
Ax\/EHUHLw(Q)mgUHH(Q) + Aﬂ?\/EHaiMLZ(Q)HTIHLw(Q) + Ax2\/§|IaacuHL“(Q)HagnHLQ(Q)

+ A$2\/%|82u||L°°(Q)|8277||L2(Q) + Az® \/E||aiu||L2(Q)||axn|L°°(Q) + AxvV Az A |Durul |2 () 1037 | L (@)
+ AV ATAH|0yul| () 1030 £~ () + AV AT 0,23l 2 o) 1951l <) + AV ATAH [0l < (0|07l 22 )
+ AaVASAL|02ul| L~ (o) 1Benllzzq) + ArVATAL,ull L~ o) 10020 12(q) + Qﬁwwvynm)

We recognize the initial equation on the first line. We recall the relation

tn+1

Y AzllfllFaq) = Az / If (s,y)[*dyds < AzAt ES[lépT]Hf( MLy = Azt f(t )] L2- (A1)
JEZ

Eventually, when we compute the /4 -norm, we obtain

lel17z = A7l T e 2 + b A |0300] [T e 2 + b* A2 |70 2 + O*A?||0s0pul [T 2 + Aat||03ul [T e 12
+al*Az|0ul|Foe 2 + [al*6* A?||0,05ul | Foe 12 + laf* At (|07l L e 2 + Az |0un]| Lo o= |07 ul| e 12
+ Az 000 | ge 2 [10wul g pee + A (0un | Lo e |0l | Lge 12 + AL |0pul| Lo oe 10| g 2 + Az |03ul| Lo 12 |00n|| 5o Loe
+ A9C4||8zU\|L$°Lg°|| anLf"Lﬁ + AJL“4||7vt|\L;f‘°L;>.°|| ac"7||Lt°°L§ + A$4H8gu||Lg°LgH77HL;’°LS;°
+ A$6||8IUHL§°L30 ||8277HL,?°L?T + A$6||33UHL§°L§;°||ag77||L;f°L§ + A$6Ha§u||Lf"L§ ||8m77|‘L§°Lg°
A A Dyt 121020 1e e + A AR Byl e 1 1020] 13 oe + A AL 0,020l e 1 Ou e 1
T AT ARl e o 10212 + A A102ull e L | Bue 301
+ Azt AL 0pul| Lge Lo 100020 | oo 2 + (1) A$2\|3§77||%<;%g-
Thus, one has
. C(At+ Azx), if 71 # 0 de in the case bd = 0,
leilley, < { C(At + Azx?), if 7y = 0 ie in the case bd # 0.

with C a constant depending of u, 17 and their derivatives.

Remark A.1. One can prove that, for 6 = %,

€| C(At? + Azx), if 71 # 0 ie in the case bd = 0,
€ 2
Hia = C(A¥ + Az?), if 1 = 0 ie in the case bd # 0.

In some cases, D€} is needed. To obtain an upper bound, we perform the same computations and find
1Dserllfs < Ax?(|070en|[7 2 + At 10:07 1l 12 + b* A ([03001l [ e 12 + b AL||0207 07 < 12

+ 82| Qul[f = 12 + la|*Ax?||0Ful[F 0 2 + 02 AL[|0700ul[] < 12 + |al*0? At?|| 000z ul[Tee 1 + A |0l 12
+lal? Az |08ul [ 12 + Ax®[|07n]| 7 e 12 |100ul| e (@) + A |0 Lo () 107Ul e 12
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+ AL e o |97l 2+ A0 e e st e 2 + AP IO20l3 e o [[Oen] 20 2

+ AP0l o 191l 3o 12 + D220l e 2 1001 e

+ 80?05l e o 10201 e 2 + A full e e 1030 12

+ A2 [l e 12Ul 12 + A2 |029] 20 2 100l 2w e + A 1020l 2 102013 1

+ A2 [0l 2o e 1030l e 2 + AP0 e |1 9rull e 12+ A A2 020)] 3o 100Dt 1.

+ AP A0 3o e 10002 3o 12+ ALAL 901|312 1020l 3o e + AP AT10,0,] o 2 1102l 3o
+ AP A0l e e 100201 Boe 12+ (71)* A0 -

1.2 Consistency error €}
By definition of the consistency error, on has
n+1

n n \2
¢ = (I —dDyD_) (“AN“A) +(I+¢DyD_)D (63 + (1 —6)ni) + D <(“§) ) - ;ﬁAgcmD,ug.

We adapt the previous computations with (d, ¢, 7R, wx) instead of (b, a,wk,nX). The only difference is concerning

the non linear term
Tj41 Tj+1 et
/ / / / (s,y + vAz)u(t,x + vAzx)dzdydsdt.

So one has

zip1 A [ A
Enon linear ~> AmAt/ Z S y dey-i—A.’E Ha u||Loo(Q)\|8 u||L2(Q) + Ha u||Loo(Q)||8tu\|Lz(Q)
Az Az Az
+ Az T 0zul 2 (@10l @) + Az F ulle @ 102ullL2@) + A2y | 10wl L @) l102ul12(@)

Az
+Az?y E||aa2:u”L°°(Q)||8§UHL2(Q) + AzV Az AL Dyl | L2 () |03l | L= (@)
+ AzvV Az AL |Opul| 120 [|03u]| L (@) + AzV AzAL|[0,02u|| 12(0) || 0w ttl | L= (@) -

The consistency error verifies

tn+1 2

j+1
/ [ o) = a0200u(s.9) + Dun(s,0) + Ot 9) + 0, 5 (5. 9)dsdy

€5 n <
~ AtAx

Az At Az
+/ EH@QUHL?(Q) + dAz | E|\8i6tu\|L2(Q) +dy/ EH@%@?UHH(Q) + 9\/ EHGIE)WHL?(Q) + Azy EH@UHU(Q)
Az At Ax Ax
+ [c[Azy EHagUHL?(Q) + |clfy EH@@UHH(Q) + |c|Azy EH@WHB(Q) + Az E\|3§U||L2(Q)||3wu||Loo(Q)
At Ax Az
T/ EH&cUHL‘”(Q)||8tu||L2(Q) + ASU\/ E||3§U|\L2(Q)||3xu|\mo(@) + Al”\/ E|\UHL°°(Q)||3§UHL2(Q)

Az - Az
+ A2\ | T 10sul [ L0107 ull 2(@) + Az Z71107ull e @ 1020l 12(Q) + Awv Az AL |Drpul |20 l|07ul | L= ()

ToV Ax
+ AxV AzA[d;ul| L2 () |05 ul| L (@) + ArV Az A0, 0% ul| 12 () |10z ul| L= (@) + ;F |02l 2 (q)-

Finally, one has, thanks to the relation (A.1))

les 17 < AP0 ullee 12 + d*Aa|0300ul e 12 + d*A2(|0207ul [0 2 + 02 AL[|0:0en| |70 2 + Aa*||O20][Fc 12
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+ |C|2A~T4H3§77H%50Lg + |C|292At2\|5t3377||%g%g + \C|2A$4H3377||%50Lg + A$4||5§U||%50Lg||5'mu\|2LgOL;o
+ AtzuaﬂﬂquL;?"Lgo ||8tu||%‘;°Lg + Az |02ul| oo 2 |0 ul | L2 Lo + A2 ||ul| Lo oo ||03u]| Lo 12

+ AI6||3zUHLf°L;°||5§U||L50Lg + AI6||5§U||L‘;°L;°Haa%UHLgOLg + Am4At2||artUHL§°L§H3§U||L‘:°Lg°

+ Azt A (|0gul| oo 12 |03l | Lo oo + Azt AL ||0,07ul| oo 2 ||0pul | Lo Lo + (r2)? AI2||3§U||%;?OL§-

As for the €} case, there exists a constant C' depending on w, 1 and their derivatives such that

||£nZ||Z2 < C( l’) lf 2 # O ie 1’11 tlle case “(i = 0,
C( x ) i 2 : Z'e m tlle case bd 7é O

Remark A.2. As for the €] case, one can prove that, for 0 = %,

e8]l < C(At? + Ax), if 7 # 0 ie in the case bd = 0,
€
21 = C(At? + Az?), if 75 = 0 ie in the case bd # 0.

For D, €}, the results are similar to those for D, €.
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