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SUMMARY

This paper deals with the problem of state and delay estimation for SISO nonlinear systems with an unknown

time-varying delay in the input. The main idea is to approximate the delayed input by using Taylor’s theorem

and to create an extended system with the delay as part of the extended state. Then, the construction of an

observer is proposed to estimate both state and delay. The results are illustrated by simulations. Copyright

c© 0000 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

Input-delay systems are a subcategory of time-delay systems (TDS). They especially include all

remote controlled devices. The source of delay is multiple: the network configuration (see the

extensive literature on Networked Control Systems [1]), computational delays or physical transport

delays. When the delay is small, delay free controllers can often achieve stabilization. However,

predictive techniques are often required as soon as the delay becomes larger and cannot be neglected

anymore [2]. To use such methods, the value of the delay is needed. However, in real applications,

it is quite difficult to measure the delay with precision that is why it can be necessary to estimate

it and compute a prediction based on this estimated delay. For an exhaustive review of time delay

estimation (TDE) techniques, the reader can refer to the report [3]. The prediction requires not only
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2 LÉCHAPPÉ ET AL.

the delay, but also the state. However, standard observation techniques cannot be applied when the

delay is unknown. In this paper, both problems are addressed: delay estimation and state observation.

1.1. Delay estimation

Signal processing approach. Time delay identification has often been based on a signal processing

approach and particularly in the acoustic field [4][5]. In this case, the general idea of TDE techniques

is the following: an estimator J(τ̂ ) is designed† and the evolution law for τ̂ has to minimize the

criterion J(τ̂ ). A standard time delay estimator is the direct correlator (DC) that seeks the maximum

value of the cross correlation between the reference and the delayed signal [5]. Other estimators

exist such as J(τ̂ ) = [u(t− τ)− u(t− τ̂)]2 (where u is the system input) or the average square

difference function estimator (ASDF) for discrete time techniques [6]. These methods are not well

adapted in the control context for two main reasons. First of all, they are usually offline methods

(DC, ASDF) and therefore suffer from a long computation time due to the low rate of convergence

of the optimization algorithm. Secondly, they require the knowledge of the delayed signal which is

not always available in practice. A survey of TDE techniques with a signal processing focus is given

in [7].

Control oriented methods. In these approaches, the delay is often considered as a parameter of

the system and its identification is usually combined with the identification of other parameters. A

vast literature exists on this topic. Some authors use the frequency domain where the delay appears

as a parameter in the exponential e−τs. In [8], the term e−τs is approximated by a rational transfer

function of the Padé form; then a standard discrete least-square algorithm is used to minimize an

objective function. Tuch et al. [9] also based their approach on the frequency domain and proposed

a continuous recursive least square algorithm. However, this method does not work if the initial

conditions of the system are not perfectly known. In [10], a PDE approximation is used to extract

the delay. In [11], a similar techniques as in [9] is applied but the value of u(t− τ) is required. In

[12], observers have been used to identify the delay. However, all the state and its time derivatives

are needed; so the method is very sensitive to noise measurement. In [13] and [14], a convolution

approach is discussed for transfer function systems. Finally, recent works design adaptive controllers

that estimate the delay. Unlike previously mentioned papers, next references deal with closed-loop

identification method. In [15], the delay estimator is obtained from the transport PDE representation

of the system. However, only the state stabilization is proven but not the convergence of the delay

estimator. A delay identification law is proposed in [16] for sampled systems. This law is based on

a particular form of systems with two distinct real eigenvalues of multiplicity one. Note that, in all

previously mentioned articles except [16], the delay is constant.

1.2. State observation with unknown delay

The article [17] provides a survey on state observation in presence of a constant delay. As mentioned

in [18], most of the works deal with state observation in presence of a known delay: see for example

[19] for output delay and [20] for state and input delays. Few articles deal with the unknown delay

case. In [18], a high-gain observer guarantees the practical stability of the observation error. In [21],

†The delay is often denoted by the letter h or τ . In this paper, the notation τ will be used.
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 3

the observation is coupled with the identification of some parameters of the system. In [18] and [21],

the delay is unknown but it is not estimated.

1.3. State observation and delay estimation

As mentioned in [22], the problems of state and delay estimation are much easier to solve separately

because the knowledge of the state will help to estimate the delay and vice-versa. That is why,

estimating both the delay and the state will allow to achieve more accurate estimations (instead of

considering the delay as a perturbation like in [18]). As far as the authors knowledge, very few

articles deal with both delay identification and state reconstruction. One of them is [16] where the

design of the state observer is largely based on a particular sampling/holding technique. In [23],

the authors introduced an extended observer for SISO LTI systems that can observe both state and

delay but it suffers from an important observation singularity. In [24], an interconnected observation

scheme is proposed to observe both the delay and the state. However, the knowledge of the retarded

input is required. A joint state and delay estimation techniques is presented in [22] for nonlinear

systems with piecewise constant state delay.

1.4. Contribution

The main contribution of this article is to offer an online estimation method, based on observation

theory, for both state and delay values. The method works for time-varying delays and requires

the knowledge of the input value, its derivatives and the output at time t. This work is focused on

the estimation of a single time-varying delay in the input of SISO nonlinear systems; no parameter

identification is considered. It is an extension of [23] to nonlinear systems that allows to circumvent

the observation singularity problem and to improve the accuracy of the estimation. Note that, only

open-loop results are presented in this paper.

1.5. Paper’s structure

The paper is organized as follows. The problem presentation and an observability study are provided

in Section 2. Section 3 is dedicated to the observer design and the convergence analysis: the general

case with the knowledge of m time-derivatives of the input is worked out. In Section 4, it is

illustrated in simulation that the knowledge of the first two time-derivatives is enough to achieve

accurate estimations. Conclusions and future developments are given in Section 5.

1.6. Notations and definitions

The matrix In is the identity matrix of dimension n. The vector 0n×1 stands for a column vector

of dimension n whose all components are null. The matrix inequality A < B (resp. A > B) means

that A−B is negative definite (resp. positive definite). The entry in the ith row and jth column

of a matrix A is referred to as A(i,j). The vector norm and matrix norm ||.|| are respectively the

Euclidean norm and the spectral matrix norm. The function u ∈ Cm+1([−τmax,+∞[,R) means that

u : [−τmax,+∞[→ R has m+ 1 continuous derivatives. A continuous function β : [0, a[→ [0,+∞[

is said to belong to class K if it is strictly increasing and β(0) = 0. The notation u(i) refers to the ith

derivative of u with respect to time. When no confusion is possible, the variable

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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4 LÉCHAPPÉ ET AL.

t will be omitted; for instance x = x(t).

2. PROBLEM STATEMENT AND OBSERVABILITY ANALYSIS

2.1. Problem statement

The considered systems are SISO nonlinear systems with a time-varying delay τ(t)

acting on the control input u. More precisely, the class of systems is defined by



















ẋ = Λx+ f(x) + g(y)u(t− τ(t))

y = Cx = x1

x(0) = x0

u(θ) = φu(θ) ∀θ ∈ [−τmax, 0]

(1)

where τmax is the maximal bound of the delay, x = [x1, . . . , xn]
T ∈ R

n, y ∈ R, u ∈ R,

In is the identity matrix of dimension n, g(y) = [0, . . . , 0, G(y)]T , C = [1, 0, . . . , 0]T ,

f(x) = [f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)]
T ,

Λ =

[

0n×1 In−1

0 01×n

]

.

Note that system (1) is an upper-triangular system and a large class of observable

systems can be rewritten in this form [25].

Assumption 1

The functions f and G are respectively in C1(Rn,Rn) and C1(R,R) and f is globally

Lipschitz, i.e. there exists c1 > 0 such that for all (x, z) ∈ Rn ×Rn

||f(x)− f(z)|| ≤ c1||x− z||.

Assumption 2

The function G is bounded, i.e. there exists Ḡ > 0 such that for all y ∈ R

|G(y)| ≤ Ḡ.

Assumption 3

The delay function is continuous, differentiable and verifies τ(t) ∈ [τmin, τmax]. Its

dynamics, denoted τ̇(t) = η(t), is unknown and bounded

|η(t)| ≤ η̄.

Assumption 4

Let m ∈ N∗, the input u is in Cm+1([−τmax,+∞[,R) and its derivatives are known

and bounded, i.e. for all i = 1, ...,m+ 1, there exist constants Ui > 0 such that for all

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 5

t ≥ −τmax

|u(i)(t)| ≤ Ui.

Remark 2.1

For completeness, the general case with m ∈ N∗ is presented but for practical reasons

that will be explained in the next sections, m will be usually taken equal to 2.

The objective is to design an observer that reconstructs the state x(t) and the delay

τ(t) from the knowledge of the output y(t), the input u(t) and its time derivatives.

Usually, the delay is considered as a parameter of the system when it is constant [8],

[26]. However, τ is time-varying in this work so the idea is to treat it as a state of an

extended system. Denoting X = [xT τ ]T , one obtains

{

Ẋ = f̃(X,u)

y = Y (X) = CextX = x1

(2)

with f̃(X,u) =

(

Λx+ f(x) + g(y)u(t− τ(t))

η(t)

)

and Cext = [C, 0]. Systems (1) and

(2) are equivalent in the sense that they have the same state trajectories. In the next

subsection, the observability of the augmented system (2) is going to be worked out.

2.2. Delay observability

In [23], the observability analysis has been performed on an approximated system

whereas here it is done on the exact system (2). The concept of observability rank

condition used in the next theorem is detailed in [27]. This concept is very convenient

to check the observability of nonlinear systems this is why it will be used in the

observability analysis performed thereafter. The following result is achieved.

Theorem 1

System (2) is rank-observable if and only if

G(y(t)) 6= 0 ∀t ≥ 0 (3)

and

u̇(t) 6= 0 ∀t ≥ −τmax. (4)

Proof

The n first time derivatives of the output y read as











y = x1,

y(j) = xj+1 + αj(x1, ..., xj), j = 2 . . . n− 1

y(n) = G(y)u(t− τ) + αn(x1, ..., xn)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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6 LÉCHAPPÉ ET AL.

where the αj are combinations of the xi. Then, the Jacobian matrix of y and its time

derivatives has the following lower triangular form

∂(y, ẏ, ..., y(n))

∂X
=



















1 0 0 · · · 0

∗ 1 0 · · · 0
...

. . .
. . .

. . .
...

∗ · · · ∗ 1 0

∗ · · · · · · ∗ G(y)∂u(t−τ)
∂τ



















Therefore, system (2) satisfies the rank observability condition

rank

[

∂(y, ẏ, ..., y(n))

∂X

]

= n+ 1

if and only if G(y)∂u(t−τ)
∂τ

does not cancel. In addition, for all t ≥ 0 and τ ∈

[τmin, τmax], one has
∂u(t− τ)

∂τ
= −

∂u(t− τ)

∂t
.

Then,
∂u(t−τ)

∂τ
6= 0 is equivalent to

∂u(t−τ)
∂t

6= 0. This inequality should be verified for

all t ≥ 0 and τ ∈ [τmin, τmax] which is equivalent to (4) since the delay is continuous

according to Assumption 3. This ends the proof.

Condition (4) is quite natural because if the input is constant then the delay has no

influence on the system and it cannot be observed. To avoid this singularity u̇(t) = 0, it

is assumed as in [11] that:

Assumption 5

There are time intervals I where the first derivative of u is continuous and bounded, i.e.

for all t ∈ I ,

|u̇(t)| > α′ (5)

with α′ > 0.

Indeed, if (5) holds then (4) is automatically verified on I .

3. A NEW SCHEME OF DELAY-STATE OBSERVER

3.1. Transformation of the extended system (2)

System (2) is not in an adequate form to observe τ . Therefore, the Taylor’s theorem

is used to take the delay out of the input. From Assumption 4, the input is m-times

differentiable. Then, there exists a function γm : [−τmax; +∞[×[−τmax,−τmin] → R

such that

u(t− τ(t)) =

m
∑

i=0

(−1)iτ(t)i

i!
u(i)(t) + γm(t,−τ(t)) (6)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 7

for all t > −τmax and γm is called the remainder. From Assumption 4, since u is m+ 1-

differentiable the remainder γm is such that

|γm(t,−τ(t))| ≤
τ(t)m+1

(m+ 1)!
Um+1 ≤

τm+1
max

(m+ 1)!
Um+1. (7)

In the sequel m will be taken larger or equal to one because for m = 0 the approximation

(6) does not depend on τ . By substituting (6) in (2), the following system is obtained

{

Ẋ=Λext(ξ(t))X+fext(X)+gext(y)u(t)+Γ(t, y, τ)

y = CextX = x1

(8)

with X = [xT , τ ]T , fext(X) = [f(x)T , 0]T , gext(y) = [g(y)T , 0]T , Γ(t, y, τ) =

[g(y)Tγm(t,−τ(t)), η(t)]T ,

Λext(ξ(t)) =







0 In−1 0n−1×1

0 01×n−1 ξ(t)

0 01×n−1 0







and

ξ(t) = G(y)

m
∑

i=1

(−1)iτ i−1(t)

i!
u(i)(t).

Remark 3.1

The use of the Taylor approximation (6) requires the computations of the input time

derivatives. In this section, the case of a mth order Taylor approximation is presented

to deal with the general case. However, choosing m = 2 is usually enough to get an

accurate estimation with a limited number of input time-derivatives. In other words,

from the engineering point of view, m = 2 is the best choice to compute an accurate

delay estimation and using only two input derivatives. This will be illustrated in Section

4.

Extended system (8) is equivalent to initial system (1) in the sense that both systems

exhibit the same trajectories. However, system (8) is delay-free, with respect to the

input, thanks to (6). The delayed nature of the plant is still present through γm(t,−τ(t))

in Γ. The transformation is a convenient way to rewrite the system in order to apply

existing results from the observers literature. The error of approximation γm is going

to be considered as a perturbation in the design of the observer as well as the dynamics

of the delay η(t). This is a key point of the method: considering the delay dynamics as

a perturbation and designing an observer that is able to reconstruct the system state in

spite of uncertainty Γ. Indeed, it is often a hard task to find a good approximation of the

delay dynamics.

3.2. Observer design

Because of the form of (8) and because it is has only one tuning parameter, a high gain

observer has been chosen (see [28], [29], [30] for further details on high gain observers).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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8 LÉCHAPPÉ ET AL.

Let λ(ξ) ∈ R
(n+1)×(n+1) and Ā ∈ R

(n+1)×(n+1) be

λ(ξ) =

[

In 0n×1

01×n ξ

]

Ā =

[

0n×1 In

0 01×n

]

.

Then, the following observer is designed:











˙̂
X=Λ̂extX̂ + fext(X̂) + gext(y)u(t)− λ−1(ξ̂)S−1

ρ CT
ext(CextX̂ − y)

ρSρ + ĀTSρ + SρĀ− CT
extCext = 0

˙̂τp = proj[τmin,τmax]
( ˙̂τ)

(9)

where X̂ = [x̂T , τ̂ ]T ∈ Rn+1 and Λ̂ext = Λext(ξ̂(t)) ∈ R(n+1)×(n+1) with

ξ̂(t) = G(y)

m
∑

i=1

(−1)iτ̂ i−1

i!
u(i)(t) (10)

and τ̂ is the estimated delay. It is reminded that y = x1. Note that ˙̂τ is computed from

the first equation of system (9) and its projection, denoted ˙̂τp, is defined by the last

equation of (9). The projection operator is given by

proj[τmin,τmax]
( ˙̂τ) =











0, τ̂ = τmax and ˙̂τ > 0

0, τ̂ = τmin and ˙̂τ < 0
˙̂τ else.

(11)

One has the following result for the projection operator (11).

Lemma 1

If the initial condition is such that τ̂(0) ∈ [τmin, τmax] and ˙̂τp = proj[τmin,τmax]
( ˙̂τ) then,

for all t > 0, one has

τ̂p(t) ∈ [τmin, τmax] (12)

where τmin and τmax are defined in Assumption 3.

The proof is given in [31]. In the sequel, it will be assumed that the following

Assumption 6 holds.

Assumption 6

The initial condition of the estimated delay is such that

τ̂ (0) ∈ [τmin, τmax]. (13)

Remark 3.2

With a slight abuse of notation, the projected delay τ̂p will be denoted τ̂ in the sequel.

It was shown in [32] that the projection retains the properties that are established in

absence of the projection and guarantees that (12) is verified. As a result, the error

τ̂ (t)− τ(t) is bounded for all t > 0.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 9

The following notations will be used in the next computations Λ̂ext =

Λext(ξ̂(t)) and Λext = Λext(ξ(t)). Denoting by e = X̂ −X the estimation error, its

dynamics is governed by

ė = Λ̂extX̂ −ΛextX+fext(X̂)−fext(X)− λ−1(ξ̂)S−1
ρ CT

extCexte − Γ(t, y, τ).

(14)

For the proof of the main result, the next assumption is required:

Assumption 7

There are time intervals I where ξ̂ is bounded from below and its time-derivative is

bounded, i.e. for all t ∈ I

α ≤ |ξ̂(t)| and |
˙̂
ξ(t)| ≤ ν (15)

with α, ν > 0.

Remark 3.3

Inequality |
˙̂
ξ(t)| ≤ ν is a technical condition that will be used in the next section to prove

the convergence of the estimation error; this condition arises because of the choice of the

high gain observer. Note that, this condition will be usually verified in practice because

all real signals are bounded. Inequality α ≤ |ξ̂(t)| appears because of the form of the

extended system (8) and is linked to the intrinsic observability conditions G(y) 6= 0 and

u̇ 6= 0 presented in Theorem 1.

It is now possible to state the main result of our article.

Theorem 2

Let I = [t0, t] with t0 > 0 such that Assumptions 1, 2, 5, 4, 6 and 7 hold on I . Then,

provided that ρ is sufficiently large, there exist k, σ, r > 0 such that for all t ∈ I

||e(t)|| ≤ k||e(t0)||e
−σ(t−t0) + r. (16)

Proof

The proof use similar argument as in [29]. First note that Λext = λ−1(ξ)Āλ(ξ) and

Cextλ(ξ) = Cext. Furthermore,

Λ̂extX̂ −ΛextX = (Λ̂ext −Λext)X̂ +Λexte (17)

and the only non zero term of
[

Λ̂ext −Λext

]

X̂ is

([

Λ̂ext −Λext

]

X̂
)

(n,1)
= G(y)

[

m
∑

i=1

(−1)iτ̂ i−1

i! u(i)(t)−
m
∑

i=1

(−1)iτ i−1

i! u(i)(t)

]

τ̂

= τ̂G(y)
m
∑

i=1

(−1)i

i! u(i)(t)
[

τ̂ i−1 − τ i−1
]

.

(18)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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10 LÉCHAPPÉ ET AL.

Since all the terms on the right hand side of (18) are bounded then

∥

∥

∥

∥

([

Λ̂ext −Λext

]

X̂
)

(n,1)

∥

∥

∥

∥

≤ c0 (19)

with c0 > 0. In addition, since f is C1 according to Assumption 1 then fext is also C1

and from the mean value theorem one gets

fext(X̂)− fext(X) =
dfext(X)

dX

∣

∣

∣

∣

κ

e (20)

for some κ lying between the segment with end points X and X̂. Besides, the Jacobian

matrix of fext is lower triangular from the definition of f . Substituting (17) and (20) in

(14) gives

ė = (Λext − λ
−1(ξ̂)S−1

ρ CT
extCext)e + (Λ̂ext −Λext)X̂ + dfext(X)

dX

∣

∣

∣

κ
e− Γ(t, y, h).

(21)

Let ∆ρ be the diagonal matrix

∆ρ = diag

(

1,
1

ρ
, ...,

1

ρn

)

∈ R
(n+1)×(n+1) (22)

then it is shown in [29] that Sρ = 1
ρ
∆ρS1∆ρ where S1 is the solution of the Lyapunov

equation in (9) for ρ = 1. Now, set ē = λ(ξ̂)∆ρe, then

˙̄e = ρ(Ā− S−1
1 CT

extCext)ē+ λ(ξ̂)∆ρ(Λ̂ext −Λext)X̂

+λ(ξ̂)∆ρ
dfext(X)

dX

∣

∣

∣

κ
∆−1

ρ λ
−1(ξ̂)ē

+λ̇(ξ̂)λ−1(ξ̂)ē − λ(ξ̂)∆ρΓ(t, y, h).

(23)

Furthermore, λ(ξ̂)∆ρ
dfext(x)

dX
∆−1

ρ λ
−1(ξ̂) = ∆ρ

dfext(x)
dX

∆−1
ρ and we have

∆ρ

dfext(x)

dX
∆−1

ρ =



















∂f1
∂x1

0 . . . 0 0

1
ρ
∂f2
∂x1

∂f2
∂x2

. . .
... 0

...
. . .

. . . 0
...

1
ρn−1

∂fn
∂x1

. . . 1
ρ

∂fn
∂xn−1

∂fn
∂xn

0

0 0 0 . . . 0



















. (24)

Since the partial derivative of the fi are bounded and choosing ρ ≥ 1, there exists a

constant c0 independent from ρ such that

∥

∥

∥

∥

λ(ξ̂)∆ρ

dfext(X)

dX

∣

∣

∣

∣

κ

λ
−1(ξ̂)∆−1

ρ

∥

∥

∥

∥

≤ c1. (25)
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 11

Besides, the product λ(ξ̂)∆ρ(Λ̂ext −Λext)X̂ results in a matrix whose coefficients are

equal to zero except one that depends on
([

Λ̂ext −Λext

]

X̂
)

(n,1)
so one gets

∥

∥

∥
λ(ξ̂)∆ρ(Λ̂ext −Λext)X̂

∥

∥

∥
≤

c0
ρ
. (26)

From Assumption 7, one derives that

∥

∥

∥
λ̇(ξ̂)λ−1(ξ̂)

∥

∥

∥
≤ ν

α
for all t ∈ I . Define the

following Lyapunov candidate function V as follows

V (t) = ē(t)TS1ē(t). (27)

The matrix S1 verifies

δ1||ē||
2 ≤ ēTS1ē ≤ δ̄1||ē||

2 (28)

with δ1, δ̄1 > 0 because it is the solution of the Lyapunov equation for ρ = 1 (see [28])

so the Lyapunov function (27) is well defined. Note that

∥

∥

∥
λ(ξ̂)∆ρ

∥

∥

∥
≤ 1 for ρ ≥ 1 .

Differentiating V along the trajectories of (23) and using above properties leads to

V̇ ≤ −ρēTS1ē+ 2 c0
ρ
||S1|| ||ē||+ 2c1||S1|| ||ē||

2

+2 ν
α
||S1|| ||ē||

2 + 2||S1|| ||Γ(t, y, τ)|| ||ē||.
(29)

Thus, the following maximization of (29) is obtained

V̇ ≤ −(ρδ1 − 2c1||S1|| − 2 ν
α
||S1||)||ē||

2 + 2||S1||(
c0
ρ
+ ||Γ(t, y, τ)||)||ē||. (30)

In addition, from equation (7) and Assumptions 2, 3 and 4, it can be deduced that

Γ is bounded and verifies supt≥0 ||Γ(t, y, h)|| < Γ̄ with Γ̄ = Ḡ
τm+1
max

(m+ 1)!
Um+1 + η̄.

Consequently, the gain ρ can be chosen sufficiently large such that the above inequality

becomes

V̇ (t) ≤ −c3V (t) + c4
√

V (t) (31)

with c3 = (ρδ1 − 2c1||S1|| − 2 ν
α
||S1||)/δ̄1 > 0 and c4 = 2||S1||(

c0
ρ
+ Γ̄)/

√

δ1. The

comparison lemma given in [33, Lemma 9.4] and the relations ē = λ(ξ̂)∆ρe and

e = ∆−1
ρ λ−1(ξ̂)ē ensure that equation (16) is satisfied.

Remark 3.4

Theorem 2 can be extended to systems such that G depends on x provided the extra

assumption G globally Lipschitz is made.

Remark 3.5

As it has been mentioned before, in practice, an accurate estimation can be obtained

with only the first two derivatives of the input. To compute these derivatives, it

may be necessary to use a numerical differentiator. In this case, inevitable errors are

introduced by the differentiator. Denoting û(i) the i-th estimated time derivatives and

eui
= u(i) − û(i), one obtains that u(i) = eui

+ û(i) so the Taylor approximation (6)
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12 LÉCHAPPÉ ET AL.

becomes

u(t− τ(t)) =

m
∑

i=0

(−1)iτ(t)i

i!
û(i)(t) + γ′

m(t− τ(t)) (32)

with γ′
m(t,−τ(t)) = γm(t,−τ(t)) +

m
∑

i=0

(−1)iτ(t)i

i! eui
(t). If the eui

are bounded and

sufficiently small then γ′
m is bounded and the extra error added by the numerical

differentiation will decrease the observation accuracy by increasing the convergence

radius r in (16). The effect of input noise can also be included in the differentiation

error.

Remark 3.6

If some noise affects the output y, a trade-off between noise amplification and accuracy

of the estimation will be necessary. Indeed, it can be shown that the radius r decreases

when ρ increases, however, it is well known as explained in [28] that the high-gain

observer amplifies the noise if the gain is large.

4. SIMULATION

In this section, the performances of the observer will be illustrated by some simulations.

4.1. Example 1

A pendulum system has been chosen to illustrate previous results. Its representation

reads as










ẋ(t) =

[

x2

− g
l
sinx1 −

k
mp

x2

]

+

[

0
1

mpl2

]

u(t− τ(t))

y(t) = Cx(t) = x1(t).

(33)

where g = 9.81 m.s−2 is the acceleration due to gravity, mp = 0.2 kg is the mass of the

bob, l = 0.5 m is the length of the rod and k = 0.3 kg.s−1 is the friction coefficient.

Consequently, (33) has the form of (1) with Λ =

[

0 1

0 0

]

, F (x) = − g
l
sinx1 −

k
mp

x2

and G(y) = 1
mpl2

. The functions f and G satisfy Assumptions 1 and 2.

The delays used in the sequel are defined by τ(t) = 0.6 for t ∈ [0, 20[, τ(t) = 1.2 for

t ∈ [20, 40[, τ(t) = 0.3 for t ∈ [40, 60[ and τ(t) = 0.8 + 0.45 sin(0.2t) for t ≥ 60.

Thus, τ is bounded in [τmin, τmax] with τmin = 0 s and τmax = 1.5 s. The delay is

differentiable on [60, 120] so Assumption 3 is verified. The observability condition (3)

is always true since G is constant.

In above sections, the general case of the Taylor expansion of order m has been studied.

In practice, the choice of m can be made according to the precision desired on τ̂ and the

available time derivatives of u. In practice the computation of the input time derivatives

for m > 2 is challenging especially if some noise is present. That is why in this section,

two observers are going to be tested with m = 1, m = 2. For both observers, the gain ρ
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DELAY AND STATE OBSERVATION FOR SISO NONLINEAR SYSTEMS WITH INPUT DELAY 13

is equal to 5. It will be shown that m = 2 is sufficient to get an accurate estimation using

a limited number of input differentiation. The observer equations are given below:























˙̂
X = Λ̂extX̂ + [0,− g

l
sin x̂1 −

k
mp

x̂2, 0]
T

+[0, 1
mpl2

, 0]Tu(t)− λ−1(ξ̂)S−1
ρ (x̂1 − x1)

0 = −ρSρ − ĀTSρ − SρĀ+ CT
extCext

˙̂τp = proj[τmin,τmax]
( ˙̂τ)

(34)

where X̂ = [x̂1, x̂2, τ̂ ]
T , Λ̂ext and Ā are defined at the beginning of Section 3.2 and

with

ξ̂ =

{

− 1
mpl2

u̇ for m = 1,
1

mpl2

(

−u̇+ 1
2 üτ̂

)

for m = 2,
(35)

and Cext = [1, 0, 0]. The initial conditions of the system and of the observer are gathered

in Table I.

Table I. Observer parameter and initial conditions

x(0) [rad,rad.s−1] x̂(0)[rad,rad.s−1] τ̂ (0) (s) ρ S(0)
[0.87, 0]T [0, 0]T 0.3 5 I3

On Figure 1, the input u(t) = 0.009t is applied to the system. This input is smooth and

Assumption 4 is satisfied. In addition, condition (4) is true because u̇(t) = 0.009 6= 0 so

there is no observation singularity. Since ü(t) = 0, one can see from (35) that ξ̂ has the

same value (ξ̂ = − 1
mpl2

0.009) for m = 1 and m = 2 that is why the curves are exactly

mixed up on Figure 1. In addition ξ̂ is always different from zero so Assumption 7 is

true. For this ideal case, the convergence is asymptotic for a constant delay (t ∈ [0, 60])

and the convergence radius can be reduced arbitrarily by increasing the observer gain

ρ for the time-varying delay case (t ∈ [60, 120]). In order to show the advantage of

estimating the delay to have a more accurate state estimation, we have implemented the

standard high-gain observer defined by

˙̂x(t) =

[

x̂2

− g
l
sin x̂1 −

k
mp

x̂2

]

+

[

0
1

mpl2

]

u(t− τm)− S−1
ρ (x̂1 − x1) (36)

where τm is an average value of the delay taken equal to 0.8. It is clear from Figure 1 that

the state estimation is more accurate using the high-gain observer that also estimates the

delay (observer (34)) than standard high-gain observer (36).

On Figure 2, u(t) = sin(0.2t) which is smooth and satisfies Assumption 4 is applied to

system (33). Condition (4) is true almost everywhere (except when 0.15t = π/2[2π]).

Note that one solution to limit the effect of the singularity in the observer is to ”switch

off” the observer gain when |ξ̂| gets close to zero. On Figure 2, the observer is arbitrarily

switched off for |ξ̂| < 0.7. In practice, noise can affect the measurement and the input.

In this simulation, white noise has been added to the measured signal x1 and the input

signal u. The variance has been chosen to obtain a noise of about 5% of the amplitude of
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time (s)

Figure 1. u(t) = 0.009t, ρ = 5, no noise

the original signals. The time derivatives u̇, ü have been computed thanks to the Levant

differentiator [34] given by































ż0 = v0

v0 = −λ0L
1

3 |z0 − u(t)|
2

3 sign(z0 − u(t)) + z1

ż1 = v1

v1 = −λ1L
1

2 |z1 − v0|
1

2 sign(z1 − v0) + z2

ż2 = −λ2sign(z2 − v1).

(37)

If the parameters λi and L are properly chosen, then [34, Theorem 5] guarantees that

the following equalities

z0(t) = u(t) and zi(t) = u(i)(t) for i = 1, 2. (38)

are true in the absence of input noise and after a finite time. If the input u is noisy then

the estimation error converges in a ball around the origin whose radius is proportional

to the noise value [34, Theorem 6]. The differentiator parameters are λ0 = 3, λ1 = 1.5,

λ2 = 1 and L = 0.11.

Figure 2 shows that in spite of the input and measurement noises, the observer is able

to estimate both the delay and the state. Note that the peaks of the blue curve m = 1 are

due to the observation singularity when u̇ = 0 that implies ξ̂ = 0. Increasing m allows

to reduce the effect of the singularity by using the higher derivatives. Note also that in

the case of a noisy measurement it is not possible to reduce arbitrarily the estimation

error by increasing the gain. Indeed, the noise will be amplified if the gain is too large

as mentioned in Remark 3.6.

Remark 4.1

The choice of the input u(t) = sin(0.2t) is made in order to ensure that the input does

not vary too fast with respect to the delay size. Indeed, this implies that the Taylor’s
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expansion is accurate and that the delay can be correctly estimated. If the delay is

smaller then the input frequency can be increased without degrading the estimation

accuracy.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

0

0.5

1

1.5

d
el

ay
(s

)
||
x̂
−

x
||

obs. (34), m=1
obs. (34), m=2

τ
τ̂ , obs. (34), m = 1
τ̂ , obs. (34), m = 2

time (s)

Figure 2. u(t) = sin(0.2t), ρ = 2.5, with noise and observer switched off for |ξ̂| < 0.7

4.2. Example 2

In order to compare our method with existing delay estimation techniques, we provide

a second example. Since existing methods that estimate the input delay only focus on

linear systems with known states, we chose the following linear scalar system:

ẋ(t) = −x(t) + u(t− τ(t)) (39)

where we assume that x(t) is known and τ(t) is the same as in Example 1. Figure 3

shows a comparison of our method with the delay estimators presented in [9], [12],

[26]. It is clear that the methods of [9], [26] only work for a constant input delay. The

method in [12] tracks accurately the delay variation but exhibits oscillations when the

delay is constant (the magnitude of these oscillations is larger for a large delay). The

delay estimation using our extended observer method tracks accurately the delay and do

not exhibit oscillation for a constant delay. Note that the estimator used in [12] seems

more accurate when the delay is time-varying. In order to qualify this analysis, it has

not to be forgotten that the full knowledge of the state and its time-derivative is required

in [12]. In addition, the results in [12] are not applicable to nonlinear systems.

5. CONCLUSION

In this article, a new solution based on observation techniques is presented to reconstruct

both the delay and the state of a class of nonlinear SISO systems. The method works
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0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

d
el

ay
(s

)

τ̂ [12]
τ̂ [9]
τ̂ [26]
τ̂ Thm. 2, m = 2

time (s)

Figure 3. Comparison of different input delay estimation methods, u(t) = sin(0.2t), no noise

for time-varying delays. The Taylor expansion is exploited to take the delay out of the

retarded input. Then, the initial system is turned into an extended system with the delay

as a part of the augmented state. An observability condition is derived from the analysis

of this extended system. Finally, a high-gain observer is designed and the convergence

ot the estimation error in a neighborhood of the origin is proved. All the results are

illustrated by numerous simulations. The extension to nonlinear MIMO systems as well

as the observation in closed-loop are considered for future developments.
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