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Application of X-FEM to 3D Real Cracks and

Elastic-Plastic Fatigue Crack Growth

A. Gravouil1, A. Combescure1, T. Elguedj1, E. Ferrié2, J.-Y. Buffière2 and
W. Ludwig2

Summary. In a general point of view, X-FEM plus level set representation of the
interfaces reveals to be of great interest in the aim to couple experimental data
with numerical simulations. This can be highly illustrated in the case of 3D fatigue
crack growth simulations where the initial 3D “real crack” is extracted from tomo-
graphic images. The experimentally observed fatigue crack propagation is compared
to numerical simulations. Good agreement is found when a linear variation of clos-
ure stress along the crack front is taken into account in the “3D crack propagation
law” used for the simulation. Furthermore, in order to take into account plasticity
during fatigue crack growth, one develops an augmented Lagrangian formulation in
the X-FEM framework that is able to deal with elastic-plastic crack growth with
treatment of contact and friction. Numerical issues such as contact treatment and
numerical integration are addressed, and finally numerical examples are shown to
validate the method.

Key words: X-FEM, level sets, X-ray microtomography, fatigue crack growth, plas-
ticity, contact.

1 Introduction

It is now well established that the eXtended Finite Element Method is of great
interest for evolving discontinuities, in particular for industrial applications
[13, 14]. Indeed, no initial mesh and remeshing techniques are needed dur-
ing the evolution of the interfaces [2, 3, 12]. Furthermore, in a more general
point of view, X-FEM plus level set representation of the interfaces reveals
to be of great interest in the aim to couple experimental data with numerical
simulations [1, 2, 12]. This can be highly illustrated in the case of 3D fatigue
crack growth simulations where the initial 3D “real crack” is extracted from
tomographic images with a spatial resolution of the order of 1 µm [4]. In such
a case, X-FEM is coupled with a level set representation of the crack and a
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specific algorithm is developed in the aim to define the initial level sets from
tomographic images. One can also notice that it is not necessary to impose the
compatibility between the meshes of the structure and the support of the level
sets. Furthermore, a robust and accurate technique is proposed to compute
the stress intensity factors [1]. Based on experimental observations and quant-
itative analysis of crack propagation in the bulk, a “3D” crack growth law can
be established to predict the crack front shape evolution in the bulk of the
material. From a more general point of view, this study shows that coupling
X-ray microtomography to X-FEM provides a promising tool to assess the
3D behaviour of arbitrary shaped cracks and to perform direct comparisons
of “experimental” and “simulated” crack shapes during propagation.

In a second example, it is shown that even with elastic-plastic behaviour
coupled with contact and friction, non-remeshing property can be preserved
for instance for 2D mixed-mode plastic fatigue crack growth [4, 5]. For that
purpose, an augmented Lagrangian formulation in the X-FEM framework for
the treatment of contact and friction with elastic-plastic behaviour is pro-
posed. On the one hand, the numerical integration is adapted in order to
properly integrate the high order terms in the enrichment basis, and to have
a fine knowledge of the stress state around the tip to precisely model plas-
ticity. On the other hand, the strategy of enrichment used for linear elastic
X-FEM fatigue simulation has to be modified [5]. In this respect, the integ-
ration strategy is designed in order to avoid the projection of stresses and
internal variables as the crack evolves to ensure the reliability of the method.
Numerical issues are addressed. In particular, one shows the ability of the
method to model the phenomenon of crack closure under cyclic tension [6, 9].
Indeed, this can have a great influence on the propagation of the crack with
fatigue loading.

2 Application of X-FEM to 3D Real Cracks

2.1 Experimental Observations

The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained
Al–Li alloy has been investigated using synchrotron radiation X-ray micro-
tomography. In this material, the studied crack, despite its small dimension,
can be considered as a “microstructurally long” and described in the frame
of the linear elastic fracture mechanics. The main advantage of using this
alloy for the present study is that it exhibits an exceptionally linear crack
path compared to ingot metallurgy Al alloys. The ultrafine grains promote
homogeneous deformation and prevent crystallographic cracking so that the
crack shape is not disturbed by microstuctural features, at least not at the
level of the spatial resolution employed in this study. In situ fatigue tests
monitored by X-ray microtomography were carried out on beamline ID 191
of the European synchrotron radiation facility (ESRF) in Grenoble, France.
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Fig. 1. Geometry of the sample used for the in situ fatigue test monitored by X-ray
microtomography

This experimental station is dedicated to high-resolution X-ray imaging and
features a highly coherent X-ray beam, a precision mechanics sample stage
and a high-resolution detector system. During a 3D tomographic scan, the
sample is rotated over 180 in order to acquire 1500 two-dimensional (2D) pro-
jection radiographs. From this set of projections, a quantitative 3D map of the
attenuation coefficient distribution within the sample is produced by means
of a standard filtered backprojection tomographic reconstruction algorithm.
The spatial resolution obtained in the reconstructed images is of the order of
1 µm, a value comparable to the resolution of an optical microscope. One can
also notice that the 3D scans are done with the maximal load: it ensures that
the crack is open. However, even with a locally closed crack, diffraction effect
allows to measure a crack opening until 100 nm. The sample was imaged in a
dedicated fatigue machine designed at INSA Lyon to perform in situ fatigue
test at the ESRF. The mechanical design of the cyclic tension loading mech-
anism enables operation at cycling frequencies of up to 80 Hz, minimising
thereby the cycling time required for a fatigue test.

The geometry of the sample used is represented in Figure 1. A thin (2 µm)
rectangular notch, 100 µm wide and 20 µm deep, was produced in the sample
using focused ion beam machining. This notch is located at the centre of one
of the specimen faces and acts as a crack initiation site.

The in situ fatigue test was performed in air, at constant stress amplitude
with σmax = 220 MPa, a stress ratio R = 0.1, a frequency of 40 Hz and at
room temperature. In the fine-grained alloy studied here, the crack size (which
is in the range 100–500 µm) is at least 100 times the grain size, and can hence
be considered as microstructurally long.
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Fig. 2. From X-ray microtomography to X-FEM

2.2 Implicit Representation of the Crack Using the Level Set

Method

From the previous experiments, 3D images are obtained and exploited in
order to proceed to a simulation of the crack propagation. In this respect, one
represents the crack by the use of two level sets.

Indeed, an implicit representation of the crack using the level sets method
is very well suited to the eXtended Finite Element Method [1, 2].

The crack front is defined as the intersection between a surface Ccrack that
defines the crack surface and a surface Cfront that defines the crack front. These
two surfaces, defined for a semi-elliptical crack, are displayed in Figure 4. In
the general case, these surfaces can have arbitrary 3D shape, and are defined
by means of level sets functions. In order to couple the level set representation
of the crack with the 3D images which come from X-ray microtomography, a
specific strategy is proposed and is summarized in Figures 2 and 3.

The first step consists in a segmentation of the 3D image in order to extract
the crack. The result is a set of voxels which defines a volume linked to the
crack. The second step consists in the definition of a Boolean field calculated
from the segmentation: a voxel outside the crack is initialized to 0 and a voxel
inside the crack is initialized to 1. The main difficulty is now to be able to
define a surface from this crack volume. In this respect, for the third step, it is
needed first to “model” the crack as a surface with a predefined length scale.
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Fig. 3. Initialization of crack and front level sets

As a consequence, a length parameter is defined, and an intermediate
triangulation step is done according to this length scale (in practice greater
than the thickness of the crack).

Indeed, it seems essential in practice to model the crack as an explicit
non-planar surface before to define the level sets. From the set of triangles,
the 1D elements of the front are extracted with the local basis along the crack
front. The fourth and the fifth steps consist then in defining the crack and the
front level sets from the set of triangles and the set of 1D elements with their
respective local basis.

In this respect, reinitialization equations (to the sign distance function)
and orthogonalization equations proposed in [2] are used according to Figure 3
in order to compute the two initial 3D scalar fields linked to the crack and
the front (see Figure 4). In particular, this approach can be done in a narrow
band close to the crack.

2.3 Strategy of Enrichment and SIFS Calculation

In FE methods, the presence of cracks in a structure must be taken into
account in mesh generation: the mesh must adequately define the crack geo-
metry. Special elements and considerable mesh refinement near the crack tip
are necessary to capture accurately the asymptotic displacement fields. The X-
FEM alleviates the shortcomings associated with meshing the crack surface by
representing the crack geometry using additional functions called enrichment
functions. The enrichment method, as described in [1], can be summarised as
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Fig. 4. Representation of the 3D scalar fields linked to the crack and front level sets

follows. The displacement field calculated in the structure “without crack” is
locally modified by adding, at specific nodes, the nodal values of the enrich-
ment functions. These functions define the crack geometry by “modelling”
the discontinuity introduced by the crack in the displacement field. As the
discontinuities at the crack front and along the crack surface are different,
two enrichment functions are necessary to model the entire crack [1].

H(x) =

{

1 for φ > 0,

−1 for φ < 0,
(1)

{FJ(x)} ≡
√

r

{

sin
θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}

. (2)

The function H , defined as a generalised Heaviside function, models the
displacement field along the crack surface. It is used to enrich the nodes of
the element that are cut by the crack surface.

The enrichment FJ is used to enrich the nodes of the elements that contain
the crack front. FJ consists of a span of functions which incorporate the
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Fig. 5. Set of elements completely cut by the crack; set of elements cut by the front;
2D representation of the crack extracted from the crack level set

Fig. 6. Representation of the non-deformed and deformed mesh of the specimen
submitted to fatigue loading

radial and angular behaviour of the asymptotic crack-tip displacement fields,
where the local coordinate system can be extracted from the level sets [2].
Furthermore, the nodal values of the crack level set and the front level set
give the precise location of the crack and control whether a node has to be
enriched or not (see Figure 5).
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Concerning the calculation of the local stress intensity factor values (KI,
KII and KIII) along the crack front, the interaction integral is used on a J-
domain defined in the local basis of the crack front [1, 2]. The J-domain is
completely independent of the mesh of the structure and its size depends on
the curvature of the crack front and the size of the finite elements cut by the
front. On the boundary, due to plane stress effect, the interaction integral is
not used and stress intensity factors in the bulk are extrapolated from the
bulk to the boundary [4]. In Figure 6, we illustrate the non-deformed mesh
and the deformed mesh of the specimen submitted to a fatigue load after
14000 cycles.

3 Development of a 3D Local Paris Law

After 14,000 fatigue cycles, a crack initiated at the notch was detected on a
2D radiograph. The in situ fatigue test was performed at constant stress amp-
litude with σmax = 220 MPa, a stress ratio R = 0.1, and a frequency of 40 Hz.
A tomographic scan of the part of the specimen containing the crack was
acquired and corresponds to the “first scan”. During crack propagation, nine
scans were recorded, reconstructed and segmented to obtain 3D renditions of
the crack at different stages of its evolution. Projections in the (X–Y ) plane of
seven 3D renditions (chosen among the nine) are displayed in Figure 7. The
dotted lines on the 3D crack renditions represent the location of the crack
front at the previous step. The position along the crack front is defined by the
angle x as shown in Figure 7(a). Qualitative and quantitative information on
the evolution of the 3D crack geometry can be obtained.

The crack size at the surface (2c), for ω = 0◦, and in the bulk (a), for
ω = 90◦, are measured on the 3D renditions of the crack. The fatigue crack
growth rates at the surface, dc/dN , and in the bulk, da/dN , as a function of
the stress intensity factor range ∆K = (Kmax −Kmin) are shown in Figure 9.
The values of Kmax and Kmin are calculated for ω = 0◦ and for ω = 90◦ using
domain integral techniques [1].

Thus for the same ∆K, the crack propagates faster in the bulk than at
the surface implying that, at least for the specimen geometry used here, the
crack growth behaviour is anisotropic. Thus, a fatigue crack growth law de-
termined at the surface does not account for the crack behaviour in the bulk.
Furthermore, if used for fatigue life calculation, the surface experimental law
would lead to a non-conservative prediction.

One possible reason for the observed crack growth anisotropy between the
surface and the bulk is variation of the closure stress along the crack front:
the crack will then propagate faster in the bulk because the closure stress in
this region of the crack front is smaller and hence the effective driving force
is higher than at the surface.

Elber [6] proposed a modified Paris equation to account for the effect
of closure on the crack growth rate: da/dN = C(∆Keff)m where ∆Keff =

8



Fig. 7. 3D segmentation operation of the crack from the 3D tomographic image
during propagation

Fig. 8. Comparisons between experimental, numerical and analytical solutions from
14000 to 16000 cycles

(Kmax−Kop) is the effective stress intensity factor range and Kop is the stress
intensity factor at which the crack opens. To account for the variation of the
closure stress along the crack, we will modify Elber’s equation by introducing
a new variable ω such that da/dN and ∆Keff vary along the crack front:
da(ω)/dN = C(Kmax − Kop(ω))m.
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Fig. 9. Comparisons between experimental, numerical and analytical solutions from
20000 to 22000 cycles

As a first approach, the variation of Kop(ω) is taken to be linear with the
angle ω and is therefore given by Kop(ω) = aω+ b. The value of the constants
a and b are determined from the values of Kop at the surface Kop(0◦) and at
the deepest point Kop(90◦). Data from the literature are used to determine
Kop(0◦): the closure response of an Al–Li powder metallurgy alloy, very similar
to the alloy studied here, was investigated in [7]. The value of Kop measured
at the surface of CT specimens, for R = Kmax/Kmin = 0.1, is found to be
equal to 0.4Kmax. We assume here that the ratio Kop(ω = 0◦)/Kmax remains
constant during the fatigue test and that there is no closure at the deepest
point for ω = 90◦, which gives Kop(90◦) = 0.1Kmax(90◦). The evolution of
the closure stress along the crack front is given by the linear relation:

Kop = −0.3Kmax

90◦
ω + 0.4Kmax. (3)

The 3D crack growth law taking into account the variation of the closure
stress along the crack front is given by

da

dN
(θ) = C

((

0.3

90◦
ω + 0.6

)

Kmax

)m

(4)

with C = 10−9.2 mm.cycle−1.(MPa.m0.5)−m and m = 3.51 for the previous
aluminium alloy. In Equations (3) and (4), the angle ω, expressed in degrees,
is defined for 0◦ < ω < 90◦ and Kmax(ω) is obtained from a polynomial
interpolation of the values calculated by the X-FEM as described in the pre-
vious section. This means that, for the sample geometry investigated here, a
single Paris law can be used to predict the observed crack growth anisotropy
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Fig. 10. Three-dimensional effect (difference between surface and bulk)

provided the variation of the closure stress along the crack front is taken into
account.

From a more general point of view, this study has shown that coupling
X-ray microtomography to X-FEM provides a promising tool to assess the 3D
behaviour of arbitrary shaped cracks and to perform direct comparisons of
“experimental” and “simulated” crack shapes during propagation. Such data,
to the best of the authors’ knowledge, are currently lacking in the literature.

In this study, closure effect is taken into account empirically in the Paris
law. An extension of this work consists in using explicitly a elastic-plastic
behaviour with contact and friction in the simulation. This is the aim of the
next section.

4 Extension of X-FEM to Elastic-Plastic Crack Growth

4.1 Strategy of Enrichment

The main purpose of this paragraph is to treat the case of bulk and interface
non-linearities in the framework of the eXtended Finite Element Method. The
presented method will focus on the case of plasticity combined with frictional
contact and is applied to fatigue crack growth analysis. The aim of the method
is to use the X-FEM to model the well known fatigue crack closure under cyclic
tension phenomenon first observed by Elber [8].

In the case of material non-linearities, several issues have to be addressed.
In a previous paper [5] an appropriate elastic-plastic enrichment basis was de-
veloped to allow the X-FEM to deal with plasticity. In the present paper this
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Fig. 11. Geometrical subdividing zone with an estimation of the plastic zone

approach is coupled with the treatment of frictional contact, and the prob-
lems associated with plastic crack propagation are explored. The aim of the
study is to develop a general strategy for a wide family of elastic-plastic beha-
viour (kinematics and/or isotropic hardening, etc.). In this approach, neither
remeshing nor thermodynamic field interpolation during propagation of the
crack are needed. Furthermore, the crack front is enriched with specific basis
in order to use sufficiently coarse mesh compared to FEM. In fact, the aim is to
be able to take into account closure effect and confined plasticity with a good
accuracy during propagation of the crack: indeed, this can have a great influ-
ence on the fatigue crack growth. In order to accurately model the confined
plasticity, a geometrical subdividing zone is defined with an estimation of the
plastic zone which can be smaller than the spatial discretization assumed to
be fixed (see Figure 11). In the same way, during the propagation of the crack,
one defines new sub-elements between the two configurations according to the
estimation of the new plastic zone (see Figure 12): only the Gauss points of
the new sub-elements are needed (which allows a good accuracy of the plastic
behaviour during the crack growth with no remeshing and no interpolation
field) [3]. Concerning the strategy of enrichment of the element containing the
crack tip, an appropriate enrichment basis for fatigue crack growth simulation
with confined plasticity is used [5]:

r1/(n+1)

{

sin
θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ, sin

θ

2
sin 3θ, cos

θ

2
sin 3θ

}

, (5)

where n is linked to the hardening of the elastic-plastic model. Indeed, the
plastic asymptotic HRR fields can be well represented by the following basis
(non-linear elasticity). In this respect, such enrichment can be well suited
for elasto-plasticity when the load is increasing. Furthermore, numerical sim-
ulations show that the following basis gives accurate results for specimens
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Fig. 12. Evolution of the sub-elements between the two configurations

submitted to loading and unloading even with coarse mesh for a wide range
of elastic-plastic hardening [5].

In order to take into account contact and friction between the crack faces,
interface elements are implemented along the crack with their own displace-
ment and traction fields (t and w). In this respect, a three fields Augmented
Lagrangian formulation is introduced which allows to couple the interface
elements with the displacement and the Cauchy stress fields (u and σ) [3]:
∫

Ω

σ(i)
n : ε(u∗)dΩ =

∫

∂2 Ω

Fd.u
∗dS +

∫

Γ

Λ(i)
n .u∗|Γ dS +

∫

Γ

Λ∗.(u(i)
n |Γ − w(i)

n )dS

+

∫

Γ

(t(i−1)
n + αw(i−1)

n ).w∗dS −
∫

Γ

(Λ(i)
n + αw(i)

n ).w∗dS

∀(u∗, w∗) ∈ U0, ∀Λ∗ ∈ L0, (6)

where σ and ε are respectively the Cauchy stress and the strain fields; t and
w respectively the load and displacement fields along the crack faces; Fd the
prescribed load; u∗, w∗ and Λ∗ respectively the virtual displacement field in
the bulk, the virtual displacement field on the crack faces and the virtual Lag-
range multiplier field; α the penalty term (for the normal and the tangential
problem) and Λ the Lagrange multiplier of the Augmented Lagrangian formu-
lation. Finally, concerning the update of the local enrichment during propaga-
tion the following strategy is retained: in the aim to preserve the history of the
thermodynamics variables, all enrichments are retained during crack growth
[15]. As a consequence, the change of discretization is performed by imposing
the new crack segment to be closed (new enrichments are initialized to zero;
the new t and w must be compatible with u and σ). Furthermore, the new
stress and internal variables are initialized with elastic conditions thanks to
the moving subdividing zone (see Figure 13).
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Fig. 13. Local enrichment and initialization strategy

Fig. 14. Geometry and boundary conditions for the CTS specimen

4.2 Application to Fatigue Crack Growth with Confined Plasticity

One considers as a first example a Compact Tension Shear (CTS) specimen,
submitted to mode I fatigue crack growth with interspersed overload. A nu-
merical and experimental investigation of that specimen is fully presented in
[9]. In this example, one wants to compare the results obtained by a classical
FE calculation presented in [9] with the proposed method. In Figure 14, the
geometry and boundary conditions are presented, and one also illustrates the
mesh of the specimen with a zoom around the crack tip for the FE simulations
and the X-FEM simulations.

The material is chosen similar to the one in [9]: 2.1011 Pa for the
Young’s modulus, 0.3 for the Poisson’s ratio, 200 MPa for the yield strength,
534 MPa for the hardening coefficient, 0.27 for the hardening exponent n, and
90 MPa.m1/2 for the critical mode I SIF.
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Fig. 15. Mesh of the CTS specimen with zoom around the crack tip

Fig. 16. Comparison of the vertical displacement on the crack faces between FEM
and X-FEM before and after the propagation

In this comparison, the X-FEM mesh as been chosen 10 times coarser than
the FEM mesh. Furthermore, a standard von Mises plasticity with isotropic
hardening (Newton+radial return scheme) has been considered here [3]. The
specimen is submitted to a total crack growth of ∆a = 0.5 mm (20 steps in
FEM, 2 steps in X-FEM), then submitted to an overload with a ratio of 2.5
and then a total growth of delta = 0.5 mm. One can conclude on this example
that, even with a 10 time coarser element length and a 10 time coarser time
discretization, very good agreements can be obtained between FEM and X-
FEM on the vertical displacement close to the crack tip before and after the
propagation of the crack. One can also notice the closure of the crack due to
the overload and the confined plasticity (after the propagation).

As a second example, one considers a mode I Compact Tension (CT)
specimen with a loading ratio of 0.1. The geometry and dimensions of the
specimen are given in Figure 17. The material is chosen to be similar to
the previous example. The specimen is submitted to a tension cyclic loading
in order to have a stabilized stress state around the tip, then a growth of
∆a = 0.05 mm is imposed at maximum load, and so on.
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Fig. 17. Geometry and X-FEM mesh for the mode I CT specimen

Fig. 18. Stress and interface results at minimum loads

In Figure 18, one illustrates the ability of the method to simulate closure
effect close to the crack tip. In Figure 19, one illustrates stress-strain curves
obtained on a Gauss point close to the crack tip during the propagation and
the cycles of stabilization. One can notice that, due to the fact that no remesh-
ing is done during the propagation of the crack, it is very easy to follow the
stress-strain evolution of the material in a fixed point, which can not be pos-
sible with the same accuracy if you proceed to remeshing and interpolations.

Concerning the time dependence of the problem, this case can be con-
sidered as a two scale approach: a fixed “coarse” scale linked to the geometry
(structure and crack) and a “fine” scale linked to the non-linear properties
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Fig. 19. Stress-strain evolution during crack growth

of the material (confined plasticity, contact and friction between the crack
faces) which follows the crack tip during the propagation. In this respect, no
remeshing is needed; however, new integration points are needed (it consists
to initialize the new internal variables to zero according to the linear elastic
behaviour outside the crack tip plastic zone), and new interface elements are
needed.

Numerical simulations show that the proposed basis of enrichment can give
accurate results for specimens submitted to loading and unloading even with
coarse meshes for a wide range of hardening. However, because of conditioning
issues, the crack extension can not be small compared to the element size
(discrete successive plastic zone). For cyclic loadings with elastic-plastic crack
growth, the question of the optimal enrichment basis is still open. One can
also notice that the effects of non-singular terms of the asymptotic fields like
T-stress are not taken into account. Furthermore, numerical issues suck as
locking, plastic incompressibility and convergence rate need specific studies.

5 Conclusions

The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained
Al–Li alloy has been investigated using synchrotron radiation X-ray micro-
tomography. In this material, the studied crack, despite its small dimension,
can be considered as a “microstructurally long” and described in the frame
of the linear elastic fracture mechanics. The extended finite element method
was used to calculate the stress intensity factors along the crack front taking
into account the three-dimensional geometry extracted from the tomographic
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images. For the same nominal value of the stress intensity factor range, crack
propagation was faster in the bulk than at the surface. The observed aniso-
tropy is attributed to the variation of the closure stress along the crack front
between surface and bulk. The experimentally observed fatigue crack propaga-
tion is compared to numerical simulations. Good agreement is found when a
linear variation of closure stress along the crack front is taken into account in
the “3D crack propagation law” used for the simulation. In a second example,
it is shown that even with elastic-plastic behaviour coupled with contact and
friction, non-remeshing property can be preserved for instance for 2D mixed-
mode plastic fatigue crack growth. The main idea consists in using a specific
nonlinear enrichment basis which allows to take into account the asymptotic
behaviour around the crack tip. Because of the treatment of multiple nonlin-
earities (plasticity, contact), the numerical integration is adapted in order to
properly integrate the enrichment basis and to have a fine knowledge of the
stress state around the crack tip. Second, the propagation strategy consists in
keeping the history of the variables such as stresses and plastic strains. Finally,
an original strategy was designed in order to avoid projection of stresses and
internal variables as the crack evolves to ensure the reliability of the method.
In the presented examples, the method shows its ability to model the physical
phenomena that are present in fatigue crack growth.
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