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Abstract

Of particular interest is the experimental feasibility of replacing wind tunnel

measurements with a substitute experiment to simulate Turbulent Bound-

ary Layer (TBL) induced vibrations. This paper describes the development

of an experimental procedure to address this issue. The proposed approach

is based on the concept of uncorrelated wall pressure plane waves, which

is introduced as a prelude to this study. Concretely, an array of acoustic

monopoles can be used to generate these wall pressure plane waves. To this

end, the design parameters of the array are studied numerically. However,

when dealing with experimental applications, the number of monopoles re-

quired being prohibitive, the principle of synthetic array is applied instead.

This technique allows simulating the effect of an array of acoustic monopoles

from sequential measurements. To assess the validity of the proposed ap-

proach, the whole procedure is applied to simulate TBL induced vibrations

of a thin elastic plate. The results obtained are in good agreement with those
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obtained from random vibration theory.

Keywords: Synthetic array, Turbulent Boundary Layer, Plane waves

1. Introduction

The study of Turbulent Boundary Layer (TBL) induced vibrations is of

great importance in numerous industrial applications, especially when con-

sidering automotive and aeronautical applications or self-noise phenomena in

underwater acoustics. Consequently, knowledge and understanding of physi-

cal mechanisms governing TBL induced vibrations is a crucial issue for engi-

neers. From the practical point of view, in situ measurements, e.g. flight tests

[1, 2, 3, 4], underwater measurements [5, 6] and wind tunnel measurements

[7, 8] are generally used. However, these experimental set-ups are expensive

due to the equipment and resources needed. Futhermore, measurements are

difficult to carry out because background noise levels are generally high. It

is thus of considerable interest to develop substitute experiments to assess

TBL induced vibrations under laboratory conditions. Nevertheless, very few

studies have been carried out in the last few decades. One of the first studies

on this topic was proposed by Fahy in 1966. In [9], Fahy mentioned different

ways of simulating TBL wall pressure fluctuations such as arrays of shakers

or loudspeakers, although he could not verify these approaches experimen-

tally because of the practical difficulties of implementing these solutions at

that time.

Two decades later, Robert [10] studied the feasibility of using an array of

suitably driven shakers by noting that only a limited number of structural

modes are excited independently by the TBL. The main advantage of this
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approach is that the location of the shakers is independent of the convection

velocity of the TBL, but as mentioned by Elliot et al. [11], this approach re-

quires knowing the structural mode shapes to determine the number and the

location of the shakers from a numerical process. Consequently, this implies

their measurement by performing a preliminary modal analysis. Another

semi-experimental approach, based on the standard formulation of random

vibration theory [12] and the measurements of the required transfer func-

tions, was proposed by Audet et al. [13] to assess hydrodynamic self-noise

under a SONAR dome. Finally, the experimental real-time synthesis of spa-

tially correlated random pressure fields such as TBL with a nearfield array of

appropriately-driven loudspeakers was studied by Elliot et al. [11] and Maury

and Bravo [14, 15, 16]. However, this approach, based on signal processing

techniques, leads to the use of a great number of loudspeakers as frequency

increases.

In the present paper, we propose an alternate off-line methodology us-

ing a single acoustic source to investigate structural vibrations induced by

random pressure fields such as diffuse field, rain-on-the-roof or TBL excita-

tions. Here, we focus more specifically on the TBL excitation, because of

the industrial demand for cutting experimental cost associated with in situ

or wind tunnel measurements. The aim is to overcome the difficulty of gen-

erating TBL excitation experimentally and gain the practical advantage of

performing a substitute experiment based on acoustic excitation. For this

purpose, the methodology developed in this article is based on three main

features: (1) the wall pressure plane wave expansion to represent the target
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random wall-pressure field, (2) the identification steps to simulate TBL in-

duced vibrations from individual transfer function measurements and (3) the

concept of synthetic array. Although each of these techniques are separately

well-known in the field of acoustics, the originality of this paper lies in their

combined use to experimentally simulate the response of a structure excited

by a random wall-pressure field such as TBL.

To simulate TBL induced vibrations from uncorrelated wall pressure

plane waves, the amplitude of each wall pressure plane wave must be de-

fined so that the whole set can represent the statistical properties of a wall

pressure field generated by a TBL. This relation between wall pressure plane

waves and TBL wall pressure fluctuations is first established in section 2.

The experimental implementation of this formulation implies the generation

of wall pressure fields corresponding to those of propagating and evanescent

acoustic plane waves in the direction normal to the observation area. A sin-

gle acoustic source being not sufficient to generate such sound fields over the

observation area, an array of acoustic monopoles is used. The design param-

eters of the array, such as the number of monopoles, its distance from the

observation area and its size are then studied numerically and compared with

existing theoretical and empirical criteria [11, 14, 15] in section 3. However,

the use of a full monopole array would be experimentally impossible at high

frequencies, since it is necessary to increase the number of monopoles as fre-

quency increases. Therefore a synthetic array is used instead to avoid such

frequency limitations, and is the original development described herein. This

technique permits using a single acoustic source to simulate the effect of an

4



array composed of a large number of acoustic monopoles from a sequential

process, a possibility allowed by the linear nature of the problem. The prin-

ciple of the synthetic array and the corresponding formalism are presented

in section 4. In section 5, an experimental validation of this procedure is

proposed for a thin elastic plate. Two validation steps are presented: (1)

reconstructions of wall pressure plane waves using a synthetic array and (2)

comparison of TBL induced vibrations with a classical formulation when the

response of the plate is calculated analytically. Finally, a complete imple-

mentation of the method is performed to demonstrate its versatility vis-a-vis

the excitation model.

2. Theoretical framework

2.1. Basic concept: The uncorrelated wall pressure plane waves

As a random process, the wall pressure fluctuations of a TBL can only be

modelled by using adapted statistical tools. Under the assumptions of sta-

tionarity and homogeneity, TBL excitation is thus represented by its cross-

spectral density (CSD) function. In the literature, numerous models are

available, such as Corcos-like [17, 18, 19, 20] or Chase-like [21, 22, 23, 24]

models, for describing TBL wall pressure fluctuations on a rigid plane. These

models can be then directly used to determine the statistical properties of

the response of a structure, such as a panel, thanks to the random vibration

theory [25, 26].

Here, the basic idea is to represent both the TBL CSD function and the

induced structural response as a combination of uncorrelated wall pressure
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plane waves. This approach is related to room acoustics, where a diffuse

field can be approximated by summing the effect of an infinite number of

acoustic plane waves originating from all spatial directions and having the

same amplitude [27]. The term wall pressure plane waves refers to the TBL

wall pressure field defined as the blocked pressure acting on a structure. Thus,

a wall pressure plane wave is a surface wave, whose amplitude is scaled on the

TBL CSD function. From this definition, the general form of a wall pressure

plane wave Prs of wavenumbers (kr, ks) is:

Prs(x, y, t) = Ars(t)e
jkrx+jksy (1)

where Ars(t) is a random variable corresponding to the amplitude of a wall

pressure plane wave of wavenumbers (kr, ks).

The corresponding CSD function SPrsPrs
between 2 points is therefore:

SPrsPrs
(ξx, ξy, ω) = SArsArs

(ω)ejkrξx+jksξy (2)

where ξx and ξy are the spatial shifts between 2 points along x-axis and y-

axis respectively, SArsArs
(ω) is the auto-spectral density (ASD) function of

the wall pressure plane wave amplitude and ω is the angular frequency.

Let us suppose now a rigid surface impacted by a set of uncorrelated wall

pressure plane waves Prs. The total pressure p(x, y, t) at point (x,y) of the

rigid surface is thus given by:
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p(x, y, t) =
∑

r,s

Prs(x, y, t) (3)

As the wall pressure plane waves are supposed uncorrelated, SArsAr′s′
= 0

if r 6= r′ and s 6= s′. Consequently, the CSD function of the total pressure is:

Spp(ξx, ξy, ω) =
∑

r,s

SArsArs
(ω)ejkrξx+jksξy (4)

From this equation, it is now possible to model the TBL CSD function

and the corresponding induced vibrations from uncorrelated wall pressure

plane waves, as demonstrated in the next section.

2.2. Modeling of the TBL excitation

The CSD function of the TBL wall pressure fluctuations Spp(ξx, ξy, ω)

in physical space is related to that in the wavenumber-frequency space, i.e.

Γpp(kx, ky, ω), by the following inverse spatial Fourier Transform:

Spp(ξx, ξy, ω) =

∫∫ +∞

−∞

Γpp(kx, ky, ω)

4π2
ejkxξx+jkyξydkxdky (5)

where kx and ξx are the wavenumber and the spatial shift along the stream-

wise direction (x-axis) respectively, ky and ξy are the wavenumber and the

spatial shift along the spanwise direction (y-axis) respectively and ω is the

angular frequency.

The discretization of the integration domain transforms Eq. (5) into its

discrete form:
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Spp(ξx, ξy, ω) =
∑

r,s

Γpp(kr, ks, ω)

4π2
ejkrξx+jksξy∆kr∆ks (6)

where the couple (kr,ks) is the discrete analogue of the couple of wavenum-

bers (kx, ky) and the couple (∆kr,∆ks) defines the wavenumber resolution.

Direct comparison of Eq. (6) with Eq. (4) allows demonstrating that

TBL excitation can be represented as a superposition of uncorrelated wall

pressure plane waves, if the ASD function SArsArs
of each wall pressure plane

wave satisfies:

SArsArs
(ω) =

Γpp(kr, ks, ω)∆kr∆ks

4π2
(7)

2.3. Modeling of TBL induced vibrations

From the previous analysis, it can be also shown that the ASD function

of the velocity Svv(Q,ω) at point Q of a structure under TBL excitation

can be obtained from an uncorrelated wall pressure plane waves expansion.

Indeed, if the structure is linear, the structural velocity ASD function can be

expressed by a wave-vector integral [25, 28]:

Svv(Q,ω) =

∫∫ +∞

−∞

Γpp(kx, ky, ω)

4π2
|Hv(Q, kx, ky, ω)|2 dkxdky (8)

where the transfer function Hv(Q, kx, ky, ω) is the structural response at point

Q excited by a wall pressure plane wave of unit amplitude.

By discretizing this integral and introducing the ASD of the wave ampli-

tudes [i.e. Eq. (7)], one obtains: :
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Svv(Q,ω) =
∑

r,s

SArsArs
(ω) |Hv(Q, kr, ks, ω)|2 (9)

This demonstrates that the structural velocity ASD function can be ob-

tained from the effect of uncorrelated wall pressure plane waves simulating

the TBL wall pressure fluctuations.

In theory, the numerical evaluation of the series given by Eq. (9) requires

an infinite number of wavenumber couples (kr, ks). However, the structure

acts as a wave-vector filter characterized by the transfer function Hv. This

enables limiting the wavenumber couples to those mainly contributing to

the structural response [25, 28, 29]. Consequently, the structural velocity

ASD function can be approximated from a finite number of uncorrelated

wall pressure plane waves. This, however, requires some knowledge about

the structure under test to determine an optimal cut-off wavenumber allow-

ing properly truncating the series given by Eq. (9). Its practical evaluation

is detailed in section 5.

Concretely, the experimental process is divided in two main steps. In

the first step the response Hv(Q, kr, ks, ω) of the structure excited by a wall

pressure plane wave of unit amplitude is measured. This measurement is then

repeated for a set of wall pressure plane waves with different wavenumbers.

In the second step, these measurements are post-processed from Eq. (9).
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3. Generation of wall pressure plane waves by a monopole array

In section 2, the concept of wall pressure plane wave is introduced for

2-dimensional plane waves propagating over a wall. In the following, wall

pressure plane waves and acoustic plane waves must be distinguished, since

the latter are used for denoting 3-dimensional plane waves.

3.1. Basic principle

In this section, the generation of a wall pressure plane wave of unit am-

plitude P̄rs is investigated.

To do this, let us first consider an harmonic acoustic plane wave pac of

unit amplitude, propagating in an acoustic medium with the general form:

pac(x, y, z, t) = ejωt+jkrx+jksy+jkzz (10)

where ω is the angular frequency, t is the time and kz is the wavenumber

along the direction perpendicular to the (x, y) plane in a Cartesian coordi-

nate system.

The triplet (kr, ks, kz) is related to the acoustic wavenumber k0 by the

dispersion relation of the Helmholtz equation:

k2
0 = k2

r + k2
s + k2

z (11)

Insofar as the wavenumbers kr and ks are known, since chosen to suitably

approximate the series given by Eqs. (4) and (9), the wavenumber kz satisfies:
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









kz = ±
√

k2
0 − k2

r − k2
s if k2

0 > k2
r + k2

s

kz = ±j
√

k2
0 − k2

r − k2
s if k2

0 < k2
r + k2

s

(12)

Depending on the value of k2
r+k2

s with respect to k2
0, Eq. (12) clearly indi-

cates that wall pressure fields corresponding to those of propagating (kz ∈ R)

or evanescent (kz ∈ I) acoustic plane waves must be generated to simulate

TBL excitation from uncorrelated wall pressure plane waves. This is illus-

trated by Fig. (1) which compares the CSD functions associated with a

diffuse field with a TBL wall pressure field.
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Figure 1: Comparison of cross-spectral density function of (—) a TBL and (−−) a diffuse

field - kc: convective wavemenumber, k0: acoustic wavenumber

However, experimentally, generating evanescent acoustic plane waves nor-
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mal to the wall is very difficult. That is why, an array of acoustic monopoles

is used instead to simulate the required nearfield interferential conditions. A

schematic representation of such a device is proposed in Fig. 2.

Figure 2: Definition of the array of acoustic monopoles

For each couple (kr, ks), the complex amplitude Brs
m (ω) of the m monopoles

are obtained by writing the equality of a wall pressure plane wave of unit

amplitude P̄rs and the wall pressure field generated by the monopole array

over a grid of p observation points located on a rigid plane:

∑

m

Brs
m (ω)Hmp(ω) = ejkrxp+jksyp (13)

where Hmp(ω) is the transfer function between a monopole m of coordinates

(xm, ym, zm) and an observation point p of coordinates (xp, yp, 0) belonging

to a rigid wall.
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Considering an image source in order to satisfy the rigid wall condition,

one classically obtains:

Hmp(ω) =
e−jk0

√
(xm−xp)2+(ym−yp)2+z2

m

2π
√

(xm − xp)2 + (ym − yp)2 + z2m
(14)

For the sake of simplicity, Eq. (13) is written in matrix form:

HB = P (15)

where H is the propagation operator corresponding to Hmp, B the vector of

monopoles amplitude Brs
m and P the vector of the target wall pressure field

corresponding to a wall pressure plane wave of unit amplitude P̄rs.

In most cases, the number of observation points p is greater than that of

the monopoles m. Therefore the propagation operator H is rectangular and

Eq. (15) is solved in the least squares sense.

3.2. Influence of the design parameters of the monopole array

Three main parameters are involved in the design of the monopole array,

namely the number of monopoles, its distance from the observation area and

the size of the array. In this section, the influence of these parameters is

studied numerically in order to determine the design rules used to describe

the wall pressure plane waves.

To analyze the influence of each parameter separately, two types of results

are studied. The first one consists in reconstructing a wall pressure plane

wave reconstructed from the proposed approach [cf. Eq. (13)]. The second
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one is more global and concerns the reconstruction of the TBL CSD function

from Eq. (4). In this study, theses reconstructions are performed at 250 Hz

on a rectangular surface of 0.6× 0.3 m2. The TBL wall pressure fluctuations

are described by the Corcos model [17] whose parameters are given in table

1:

Γpp(kr, ks, ω) =
Φ(ω)

k2
c

4αxαy
[

α2
x +

(

1− kr
kc

)2
]

[

α2
y +

(

ks
kc

)]2
(16)

where Φ(ω) is TBL wall pressure frequency spectrum, the constants αx and

αy the longitudinal and lateral decay rates of the correlation and kc =
ω
Uc

the

convective wavenumber (Uc: convection velocity).

Table 1: Simulation parameters

Parameters Values

Free stream velocity U∞ = 50 m.s−1

Convection velocity Uc = 35 m.s−1

Longitudinal decay rate αx = 0.116

Lateral decay rate αy = 0.7

TBL wall pressure spectrum at 250 Hz Φ(ω) = 74 Pa2.s.rad−1

To reconstruct the TBL CSD function from a monopole array, a set of

wall pressure plane waves is defined such that (kr, ks) ∈
[

−k̄, k̄
]2

, where k̄

is a cut-off wavenumber. This particular wavenumber is defined to suitably

truncate the series given by Eqs. (4) and (9) by taking into account the

filtering effect of the structure on the TBL excitation. The practical choice

of the cut-off wavenumber k̄ is explained in section 5.
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In the following simulations, k̄ = 50 m−1 and the wavenumber resolution is

such that ∆kr = ∆ks = 1 m−1. This implies that the smallest wavelength

to be reconstructed is λ̄=0.126 m leading to the definition of about 104 wall

pressure plane waves.

For the sake of clarity, we briefly explain the procedure used to obtain the

wall pressure field of a wall pressure plane wave and then the CSD function

of wall pressure fluctuations.

In a first step, in order to generate virtually a target wall pressure plane

wave, the process consists in calculating the amplitude Brs
m of each monopole

obtained from Eq. (13) for a grid of 50 × 50 observation points. Satisfy-

ing this equation allows reconstructing the wall pressure plane wave from the

monopole array. This process is repeated for all the wall pressure plane waves

simulating the TBL wall pressure fluctuations. To assess the robustness of

our results, the wall pressure plane waves have to be reconstructed on a grid

different from that used to calculate the amplitude Brs
m in order to assess

the validity of the approach. Here, the wall pressure plane waves are recon-

structed on a grid of 200× 200 reconstruction points. The CSD function of

the wall pressure fluctuations in the physical space, Spp(ξx, ξy, ω) is estimated

in a second step by summing the CSD function of the reconstructed wall

pressure plane waves [supposed uncorrelated, see Eq(4)]. The reconstructed

CSD function of the TBL wall pressure fluctuations in the wavenumber space,

Γpp(kx, ky, ω), is deduced by using a FFT algorithm, whose parameters are

summarized in table 2.
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Table 2: FFT parameters

Parameters Values

Length of the observation area Lx = 0.6 m

Width of the observation area Ly = 0.3 m

Spatial resolution (∆x,∆y) = (0.003 m, 0.0015 m)

FFT resolution M = 2048 and N = 4096

Wavenumber range of kx
[

− π
∆x

, π
∆x

] (

π
∆x

= 1047m−1
)

Wavenumber range of ky

[

− π
∆y

, π
∆y

] (

π
∆y

= 2094m−1
)

Wavenumber resolution (∆kx,∆ky) =
(

2π
M∆x

, 2π
N∆y

)

≈ (1m−1, 1m−1)

In the following sections, two types of figures are presented, namely a

wall pressure plane wave for (kr, ks) = (k̄, k̄) and the CSD functions of wall

pressure fluctuations. The first type of figures highlights the quality of recon-

struction of a wall pressure plane wave. The second type of figures indicates

how the reconstruction of wall pressure fluctuations is correct when the con-

tributions of all the wall pressure plane waves are taken into account.

3.2.1. Optimal number of acoustic monopoles

To determine the optimal number of acoustic monopoles, it is first as-

sumed that the observation area and the array have the same size and the

distance between them is λ̄
2
= 0.063 m, i.e. half the smallest wavelength to

be reconstructed.

Figs. 3 and 4 illustrate the influence of the number of monopoles on the

reconstructions of the TBL CSD function and a wall pressure plane wave for
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(kr, ks) = (k̄, k̄), when using 2, 3, 4 and 6 monopoles per wavelength λ̄.
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Figure 3: Influence of the number of acoustic monopoles on the reconstruction of a wall

pressure plane wave for (kr, ks) = (k̄, k̄) at 250 Hz in planes (a) (x, 0.12 m) and (b) (0.3

m,y) - (—). Reference, (−−) 2 monopoles per wavelength λ̄, (−.−), 3 monopoles per

wavelength λ̄, (−−), 4 monopoles per minimal λ̄ and (−.−), 6 monopoles per wavelength

λ̄

Figs. 3 and 4 clearly show that a minimum of 4 monopoles per wave-

length λ̄ is required to reconstruct the TBL CSD function and the wall pres-

sure plane wave correctly, since using 2 or 3 monopoles per wavelength leads

to poor reconstructions. For the real-time synthesis of TBL pressure fields,

Maury and Bravo [14, 15] proposed an empirical criterion for an accurate re-

construction from an array of loudspeakers. This criterion gives respectively

3.7 per unit of spanwise correlation length in the streamwise direction and

3 sources per unit of spanwise correlation length in the spanwise direction.

However, even if these criteria seem consistent together, they cannot be di-

rectly compared since, in the present case, our empirical criterion is based
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Figure 4: Influence of the number of acoustic monopoles on the reconstruction of the

TBL cross-spectral density function given by the Corcos model in planes (a) (kx, 0) and

(b) (kc, ky) at 250 Hz - (—). Reference, (−−) 2 monopoles per wavelength λ̄, (−.−), 3

monopoles per wavelength λ̄, (−−), 4 monopoles per minimal λ̄ and (−.−), 6 monopoles

per wavelength λ̄
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on the wavelength to reconstruct and not on the spanwise correlation length.

Nevertheless, both criteria predict an increase in the number of monopoles

with frequency. Here, this is due to the increase of cut-off wavenumber k̄ with

frequency in order to take into account the filtering effect of the structure on

TBL excitation. Consequently, this can lead to substantial monopole density

at high frequencies, which would be unrealistic to implement experimentally.

3.2.2. Distance of the array from the observation area

In Refs. [11, 14], it is shown for an array of loudspeakers modelled as an

array of acoustic monopoles, that reconstructions are relatively independent

of the distance between the array and the observation plane provided it is

greater than the loudspeakers separation distance. Here, the idea is to spec-

ify the validity bounds of this parameter.

In order to study this parameter, the array is made up of 4 monopoles per

wavelength λ̄ and its size is assumed to be equal to that of the observation

area. Figs. 5 and 6 present the influence of distance d of the array from the

observation area on the reconstructions of the TBL CSD function and the

wall pressure plane wave, when distance d is defined in the interval
[

λ̄
6
, 4λ̄

]

.

As expected, Figs. 5 and 6 show that reconstructions are relatively inde-

pendent of the distance from the observation area. However, in Fig. 5 it can

be seen that the quality of reconstruction of the wall pressure plane wave is

poor when the array and the observation area are very close together, i.e.

for d = λ̄
6
. This can be explained by the poor acoustic coverage of the ob-

servation area, since an observation point is mainly influenced by the closer
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Figure 5: Influence of the distance of the array to the observation area on the reconstruc-

tion of a wall pressure plane wave for (kr, ks) = (k̄, k̄) at 250 Hz in the planes (a) (x, 0.12

m) and (b) (0.3 m,y) - (—) Reference, (−−) d = λ̄
6
, (−o−) d = λ̄

4
, (−.−) d = λ̄

2
, (−−)

d = λ̄, (−�−) d = 3λ̄ et (. . . ) d = 4λ̄
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Figure 6: Influence of the distance of the array to the observation area on the reconstruc-

tion of the TBL cross-spectral density function given by the Corcos model in the planes

(a) (kx, 0) and (b) (kc, ky) at 250 Hz - (—) Reference, (−−) d = λ̄
6
, (−o−) d = λ̄

4
, (−.−)

d = λ̄
2
, (−−) d = λ̄, (−�−) d = 3λ̄ et (. . . ) d = 4λ̄

21



monopole. Likewise, the further the array is from the observation area, the

less two neighbouring monopoles can be differentiated, causing the propagat-

ing operator H to be ill-conditioned. Fig. 5 shows that this situation occurs

for d = 4λ̄. Consequently, to avoid these extreme cases, the distance between

the array and the observation area has to be set in the interval
[

λ̄
4
, 3λ̄

]

.

3.2.3. Size of the monopole array

In this section, we verify the sensitivity of the size of the monopole array

on the reconstructions of the TBL CSD function and the wall pressure plane

wave. Bravo and Maury [14] have addressed this issue by determining the

maximal synthesis frequency as a function of the number of loudspeakers,

the aperture of the array and the distance of the array to the observation

area. A different approach, adapted to our methodology, is proposed. To this

end, the array is made up of 4 monopoles per wavelength λ̄. The distance

between the array and the observation area is still λ̄
2
= 0.063 m.

Figs. 7 and 8 show the influence of the size of the array on the recon-

structions of the TBL CSD function and a wall pressure plane wave, when

the size of the array is defined as a fraction da of the size of the observation

area, varying between 1
2

and 2. In other words, length Lm and width bm of

the array are such that Lm = daL and bm = dab, with da (L and b: length

and width of the observation area).

Figs. 7 and 8 show in particular that the size of the array has to be equal

to or greater than the size of the observation area to reconstruct properly the

shape of each wall pressure plane wave by ensuring a good acoustic coverage.
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Figure 7: Influence of the size of the monopole array on the reconstruction of a wall

pressure plane wave for (kr, ks) = (k̄, k̄) at 250 Hz in the plane (a) (x, 0.12 m) and (b)

(0.3 m,y) - (—) Reference, (−−) da = 0.5, (−.−) da = 1, (−−) da = 1.5, (−.−) da = 2
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Figure 8: Influence of the size of the monopole array on the reconstruction of the TBL

cross-spectral density function given by the Corcos model in the planes (a) (kx, 0) and (b)

(kc, ky) at 250 Hz - (—) Reference, (−−) da = 0.5, (−.−) da = 1, (−−) da = 1.5, (−.−)

da = 2
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Indeed, when the size of the array is smaller than that of the observation

area, the number of monopoles is too low to properly describe the spatial

variations of the wall pressure plane wave. Finally, it is useful to note that

the larger the array, the more the number of monopoles increases. In practice,

this would mean using a monopole array of the same size as the observation

area.

3.2.4. Summary of the parametric study

In the design of the monopole array, three main parameters intervene,

that is the number of monopoles of the array, its distance from the obser-

vation area and its size. The previous parametric study allows concluding

that (a) a minimum of 4 monopoles per wavelength λ̄ is required to properly

reconstruct a wall pressure plane wave (b) the distance between the array

and the observation area can be arbitrarily chosen in the interval
[

λ̄
4
, 3λ̄

]

and (c) the size of the monopole array could be, at least, the same as the

observation area.

This predesign parametric study has been performed by considering the-

oretical acoustic monopoles. In practice, monopole-like sources differ from

theoretical sources, since the acoustic pressure field is not singular in the very

nearfield of the source. However, it has been pointed out that the source array

should not be too close to the observation area to avoid an ill-conditioning of

the propagation operator H. Consequently, one can reasonably expect that

above results remain acceptable for real acoustic monopole-like sources, as

will be shown in section 5.
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4. Using a synthetic array for experimentally simulating TBL in-

duced vibrations of panels

As highlighted in section 2.3, one of the keys to the proposed experimen-

tal procedure is the measurement of the transfer function Hv(Q, kr, ks, ω).

Insofar as this function can be viewed as the response of the structure to a

wall pressure plane wave of unit amplitude, we propose using, in section 3, a

monopole array to generate such a pressure field. However, as shown in sec-

tion 3.2.1, this can be a tricky task since the density of monopoles increases

with frequency. Consequently, this limits the experimental simulation to the

low frequency range, making it necessary to use a synthetic array to avoid

frequency limitation due to sources density.

The principle of the synthetic array relies on the linearity of the prob-

lem. It was shown in section 3.1 that the superposition principle could be

used for simulating a wall pressure plane wave from a monopole array. An

immediate consequence is the possibility of simulating a wall pressure plane

wave by combining the individual contribution of each monopole separately.

The proposed approach is based on this result and consists in using a single

moving monopole-like source to reconstruct a wall pressure plane wave from

sequential measurements.

The experimental process, considered in this paper, is derived from high

resolution synthetic aperture Sonar [30]. This technique consists in post pro-

cessing the signals of a moving receiving array to reconstruct an unknown

target image, or emitter, with a finer spatial resolution than that obtained

with a fixed array. In other words, a large virtual array is simulated from a
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small physical one.

In this paper, the reciprocal mechanism is used, since the moving array

is the emitter. To properly implement the synthetic array approach in the

proposed methodology, the evaluation of the transfer function Hv(Q, kr, ks, ω)

requires two measurements, the first one to characterize the acoustic medium

and the second one to characterize the behaviour of the structure excited by

an acoustic monopole. By combining both information, one can obtain an

evaluation of the target transfer function. Consequently, the implementation

of the synthetic array approach is carried out in 3 steps, which are detailed

in this section.

4.1. Step 1: Simulation of wall pressure plane waves by a synthetic array

Step 1 concerns the simulation of a set of wall pressure plane waves of unit

amplitude using the synthetic array. These wall pressure plane waves are in-

put data to compute the amplitude Brs
m for each position of the monopole-like

source and each couple of wavenumbers (kr, ks) [see Eq. (13)]. Practically

speaking, this calculation requires the knowledge of the transfer functions

Hmp between the particle velocity of the monopole-like source m and the

pressure at observation points p. In a real acoustic situation, these transfer

functions do not correspond exactly to the half-space Green’s function. Con-

sequently, they have to be determined from sequential measurements of the

blocked pressure on a rigid wall due to the monopole-like source, as shown

in Fig. 9.
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Figure 9: Example of measurement of the transfer functions Hmp

4.2. Steps 2 and 3: Reconstruction of TBL induced panel vibrations

To characterize the vibratory behaviour of the structure under consider-

ation from step 1, it is first necessary to measure the transfer functions HQm

between the structural velocity at point Q and the particle velocity of the

monopole-like source m. This procedure is illustrated in Fig. 10. Doing so,

one obtains the response at point Q of the structure excited by an acoustic

monopole of unit amplitude.

The calculation of TBL induced vibrations requires a numerical process-

ing. The procedure first consists in multiplying the transfer function HQm by

amplitude Brs
m , to obtain the contribution of one source to the transfer func-

tion Hv(Q, kr, ks, ω). The contributions for each position of the monopole-like
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Figure 10: Example of measurement of the transfer functions HQm

source are then combined, by linear processing, to obtain the transfer func-

tion Hv(Q, kr, ks, ω) excited by a wall pressure plane wave of unit amplitude:

Hv(Q, kr, ks, ω) =
∑

m

HQm(ω)B
rs
m (ω) (17)

The structural velocity ASD function is finally obtained by using Eq. (9).

4.3. Summary of the experimental process

In this section, we propose to summarize, under a block diagram form

[cf. Fig. (11)], the experimental process detailed above in order to clearly

distinguish measurement stages from numerical processing stages based on

measured data.
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Step 1 Step 2 Step 3

Hmp measurements HQm measurements TBL CSD function model

HB = P

∑
m HQmB

rs
m

∑
r,s SArsArs

|Hv|
2

Brs
m Hv

Svv(Q,ω)

SArsArs

Numerical processing Measurement stage

Figure 11: Block diagram of the proposed experimental procedure

The proposed block diagram shows that the use of a synthetic array re-

quires two transfer functions measurements and numerical processings. Such

a process presents several advantages to assess TBL induced vibrations.

Firstly, a synthetic array allows greater flexibility with respect to the number

of monopoles required for the simulation. Then, from the practical stand-

point, only transfer function measurements are required. These two latter

points are very interesting, since it is not necessary to control the ampli-

tude and phase of several sources simultaneously. Furthermore, dispersions

of sensor characteristics are avoided as are all the reference problems occur-

ring when an array of sources is used. Nevertheless, the sequential nature

of the experimental process requires measurements to be made with care.

Indeed, inaccuracies of source positioning can generate phase shift disper-

sions between two successive positions of the source. This problem can be

easily managed by using a two-axis robot as done in section 5. Another issue

is related to the variations of the set-up with time, since sequential mea-
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surements are quite lengthy. Consequently, the behaviour of the structure

may change during the experiment, because of environmental variations for

instance. To insure the consistency of measurements throughout the exper-

iment presented in the next section, the temperature and the hygrometry

were monitored with a wireless weather station.

5. Experimental validation on an academic structure

In this section, an experimental validation of the synthetic array approach

is proposed for a 0.6× 0.3× 0.0005 m3 steel plate for frequencies below 250

Hz.

5.1. Definition of experimental parameters

As explained in section 2, the filtering effect of the structure with respect

to the TBL excitation allows limiting the number of uncorrelated wall pres-

sure plane waves necessary to calculate the velocity ASD function at point

Q [see Eq. (9)] with good approximation. To this end, a cut-off wavenumber

k̄ was introduced in section 3. A simple indicator for the practical choice of

k̄ can be derived from the analysis of the physical mechanisms governing the

response of a plate excited by a TBL, such as the aerodynamic coincidence

and the filtering effect of the structure (see Fig. 12).

For a plate with natural bending wavenumber kf , immersed in a light

fluid such as air, the aerodynamic coincidence associated with the filtering

effect of the structure on the TBL excitation allows explaining the physical

mechanisms of the TBL induced vibrations in a straightforward manner. In
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Figure 12: Principle of aerodynamic coincidence [10] - kc: convective wavenumber, kf :

natural wavenumber of the structure

general, three configurations are observed. Indeed, for kc < kf , the reso-

nant and non-resonant modes in aerodynamic coincidence of the plate are

the main contributors to vibration response. For kc ≈ kf , the number of res-

onant modes in aerodynamic coincidence is maximal [10]. In this case, these

modes mainly contribute to the vibration response. Finally, for kc > kf , only

the resonant modes have a significant contribution to the vibration response

due to the filtering effect of the plate.

As a result, the wavenumbers (kr, ks) defining the wall pressure plane waves

can be restrained to those matching with the modes, that mainly contribute

to the vibration response. Furthermore, this analysis implies a substantial

reduction in the number of positions of the monopole-like source, since only

the plane waves matching with the most important modes have to be re-
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constructed (see Fig. 12, after [10]). However, the a priori determination of

structural modes as well as natural wavenumber kf can be a challenging task

for industrial structures. For all these reasons, it is preferable to defined a

simple but robust indicator to take into account all the physical mechanisms

above-cited. Here, a practical choice of the cut-off wavenumber k̄ is such that

k̄ > kf , where kf is the natural wavenumber of the plate equivalent to the

real structure. Based on this indicator, the set of wall pressure plane waves

is thus defined to satisfy (kr, ks) ∈
[

−k̄, k̄
]2

with a prescribed wavenumber

resolution (∆kr,∆ks). Of course, to take advantage of the filtering effect of

the structure on the excitation, it is necessary to have a good knowledge of

the structure under test. In particular, this means that for industrial struc-

tures, such as multilayer or ribbed structures, the dynamic behaviour has to

be studied carefully to properly identify the cut-off wavenumber.

In the experiment described here, the cut-off wavenumber k̄ is set at

45 m−1, which is slightly higher than the value of the bending wavenumber

kf of the plate at 250 Hz, namely, 44.7 m−1. Then, the set of wall pressure

plane waves is defined such that (kr, ks) ∈
[

−k̄, k̄
]2

with a wavenumber reso-

lution of ∆kr = ∆ks = 1 m−1, which approximately represents a set of 8300

wall pressure plane waves.

According to the results obtained in section 3, it is first assumed that the

observation area and the virtual monopole array have the same size while

the distance between them is 15 cm, which corresponds approximately to

the minimal wavelength λ̄ to be reconstructed, namely 13.9 cm. Then, ac-

32



cording to the spatial characteristics of the wall pressure plane waves to be

reconstructed, implementing the synthetic array approach requires 128 po-

sitions of the source, i.e. 16 along the length and 8 along the width of the

virtual monopole array. These source positions are defined on the basis of 4

monopoles per minimal wavelength λ̄. Finally, a grid of 21× 11 observation

points was used to calculate the amplitude Brs
m for each source location.

For the sake of clarity the experimental parameters are summarized in

table 3.

Table 3: Experiment parameters

Parameters Values

Size of the observation area Lp × bp = 0.6× 0.3 m2

Size of the virtual monopole array Lm × bm = 0.6× 0.3 m2

Number of positions of the source 128 (16× 8)

Number of observation points 231 (21× 11)

Distance monopole-observation area d = 15 cm

Cut-off wavenumber k̄ = 45 m−1

Wavenumber resolution ∆kr = ∆ks = 1 m−1

Number of wall pressure plane waves 8281

Maximal frequency studied fmax = 250 Hz

5.2. Experimental set-up

5.2.1. Description of the monopole-like source

The experimental implementation of the synthetic array approach re-

quires using an acoustic monopole as a source. However, since the concept
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of acoustic monopole is only theoretical, the first step consists in using an

acoustic source whose properties are similar to those of an acoustic monopole

in the frequency range of interest.

In this study, the monopole-like source is generated physically by a loud-

speaker that emits white noise through a tube whose diameter is smaller

than a third of the acoustic wavelength (cf. Fig. 13). The reference signal

is measured by a velocity sensor fitted in a small nozzle mounted at the end

of the tube, in order to take into account the standing waves existing in the

tube. The inner diameter of the nozzle is 15 mm. Consequently, the upper

frequency for a monopole-like behaviour of the source is much lower than 7.5

kHz. Furthermore, the lower frequency of the source is related to the signal-

to-noise ratio (SNR), as the monopole source is not an efficient radiator at

low frequency. Preliminary measurements showed that SNR was acceptable

for frequencies above 70 Hz. Consequently, the experimental results are pre-

sented from 70 Hz to 250 Hz.

5.2.2. Experimental set-up for Hmp measurements

The measurements of the transfer function Hmp between the particle ve-

locity of the monopole-like source m and the pressure at the observation

points p were carried out in a sound-treated room by using white-noise ex-

citation and measuring the blocked pressure on a rigid wall, consisting of

a thick wooden plate 1.02 × 1.25 × 0.036 m3, as presented in Fig. 14. To

this end, a two-axis robot was used to move the monopole-like source on the

128-positions defined previously and a nearfield linear microphone array with

21 1/4”-sensors spaced 3 cm apart was used to measure the blocked pressure
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Figure 13: Monopole-like source
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over a grid of 231 observation points.

Figure 14: Experimental set-up for measuring the transfer functions Hmp

Fig. 15 presents a typical measurement of the transfer function Hmp

between one position of the monopole-like source and one nearfield micro-

phone. It can be seen that the general trend of the transfer function increases

with frequency, demonstrating better radiation efficiency of the monopole-

like source with frequency.

Finally, it can be notice that measuring all the transfer functions Hmp

takes about 5 and a half hours for the experimental parameters given in

table 3.
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Figure 15: Typical result of Hmp measurements - Modulus of the transfer function |Hmp|
measured between the particle velocity of the monopole-like source and the blocked pres-

sure induced on a thick wooden plate with dimensions 1.02× 1.25× 0.036 m3

5.2.3. Experimental set-up for HQm measurements

In this section, the measurements of the transfer functions HQm are pre-

sented. As shown in Fig. 16, an aperture of dimensions 0.6 × 0.3 m2 was

made in the thick wooden plate used for Hmp measurements, above which

the plate studied was glued to allow bending motions. The measurements

consisted in measuring the transfer function between the particle velocity of

the monopole-like source and the structural velocity at an observation point

Q located on the plate. To do this, white-noise excitation was used and

structural velocity measurements were performed with a lightweight 4 gram

accelerometer to limit the effect of the added mass of the sensor on the plate.

A typical measurement of the transfer functions HQm is presented in
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Figure 16: Experimental set-up for measuring the transfer functions HQm

Fig. 17. The modal behaviour of the plate can be seen clearly.

Finally, it is important to notice that the experimental measurement of

HQm takes 30 minutes for each point Q. As a consequence, the use of an

accelerometer is quite cumbersome to evaluate the whole behaviour of the

structure from its vibration power-spectral density function for instance. To

by pass this difficulty, non contact techniques, such as scanning laser vibrom-

eters or digital image correlation methods [31, 32], can be used instead.

5.3. Validation of the basic principle

Two validation steps are presented in this section: (a) Reconstructions

of wall pressure plane waves and (b) Comparison with a classical random

vibration formulation when the transfer functions HQm are derived from a

semi-analytical calculation. TBL excitation is described by the Corcos model

[see Eq. (16)] whose parameters are given in table 1. The TBL wall pressure
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Figure 17: Typical result of HQm measurements - Modulus of the transfer function

|HQm|measured between the particle velocity of the monopole-like source and the induced

structural velocity of a steel plate of dimensions 0.6× 0.3× 0.0005 m3

frequency spectrum associated with the Corcos model is that measured by

Totaro et al. in a wind tunnel [33] and presented in Fig. 18. Nevertheless,

the Corcos model is only considered as an example, since other models can

be used by adapting the ASD function SArsArs
(ω) to the chosen model.

5.3.1. Reconstruction of wall pressure plane waves

In this section, a wall pressure plane wave of unit amplitude is compared

to that reconstructed by using the synthetic array approach for two couples of

wavenumbers (kr, ks) = (4.5 m−1, 4.5 m−1) and (kr, ks) = (20 m−1, 20 m−1).

Fig. 19 presents, for both couples of wavenumbers, the comparison of the

wall pressure plane waves to be reconstructed and those reconstructed by

39



10
2

10
3

10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Frequency (Hz)

Φ
(ω

) 
(d

B
, r

ef
: 1

 P
a

2 .H
z−1

)

Figure 18: TBL wall pressure frequency spectrum measured in wind tunnel for the free

stream velocity U∞ = 50 m.s−1, after Totaro et al. [33]

the synthetic array approach at 250 Hz. This figure shows clearly that the

amplitudes as well as the spatial variations of the wall pressure plane waves

are well reproduced. Consequently, this validates the experimental technique

proposed for reconstructing wall pressure plane waves.

5.3.2. Semi-analytical validation of TBL induced vibration

A semi-analytical validation of the synthetic array approach is proposed

in this section. It consists in comparing the structural velocity ASD function

of a simply supported plate calculated on the basis of the standard random

theory with that obtained from the synthetic array approach. This calcula-

tion is an additional step for assessing the validity of the proposed approach.

To this end, the reference calculation was carried out by using the discretized

form of Eq. (18) [see Eq. (19)] over a grid of 231 discretization points in
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Figure 19: Reconstruction of wall pressure plane waves (a) for (kr, ks) =

(4.5 m−1, 4.5 m−1) and (b) for (kr, ks) = (20 m−1, 20 m−1) in the plane (x, 0.12 m) at

250 Hz - (—) wall pressure plane wave to be reconstructed (Reference) and (−−) wall

pressure plane wave reconstructed by the synthetic array approach
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order to ensure consistency with the observation mesh used for measuring

the transfer functions Hmp.

Svv(Q,ω) =

∫∫

Sp

H∗

v (Q,M, ω)Spp(Q,M ′, ω)Hv(Q,M ′, ω)dMdM ′ (18)

where Spp(Q,M ′, ω) is the TBL CSD function,Hv(Q,M, ω) the transfer func-

tion corresponding to the structural velocity at point Q when the plate is

excited by a point force at point M and H∗

v the complex conjugate of Hv.

Svv(Q,ω) =
∑

i

∑

j

H∗

v (Q,Mi, ω)Spp(Mi,Mj , ω)Hv(Q,Mj , ω)∆Mi∆Mj

(19)

where ∆Mi, resp. ∆Mj, is the spatial resolution.

Then, the calculation of the structural velocity ASD function by the syn-

thetic array approach is derived from Eqs. (9) and (17), where the transfer

functions HQm are semi-analytically computed from Eq. (20) and correspond

to the response of the plate to a monopole source of unit amplitude.

HQm(ω) = jω
∑

n

Pm
n φn(Q)

Mn (ω2
n − ω2 + jηnωωn)

(20)

where Mn is the generalized mass, ωn the natural frequency of the plate, φn

the mode shape, ηn the modal damping. The generalized force Pm
n is given

by the following equation:

Pm
n =

∫

Sp

H(ω)φn(P )dSp ≈
∑

p

Hmp(ω)φ
p
n∆Sp (21)
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where Hmp(ω) are the measured transfer functions, H(ω) is the continuous

form of Hmp(ω), φ
p
n the mode shapes of the plate discretized over the p ob-

servation points and ∆Sp a surface element.

Fig. 20 presents a comparison of the structural velocity ASD function

at point Q (0.22 m, 0.23 m) of a 0.6 × 0.3 × 0.0005 m3 simply supported

plate, obtained either from the classical random vibration formulation given

by Eq. (8) or assessed by the synthetic array approach from Eqs. (13), (20),

(17) and (9). As expected, good agreement between both results is observed,

despite discrepancies of 3 dB in some frequency bands of low level, which is

not crucial, since the vibration levels at the resonance frequencies are well

estimated. Thus this result allows validating the experimental technique

developed in this paper to characterize the vibrations induced by TBL.

6. Versatility of the synthetic array approach

As mentioned in the section 2, numerous models are available in the lit-

erature to represent TBL wall pressure fluctuations on a rigid plane. These

models link wall pressure fluctuations to the main features of the flow (con-

vection velocity, boundary layer thickness, . . . ). One of the main features of

the synthetic array approach is its versatility with respect to the TBL exci-

tation model Γpp(kr, ks, ω), since the technique proposed is based on discrete

wave-vector integration models. Consequently, all the TBL models expressed

in the wavenumber-frequency space can be used. Furthermore, the compar-

ison of these models can be carried out in a straightforward manner, since

the introduction of TBL excitation is performed in the numerical stages by
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Figure 20: Comparison of the structural velocity auto-spectral density function Svv(Q,ω)

at point Q (0.22 m, 0.23 m) computed by (—) the classical random vibration formulation

(Reference) and (−−) the synthetic array approach by using the measurements of Hmp

and a semi-analytical calculation of HQm
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using Eqs. (13), (17) and (9).

To demonstrate the ability of our experimental technique to deal with

different TBL excitation models, full implementation of the procedure is

proposed, that is to say that measurements of Hmp and HQm are used to

evaluate the TBL induced vibrations of the steel plate defined in section 5.

In the following discussion, TBL models proposed by Corcos [17], Efimtsov

[18], Chase [22] and Smol’yakov and Tkachenko [20] are compared for a fully

developed turbulent flow whose parameters were measured in a wind tunnel

by Totaro et al. [33] (see table 4). Fig. 21 presents the wavenumber-frequency

spectrum predicted by the 4 models. For the sake of brevity, these models are

not presented here, but detailed reviews and discussions about TBL models

can be found in Refs. [24], [34] and [35]. Finally, the parameters of the TBL

models used in this article are those proposed by their authors, except for

the Corcos model, whose parameters are defined in table 1.

Table 4: Turbulent flow parameters

Parameters Values

Convection velocity Uc = 35 m.s−1

Friction velocity uτ = 1.96 m.s−1

Boundary layer thickness δ = 85 mm

Displacement thickness δ∗ = 8.8 mm

Momentum thickness θ = 6.7 mm

Wall shear stress τw = 4.58 Pa
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Figure 21: Comparison of TBL wavenumber-frequency spectra at 250 Hz - (—) Corcos

model, (−−) Efimtsov model, (−.−) Chase model and (. . . ) Smol’yakov & Tkachenko

model

The comparison of the structural velocity ASD function Svv(Q,ω) at point

Q (0.22 m, 0.23 m) of the plate, evaluated from the synthetic array ap-

proach for the 4 TBL excitation models mentioned above, is presented in

Fig. 22. Observation of these results brings to light the fact that they are

clustered together within 6 dB at most throughout the frequency range, de-

spite large differences of TBL wall pressure spectra in the low-wavenumber

region. These results are consistent with previous investigations into TBL

induced vibrations [35, 36, 37]. Indeed, plate bending waves are only excited

by the TBL pressure components of the matching scales and, in the present

case, the bending waves are predominantly excited by convective components,

since the frequency range of interest is below the aerodynamic coincidence

frequency (≈ 250 Hz) for the plate under consideration. Consequently, the
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differences observed in Fig. 22 can be explained for the most part by the

modeling of the convective components in the 4 TBL models, as shown in

Fig. 21.
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Figure 22: Comparison of structural velocity auto-spectral density function Svv(Q,ω) at

point Q (0.22 m, 0.23 m) for various TBL excitation models - (—) Corcos model, (−−)

Efimtsov model, (−.−) Chase model and (. . . ) Smol’yakov & Tkachenko model

7. Conclusion

In the present study, the development of a general methodology to sim-

ulate experimentally the response of linear structures excited by stationary

random pressure fields was investigated. Here, the TBL excitation was chosen

as an example. The method proposed relies on the experimental simulation of

a set of uncorrelated wall pressure plane waves, whose amplitudes are scaled

on the TBL CSD function expressed in the wavenumber space. This can be
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achieved with an array of acoustic monopole-like sources. The main charac-

teristics of the monopole array were determined by performing a numerical

parametric study. In particular, it was shown that the number of acoustic

monopoles increases with frequency. This would lead to an unrealistic den-

sity of sources if considering a complete array. To overcome this difficulty,

the linearity of the problem was used to replace the monopole array with a

synthetic array made up of a single monopole moved in space.

Such a methodology allows a higher flexibility of the experimental set-up re-

garding the total number of monopoles required to suitably reconstruct wall

pressure plane waves. From the practical standpoint, dispersions of sensor

characteristics are avoided and only transfer function measurements are re-

quired. The counterpart of the sequential nature of the simulation process is

the need of a precise source positioning to avoid phase shifts, as well as the

need of a stable environment to avoid variations of the experimental set-up

with time.

From these technical requirements, an experimental set-up was designed to

validate the approach proposed under laboratory conditions. The results ob-

tained on an academic structure show the method is capable of reconstructing

wall pressure plane waves and the structural velocity ASD function of a plate

subjected to TBL excitation. Finally, the versatility of the synthetic array

approach with respect to TBL excitation models was highlighted. A test

bench using a robot and a laser vibrometer should be developed in order to

apply the methodology detailed in this paper to industrial structures.
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