
HAL Id: hal-01668981
https://hal.science/hal-01668981

Submitted on 14 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence acceleration using the residual shape
technique when solving structure-acoustic coupling with

the Patch Transfer Functions method
M. Aucejo, Laurent Maxit, N Totaro, J.-L. Guyader

To cite this version:
M. Aucejo, Laurent Maxit, N Totaro, J.-L. Guyader. Convergence acceleration using the residual shape
technique when solving structure-acoustic coupling with the Patch Transfer Functions method. Com-
puters & Structures, 2010, 88 (11-12), pp.728-736. �10.1016/j.compstruc.2010.02.010�. �hal-01668981�

https://hal.science/hal-01668981
https://hal.archives-ouvertes.fr


Convergence acceleration using the residual shape

technique when solving structure-acoustic coupling with

the Patch Transfer Functions method

M. Aucejo1, L. Maxit, N. Totaro, J.-L. Guyader

Laboratoire Vibrations Acoustique, INSA Lyon, 25 bis avenue Jean Capelle 69621

Villeurbanne Cedex, FRANCE

Abstract

The forced response of the structure-water-filled cavity system is investigated
from the Patch Transfer Functions method. In such a case, a poor convergence
of the PTF method is observed when using standard mode expansion to build
the cavity-PTF. To improve its convergence and maintain the advantages of
substructuring, residual shapes are introduced in the cavity-PTF computation,
which is the new material of this article. This technique is successfully applied
on numerical examples, highlighting the interest of such an approach, especially
in heavy fluid.
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1. Introdution

The forced response of a structure backed by an acoustic cavity has been
studied extensively during the last few decades. Classical models are based
on the coupling of in vacuo structural modes and rigid-walled cavity modes,
providing comprehensive formulations to solve the coupled system [1, 2, 3].
These models introduce a modal cross-coupling term to describe the interaction
between the structure and the cavity. Sum and Pan [4] have analyzed this in-
teraction term to underline the physical mechanisms of cross-coupling.
When considering a geometrically complex system, analytical methods are often
replaced by the Finite Element Method (FEM). However, the direct resolution
of the coupled problem is time consuming. To overcome this difficulty, model
reduction techniques were developed such as the Component Mode Synthesis
(CMS) methods [5, 6]. These methods, based on the modal approach, allow
describing the dynamics of the coupled system with a reduced but sufficient
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number of degrees of freedom. In the case of strong coupling, the use of un-
coupled modal bases can lead to poor convergence if the coupling between the
high order modes of a subsystem with low order modes of the other system is
not considered in the computation. To improve the convergence of the modal
approach, several techniques were developed, such as pseudostatic correction
[7, 8, 9] and residual modes [10, 11, 12]. The aim of these techniques is to
obtain simple and efficient reduction bases to maintain the advantages of modal
superposition while improving its accuracy.
In the present paper, the Patch Transfer Functions (PTF) method is used to
solve the structure-cavity coupling, when the acoustic cavity is filled with wa-
ter. This method developed by Maxit et al. [13] is a tool for predicting the
vibro-acoustic response of complex systems coupled through surfaces divided
into elementary areas called patches. This approach, based on substructuring
[14, 6] and the impedance and mobility approach [15], consists in studying each
subsystem independently in order to build a set of transfer functions defined
by using mean values on the patches, called Patch Transfer Functions. Then,
assembling PTF by using the continuity relations leads to the fast resolution of
the coupled problem. However, as presented in this paper, the use of a standard
mode expansion to build the cavity-PTF leads to poor convergence of the PTF
method in heavy fluid.
To alleviate this problem, we introduce the residual mode technique in the
present approach. This novelty allows improving the convergence of the coupled
system response and maintain the advantages of substructuring, by computing
a residual shape basis for the rigid-walled cavity independently of the structure.
Classically, these residual shapes, which are attachment modes, correspond to
the response of the cavity subjected to structural mode excitation. Neverthe-
less, in the PTF method, the residual shapes correspond to the response of the
cavity excited by a constant normal displacement imposed on a patch at a spe-
cific frequency. This ensures the convergence of the proposed method.
In the following sections, the theoretical background of the proposed method is
first recalled and the PTF computation is then derived from the FE formula-
tion of each subsystem is developed. In sections 5 and 6, the structural-acoustic
problem is considered by comparing the forced response of a plate coupled to a
water-filled or air-filled cavity, either obtained by a direct resolution using FEM,
or by the PTF method including the residual mode technique. The introduction
of the residual shapes concept in cavity-PTF computation allows obtaining good
results with a coarser interface mesh than that used for standard FEM. Finally,
to illustrate the advantage of the present approach on an industrial case, the
radiation of a bulkhead two ballasts is considered. The influence of residual
shapes is studied by comparing PTF results obtained either from a direct com-
putation of the PTF of both ballasts or a mode expansion with or without the
introduction of residual shapes in the calculations.
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2. Description of the vibro-acoustic problem

Let us consider a structure backed by an acoustic cavity with rigid walls and
excited by a point force F on its surface Sv as presented in Fig. (1). The surface
Sv can also be identified as the coupling surface of the structure-cavity system.

Figure 1: Basic vibro-acoustic problem

The coupled structural problem is governed by its equation of motion with
boundary conditions imposed on the structure boundary ∂Sv. The structure
is excited by a harmonic point force {F} and the cavity pressure-induced force
{Fc} = − [A] {P} acting on the structure. The displacement of the structure is
harmonic {Us(M, t)} = {Us(M)} ejωt and satisfies the following equation:

[
Ks − ω2Ms

]
{Us} = {F} − [A] {P} (1)

where Ms and Ks are the mass and stiffness matrices of the structure, A the
coupling matrix of the structure-cavity system and ω the radian frequency.

The coupled acoustic cavity problem is governed by the homogeneous Helmholtz
equation. Rigid-walled boundary conditions are imposed on the rigid surface
Sr and a source term Qs = −ω2 [A]

T {Us} resulting from the vibration of the
structure is imposed on Sv. The acoustic pressure in the cavity is harmonic
{P (M, t)} = {P (M)} ejωt and satisfies the following equation:

[
Kf − ω2Mf

]
{P} = −ω2 [A]

T {Us} (2)

where Mf and Kf are the mass and stiffness matrices of the acoustic cavity.

Eqs. (1) and (2) leads to the linear matrix system given by the following
equation:

([
Ks A

0 Kf

]
− ω2

[
Ms 0
−AT Mf

]){
Us

P

}
=

{
F

0

}
(3)
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Eq. (3) shows that for the general structure-acoustic problem, the system
to be solved has a non-symmetric mass and stiffness matrices. This lack of
symmetry leads to difficulties in computing the dynamic response of the sys-
tem, since Eq. (3) is costly to solve. Likewise, the extraction of eigenvalues for
large structure-acoustic systems can be difficult with this non-symmetric formu-
lation. To alleviate these difficulties, several symmetrization procedures have
been developed. These procedures are based on different approaches, namely
the displacement and pressure (u, p) formulation or displacement, pressure and
vorticity moment (u, p,Λ) formulation [16, 17], the velocity potential formula-
tion [18, 19] and the displacement formulation [20]. Finally, it should be noted
that the matrix system given by Eq. (3) is not used in the proposed method,
since each subsystem is considered independently and coupled by continuity
equations.

3. Patch Transfer Functions method

3.1. Description of the method

The PTF method [13, 21, 22] is a substructuring approach that allows com-
puting the vibro-acoustic response of complex systems coupled through their
common surfaces divided into elementary areas called patches. Then, the Patch
Transfer Functions (PTF), corresponding to an impedance or a mobility are
computed for each patch of the coupling surface and assembled by using the
superposition principle and writing the continuity relations.
This technique is efficient and well adapted to complex systems, since each sub-
system is defined by its own FE model and solved independently of the others.
Consequently, modification of one of the subsystems only leads to a simple up-
date of this subsystem, provided the geometry of the structure-cavity interface
remains unchanged. Furthermore, the PTF method leads to small, symmetric
systems fully populated with complex coefficients. Moreover, the impedance
and mobility matrices, which are the basic quantities of the method, can be ob-
tained by measurements, analytical modelling and numerical modelling (FEM,
BEM, etc.). Consequently, parallel computation of the basic quantities for each
subsystem is possible, since the basic quantities are established on uncoupled
subsystems. This is one of the method’s advantages, since different approaches
can be combined to obtain the response of a multi-coupled complex system.
Moreover, if the PTFs are derived from the FE formulation, the use of incom-
patible meshes at the interface of the subsystems is possible, since the problem of
compatibility is solved by the patch mesh as illustrated by Fig. (2). The man-
agement is indeed permitted because the PTF method does not relate nodes
values but values averaged over the surface of a patch. However, as presented
in Fig. (2), the mesh of the subsystems can not be highly incompatible at the
interface insofar as nodes have to be included in each patch.
Finally, the PTF method differs from standard substructuring methods, e.g.

the Craig-Bampton fixed interface approach [23], since the subsystems are cou-
pled through patches instead of nodes. It should also be noted that Ouisse et
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(a)

(b)

Figure 2: Use of incompatible mesh - (a) Definition of the PTF model and (b) Detection of
FE nodes included in patches: (◦) nodes of the first subsystem and (⋄) nodes of the second
subsystem
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al. [21] and Chazot and Guyader [24] have shown that the number of patches is
lower than the number of interface nodes. As a consequence, the size of the PTF
model is smaller than that obtained with the Craig-Bampton method. Indeed,
the size of the reduced model is Npatch × Npatch (Npatch: Number of patches)
for the PTF method, while for a Craig-Bampton method the size of the reduced
model is (Nim +Nidof )× (Nim +Nidof ) (Nim: Number of fixed interface modes
chosen for each subsystem, Nidof : Number of interface dofs).

3.2. PTF definition

In the case of the structure-cavity problem, the coupled system is divided
into two subsystems, namely a structure and an acoustic cavity, and PTF are
defined for each subsystem on the coupling surface Sv divided into patches.

For the structure, the PTF Y s
jk between an excited patch k and a receiving

patch j is the mobility defined as the ratio of the mean structural velocity v̄s
j

on patch j and the mean pressure p̄s
k on patch k (see Eq. (4)),

Y s
jk =

v̄s
j

p̄s
k

(4)

where •̄p = 1
Sp

∫
Sp

•dSp is the space-averaged quantity on the patch p.

For the acoustic cavity, the PTF Zc
jk between an excited patch k and a

receiving patch j is the impedance defined as the ratio of the mean acoustic
pressure p̄c

j on patch j and the mean normal velocity v̄c
k on patch k (see Eq.

(5)),

Zc
jk =

p̄c
j

v̄c
k

(5)

3.3. Subsystems coupling

Coupling the subsystems is performed by writing continuity conditions on
each patch of the coupling surface Sv as expressed in Eq. (6) for a patch j.

{
p̄s

j = p̄c
j = p̄j

v̄s
j = v̄c

j = v̄j

(6)

These coupling conditions are then used to determine the coupling normal
velocity v̄j on each patch j. For this purpose, the linearity of the problem
is used. The normal structural velocity v̄s

j on the patch j is thus defined as

the superposition of the in vacuo structural velocity ˜̄vs
j (uncoupled structural

response) and the normal velocity Y s
jkp̄k due to the pressure caused by the

acoustic cavity on the structure (see Eq. (7)),

v̄s
j = ˜̄vs

j + Y s
jkp̄k (7)
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Similarly, the pressure p̄c
j on patch j of the cavity can be calculated by using

linearity, as the superposition of the pressure created by the acoustic source
inside the cavity ˜̄pc

j and the pressure due to structural vibrations Zc
jkv̄k (see Eq.

(8)).

p̄c
j = ˜̄pc

j + Zc
jkv̄k (8)

By introducing the coupling conditions (Eq. (6)), simple mathematical op-
erations make it possible to obtain the coupling normal velocity v̄j as presented
in Eq. (9) in the absence of acoustic sources in the cavity.

v̄j =
(
I − Y s

jiZik

)
−1 ˜̄vs

k (9)

where I is the identity matrix.

4. PTF computation from a FE formulation and standard mode ex-

pansion

4.1. Structure-PTF computation

Defining the structure-PTF requires determining the structural velocity when
a constant pressure p̄k is imposed on patch surface Sk. Consequently, Eq. (10)
has to be solved for each patch k of the vibrating structure.

[
Ks − ω2Ms

]
{Us} = {Fk} (10)

In Eq. (10), the excitation term Fk corresponding to the constant pressure
p̄k imposed on the patch k is given by the following equation:

Fk =

{
Ak

N p̄k on Sk

0 on Sv \ Sk

(11)

where Ak is the area of patch k and N is the number of FE nodes included in
patch k.

Eq. (11) is solved by standard mode expansion. For this purpose, displace-
ment {Us} is expanded on its structural modes as expressed in the following
equation:

{Us} = [ψn] {un} (12)

where [ψn] is the mode shape matrix and {un} is the modal amplitude vector.

The generalized mass [Msn], stiffness [Ksn] and force [Fn] are defined as
presented in the following equation:





[Ksn] = [ψn]
T

[Ks] [ψn]

[Msn] = [ψn]
T

[Ms] [ψn]

{Fn} = [ψn]
T {Ff}

(13)
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The reduced system presented in Eq. (14) is therefore solved at each fre-
quency to obtain structural displacement {Us}.

[
Ksn − ω2Msn

]
{un} = {Fn} (14)

This procedure is repeated for each excited patch k leading to the structural
velocity matrix [V ] of dimensions Ndof ×Npatch, where Ndof is the number of
degrees of freedom of the structure and Npatch the number of patches.

The structure-PTF Y s
jk is thus obtained by averaging the normal velocities

for the nodes included in the receiving patch j.

4.2. Cavity-PTF computation

The pressure response to a unit normal velocity v̄c
p imposed on the patch

surface Sp has to be computed for each patch p of the coupling surface of the
acoustic cavity, leading to the solution of the following equation:

[
Kf − ω2Mf

]
{P} = {Qp} (15)

In Eq. (15), the excitation term Qp corresponding to the constant normal
velocity v̄c

p imposed on the patch p is given by the following equation:

Qp =

{
−jωAp

N v̄c
p on Sp

0 Sv \ Sp

(16)

where Ap is the area of patch p and N is the number of FE nodes included in
patch p.

In this case too, Eq. (15) is solved by standard mode expansion, meaning
that the acoustic pressure {P} is expanded on its rigid-walled cavity modes, as
shown in the following equation:

{P} = [φn] {pn} (17)

where [φn] is the mode shapes matrix and {pn} is the modal amplitudes vector.

We now use the same resolution procedure as that used to compute the
structure-PTF Y s

jk to obtain the cavity-PTF Zc
jk.

4.3. Concluding remarks

The equations developed in this section are general, since they are based on
FE models. Consequently, the approach can be applied to complex systems.
Furthermore, the standard mode expansion procedure has been used up now to
compute the PTF without introducing the residual shapes concept. As demon-
strated in the following sections, convergence of the method is difficult to achieve
for acoustic cavities filled with heavy fluids such as water. In this case, residual
shapes are computed (see section 6) to enrich the original cavity modal basis
and improve the convergence of the method.
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5. Structure-cavity coupling

In this section, the PTF method is used to compute the forced response of
a structure-cavity system and compared with standard FEM calculation.
To achieve this, we consider the academic case of a rectangular simply-supported
plate excited by a point force F and coupled to a parallelepiped rigid-walled
cavity filled either with air, or water, as shown in Fig. (3). This example is
voluntarily simplified in order to facilitate studying the convergence parameters
of both methods, namely the interface FE mesh size and the number of modes
taken into account in the cavity-PTF computation. The simulation parameters
are listed in table 1.

Figure 3: Definition of the rectangular simply-supported plate excited by a point force F and
coupled to a parallelepiped water-filled cavity

Table 1: Simulation parameters

Parameters Values
Plate length L = 0.5 m
Plate width b = 0.4 m
Plate thickness h = 0.002 m
Cavity depth H = 1 m
Young modulus E = 2.1 × 1011 N.m−2

Poisson’s ratio ν = 0.3
Plate density ρ = 7800 kg.m−3

Damping factor η = 0.02
Air Density ρ0 = 1.2 kg.m−3

Sound speed in air c = 340 m.s−1

Water density ρ0 = 1000 kg.m−3

Sound speed in water c = 1500 m.s−1
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5.1. Convergence of FEM

Before using the FE result as a reference, it is important to study the con-
vergence of the method in order to define the optimal interface mesh criterion.
To do this, a coincident mesh is used at the structure-cavity interface and a di-
rect resolution of the coupled problem using NASTRAN is performed to avoid
modal truncation effects on the results presented. The interface mesh criterion,
which provides the size of the finite elements at the structure-cavity interface,
is based on the smallest wavelength λ of the uncoupled plate and cavity and
computed at the maximal frequency of the range of interest fmax (see Eq. (18)).





λs =
√

2πf
−1/2
max

4

√
Eh2

12ρ(1−ν2)

λf = c
fmax

λ = min(λs, λf )

(18)

Four interface mesh criteria are used to study the convergence of FEM (λ
6 ,

λ
12 , λ

28 and λ
60 ) when the plate is coupled to a water-filled cavity and the mean

square velocity of the plate is computed for each of them. This measurement
is usually used in vibro-acoustics (see Ref. [6]) and provides an overview of the
response of a system. Fig. (4) shows that convergence in heavy fluid requires
a very fine interface mesh to capture the interface dynamics, since convergence
occurs for a λ

28 mesh criterion. This difficulty is linked to coupling with heavy
fluids such as water. For a cavity filled with air, convergence is much better and
the usual λ

6 mesh criterion is adequate to properly describe the response of the
coupled system.

The presence of the cavity leads to an added mass effect on the plate that
decreases the flexural wave speed and thus the flexural wavelength. As a conse-
quence, the standard λ

6 interface mesh criterion, based on the wavelength of the
uncoupled subsystems, leads to an underestimation of the size of the interface
finite elements necessary for describing the behavior of the coupled system.

5.2. Convergence of PTF method

5.2.1. Light fluid case

Ouisse et al. demonstrated in [21] that a λ
2 patch mesh criterion for the cou-

pling surface was sufficient to obtain good results when two acoustic air-filled
cavities are coupled. However, this patch mesh criterion is also valid for the
structure-cavity coupling presented in Fig. (5). In this example, the simula-
tion parameters are given in table 1. Furthermore, the structural modal basis
contains 12 modes, corresponding to resonance modes below 508 Hz, while the
acoustic basis contains 9 modes, corresponding to resonance frequency modes
below 515 Hz.

In Fig. (5), the plate response is presented for a classical FE computation
with a λ

6 mesh criterion and a PTF calculation with a patch size of λ
2 that ensures
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Figure 4: Convergence of FEM in heavy fluid - Comparison of the mean square velocity
obtained by direct resolution for 4 interface mesh criteria: (-) λ
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Figure 5: Convergence of PTF method in light fluid - Comparison of mean square velocity
for: (-) FEM solution (interface element size: λ

6
), (- -) PTF method (patch size: λ

2
)

the convergence of the proposed method. Consequently, the PTF method gives
good results with a patch mesh coarser than a standard FE interface mesh.
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5.2.2. Heavy fluid case

Unlike the light fluid case, in heavy fluid, account has to be taken of the
decrease of wavelength described in section 5.1, since the structure-cavity cou-
pling is strengthened. Consequently, we used a λ

6 patch mesh criterion, i.e. 56
patches. To avoid a mode truncation effect, structure-PTF and cavity-PTF are
obtained by direct resolution of Eqs. (10) and (15).
Fig. (6) shows that in this case too the PTF method gives satisfying results for
a patch mesh coarser than the interface FE mesh.
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Figure 6: Convergence of the PTF method in heavy fluid - Comparison of mean square velocity
for: (-) FEM solution (interface element size: λ

28
), (- -) PTF method (patch size: λ

6
)

6. Introduction of residual shapes in the cavity-PTF computation

6.1. Influence of the mode truncation effect on the cavity-PTF computation in

heavy fluid

As in section 5.2.2, the PTF can be obtained by direct resolution of FE
models. However, when the size of the model is large, it is preferable to reduce
it by using mode expansion.
Unfortunately, in heavy fluid the results obtained are sensitive to the truncation
effect of acoustic cavity modes, as shown in Fig. (7). 200, 300 and 400 acoustic
cavity modes, corresponding to resonant frequency modes below 8.8 kHz, 10.5
kHz and 11.7 kHz, were used to compute the cavity-PTF Zc

jk, while 5 structural
modes, corresponding to resonant frequency modes below 205 Hz, were used to
compute the structure-PTF Y s

jk. This was sufficient to ensure its convergence
since unchanged results were observed with more structural modes. This figure
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shows that more than 400 acoustic cavity modes are required to ensure the con-
vergence of the PTF method.
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Figure 7: Truncation effect of acoustic cavity modes - Comparison of mean square velocity
for: (-) FEM solution (interface element size: λ

28
), (- -) PTF method for 200 acoustic cavity

modes (patch size: λ

6
), (-.-) PTF method for 300 acoustic cavity modes (patch size: λ

6
) and

(. . . ) PTF method for 400 acoustic cavity modes (patch size: λ

6
)

6.2. Introduction of residual shapes - methodology

To achieve convergence of the PTF method in heavy fluid, high-order cav-
ity modes are very important to provide a good description of the coupling
mechanism. To overcome this difficulty, the concept of residual modes (see Ref.
[25, 26]) is used for the cavity-PTF computation. The residual shapes do not
correspond to physical normal modes but allow enriching the modal basis with
a set of functions describing the contribution of high-order modes.
In the PTF method, the idea consists in computing the residual shapes or at-
tachment modes for the acoustic cavity independently of the structure in order
to keep the substructuring aspect of the method. In the standard residual mode
technique, the residual functions for an acoustic cavity correspond to the re-
sponse of the cavity excited by structural normal modes [10, 11]. Consequently,
a modification of the structure leads to a modification of structural normal
modes that requires computing the residual shapes again. In our case, a resid-
ual shape corresponds to the response of the cavity excited by a constant normal
displacement imposed on a patch p at a specific radian frequency ωc. Conse-
quently, a structural modification does not change the residual cavity shapes as
long as the patch mesh remains unchanged. Furthermore, this definition leads
to a number of residual shapes equal to the number of patches. This is a limi-
tation of the method in the high frequency range, since the number of patches
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increases with frequency.
Using the notations used in section 4.2, the residual shapes {Pr} of the cavity
are computed by the direct resolution of the following equation:

[
Kf − ω2

cMf

]
{Pr} = {Qp} (19)

In Eq. (19), the excitation term Qp corresponding to the unit normal dis-
placement ūc

p imposed on the patch p is given by the following equation:

Qp =

{
ω2

c
Ap

N ūc
p on Sp

0 on Sv \ Sp

(20)

Thus we obtain a new reduction basis containing the N physical modes kept
in the original basis, enriched by the Nr residual shapes {Pr} (see Eq. (21)),

[T ] = [φ1, . . . , φN |P1, . . . , PNr
] (21)

The reduction basis [T ] has to be reorthogonalized to maintain the validity of
the mass and stiffness orthogonality relations. To do this, the reduced eigenvalue
problem given by Eq. (22) has to be solved [27],

(
[T ]

T
[Kf ] [T ] − ω2 [T ]

T
[Mf ] [T ]

)
{ϕR} = {0} (22)

Finally, Eq. (22) leads to a new reduction basis {Φ} containing N physical
modes and Nr residual shapes (see Eq. (23)).

{Φ} = [T ] {ϕR} (23)

An example of the residual shape computed from Eq. (23) is plotted in
Fig. (8). As expected, the residual shape varies slowly along the three direc-
tions of the cavity. It can also be seen that the residual pressure shape reaches
its maximum in the vicinity of the excited patch whose center coordinates are
(x,y,z)=(0.22 m, 0.14 m, 0 m).

6.3. Numerical results

In the example presented in this article, the new reduction basis contains 2
physical modes, corresponding to resonant frequency modes below 750 Hz, and
56 residual shapes computed for ωc = 942.5rad.s−1 (150 Hz). When using the
residual shapes, the mean square velocity computed by the PTF method with
a λ

6 patch mesh is in very good agreement with the reference result obtained by
FEM, contrary to that computed by the PTF method without residual shapes,
as shown in Fig. (9). This figure shows the advantage of using residual shapes,
since it provides a visibly spectacular improvement of convergence.

Fig. (9) shows that the PTF method gives good results with a coarser in-
terface mesh than that required in standard FEM to ensure the convergence
of the method. The better convergence of the PTF method can be explained
in part by the independent convergence of each subsystem obtained with a
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Figure 8: Example of residual pressure shape - Spatial distribution of acoustic pressure (a)
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Figure 9: Residual shapes effect - Comparison of mean square velocity for: (-) FEM solution
(interface element size: λ

28
), (-.-) PTF method without residual shapes (patch size: λ

6
) and (-

-) PTF method introducing residual shapes with ωc = 942.5rad.s−1 (patch size: λ

6
)

standard λ
6 mesh criterion and the coupling technique that couples subsystems

through patches (surfaces) instead of nodes. The PTF method associated with
the residual shapes technique therefore provides effective time-saving computa-
tion compared to standard FEM.

In the example shown in Fig. (9), the value of ωc corresponds to 20% of the
first non-zero cavity mode.

In fact the value that must be used to compute the residual shapes is not
clearly established, since for Tran et al. [10] and Cuppens et al. [12], it re-
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spectively corresponds to 50% and 75% of the maximal frequency of the range
of interest. However, to thoroughly study the influence of this parameter, the
problem is solved for three values of ωc: 314.1 rad.s−1 (50 Hz), 942.5 rad.s−1

(150 Hz) and 6,283.2 rad.s−1 (1000 Hz). It is important to bear in mind that,
in the present case, physical acoustic cavity modes are computed up to 750 Hz.
In other words, the first two values of ωc are below the frequency of the last
physical mode kept in the modal basis, while in the last case ωc is above this
frequency.
Fig. (10) shows that the convergence of the PTF method is ensured for ωc =
314.1 rad.s−1 and ωc = 942.5 rad.s−1, which is not at all the case for ωc = 6283.2
rad.s−1, since the contribution of modes between 750 and 1000 Hz is absent.
Thus, the choice of ωc is not arbitrary. However, convergence is achieved as long
as the value of this parameter remains below the frequency of the last physical
mode retained to compute the cavity-PTF.
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Figure 10: Influence of ωc: (-) FEM solution, (- -) ωc = 314.1 rad.s−1 (50 Hz), (-.-) ωc = 942.5
rad.s−1 (150 Hz) and (. . . ) ωc = 6, 283.2 rad.s−1 (1000 Hz)

7. Radiation of a bulkhead into two ballasts

The advantage of the residual shapes concept is illustrated on an industrial
example. The proposed case concerns two water-filled ballasts, considered as
rigid-walled acoustic volumes, which are separated by a clamped bulkhead me-
chanically excited, as illustrated in Fig. (11).
The first ballast has dimensions 4 m (width) by 2 m (height) by 2.75 m (depth)
approximately, while the second ballast has dimensions 4 m (width) by 2 m
(height) by 3.55 m (depth) approximately. Thus, the bulkhead, which is a steel
shell of thickness 0.02 m, has dimensions 4 m×2 m approximately. The excita-
tion consists of a prescribed point force acting on the bulkhead along the x-axis.
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A FE model of the whole system is used to compute the basic quantities of the
PTF method. Table 2 sums up the main features of the FE mesh of the whole
system.

Figure 11: Definition of the FE model

Table 2: Main features of the FE mesh of the whole system

System Number of degrees of freedom
Ballast 1 27 864 dofs
Ballast 2 29 147 dofs

Shell 9 630 dofs

The aim is to build a PTF model in which both ballasts and the bulkhead
are modeled by their PTF. Then, the influence of residual shapes for both bal-
lasts is studied by comparing the pressure level at one point of each ballast,
when the cavity-PTF are obtained either from a direct computation using FEM
or a mode expansion with or without residual shapes. The structure-PTF are
computed from a mode expansion insofar as they converge rapidly.

In the present case, the PTF equations, namely Eqs. (6)-(9), has to be
rewritten to take into account the presence of the second ballast, correspond-
ing to a third subsystem. To this end, continuity equations are rewritten as
expressed by the following equation:
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{
p̄s

j = p̄b1
j − p̄b2

j

v̄s
j = v̄b1

j = −v̄b2
j = v̄j

(24)

These continuity conditions are used to calculate the coupling normal ve-
locity v̄j on each patch j. Again, the introduction of continuity conditions in
Eq. (7) allows obtaining the coupling normal velocity v̄j given by the following
equation:

v̄j =
[
I − Y s

ji

(
Zb1

ik + Zb2
ik

)]
−1 ˜̄vs

k (25)

where Zb1
ik is the cavity-PTF of the first ballast and Zb2

ik is the cavity-PTF of
the second ballast.

The pressure at point L (resp. M) belonging to the first ballast (resp. the
second one) is thus obtained from the coupling velocity by using the cavity-PTF
ZLj calculated between the point L and the patch j.

{
pb1(L) = Zb1

Lj v̄j

pb2(M) = Zb2
Lj v̄j

(26)

PTF calculations have been performed for 329 patches. The results obtained
from a direct computation of the cavity-PTF are compared in Fig. (12) with
results yielded by a mode expansion of the cavity-PTF with or without intro-
ducing the residual shapes. It can be also noticed that the mode expansion have
been performed using normal modes computed up to 1600 Hz. This corresponds
to 168 normal modes for the first ballast and 171 normal modes for the second
one. Fig. (12) shows a very good agreement between a direct computation of
the cavity-PTF and a modal expansion introducing the residual shapes, while
the calculation using resonant modes only does not converge.

The introduction of residual shapes allows decreasing in computational ef-
forts as highlighted in Table 3, where a comparison of total CPU times is per-
formed for a direct computation of the cavity-PTF and a modal calculation
with or without the residual shapes. This table shows that the total CPU time
for a modal approach introducing the residual shapes is much lower than that
of a direct calculation, while the accuracy is equivalent for both approach. It
can be noticed that the CPU time for a modal calculation with or without the
residual shapes are similar. Consequently, the introduction of residual shapes
improves the accuracy of the modal approach, without significantly increasing
the computational effort.

Table 3: Comparison of the total CPU times for the calculation of the cavity-PTF

direct normal modes normal modes + residual shapes
Ballast 1 35223 s 1423 s 1456 s
Ballast 2 38103 s 1456 s 1465 s
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Figure 12: Influence of residual shapes - Comparison of the pressure level (a) at the point
(-2.55 m, 1.77 m, -0.66 m) of the first ballast and (b) at the point (0.46 m, 0.59 m, -0.82 m)
of the second ballast when the cavity-PTF are obtained from (-) a direct calculation, (- -) a
mode expansion without the residual shapes and (∗) a mode expansion with residual shapes

8. Conclusion

The PTF substructuring approach allows computing the response of structure-
cavity systems. It has the advantage of solving vibro-acoustic problems with
reduced computational cost compared to standard FEM. The coupling technique
consists in discretizing the coupling surface in elementary areas called patches
on which continuity equations are verified. The novelty of the present paper
concerns the introduction of the residual shapes concept in order to accelerate
the convergence of the PTF method, when solving a structure-acoustic coupling
in heavy fluid. The studies presented in this article show that the concept of
residual modes associated with interface coupling patches permits substantially
improving the convergence of the PTF approach while keeping the uncoupled
resolution of equations for each subsystem.
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