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Abstract

In noise control, the identification of source velocity field remains an impor-
tant and open problem. In this way, methods such as Nearfield Acoustical
Holography (NAH), Principal Source Projection (PSP), inverse Frequency
Response Function method (iFRF) or hybrid NAH have been developed.
However, these methods require free field conditions that are often difficult
to achieve in practice. In this article, an alternative method, developed in
the SILENCE European project framework and called inverse Patch Transfer
Functions, is presented to identify source velocities. This method is based
on the definition of a virtual cavity, the double measurement of the pressure
and particle velocity fields on aperture surfaces of this volume, divided into
elementary areas called patches and the inversion of impedances matrices,
numerically computed from a modal basis obtained by FEM. Theoretically,
the method is applicable to sources with complex 3D geometries and mea-
surements can be carried out in a non-anechoic environment even in the
presence of other stationary sources outside the virtual cavity. In the present
paper, theoretical background of the iPTF method is exposed and results
(numerical and experimental) on a source with simple geometry (two baffled
pistons driven in antiphase) are presented and discussed.
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1. Introdution

The Nearfield Acoustical Holography (NAH), firstly introduced by Williams
et al. [1, 2], is based on the two-dimensional Fourier Transform of the com-
plex pressure field at a given frequency measured on a hologram near the
source. Measurements of the pressure field are generally made on a plane
surface and make possible the determination of the three-dimensional source
velocity field. However, the NAH is mainly applicable to simple geometries
(planes [3], cylinders [4] and spheres [5]). Furthermore, problems of discon-
tinuities exist at boundaries, because of the lack of information beyond the
zone of measurements nevertheless necessary to compute the two-dimensional
Fourier Transform. Thus, to avoid the influence of boundary effects, mea-
surements have to be made in the acoustical nearfield of the structure.

The iFRF method is based on the evaluation and the inversion of trans-
fer matrices, which can be obtained either experimentally or numerically. In
the last case, if the computation of the transfer functions is based on the
Boundary Element Method, it is called iBEM. This method can be used to
reconstruct acoustic radiation on arbitrary surfaces [6]. In that way, Mar-
tinus [7] uses this method to determine the distribution of particle velocity
on the open end of a rectangular duct and shows that sound pressure field
measurements need not to be made in the nearfield of the source to obtain
good results. However, the main drawback of iBEM is that it requires an ex-
cessive amount of measurements to determine the acoustic field on a complex
structure, since it needs a fine mesh definition (six nodes per wavelength).
The difficulty of the method comes also from the inversion of the transfer
matrices, which are often ill-conditioned and thus requires the use of regu-
larization methods.

Other methods are also developed to overcome the difficulties and limita-
tions inherent to NAH or iBEM. Thus, a hybrid NAH was introduced [8, 9].
This method is based on a modified HELS method (Helmholtz Equation
Least Squares) [10, 11] and allows a reconstruction of the pressure field on a
complex shape surface very close to the source surface. As NAH applications,
the hybrid NAH needs regularization, because of measuring uncertainty and
incompleteness of acoustic pressure field, which leads to ill-conditioned trans-
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fer matrices. Furthermore, the modified HELS method can be also combined
with iBEM [12] to reconstruct acoustic quantities on a virtual sphere enclos-
ing the source structure, which can lead to the loss of nearfield information.
Finally to avoid a great number of measurements, the PSP (Principal Source
Projection) method is introduced [13, 14]. This method is based on the
evaluation of a radiation operator between the source surface, represented
by a distribution of elementary sources, and a grid of measurements. For
traditional methods, like iBEM, the number of identified acoustic sources is
limited to the number of microphones in order to guarantee the uniqueness
of the solution. On the contrary, for PSP method, the number of quantified
sources is higher than the number of microphones, which means that the
system is under-determined. In addition, to identify the data on the source
surface, the transfer functions, calculated between a point of the elementary
source and a point of measurement, have to be inverted. The transfer ma-
trix is often ill-conditioned, which implies to use regularization methods like
Truncated Singular Values Decomposition (TSVD).

In this article, an alternative method is introduced to identify source ve-
locities: the iPTF method. This method is derived from the Patch Transfer
Functions (PTF) method [15, 16, 17]. In its direct formulation, the PTF
method is a tool to predict pressure inside and outside a cavity contain-
ing acoustic sources and apertures, thanks to the use of substructuring and
impedance concepts. The acoustical medium is indeed divided into sub-
domains and PTF are evaluated by suitable methods for each subdomain
(FEM, Rayleigh approach, measurements, . . . ). Subdomains are then cou-
pled through their common surface, divided into patches. Coupling condi-
tions are written for each patch as pressure and velocity equations, describing
the local equilibrium. A system of linear equations is finally obtained, where
unknowns are coupling patch velocities. The system is solved to determine
coupling velocities and finally pressures at any point of the acoustical domain.

The aim of the inverse approach (iPTF method) is to determine source
velocities from measured patch pressures and velocities on a virtual cavity.
Theoretically, iPTF method allows identifying source velocities in a noisy
environment (i.e. in the presence of other sources) thanks to double mea-
surements of pressure and particle velocity fields on a surface surrounding
the source, what is not possible with classical methods, which only use sound
pressure measurements. Measurements can thus be made, for instance, on a
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part of an engine in use. However, as classically observed in inverse meth-
ods, the inversion of an ill-conditioned matrix is required. But this drawback
can be alleviate by using suitable regularization techniques like TSVD or
Tikhonov. Finally, one of the advantages of iPTF method is the use of the
Finite Element Method (FEM) as a solver. When other methods need ana-
lytical or BEM model to estimate transfer functions, iPTF only needs modal
basis of a virtual cavity to compute Patch Transfer Functions. This makes
the method applicable even to sources with complex geometries.

The present article deals with the theoretical background of the method
and its numerical and experimental application on a simple case (two baffled
pistons driven in antiphase). This test case is voluntarily simple in order to
easily study the main features of the proposed method, namely the size of the
virtual cavity, the number of measurement patches, the ability to localize and
separate sources and finally the robustness of the method with respect to an
external stationnary disturbing source. Experimental validations of the iPTF
approach confirm expected advantages and demonstrate the applicability of
the method.

2. Theoretical background of the iPTF method

2.1. Basic concept of the iPTF method: the integral formulation

Let us consider the acoustic cavity presented in Fig. (1). The acoustical
domain Ω is delimited by a rigid surface Sr, an absorbing surface Sa, a
vibrating surface Sv and a surface with Dirichlet conditions Sd. Furthermore,
an acoustic source S0 is located inside the acoustic volume Ω, but outside a
part Ωc of Ω. Consequently, the problem to solve is expressed by Eq. (1)





∆p(M) + k2p(M) = S0(M) ∀M ∈ Ω
∂p

∂n
(Q) = 0 ∀Q ∈ Sr

∂p

∂n
(Q) = −jρωV (Q) ∀Q ∈ Sv

p(Q) = p0 ∀Q ∈ Sd

p(Q) = −
Z

jρω

∂p

∂n
(Q) ∀Q ∈ Sa

(1)

Where ∆ is the Laplacian operator, ∂
∂n

the normal derivative, ρ the den-
sity of air, V (Q) the normal velocity imposed on Sv, p0 the pressure imposed
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Figure 1: Integral problem

on Sd, Z the surface impedance of the absorbing material, ω the radian fre-
quency and k the acoustic wavenumber.

Now, let us write the Green’s identity given by Eq. (2) applied to the
volume Ωc ⊂ Ω.

∫∫∫

Ωc

([
∆Φ + k2Φ

]
Ψ −

[
∆Ψ + k2Ψ

]
Φ

)
dΩc =

∫∫

Sc

(
Φ

∂Ψ

∂n
− Ψ

∂Φ

∂n

)
dSc

(2)
The previous expression is very general and functions Φ and Ψ are ar-

bitrary. In the present work, we suppose first that the function Φ is the
acoustic pressure p. In the cavity Ωc, where no sources acting, the pressure
satisfies the homogeneous Helmholtz equation as expressed in Eq. (3),

∆p(M) + k2p(M) = 0 ∀M ∈ Ωc (3)

The function Ψ is chosen as the Green’s function G satisfaying Eq. (4).





∆G(M,M ′) + k2G(M,M ′) = 0 ∀(M,M ′) ∈ Ωc

∂G

∂n
(Q,Q′) = δ(Q − Q′) ∀(Q,Q′) ∈ Sc

(4)

Consequently, by introducing Eqs. (3) and (4) in Eq. (2), we finally
obtain the integral equation given by Eq. (5).
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p(Q′) =

∫∫

Sc

G(Q,Q′)
∂p

∂n
(Q)dQ (5)

The key point of this formulation is that external sources located out-
side the cavity do not modify the integral equation. In other words, this
formulation is independent of acoustic sources external to Ωc. Furthermore,
another asset of integral formulation method is that the Green’s function G

can be arbitrarily chosen. To illustrate this point, let us consider the Green’s
function G′ satisfaying Dirichlet’s boundary condition as expressed in Eq.
(6)).

{
∆G′(M,M ′) + k2G′(M,M ′) = 0 ∀(M,M ′) ∈ Ωc

G′(Q,Q′) = δ(Q − Q′) ∀(Q,Q′) ∈ Sc

(6)

The introduction of Eqs. (3) and (6) in Eq. (2) allows obtaining the inte-
gral formulation given by Eq. (7), which is independent of external acoustic
sources too.

∂p

∂n
(Q′) =

∫∫

Sc

p(Q)
∂G′

∂n
(Q,Q′)dQ (7)

2.2. Basic equation of the iPTF method

Let us consider the practical situation given in Fig. (2), where a vir-
tual cavity of surface Sc = Sm ∪ Sv surrounds the source and separates the
acoustical domain into a virtual cavity Ωc and an exterior domain Ωe.

In the iPTF formulation, the Green’s function used is that of virtual
cavity where boundary surface Sc is supposed rigid. It is important to notice
that these rigid wall boundary conditions have no physical reality. They just
provide a mathematical tool to solve the virtual cavity problem. The integral
formulation to solve is consequently the one given by Eq. (5). When using
Euler’s equation in Eq. (5), the acoustic pressure p(Q′) at the point Q′ is
related to the normal velocity Vn(Q) at each point Q of the surface Sc as
expressed in Eq. (8).

p(Q′) = −jρω

∫∫

Sc

G(Q,Q′)Vn(Q)dQ (8)

Numerical solution of the previous integral equation is based on the dis-
cretization of the surface Sc into N elementary areas Ar called patches. The
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Figure 2: Basic identification problem

discretization of Eq. (8) on patches basis leads to Eq. (9), describing the
relation between the space average normal velocity v̄r on the patch r and
the space average pressure p̄j on the patch j. One can notice that this rela-
tion remains true provided that the size of patches is small compared to the
wavelength.

p̄j =
N∑

p=1

Zjrv̄r (9)

In Eq. (9), the space average pressure and velocity are related by the
patch impedance Zjr. Consequently, the patch impedance Zjr between the
excited patch p and the receiving patch j is defined as the ratio of the space
average pressure p̄j on a patch j and the space average normal velocity v̄r on
a patch p as expressed in Eqs. (10).

Zjr =
p̄j

v̄r

(10)

Where the space average is defined as •̄r = 1

Ar

∫
Ar

• dAr

The basic equation of the iPTF is derived from Eq. (9), where the con-
tribution of patches is separated into patches belonging to the source surface
Sv and patches belonging the virtual surface Sm as expressed by Eq. (11).
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p̄j =
P∑

k=1

Zjkv̄k +
M∑

i=1

Zjiv̄i (11)

Where j and i belong to Sm, k belongs to Sv and N = M + P

Now, the iPTF formulation can be obtained from Eq. (11) in a straight-
forward manner. For sake of simplicity, Eq. (11) is written in matrix form
(see Eq. (12)) and following notations are considered: Pj = p̄j, Vi = v̄i and
Vk = v̄k

{Pj} = [Zjk]{Vk} + [Zji]{Vi} (12)

One has to notice that in matrices [Zji] and [Zjk], the number of line j rep-
resents the number of patch pressure measurements {Pj}, while the number
of column k corresponds to the number of identification patches of source ve-
locity {Vk} and i represents the number of patch velocity measurements {Vi}.

The vector of source velocities {Vk} is thus easily obtained after simple
matrix manipulation and is the basic equation of the iPTF method.

{Vk} = [Zjk]
−1({Pj} − [Zji]{Vi}) (13)

Insofar as the impedances matrices [Zjk] and [Zji] are numerically com-
puted, only pressures {Pj} and velocities {Vi} have to be measured on each
patch of the virtual surface Sm to calculate the mean patch source velocities
{Vk}. In the iPTF method, the patch pressure {Pj} and the patch velocity
{Vi} are measured with a pressure-velocity (PU) probes. Such PU probes
have been assessed by Jacobsen and Jaud [18, 19]. One important point is
that velocity field on the virtual surface can be due to direct field from the
vibrating surface as well as reflected sound by obstacles placed outside the
virtual cavity. Thus, this method is not restricted to anechoic environment
and is theoretically independent of sources located outside the measurement
area in virtue of the Kirchhoff’s integral. Nevertheless, the inversion of the
impedances matrices can be difficult, since these matrices are rectangular
and ill-conditioned as it will be presented in the section 2.4.

2.3. Computation of patch impedance Zjr

As already said in section 2.2, the patch impedance matrices [Zjk] and
[Zji] are numerically computed. They are derived from the integral formula-
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tion (see Eq. (8)) and the expansion on virtual rigid wall cavity modes. To
obtain these quantities, we have to calculate the function G(Q,Q′) satisfay-
ing Eq. (4). For this purpose, we expand the solution on normal modes of
the rigid wall cavity. This leads to the Green’s function given by Eq. (14).
In appendix A, the detailed calculation of the Green’s function is presented.

G(Q,Q′) = −
∑

n

c2φn(Q)φn(Q′)

Λn(ω2
n − ω2 + jηnωnω)

(14)

Where Λn is the norm of the mode n, ηn the modal damping, avoiding
singularities when ω = ωn.

Then, the pressure p(Q′) created by a constant normal velocity v̄r imposed
on a patch r of surface Sr can be calculated from Eq. (15).

p (Q′) = −jρωc2Sr

∑

n

φ̄nr
φn(Q′)

Λn(ω2
n − ω2 + jηnωnω)

v̄r (15)

The patch impedance Zjp between the excited patch p and the receiving
patch j is thus given by Eq. (16), where the space average pressure over
receiving patches is introduced.

Zjp =
p̄j

v̄p

= −
∑

n

jωρc2Sp

Λn(ω2
n − ω2 + jηnωnω)

φ̄np
φ̄nj

(16)

Where Sp is the surface of the patch p.

One can also notice that the natural frequencies ωn and the mode shapes
of the virtual rigid wall cavity φn are obtained by FE calculation, which
permits to deal with complex source geometries.

2.4. Some explanations about ill-conditioned impedance matrices

In the iPTF method, impedance matrix [Zjk] has to be inverted. However,
in many inverse problems, matrices can be ill-conditioned, which is the case
in the present method. Consequently, it is important to identify factors
causing the ill-conditioning of [Zjk] matrix. For this purpose, the conditioning
number is a good indicator and serves as base for the following discussion.
One reminds that [Zjk] matrix relates the number of patches j, where patch
pressures {Pj} are measured to the number of patches k,where patch source
velocities {Vk} are identified.
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2.4.1. Influence of pressure information on source surface

Let us consider the source surface presented in Fig. (3). To avoid par-
ticular cases, this source surface has no symmetries. A virtual cavity is then
defined as well as measurement and source patch meshes as shown in Fig.
(3). The dimensions of the virtual cavity are about 500 × 350 × 400 mm3.

Figure 3: Geometry of the vibrating source and patch mesh definition on surface of the
virtual cavity

First of all, we consider the standard way of using the method, where
pressure is measured on all virtual surfaces but not on the source surface. In
this case, conditioning numbers versus frequency are presented in Fig. (4).
The analysis shows that impedance matrix is ill-conditioned. Conditioning
number globally decreases with frequency and presents peaks on resonance
frequencies of the cavity. To clarify this tendency, we consider a second situ-
ation, corresponding to the first one with addition of pressure measurement
on the source surface.

The conditioning number, presented in Fig. (4), clearly indicates that
impedance matrix is better conditioned. Pressure information on source sur-
face is thus important to decrease the conditioning number. Unfortunately,
practically speaking, pressure measurement on source surface is often not
possible in real situation. However, it may be sufficient to measure only few
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pressure data on the source surface to really decrease the conditioning num-
ber. In this way, we assumed that pressure is measured on all the virtual
surfaces and on only one patch located in the center of source surface. Re-
sult is presented in Fig. (4), with one additional pressure point on the source
surface. Above 1200 Hz, the conditioning number is divided by two which
represents a real improvement. However, at lower frequency, no significant
modifications of the conditioning number appear.
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Figure 4: Conditioning number of patch impedance matrices - Comparison between (-)
Pressure measured on all the virtual surfaces, (-.-) Pressure measured on all the virtual
surfaces and on the source surface and (- -) Pressure measured on all the virtual surfaces
and on one patch located in the center of source surface

2.4.2. Influence of the number of pressure control points

From a practical point a view, one can wonder if all the pressure infor-
mation on virtual surfaces is necessary. For this purpose, we used the same
source geometry and virtual cavity as in section 2.4.1, but we only used pres-
sure information measured on the top virtual surface (see Fig. (3)), instead
of using pressure information on all the virtual surfaces. Conditioning num-
bers versus frequency are presented in Fig. (5) for the previous situations.
The analysis shows as expected that it is preferable to measure pressure field
on all the virtual surfaces to limit the conditioning number.

The conclusion is thus simple, the more measured patch pressure, the
lower the conditioning number. Practically, it is recommended to measure
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pressure and velocity data on all patches of the virtual surface and if possible
on additional points on the source surface. In the rest of this paper, pressure
information on source surface is voluntarily not measured insofar as the aim
is to find a method to identify properly source velocity without measuring
data on the source surface.
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Figure 5: Conditioning number of patch impedance matrices - Comparison between (-)
Pressure measured on all the virtual surfaces, (- -) Pressure measured on the top virtual
surface

2.4.3. Influence of virtual cavity dimensions

In the iPTF method, the virtual cavity can be arbitrary defined. It is thus
interesting to know, if it is preferable to perform measurements on a small
or large virtual cavity. To compare results, we consider the same source
geometry as in the previous subsection (see Fig. (6)). The virtual cavity
smaller than the previous one is almost a parallelepiped with dimensions
about 500 × 350 × 120 mm3 and the patch mesh is defined on virtual sur-
faces as presented in Fig. (6)). Furthermore, we assumed that pressure and
particle velocity are measured on all the virtual surfaces.

Fig. (7) presents conditioning numbers for the large and the small virtual
cavities (see Figs. (3) and (6)). This figure shows that patch impedance
matrix conditioning number for a small cavity is better at low frequency
than that obtained for a large cavity. But when modal overlap is achieved
both cavities have similar conditioning numbers. A small cavity is therefore
preferable to limit the conditioning number. This point can be associated to
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Figure 6: Geometry of the vibrating source and patch mesh definition Geometry of the
vibrating source and patch mesh definition on surface of a 500 × 350 × 120 mm3 virtual
cavity

the well-known necessity of holographic methods of making measurements
in the nearfield of the source, because of the evanescent nature of acoustic
nearfield.
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Figure 7: Conditioning number of patch impedance matrices - Comparison between
Pressure-Velocity measured on all the virtual surfaces for (-) the large virtual cavity and
(- -) the small virtual cavity

2.4.4. Influence of virtual cavity modes

Ill-conditioning can also be due to a bad definition of the virtual volume
and patch mesh. Ouisse et al. [16] define a numerical criterion to limit the
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ill-conditioning of patch impedance matrices. This criterion stipulates that
the order of virtual cavity modes in one direction has to be greater than or
equal to the number of patches in the same direction. It corresponds in fact
to the number of degrees of freedom necessary to ensure that patches motions
are independent. To demonstrate the validity of this criterion, conditioning
number is evaluated for a parallelepiped virtual cavity which dimensions are
450 × 350 × 130 mm3. A patch mesh is then defined on measurement and
source surface and natural modes have been extracted up to 2kHz, 3kHz,
4kHz and 5kHz. In each case, patch impedance matrices have been com-
puted in the frequency range of interest [10, 2000 Hz]. As shown in Table 1,
the criterion is not respected for modes extrated up to 2 kHz and as a con-
sequence the patch impedance matrix is extremely ill-conditioned (see Fig.
(8)). Furthermore, the criterion is respected above 3 kHz and conditioning
numbers are very much better than that obtained for modes extracted up to
2 kHz. Nevertheless, a regularization would be compulsory in this configura-
tion but this criterion is required to limit the ill-conditioning of impedance
matrices.

Table 1: Comparison between the maximal order of cavity modes and the number of
patches along the directions x,y and z

Modal frequency limit 2kHz 3kHz 4kHz 5kHz
Maximal order of modes 5 × 4 × 1 7 × 6 × 2 10 × 8 × 3 13 × 10 × 3

Number of measurement patches 6 × 5 × 2
Number of source patches 6 × 5

When virtual cavity has a complex geometry, this criterion is not directly
applicable. However, one can say that the number of virtual cavity modes
must be at least equal to the number of patches.

3. Numerical and experimental validation of the iPTF method

In this section, we seek to validate the iPTF method numerically and
experimentally from a simple set-up. The retained set-up consists of two
baffled pistons driven in antiphase as shown in Fig. (9). The chosen test case
is voluntarily simple in order to clearly establish how the method is able to
localize and separate vibrating sources. The identification area (dimensions:
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Figure 8: Influence of the maximal cavity modes order on the conditioning number of
patch impedance matrices for a 450× 350 × 130 mm3 virtual cavity and modes extracted
up to (-) 2 kHz, (- -) 3 kHz, (..) 4 kHz and (-.-) 5 kHz

450×350 mm3) is divided into 30 patches where pressure and particle velocity
are assumed constant. Furthermore, the patch impedance matrices computed
in this validation section are sufficiently well conditioned to avoid the use of
regularization techniques.

Figure 9: Definition of the validation set-up - Two baffled pistons driven in antiphase

3.1. Numerical validation

3.1.1. Validation of the basic principle

To validate the basic principle given by Eq. (13), we define a paral-
lelepiped virtual cavity measuring 450 × 350 × 20 mm3 around the source
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(see Fig. (10a)). Moreover, in the PTF method, the definition of patch
meshes is driven by a wavelength criterion according Ouisse et al. [16]. They
have demonstrated that in its direct formulation, the PTF method is appli-
cable with a λac/2 criterion for patch meshes. However, for iPTF method,
an additional condition must be considered; the measurement mesh has to
be fine enough to obtain a sufficient number of measurement data. In other
words, the number of measurement patches has to be larger than the number
of identification patches to avoid under-determination of the problem. Based
on this observation, the measurement surface is divided into 139 patches and
pressure and particle velocity fields are analytically computed at the cen-
ter of each measurement patch with standard Rayleigh integral method (see
appendix B for details).

(a) (b)

Figure 10: Definition of (a) the virtual cavity and (b) the patch mesh around the source

The process allows identifying properly the source velocity, since reference
and identification maps at 240 Hz slightly differ as shown in Figs. (11) and
(12).

3.1.2. Robustness of the iPTF method - Influence of the measurement noise

The measurement noise is an important parameter in the results accuracy.
In order to analyse the influence of measurement uncertainties, we propose
to slightly modify the exact pressure and particle velocity fields analytically
computed by introducing two independent Gaussian random variables ∆Q
and ∆φ, simulating errors on the magnitude and the phase of measurement
data [20]: {

P̃ = P exact.∆Qp.e
j∆φ

Ṽ = V exact.∆Qv.e
j∆φ

(17)

Where ∆Qp = p|P exact|X + 1 and ∆φ = arctan(p)Y , with p the noise
percentage and (X,Y) two independent Gaussian random variables.
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Figure 11: Numerical validation for a 450× 350 × 20 mm3 virtual cavity - Comparison of
(a) the reference map and (b) the identified map obtained with the iPTF method at 240
Hz
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Figure 12: Numerical validation for a 450× 350 × 20 mm3 virtual cavity - Comparison of
source velocity along a line (x,0.245 m) across the prediction plane at 240 Hz, (-) Reference,
(- -) Identification

Figs. (13) and (14) present the influence of measurement uncertainties
on identifications for p = 30%. We can thus notice that the measurement
noise has a limited influence on the identification accuracy, insofar as the
magnitude and spatial distribution of source velocities are only marginally
affected. Consequently, the proposed method appears to be robust with
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respect to measurements uncertainties.
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Figure 13: Numerical validation for a 450 × 350 × 20 mm3 virtual cavity - Comparison
between (a) the reference map and the identified maps obtained for (b) (b)p = 30% at 240
Hz
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Figure 14: Numerical validation for a 450× 350 × 20 mm3 virtual cavity - Comparison of
source velocity along a line (x,0.245 m) across the prediction plane at 240 Hz, (-) Reference,
(- -) Identification for p = 30%

3.2. Robustness of the iPTF method - Influence of correlated disturbing source

When measurements are performed in situ, correlated sources can modify
the pressure and the particle velocity fields measured around the source to
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identify. Consequently, virtual sources are likely to appear on the hologram
due to the bad estimation of acoustic field in the measurement area. As
underlined in section 2, the iPTF method is theoretically independent of the
presence of external sources. To prove this theoretical fact, a third piston is
inserted in the rigid baffle, whereof velocity is 5 times bigger than that of the
first piston (see Fig. (15)). This third disturbing piston modifies the acoustic
field computed at the center of the measurement patches. As an exemple,
the mean square pressure is increased by 6.5 dB at 240 Hz, while the mean
square particle velocity is increased by 3.5 bB at the same frequency.

Figure 15: Location of the disturbing piston outside the identification area

Fig. (16) presents the comparison of the spatial distribution of reference
source velocity with the identified one obtained in presence of a disturbing
acoustic source. Maps prove that the source velocity can be properly identi-
fied in presence of a disturbing source.

3.2.1. Influence of the virtual cavity dimensions

The dimensions of the virtual cavity is essential in the identification pro-
cess since the more we measure far from the source, the more we lose the near
field information related to the evanescent waves. In that case, it is hard to
identify precisely the source velocity because of the lack of information. To
demonstrate the influence of the cavity dimensions on the identification, we
define a virtual cavity which dimensions are 450× 350 × 130 mm3. Further-
more, the measurement surface is divided into 259 patches. As shown in Fig.
(18), the iPTF method succeeds in identifying source velocities. However,
as classically observed in other holographic methods (NAH or iBEM), the
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Figure 16: Numerical validation for a 450× 350× 20 mm3 virtual cavity in presence of an
external disturbing source - Comparison of (a) the reference map and (b) the identified
map obtained at 240 Hz
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Figure 17: Numerical validation for a 450× 350× 20 mm3 virtual cavity in presence of an
external disturbing source - Comparison of source velocity along a line (x,0.245 m) across
the prediction plane at 240 Hz, (-) Reference, (- -) Identification

source localization and separation are less clear because of the absence of
near field information in the considered data.
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Figure 18: Numerical validation for a 450 × 350 × 130 mm3 virtual cavity - Comparison
between (a) the reference map and (b) the identified map obtained with the iPTF method
at 240 Hz

3.3. Experimental validation

3.3.1. Experimental set-up

The experimental validation consists in reproducing as reliably as pos-
sible the set-up used for the numerical validation, in order to evaluate the
applicability and the robustness of the method in a non anechoic environ-
ment. For this purpose, the acoustic baffle consists of a wooden thick plate
of 700 × 600 × 40 mm3, in which two loudspeakers fed by a white noise are
inserted. Furthermore, the identification area is materialized on the rigid
baffle as shown in Fig. (19).We can also notice that measurements were per-
formed in a non anechoic chamber and consequently reflected sound from
room boundaries was present. Finally, reference and acoustic field measure-
ments were carried out with a PU probe in the very nearfield of the source (5
mm from the acoustic source) and a microphone was used as phase reference.

Like in previous sections, we define around the identification area the
same patch meshes as those used in the numerical validation. It is rele-
vant to remind that space averaged data of pressure and particle velocity
on patches are represented by one measurement point at the center of the
patch. By this way, a positioning error of the PU probe can influence the
quality of the experimental results. Of course, other factors can come into
account like normal vectors orientation for particle velocity measurements or
uncertainties due to transducers quality.
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Figure 19: Experimental set-up

In the following, we use an indicator ǫ which allows thoroughly derter-
mining the identification error of the iPTF method. This indicator is define
as in Eq. (18).

ǫ = 10log

∣∣∣∣∣
V 2

id

V 2

ref

∣∣∣∣∣ (18)

Where Vref is the source velocity measured in the very nearfield of the
source and Vid is the identified source velocity.

3.3.2. Validation of the basic principle

The experimental validation of the basic principle is performed by re-
producing the numerical experiment used in section 3.1. When applying
the iPTF method from experimental data, a good agreement between mea-
sured and identified source velocity is observed both in magnitude and spatial
distribution (see Figs. (20) and (21)). The analysis of Fig.(20) shows actu-
ally that the identification error on the first excited patch ((x, y) =(0.1125
m,0.245 m)) does not exceed 1 dB on all the frequency range.

3.3.3. Robustness of the iPTF method - Influence of correlated disturbing

source

To test the robustness of the method in presence of a correlated disturb-
ing source, we used the same virtual cavity as in the previous case and a
third loudspeaker located outside the measurement area was added (see Fig.
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Figure 20: Experimental validation for a 450×350×20 mm3 virtual cavity - Identification
error on the first excited patch (x, y) =(0.1125 m,0.245 m)
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Figure 21: Experimental validation for a 450×350×20 mm3 virtual cavity - Comparison of
source velocity along a line (x,0.245 m) across the prediction plane at 240 Hz, (-) Reference,
(- -) Identification

(22)). A reference measurement was performed again to take into account
the acoustic field modifications due to the disturbing source.
The pressure power spectrum measured on a patch of the measurement sur-
face with and without disturbing source highlights the influence of the dis-
turbing source. Disturbing pressure was in general of the same order as the
primary source pressure and at certain frequencies differed from more than
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5 dB (see Fig. (23)).

Figure 22: Experimental set-up - Location of the disturbing source
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Figure 23: Comparison between the pressure power spectrum obtained on a patch of the
measurement surface (-) without and (- -) with the disturbing source versus frequency

The iPTF method allows determining a source velocity, which magni-
tude differs from reference by less than 1 dB on all the frequency range, as
shown in Fig. (24) presenting the identification error on the first excited
patch ((x, y) =(0.1125 m,0.245 m)). Moreover, the Fig. (25) presents a com-
parison between the reference map and the identified one. This comparison
confirms the ability of the method to reconstruct the spatial source velocity
distribution in presence of an external stationary disturbing source.
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Figure 24: Experimental validation for a 450 × 350 × 20 mm3 virtual cavity in presence
of an external correlated disturbing source - Identification error on the first excited patch
(x, y) =(0.1125 m,0.245 m)
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Figure 25: Experimental validation for a 450 × 350 × 20 mm3 virtual cavity in presence
of an external correlated disturbing source - Comparison between (a) the reference map
and (b) the identification map obtained experimentally in presence of a disturbing source
with the iPTF method at 240 Hz

3.3.4. Influence of the virtual cavity dimensions

As already evoked in the numerical validation of the method, the more
we measure the sound field far from the source, the more we lose information
related the evanescent waves. The aim of this section is to know how experi-
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mentally the absence of near field information affects the identification accu-
racy. For this purpose, we use the virtual cavity of dimensions 450×350×130
mm3 defined in section 3.2.1. In this case too, the iPTF method gives quite
satisfaying results in both magnitude and spatial distribution (see Figs. (26)
and (27)). However, Fig. (26) shows that the identification is less accurate
in magnitude than that performed on a cavity of reduced dimensions. The
discrepancy is however acceptable up to 425 Hz, where the height of the vir-
tual cavity reaches λ

6
( 340

6×425
≈ 0.13 m). Nevertheless, the method succeed in

localizing the two louspeakers below 425 Hz.
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Figure 26: Experimental validation for a 450×350×130 mm3 virtual cavity - Identification
error on the first excited patch (x, y) =(0.1125 m,0.245 m)

4. Conclusion

The iPTF method allows identifying source velocities on complex struc-
tures. In this paper, the theoretical background as well as the measurement
methodology have been introduced. In the method, both pressure and par-
ticle velocity fields have to be measured on the virtual cavity surfaces. This
is quite simple when using PU probes. To prove the ability of the method,
an experimental validation has been set up on two baffled pistons driven in
antiphase.
As classically observed in holographic methods, one of the main drawbacks
remains the loss of the near field information when measuring acoustic field
far from the source.
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Figure 27: Experimental validation for a 450×350×130 mm3 virtual cavity - Comparison
between (a) the reference map and (b) the identified map obtained experimentally with
the iPTF method at 240 Hz

However, the combined use of integral formulation, FEM as a solver and
the double measurement of pressure and particle velocity fields allows over-
coming some limitations of classical methods associated to simple structure
geometry. Thus, the independence of the method with respect to external
stationnary sources and its applicability to complex shape structures are
the main advantages of the iPTF method. Finally, further applications of
the method on more complex structures than that presented in this article,
namely an L-shape plate and a vehicle precatalyst, can be found in Refs. [21]
and [22]
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A. Calculation of Green’s function by modal approach

The Green’s identity defined in Eq. (2) is then used, where Φ is the mode
shape φn of the virtual rigid wall cavity Ωc satisfying Eq. (19) and Ψ is the
function G satisfying Eq. (20).





∆φn(Q) + k2
nφn(Q) = 0 ∀n,∀Q ∈ Ωc

−
1

jρω

∂φn

∂n
(Q) = 0 ∀ n,∀ Q ∈ Sc

(19)





∆G(Q,Q′) + k2G(Q,Q′) = 0 ∀ (Q,Q′) ∈ Ωc

∂G

∂n
(Q,Q′) = δ(Q − Q′) ∀ (Q,Q′) ∈ Ap

∂G

∂n
(Q,Q′) = 0 ∀ (Q,Q′) ∈ Sc \ Ap

(20)

Consequently, using Eqs. (2), where Φ = φn and Ψ = G, (20) and (19),
we obtain the integral equation given by Eq. (21).

φn(Q′) =

∫∫∫

Ωc

(k2 − k2

n)φn(Q)G(Q,Q′)dQ (21)

The function G is now determined by expansion on the modal basis φn(Q):

G(Q,Q′) =
∑

n

gn(Q′)φn(Q) (22)

Using this decomposition in Eq. (21), one obtains:

gn(Q′) = −
c2φn(Q′)

Λn(ω2
n − ω2)

(23)

Where the norm of modes is such as
∫∫∫

Ωc
φn(Q)φq(Q)dΩc = Λnδnq. One

obtains therefore the following expression:

G(Q,Q′) = −
∑

n

c2φn(Q)φn(Q′)

Λn(ω2
n − ω2)

(24)

The patch impedance between a source patch k and a reception patch j is
then:

Zjk = −
∑

n

jωρc2Sk

Λn(ω2
n − ω2)

φ̄nk
φ̄nj

(25)
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Obviously in the Eqs.(24) and (25), this modal composition presented prob-
lems at resonant frequencies. To avoid these difficulties, one introduces the
modal damping of fluid ηn, which is a constant in this study. Therefore, one
replaces in the denominator the term ω2

n −ω2 by the term ω2
n −ω2 + jηnωnω.

B. Radiation of a baffled piston

The Rayleigh integral formulation of a baffled piston is used to compute
its radiation as expressed in Eq. (26).





p(M) = jρω

∫

S

V (Q)G(M,Q)dQ

G(M,Q) =
e−jkR

2πR

(26)

V (Q) =

{
V̄n ∀ Q ∈ Spiston

0 elsewhere
(27)

However, insofar as the dimension of the piston is not negligible, the
integral over the piston area is discretized into nx×ny points. Consequently,
Eqs. (26) and (27) become:





p(Mr) = jρωV̄n

∑

k

e−jkRkMr

2πRkMr

∆xk∆yk

RkMr
=

√
(xMr

− xk)2 + (yMr
− yk)2 + (zMr

− zk)2

(28)

Where (xMr
, yMr

, zMr
) are the coordinates of the center of the patch r

and (xk, yk, zk) are the coordinates of the point k belonging to the piston.

The particle velocity is then easily obtained at the center of the patch r

by using the Euler’s equation defined in Eq. (29):

V (Mr) = −
1

jρω
V̄n

∂p

∂ne

(Mr) (29)

Where ne is the external normal vector to the virtual cavity.
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