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Introdution

The Nearfield Acoustical Holography (NAH), firstly introduced by Williams et al. [START_REF] Williams | Sound source reconstructions using a microphone array[END_REF][START_REF] Williams | The nearfield acoustical holography (NAH) experimental method applied to vibration and radiation in light and heavy fluids[END_REF], is based on the two-dimensional Fourier Transform of the complex pressure field at a given frequency measured on a hologram near the source. Measurements of the pressure field are generally made on a plane surface and make possible the determination of the three-dimensional source velocity field. However, the NAH is mainly applicable to simple geometries (planes [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 3 -The Inverse Problem: Planar Nearfield Acoustical Holography[END_REF], cylinders [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 5 -The Inverse Problem: Cylindrical NAH[END_REF] and spheres [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 7 -Spherical Nearfield Acoustical Holography[END_REF]). Furthermore, problems of discontinuities exist at boundaries, because of the lack of information beyond the zone of measurements nevertheless necessary to compute the two-dimensional Fourier Transform. Thus, to avoid the influence of boundary effects, measurements have to be made in the acoustical nearfield of the structure.

The iFRF method is based on the evaluation and the inversion of transfer matrices, which can be obtained either experimentally or numerically. In the last case, if the computation of the transfer functions is based on the Boundary Element Method, it is called iBEM. This method can be used to reconstruct acoustic radiation on arbitrary surfaces [START_REF] Bai | On the reconstruction of the vibro-acoustic field over the surface enclosing space using the boundary element method[END_REF]. In that way, Martinus [START_REF] Martinus | An advanced noise source identification technique using the inverse boundary-element method[END_REF] uses this method to determine the distribution of particle velocity on the open end of a rectangular duct and shows that sound pressure field measurements need not to be made in the nearfield of the source to obtain good results. However, the main drawback of iBEM is that it requires an excessive amount of measurements to determine the acoustic field on a complex structure, since it needs a fine mesh definition (six nodes per wavelength). The difficulty of the method comes also from the inversion of the transfer matrices, which are often ill-conditioned and thus requires the use of regularization methods.

Other methods are also developed to overcome the difficulties and limitations inherent to NAH or iBEM. Thus, a hybrid NAH was introduced [START_REF] Wu | Hybrid nearfield acoustical holography[END_REF][START_REF] Zhao | Reconstruction of vibro-acoustic fields using hybrid nearfield acoustic holography[END_REF]. This method is based on a modified HELS method (Helmholtz Equation Least Squares) [START_REF] Wu | Reconstructing interior acoustic pressure field via helmholtz equation least-squares method[END_REF][START_REF] Rayess | Experimental validations of the hels method for reconstructing acoustic radiation from a complex vibrating structure[END_REF] and allows a reconstruction of the pressure field on a complex shape surface very close to the source surface. As NAH applications, the hybrid NAH needs regularization, because of measuring uncertainty and incompleteness of acoustic pressure field, which leads to ill-conditioned trans-fer matrices. Furthermore, the modified HELS method can be also combined with iBEM [START_REF] Wu | Combined helmholtz equation least-squares method for reconstructing acoustic radiation from arbitrarily shaped objects[END_REF] to reconstruct acoustic quantities on a virtual sphere enclosing the source structure, which can lead to the loss of nearfield information. Finally to avoid a great number of measurements, the PSP (Principal Source Projection) method is introduced [START_REF] Leclère | An alternative acoustic imaging technique to improve capabilities of microphone array measurements[END_REF][START_REF] Leclère | Application of an innovative acoustic imaging technique to assess acoustic power maps of a gasoline engine[END_REF]. This method is based on the evaluation of a radiation operator between the source surface, represented by a distribution of elementary sources, and a grid of measurements. For traditional methods, like iBEM, the number of identified acoustic sources is limited to the number of microphones in order to guarantee the uniqueness of the solution. On the contrary, for PSP method, the number of quantified sources is higher than the number of microphones, which means that the system is under-determined. In addition, to identify the data on the source surface, the transfer functions, calculated between a point of the elementary source and a point of measurement, have to be inverted. The transfer matrix is often ill-conditioned, which implies to use regularization methods like Truncated Singular Values Decomposition (TSVD).

In this article, an alternative method is introduced to identify source velocities: the iPTF method. This method is derived from the Patch Transfer Functions (PTF) method [START_REF] Maxit | Airbone noise prediction using patch acoustic impedance[END_REF][START_REF] Ouisse | Patch transfer functions as a tool to couple linear acoustic problems[END_REF][START_REF] Totaro | Extension of the Patch Tranfer Functions method (PTF Method) to high frequency domain (sub-cavities decomposition)[END_REF]. In its direct formulation, the PTF method is a tool to predict pressure inside and outside a cavity containing acoustic sources and apertures, thanks to the use of substructuring and impedance concepts. The acoustical medium is indeed divided into subdomains and PTF are evaluated by suitable methods for each subdomain (FEM, Rayleigh approach, measurements, . . . ). Subdomains are then coupled through their common surface, divided into patches. Coupling conditions are written for each patch as pressure and velocity equations, describing the local equilibrium. A system of linear equations is finally obtained, where unknowns are coupling patch velocities. The system is solved to determine coupling velocities and finally pressures at any point of the acoustical domain.

The aim of the inverse approach (iPTF method) is to determine source velocities from measured patch pressures and velocities on a virtual cavity. Theoretically, iPTF method allows identifying source velocities in a noisy environment (i.e. in the presence of other sources) thanks to double measurements of pressure and particle velocity fields on a surface surrounding the source, what is not possible with classical methods, which only use sound pressure measurements. Measurements can thus be made, for instance, on a part of an engine in use. However, as classically observed in inverse methods, the inversion of an ill-conditioned matrix is required. But this drawback can be alleviate by using suitable regularization techniques like TSVD or Tikhonov. Finally, one of the advantages of iPTF method is the use of the Finite Element Method (FEM) as a solver. When other methods need analytical or BEM model to estimate transfer functions, iPTF only needs modal basis of a virtual cavity to compute Patch Transfer Functions. This makes the method applicable even to sources with complex geometries.

The present article deals with the theoretical background of the method and its numerical and experimental application on a simple case (two baffled pistons driven in antiphase). This test case is voluntarily simple in order to easily study the main features of the proposed method, namely the size of the virtual cavity, the number of measurement patches, the ability to localize and separate sources and finally the robustness of the method with respect to an external stationnary disturbing source. Experimental validations of the iPTF approach confirm expected advantages and demonstrate the applicability of the method.

Theoretical background of the iPTF method

Basic concept of the iPTF method: the integral formulation

Let us consider the acoustic cavity presented in Fig. [START_REF] Williams | Sound source reconstructions using a microphone array[END_REF]. The acoustical domain Ω is delimited by a rigid surface S r , an absorbing surface S a , a vibrating surface S v and a surface with Dirichlet conditions S d . Furthermore, an acoustic source S 0 is located inside the acoustic volume Ω, but outside a part Ω c of Ω. Consequently, the problem to solve is expressed by Eq. ( 1)

                     ∆p(M ) + k 2 p(M ) = S 0 (M ) ∀M ∈ Ω ∂p ∂n (Q) = 0 ∀Q ∈ S r ∂p ∂n (Q) = -jρωV (Q) ∀Q ∈ S v p(Q) = p 0 ∀Q ∈ S d p(Q) = - Z jρω ∂p ∂n (Q) ∀Q ∈ S a (1) 
Where ∆ is the Laplacian operator, ∂ ∂n the normal derivative, ρ the density of air, V (Q) the normal velocity imposed on S v , p 0 the pressure imposed 

Ωc ∆Φ + k 2 Φ Ψ -∆Ψ + k 2 Ψ Φ dΩ c = Sc Φ ∂Ψ ∂n -Ψ ∂Φ ∂n dS c
(2) The previous expression is very general and functions Φ and Ψ are arbitrary. In the present work, we suppose first that the function Φ is the acoustic pressure p. In the cavity Ω c , where no sources acting, the pressure satisfies the homogeneous Helmholtz equation as expressed in Eq. (3),

∆p(M ) + k 2 p(M ) = 0 ∀M ∈ Ω c (3) 
The function Ψ is chosen as the Green's function G satisfaying Eq. ( 4).

   ∆G(M, M ′ ) + k 2 G(M, M ′ ) = 0 ∀(M, M ′ ) ∈ Ω c ∂G ∂n (Q, Q ′ ) = δ(Q -Q ′ ) ∀(Q, Q ′ ) ∈ S c (4) 
Consequently, by introducing Eqs. (3) and (4) in Eq. ( 2), we finally obtain the integral equation given by Eq. [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 7 -Spherical Nearfield Acoustical Holography[END_REF].

p(Q ′ ) = Sc G(Q, Q ′ ) ∂p ∂n (Q)dQ (5) 
The key point of this formulation is that external sources located outside the cavity do not modify the integral equation. In other words, this formulation is independent of acoustic sources external to Ω c . Furthermore, another asset of integral formulation method is that the Green's function G can be arbitrarily chosen. To illustrate this point, let us consider the Green's function G ′ satisfaying Dirichlet's boundary condition as expressed in Eq. ( 6)).

∆G ′ (M, M ′ ) + k 2 G ′ (M, M ′ ) = 0 ∀(M, M ′ ) ∈ Ω c G ′ (Q, Q ′ ) = δ(Q -Q ′ ) ∀(Q, Q ′ ) ∈ S c (6) 
The introduction of Eqs. ( 3) and ( 6) in Eq. ( 2) allows obtaining the integral formulation given by Eq. ( 7), which is independent of external acoustic sources too.

∂p ∂n (Q ′ ) = Sc p(Q) ∂G ′ ∂n (Q, Q ′ )dQ (7)

Basic equation of the iPTF method

Let us consider the practical situation given in Fig. [START_REF] Williams | The nearfield acoustical holography (NAH) experimental method applied to vibration and radiation in light and heavy fluids[END_REF], where a virtual cavity of surface S c = S m ∪ S v surrounds the source and separates the acoustical domain into a virtual cavity Ω c and an exterior domain Ω e .

In the iPTF formulation, the Green's function used is that of virtual cavity where boundary surface S c is supposed rigid. It is important to notice that these rigid wall boundary conditions have no physical reality. They just provide a mathematical tool to solve the virtual cavity problem. The integral formulation to solve is consequently the one given by Eq. (5). When using Euler's equation in Eq. ( 5), the acoustic pressure p(Q ′ ) at the point Q ′ is related to the normal velocity V n (Q) at each point Q of the surface S c as expressed in Eq. [START_REF] Wu | Hybrid nearfield acoustical holography[END_REF].

p(Q ′ ) = -jρω Sc G(Q, Q ′ )V n (Q)dQ (8)
Numerical solution of the previous integral equation is based on the discretization of the surface S c into N elementary areas A r called patches. The 8) on patches basis leads to Eq. ( 9), describing the relation between the space average normal velocity vr on the patch r and the space average pressure pj on the patch j. One can notice that this relation remains true provided that the size of patches is small compared to the wavelength.

pj = N p=1 Z jr vr (9) 
In Eq. ( 9), the space average pressure and velocity are related by the patch impedance Z jr . Consequently, the patch impedance Z jr between the excited patch p and the receiving patch j is defined as the ratio of the space average pressure pj on a patch j and the space average normal velocity vr on a patch p as expressed in Eqs. [START_REF] Wu | Reconstructing interior acoustic pressure field via helmholtz equation least-squares method[END_REF].

Z jr = pj vr ( 10 
)
Where the space average is defined as

•r = 1 Ar Ar • dA r
The basic equation of the iPTF is derived from Eq. ( 9), where the contribution of patches is separated into patches belonging to the source surface S v and patches belonging the virtual surface S m as expressed by Eq. [START_REF] Rayess | Experimental validations of the hels method for reconstructing acoustic radiation from a complex vibrating structure[END_REF].

pj = P k=1 Z jk vk + M i=1 Z ji vi (11) 
Where j and i belong to S m , k belongs to S v and N = M + P Now, the iPTF formulation can be obtained from Eq. ( 11) in a straightforward manner. For sake of simplicity, Eq. ( 11) is written in matrix form (see Eq. ( 12)) and following notations are considered:

P j = pj , V i = vi and V k = vk {P j } = [Z jk ]{V k } + [Z ji ]{V i } (12) 
One has to notice that in matrices [Z ji ] and [Z jk ], the number of line j represents the number of patch pressure measurements {P j }, while the number of column k corresponds to the number of identification patches of source velocity {V k } and i represents the number of patch velocity measurements {V i }.

The vector of source velocities {V k } is thus easily obtained after simple matrix manipulation and is the basic equation of the iPTF method.

{V k } = [Z jk ] -1 ({P j } -[Z ji ]{V i }) (13) 
Insofar as the impedances matrices [Z jk ] and [Z ji ] are numerically computed, only pressures {P j } and velocities {V i } have to be measured on each patch of the virtual surface S m to calculate the mean patch source velocities {V k }. In the iPTF method, the patch pressure {P j } and the patch velocity {V i } are measured with a pressure-velocity (PU) probes. Such PU probes have been assessed by Jacobsen and Jaud [START_REF] Jacobsen | A note on the calibration of pressure-velocity sound intensity probes[END_REF][START_REF] Jacobsen | Statistically optimized near field acoustic holography using an array of pressure-velocity probes[END_REF]. One important point is that velocity field on the virtual surface can be due to direct field from the vibrating surface as well as reflected sound by obstacles placed outside the virtual cavity. Thus, this method is not restricted to anechoic environment and is theoretically independent of sources located outside the measurement area in virtue of the Kirchhoff's integral. Nevertheless, the inversion of the impedances matrices can be difficult, since these matrices are rectangular and ill-conditioned as it will be presented in the section 2.4.

Computation of patch impedance Z jr

As already said in section 2.2, the patch impedance matrices [Z jk ] and [Z ji ] are numerically computed. They are derived from the integral formula-tion (see Eq. ( 8)) and the expansion on virtual rigid wall cavity modes. To obtain these quantities, we have to calculate the function G(Q, Q ′ ) satisfaying Eq. ( 4). For this purpose, we expand the solution on normal modes of the rigid wall cavity. This leads to the Green's function given by Eq. ( 14). In appendix A, the detailed calculation of the Green's function is presented.

G(Q, Q ′ ) = - n c 2 φ n (Q)φ n (Q ′ ) Λ n (ω 2 n -ω 2 + jη n ω n ω) (14) 
Where Λ n is the norm of the mode n, η n the modal damping, avoiding singularities when ω = ω n .

Then, the pressure p(Q ′ ) created by a constant normal velocity vr imposed on a patch r of surface S r can be calculated from Eq. [START_REF] Maxit | Airbone noise prediction using patch acoustic impedance[END_REF].

p (Q ′ ) = -jρωc 2 S r n φnr φ n (Q ′ ) Λ n (ω 2 n -ω 2 + jη n ω n ω) vr (15) 
The patch impedance Z jp between the excited patch p and the receiving patch j is thus given by Eq. ( 16), where the space average pressure over receiving patches is introduced.

Z jp = pj vp = - n jωρc 2 S p Λ n (ω 2 n -ω 2 + jη n ω n ω) φnp φn j ( 16 
)
Where S p is the surface of the patch p.

One can also notice that the natural frequencies ω n and the mode shapes of the virtual rigid wall cavity φ n are obtained by FE calculation, which permits to deal with complex source geometries.

Some explanations about ill-conditioned impedance matrices

In the iPTF method, impedance matrix [Z jk ] has to be inverted. However, in many inverse problems, matrices can be ill-conditioned, which is the case in the present method. Consequently, it is important to identify factors causing the ill-conditioning of [Z jk ] matrix. For this purpose, the conditioning number is a good indicator and serves as base for the following discussion. One reminds that [Z jk ] matrix relates the number of patches j, where patch pressures {P j } are measured to the number of patches k,where patch source velocities {V k } are identified.

Influence of pressure information on source surface

Let us consider the source surface presented in Fig. (3). To avoid particular cases, this source surface has no symmetries. A virtual cavity is then defined as well as measurement and source patch meshes as shown in Fig.

(3). The dimensions of the virtual cavity are about 500 × 350 × 400 mm 3 . First of all, we consider the standard way of using the method, where pressure is measured on all virtual surfaces but not on the source surface. In this case, conditioning numbers versus frequency are presented in Fig. (4). The analysis shows that impedance matrix is ill-conditioned. Conditioning number globally decreases with frequency and presents peaks on resonance frequencies of the cavity. To clarify this tendency, we consider a second situation, corresponding to the first one with addition of pressure measurement on the source surface.

The conditioning number, presented in Fig. [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 5 -The Inverse Problem: Cylindrical NAH[END_REF], clearly indicates that impedance matrix is better conditioned. Pressure information on source surface is thus important to decrease the conditioning number. Unfortunately, practically speaking, pressure measurement on source surface is often not possible in real situation. However, it may be sufficient to measure only few pressure data on the source surface to really decrease the conditioning number. In this way, we assumed that pressure is measured on all the virtual surfaces and on only one patch located in the center of source surface. Result is presented in Fig. [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 5 -The Inverse Problem: Cylindrical NAH[END_REF], with one additional pressure point on the source surface. Above 1200 Hz, the conditioning number is divided by two which represents a real improvement. However, at lower frequency, no significant modifications of the conditioning number appear. Pressure measured on all the virtual surfaces, (-.-) Pressure measured on all the virtual surfaces and on the source surface and (--) Pressure measured on all the virtual surfaces and on one patch located in the center of source surface

Influence of the number of pressure control points

From a practical point a view, one can wonder if all the pressure information on virtual surfaces is necessary. For this purpose, we used the same source geometry and virtual cavity as in section 2.4.1, but we only used pressure information measured on the top virtual surface (see Fig. (3)), instead of using pressure information on all the virtual surfaces. Conditioning numbers versus frequency are presented in Fig. [START_REF] Williams | Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, chapter 7 -Spherical Nearfield Acoustical Holography[END_REF] for the previous situations. The analysis shows as expected that it is preferable to measure pressure field on all the virtual surfaces to limit the conditioning number.

The conclusion is thus simple, the more measured patch pressure, the lower the conditioning number. Practically, it is recommended to measure pressure and velocity data on all patches of the virtual surface and if possible on additional points on the source surface. In the rest of this paper, pressure information on source surface is voluntarily not measured insofar as the aim is to find a method to identify properly source velocity without measuring data on the source surface. 

Influence of virtual cavity dimensions

In the iPTF method, the virtual cavity can be arbitrary defined. It is thus interesting to know, if it is preferable to perform measurements on a small or large virtual cavity. To compare results, we consider the same source geometry as in the previous subsection (see Fig. [START_REF] Bai | On the reconstruction of the vibro-acoustic field over the surface enclosing space using the boundary element method[END_REF]). The virtual cavity smaller than the previous one is almost a parallelepiped with dimensions about 500 × 350 × 120 mm 3 and the patch mesh is defined on virtual surfaces as presented in Fig. [START_REF] Bai | On the reconstruction of the vibro-acoustic field over the surface enclosing space using the boundary element method[END_REF]). Furthermore, we assumed that pressure and particle velocity are measured on all the virtual surfaces. Fig. [START_REF] Martinus | An advanced noise source identification technique using the inverse boundary-element method[END_REF] presents conditioning numbers for the large and the small virtual cavities (see Figs.

(3) and ( 6)). This figure shows that patch impedance matrix conditioning number for a small cavity is better at low frequency than that obtained for a large cavity. But when modal overlap is achieved both cavities have similar conditioning numbers. A small cavity is therefore preferable to limit the conditioning number. This point can be associated to Pressure-Velocity measured on all the virtual surfaces for (-) the large virtual cavity and (--) the small virtual cavity

Influence of virtual cavity modes

Ill-conditioning can also be due to a bad definition of the virtual volume and patch mesh. Ouisse et al. [START_REF] Ouisse | Patch transfer functions as a tool to couple linear acoustic problems[END_REF] define a numerical criterion to limit the ill-conditioning of patch impedance matrices. This criterion stipulates that the order of virtual cavity modes in one direction has to be greater than or equal to the number of patches in the same direction. It corresponds in fact to the number of degrees of freedom necessary to ensure that patches motions are independent. To demonstrate the validity of this criterion, conditioning number is evaluated for a parallelepiped virtual cavity which dimensions are 450 × 350 × 130 mm 3 . A patch mesh is then defined on measurement and source surface and natural modes have been extracted up to 2kHz, 3kHz, 4kHz and 5kHz. In each case, patch impedance matrices have been computed in the frequency range of interest [10, 2000 Hz]. As shown in Table 1, the criterion is not respected for modes extrated up to 2 kHz and as a consequence the patch impedance matrix is extremely ill-conditioned (see Fig. [START_REF] Wu | Hybrid nearfield acoustical holography[END_REF]). Furthermore, the criterion is respected above 3 kHz and conditioning numbers are very much better than that obtained for modes extracted up to 2 kHz. Nevertheless, a regularization would be compulsory in this configuration but this criterion is required to limit the ill-conditioning of impedance matrices. When virtual cavity has a complex geometry, this criterion is not directly applicable. However, one can say that the number of virtual cavity modes must be at least equal to the number of patches.

Numerical and experimental validation of the iPTF method

In this section, we seek to validate the iPTF method numerically and experimentally from a simple set-up. The retained set-up consists of two baffled pistons driven in antiphase as shown in Fig. [START_REF] Zhao | Reconstruction of vibro-acoustic fields using hybrid nearfield acoustic holography[END_REF]. The chosen test case is voluntarily simple in order to clearly establish how the method is able to localize and separate vibrating sources. The identification area (dimensions: 

. Validation of the basic principle

To validate the basic principle given by Eq. ( 13), we define a parallelepiped virtual cavity measuring 450 × 350 × 20 mm 3 around the source (see Fig. (10a)). Moreover, in the PTF method, the definition of patch meshes is driven by a wavelength criterion according Ouisse et al. [START_REF] Ouisse | Patch transfer functions as a tool to couple linear acoustic problems[END_REF]. They have demonstrated that in its direct formulation, the PTF method is applicable with a λ ac /2 criterion for patch meshes. However, for iPTF method, an additional condition must be considered; the measurement mesh has to be fine enough to obtain a sufficient number of measurement data. In other words, the number of measurement patches has to be larger than the number of identification patches to avoid under-determination of the problem. Based on this observation, the measurement surface is divided into 139 patches and pressure and particle velocity fields are analytically computed at the center of each measurement patch with standard Rayleigh integral method (see appendix B for details). The process allows identifying properly the source velocity, since reference and identification maps at 240 Hz slightly differ as shown in Figs. [START_REF] Rayess | Experimental validations of the hels method for reconstructing acoustic radiation from a complex vibrating structure[END_REF] and [START_REF] Wu | Combined helmholtz equation least-squares method for reconstructing acoustic radiation from arbitrarily shaped objects[END_REF].

Robustness of the iPTF method -Influence of the measurement noise

The measurement noise is an important parameter in the results accuracy. In order to analyse the influence of measurement uncertainties, we propose to slightly modify the exact pressure and particle velocity fields analytically computed by introducing two independent Gaussian random variables ∆Q and ∆φ, simulating errors on the magnitude and the phase of measurement data [START_REF] Pezerat | Two inverse methods for localization of external sources exciting a beam[END_REF]:

P = P exact .∆Q p .e j∆φ V = V exact .∆Q v .e j∆φ (17) 
Where ∆Q p = p|P exact |X + 1 and ∆φ = arctan(p)Y , with p the noise percentage and (X,Y) two independent Gaussian random variables. Figs. ( 13) and ( 14) present the influence of measurement uncertainties on identifications for p = 30%. We can thus notice that the measurement noise has a limited influence on the identification accuracy, insofar as the magnitude and spatial distribution of source velocities are only marginally affected. Consequently, the proposed method appears to be robust with respect to measurements uncertainties. Source velocity ( 

Robustness of the iPTF method -Influence of correlated disturbing source

When measurements are performed in situ, correlated sources can modify the pressure and the particle velocity fields measured around the source to identify. Consequently, virtual sources are likely to appear on the hologram due to the bad estimation of acoustic field in the measurement area. As underlined in section 2, the iPTF method is theoretically independent of the presence of external sources. To prove this theoretical fact, a third piston is inserted in the rigid baffle, whereof velocity is 5 times bigger than that of the first piston (see Fig. [START_REF] Maxit | Airbone noise prediction using patch acoustic impedance[END_REF]). This third disturbing piston modifies the acoustic field computed at the center of the measurement patches. As an exemple, the mean square pressure is increased by 6.5 dB at 240 Hz, while the mean square particle velocity is increased by 3.5 bB at the same frequency. 16) presents the comparison of the spatial distribution of reference source velocity with the identified one obtained in presence of a disturbing acoustic source. Maps prove that the source velocity can be properly identified in presence of a disturbing source.

Influence of the virtual cavity dimensions

The dimensions of the virtual cavity is essential in the identification process since the more we measure far from the source, the more we lose the near field information related to the evanescent waves. In that it is hard to identify precisely the source velocity because of the lack of information. To demonstrate the influence of the cavity dimensions on the identification, we define a virtual cavity which dimensions are 450 × 350 × 130 mm 3 . Furthermore, the measurement surface is divided into 259 patches. As shown in Fig. [START_REF] Jacobsen | A note on the calibration of pressure-velocity sound intensity probes[END_REF], the iPTF method succeeds in identifying source velocities. However, as classically observed in other holographic methods (NAH or iBEM), the 

Experimental validation 3.3.1. Experimental set-up

The experimental validation consists in reproducing as reliably as possible the set-up used for the numerical validation, in order to evaluate the applicability and the robustness of the method in a non anechoic environment. For this purpose, the acoustic baffle consists of a wooden thick plate of 700 × 600 × 40 mm 3 , in which two loudspeakers fed by a white noise are inserted. Furthermore, the identification area is materialized on the rigid baffle as shown in Fig. [START_REF] Jacobsen | Statistically optimized near field acoustic holography using an array of pressure-velocity probes[END_REF].We can also notice that measurements were performed in a non anechoic chamber and consequently reflected sound from room boundaries was present. Finally, reference and acoustic field measurements were carried out with a PU probe in the very nearfield of the source (5 mm from the acoustic source) and a microphone was used as phase reference.

Like in previous sections, we define around the identification area the same patch meshes as those used in the numerical validation. It is relevant to remind that space averaged data of pressure and particle velocity on patches are represented by one measurement point at the center of the patch. By this way, a positioning error of the PU probe can influence the quality of the experimental results. Of course, other factors can come into account like normal vectors orientation for particle velocity measurements or uncertainties due to transducers quality. In the following, we use an indicator ǫ which allows thoroughly dertermining the identification error of the iPTF method. This indicator is define as in Eq. ( 18).

ǫ = 10log V 2 id V 2 ref ( 18 
)
Where V ref is the source velocity measured in the very nearfield of the source and V id is the identified source velocity.

Validation of the basic principle

The experimental validation of the basic principle is performed by reproducing the numerical experiment used in section 3.1. When applying the iPTF method from experimental data, a good agreement between measured and identified source velocity is observed both in magnitude and spatial distribution (see Figs. [START_REF] Pezerat | Two inverse methods for localization of external sources exciting a beam[END_REF] and ( 21)). The analysis of Fig. [START_REF] Pezerat | Two inverse methods for localization of external sources exciting a beam[END_REF] shows actually that the identification error on the first excited patch ((x, y) =(0.1125 m,0.245 m)) does not exceed 1 dB on all the frequency range.

Robustness of the iPTF method -Influence of correlated disturbing source

To test the robustness of the method in presence of a correlated disturbing source, we used the same virtual cavity as in the previous case and a third loudspeaker located outside the measurement area was added (see Fig. [START_REF] Totaro | Identify velocity of a complex source with iPTF method[END_REF]). A reference measurement was performed again to take into account the acoustic field modifications due to the disturbing source.

The pressure power spectrum measured on a patch of the measurement surface with and without disturbing source highlights the influence of the disturbing source. Disturbing pressure was in general of the same order as the primary source pressure and at certain frequencies differed from more than 

Influence of the virtual cavity dimensions

As already evoked in the numerical validation of the method, the more we measure the sound field far from the source, the more we lose information related the evanescent waves. The aim of this section is to know how experi-mentally the absence of near field information affects the identification accuracy. For this purpose, we use the virtual cavity of dimensions 450×350×130 mm 3 defined in section 3.2.1. In this case too, the iPTF method gives quite satisfaying results in both magnitude and spatial distribution (see Figs. ( 26) and ( 27)). However, Fig. (26) shows that the identification is less accurate in magnitude than that performed on a cavity of reduced dimensions. The discrepancy is however acceptable up to 425 Hz, where the height of the virtual cavity reaches λ 6 ( 340 6×425 ≈ 0.13 m). Nevertheless, the method succeed in localizing the two louspeakers below 425 Hz. 

Conclusion

The iPTF method allows identifying source velocities on complex structures. In this paper, the theoretical background as well as the measurement methodology have been introduced. In the method, both pressure and particle velocity fields have to be measured on the virtual cavity surfaces. This is quite simple when using PU probes. To prove the ability of the method, an experimental validation has been set up on two baffled pistons driven in antiphase. As classically observed in holographic methods, one of the main drawbacks remains the loss of the near field information when measuring acoustic field far from the source. However, the combined use of integral formulation, FEM as a solver and the double measurement of pressure and particle velocity fields allows overcoming some limitations of classical methods associated to simple structure geometry. Thus, the independence of the method with respect to external stationnary sources and its applicability to complex shape structures are the main advantages of the iPTF method. Finally, further applications of the method on more complex structures than that presented in this article, namely an L-shape plate and a vehicle precatalyst, can be found in Refs. [START_REF] Aucejo | Identification of source velocities with iPTF (inverse Patch Transfer Functions method)[END_REF] and [START_REF] Totaro | Identify velocity of a complex source with iPTF method[END_REF] 
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 1 Figure 1: Integral problem
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 2 Figure 2: Basic identification problem
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 3 Figure 3: Geometry of the vibrating source and patch mesh definition on surface of the virtual cavity
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 4 Figure 4: Conditioning number of patch impedance matrices -Comparison between (-)Pressure measured on all the virtual surfaces, (-.-) Pressure measured on all the virtual surfaces and on the source surface and (--) Pressure measured on all the virtual surfaces and on one patch located in the center of source surface
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 5 Figure 5: Conditioning number of patch impedance matrices -Comparison between (-) Pressure measured on all the virtual surfaces, (--) Pressure measured on the top virtual surface
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 6 Figure 6: Geometry of the vibrating source and patch mesh definition Geometry of the vibrating source and patch mesh definition on surface of a 500 × 350 × 120 mm 3 virtual cavity
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 7 Figure 7: Conditioning number of patch impedance matrices -Comparison between Pressure-Velocity measured on all the virtual surfaces for (-) the large virtual cavity and (--) the small virtual cavity

Table 1 :

 1 Comparison between the maximal order of cavity modes and the number of patches along the directions x,y and z Modal frequency limit 2kHz 3kHz 4kHz 5kHz Maximal order of modes 5 × 4 × 1 7 × 6 × 2 10 × 8 × 3 13 × 10 × 3 Number of measurement patches 6 × 5 × 2 Number of source patches 6 × 5
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 8 Figure 8: Influence of the maximal cavity modes order on the conditioning number of patch impedance matrices for a 450 × 350 × 130 mm 3 virtual cavity and modes extracted up to (-) 2 kHz, (--) 3 kHz, (..) 4 kHz and (-.-) 5 kHz

Figure 9 :

 9 Figure 9: Definition of the validation set-up -Two baffled pistons driven in antiphase
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 10 Figure 10: Definition of (a) the virtual cavity and (b) the patch mesh around the source
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 1112 Figure 11: Numerical validation for a 450 × 350 × 20 mm 3 virtual cavity -Comparison of (a) the reference map and (b) the identified map obtained with the iPTF method at 240 Hz
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 13 Figure 13: Numerical validation for a 450 × 350 × 20 mm 3 virtual cavity -Comparison between (a) the reference map and the identified maps obtained for (b) (b)p = 30% at 240 Hz

Figure 14 :

 14 Figure 14: Numerical validation for a 450 × 350 × 20 mm 3 virtual cavity -Comparison of source velocity along a line (x,0.245 m) across the prediction plane at 240 Hz, (-) Reference, (--) Identification for p = 30%
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 15 Figure 15: Location of the disturbing piston outside the identification area

Fig. (

  Fig.[START_REF] Ouisse | Patch transfer functions as a tool to couple linear acoustic problems[END_REF] presents the comparison of the spatial distribution of reference source velocity with the identified one obtained in presence of a disturbing acoustic source. Maps prove that the source velocity can be properly identified in presence of a disturbing source.
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 161718 Figure 16: Numerical validation for a 450 × 350 × 20 mm 3 virtual cavity in presence of an external disturbing source -Comparison of (a) the reference map and (b) the identified map obtained at 240 Hz
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 19 Figure 19: Experimental set-up
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 20121 Figure 20: Experimental validation for a 450 × 350 × 20 mm 3 virtual cavity -Identification error on the first excited patch (x, y) =(0.1125 m,0.245 m)
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  dB (see Fig. (23)).
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 22232425 Figure 22: Experimental set-up -Location of the disturbing source

Figure 26 :

 26 Figure 26: Experimental validation for a 450×350×130 mm 3 virtual cavity -Identification error on the first excited patch (x, y) =(0.1125 m,0.245 m)

Figure 27 :

 27 Figure 27: Experimental validation for a 450 × 350 × 130 mm 3 virtual cavity -Comparison between (a) the reference map and (b) the identified map obtained experimentally with the iPTF method at 240 Hz

A. Calculation of Green's function by modal approach

The Green's identity defined in Eq. ( 2) is then used, where Φ is the mode shape φ n of the virtual rigid wall cavity Ω c satisfying Eq. [START_REF] Jacobsen | Statistically optimized near field acoustic holography using an array of pressure-velocity probes[END_REF] and Ψ is the function G satisfying Eq. [START_REF] Pezerat | Two inverse methods for localization of external sources exciting a beam[END_REF].

Consequently, using Eqs. [START_REF] Williams | The nearfield acoustical holography (NAH) experimental method applied to vibration and radiation in light and heavy fluids[END_REF], where Φ = φ n and Ψ = G, (20) and ( 19), we obtain the integral equation given by Eq. [START_REF] Aucejo | Identification of source velocities with iPTF (inverse Patch Transfer Functions method)[END_REF].

The function G is now determined by expansion on the modal basis φ n (Q):

Using this decomposition in Eq. ( 21), one obtains:

Where the norm of modes is such as Ωc φ n (Q)φ q (Q)dΩ c = Λ n δ nq . One obtains therefore the following expression:

The patch impedance between a source patch k and a reception patch j is then:

Obviously in the Eqs.( 24) and (25), this modal composition presented problems at resonant frequencies. To avoid these difficulties, one introduces the modal damping of fluid η n , which is a constant in this study. Therefore, one replaces in the denominator the term ω 2 nω 2 by the term ω 2 nω 2 + jη n ω n ω.

B. Radiation of a baffled piston

The Rayleigh integral formulation of a baffled piston is used to compute its radiation as expressed in Eq. ( 26).

However, insofar as the dimension of the piston is not negligible, the integral over the piston area is discretized into n x × n y points. Consequently, Eqs. ( 26) and (27) become:

Where (x Mr , y Mr , z Mr ) are the coordinates of the center of the patch r and (x k , y k , z k ) are the coordinates of the point k belonging to the piston.

The particle velocity is then easily obtained at the center of the patch r by using the Euler's equation defined in Eq. (29):

Where n e is the external normal vector to the virtual cavity.