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Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude
modulated, bistable systems.We show experimentally the emergence of phase stochastic resonance
in the bidimensional response of a forced nano-electromechanical membrane by evidencing the en-
hancement of a weak phase modulated signal thanks to the addition of phase noise. Based on
a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that
phase noise acts multiplicatively inducing important physical consequences. These results may
open interesting prospects for phase noise metrology or coherent signal transmission applications
in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to
various systems.

Stochastic resonance whereby a small signal gets am-
plified resonantly by application of external noise has
been introduced originally in paleoclimatology [1, 19] to
explain the recurrence of ice ages and has then been
observed in many other areas including neurobiology
[6, 16], electronics [18], mesoscopic physics [25], photonics
[4, 32], atomic physics [43] and more recently mechanics
[3, 33, 34, 42]. Implementation of stochastic resonances
involves generally three ingredients : (i) the existence of
metastable states separated by an activation energy, as
in excitable or bistable nonlinear systems, (ii) a coherent
excitation, whose amplitude is however too weak to in-
duce deterministic hopping between the states, and (iii)
stochastic processes inducing random jumps over the po-
tential barrier. In the classical picture of a bistable sys-
tem, this corresponds to the motion of a fictive particle
in a double-well potential periodically modulated in am-
plitude by the signal and subjected to noise [21]. When
an optimal level of noise is reached, the system’s response
power spectrum displays a peak in the signal to noise ra-
tio, unveiling the stochastic resonance phenomenon. The
resonance occurs as a ’bona-fide’ resonance in a frequency
band around a signal frequency approximately given by
the time-matching condition [5, 22], i.e. when the po-
tential modulation period is twice the mean residence
time of the noise-driven particle. Experimental works
on stochastic resonance are almost exclusively using am-
plitude modulation going along with additive amplitude
noise or multiplicative amplitude noise [10, 20, 37, 44, 45].
In this case, it corresponds to a pure one dimensional ef-
fect. Few studies take advantage of a bidimensional phase
space by e.g. using phase modulation and/or phase noise
(i.e. phase random fluctuations of input signal) [15, 23].
Most of them use amplitude noise to demonstrate ampli-
tude stochastic resonance, or introduce noise in the form
of the response of a stochastic oscillator [39]. However
in the latter scheme, neither the noise nor the modula-

tion are controlled, thus preventing to unveil the specific
roles of phase modulation and phase noise in stochastic
resonance.

In this Letter, stochastic resonance is implemented in
a nonlinear nanomechanical oscillator forced close to its
resonant frequency. It enables, in a bidimensionnal phase
space, the implementation of phase stochastic resonance
observed simultaneously both on the phase and ampli-
tude response of the oscillator. It is here demonstrated by
achieving the stochastic enhancement of a phase modu-
lated signal by phase noise observed on the bidimensional
response of the oscillator. This opens new avenues for
stochastic resonance in bidimensional systems by allow-
ing for instance stochastic amplification of mixed phase-
amplitude modulated signals by complex value noise. We
highlight that the system’s response can be projected on
any variable in phase space and that the amplification
depends on the chosen basis. Finally, we derive a stochas-
tic nonlinear amplitude equation for the forced stochastic
Duffing oscillator, which describes qualitatively well our
system, and show that phase noise acts multiplicatively
inducing important physical consequences.

The forced nanomechanical oscillator consists of a sus-
pended InP photonic crystal membrane which acts as a
mirror in one arm of an interferometer fed with an He-
Ne laser. The membrane is activated by underneath in-
tegrated interdigitated electrodes driven by an AC-bias
voltage V (t) (see Fig. ). This voltage induces an electro-
static force on the oscillator which drives its out-of-plane
motion as described in [11]. The oscillator is placed in a
vacuum chamber with a pressure of about 10−4 mbar at
room temperature. The phase Φ and the amplitude mod-
ulus R of the oscillator’s motion are retrieved by use of
a balance homodyne detection. From the recorded time
traces of Φ and R, we can reconstruct the polar plots with
the two quadratures X = R cos (Φ) and Y = R sin (Φ).
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FIG. 1: (Top left) A scanning electron microscopic view of
the device shows the membrane (thickness of 260 nm and a
10×20µm2 surface) forming the mechanical oscillator (pur-
ple) and the interdigitated electrodes (yellow) underneath, at
a distance of about 400 nm. (Top right) Finite Element Model
(F.E.M.) simulation of the fundamental mechanical mode un-
der study with enhanced out-of-plane displacement for clarity.
(Bottom left) Amplitude R and (bottom right) phase Φ spec-
tra of the driven oscillator response in a frequency sweep-
up and sweep-down experiment with VAC = 9V , ∆φ = 0
and ξRMS = 0; the theoretical response is displayed in
red dashed lines in both spectra. The driving frequency
Ωd/2π = 2.824MHz (dashed lines) lies close to the linear
fundamental mechanical resonance at Ω0/2π =2.822MHz (i.e.
zero normalised detuning). Normalized detuning is defined as
(Ωd − Ω0) /Ω0.

The applied voltage, and therefore the applied electro-
static force, is in the form of [30]:

V (t) = VAC cos [Ωdt+ ∆φ sgn (cos (Ωmt)) +ξ (t)] . (1)

Here VAC is the amplitude of the applied voltage, while
Ωd denotes the resonant driving frequency. A phase mod-
ulation is added; it displays a square waveform described
by the sign function sgn, at frequency Ωm and a phase
deviation of ∆φ. Gaussian phase noise ξ(t) of zero-mean
and standard deviation ξRMS (bandwidth Bφ = 10 kHz
such that Ωm � Bφ) is also applied on the nonlinear
dynamic system. Under quasi-resonant forcing of the
mechanical fundamental mode, a hysteresis behavior be-
comes prominent for VAC > 5V and two stable fixed
points co-exist in the bidimensional phase space of the

oscillator (Fig. -bottom left and right). In the following,
VAC is set to 9V in order to be deeply in the bistable
regime; the driving frequency is set inside the hystere-
sis region at Ωd/2π = 2.824MHz in order to get equal
probability of residence in each state (See Supplemen-
tary Information) and the system is systematically ini-
tially prepared in its upper state.

In the bistability regime, jumps between the two sta-
ble states can be induced by applying a slow modula-
tion (Ωm � Ωd) with a sufficiently high phase deviation,
phase noise strength or both. These jumps are investi-
gated by tracing the amplitude and phase evolution of
the fundamental mode with time and are also pictured
in the X-Y phase plane. In the case of pure phase modu-
lation, the system can transit or not from one state to the
other depending on the values of Ωm and ∆φ. Beyond
the cut-off frequency Ωm,c/2π = 1 kHz, which is directly
linked to the oscillator’s line width of 0.9 kHz [15], the
output signal is not synchronized with the input signal,
in amplitude or phase. For Ωm/2π = 500Hz, every jumps
in the input signal translate into a jump in the output sig-
nal for ∆φ > 1.83 rad (see Supplementary Information).
Similarly, in the case of pure noise-induced switching,
the system starts to transit between the two 2D states,
in amplitude and phase as noise strength increases. The
occupancy between these two states becomes equiprob-
able for values of ξRMS close to 0.52 rad in our device.
Such noise-induced transitions can also be quantified by
the Kramers rate TK = 1/τK which is the inverse of the
average time required to cross over the barrier [29] and
reaches a value close to 100Hz (see Supplementary Infor-
mation). Contrary to amplitude noise which amounts to
additive noise, phase noise acts here as a multiplicative
noise. This feature is revealed through the non-constant
dependence of the phase difference ∆θ between the two
equilibria for increasing noise strengths (see Fig. 2) and
is highlighted by the fourth term in the right hand side
of Eq. 4. At weak phase noise (ξRMS < 0.4 rad), un-
certainties on the phase difference are large because the
probability of residence in the lower state is weak (< 5 %)
and thus this state gets difficult to observe. Conversely,
at strong phase noise (ξRMS > 0.6 rad), the probability
of residence of the upper state reduces, and this state is
hardly observable.

The stochastic synchronization between the external
noise and the weak coherent signal that occurs in stochas-
tic resonance, takes place when the average waiting time
between two noise-induced interwell transitions (TK) is
comparable to half the period of the periodic signal
(TΩ = 2π/Ωm). In order to match this time-scale condi-
tion, modulation frequency Ωm in phase is set at 50Hz.
The deviation ∆φ is also set to 0.09 rad (� 1.56 rad,
the hysteresis width (Fig. )), a far too weak value to
let the system switch periodically from one state to the
other (see Fig. 3 upper line). When increasing the noise
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FIG. 2: Simulated (open squares) and experimental (red tri-
angles) polar angle difference between the two stable states for
increasing noise strengths. Inset: Experimental polar plots
with experimental values of ξRMS = 0.52 rad and Ωd/2π =
2.824MHz.

FIG. 3: The response of the system, now driven by a force
combining a weak phase modulation and an increasing phase
noise is shown. (From left to right) Experimental time
traces recorded on a timescale of 300 s of the amplitude R
and phase Φ of the fundamental mode for increasing noise
strengths, with associated experimental and theoretical polar
plots. (From upper to lower lines) Evolution of these four
panels for increasing standard deviation ξRMS .

strength, occasional transitions occur, weakly locked to
the modulation signal. For ξRMS = 0.49 rad, the tran-
sitions get stochastically synchronized with the modula-
tion (see Fig. 3). Further increasing the noise distorts the
hysteresis cycle and the system drops to its lower state.

Quantification of achieved amplification relies on a Dis-
crete Fourier Transform (DFT) of the time traces. The
spectral power amplification is then given by the ratio
between the strength of the peak in the DFT at Ωm for
a given noise intensity and its strength without added

noise. For both variables, R and Φ, evolution of the
spectral amplification is observed as a function of the
phase noise strength and are plotted on Fig. 4-a and b.
It presents a bell-shaped maximum which reaches, for
the amplitude variable, a value up to 6.3 and peaks at
ξRMS = 0.44 rad (see Fig. 4-a). This noise strength
is close to the one at which the system has a Kramer’s
rate of about 100Hz with only noise applied. Under the
same conditions, amplification of the phase variable is
also shown in Fig. 4-b. It reaches experimentally a value
up to 3 for the same phase noise strength. A double peak
is clearly visible in the numerical spectral amplification
of the phase. The first peak is indeed attributed to the
synchronized hopping between the two metastable states,
whereas the other peak is due to an internal state reso-
nance [2]. For higher noise strength, the noise-induced
effective detuning makes a longer residence time in the
lower state, and the Kramers rates are not balanced any-
more.

To gain more insight into the observed dynamics, we
compare our results to theoretical and numerical predic-
tions of a stochastic amplitude equation. Fits of the ex-
perimental results are obtained by modeling the nano-
electromechanical oscillator by a simple forced stochastic
Duffing oscillator [17] whose dynamics can be described,
in the limit of small injection and dissipation of energy,
by:

ẍ = −x− εµẋ− αx3+

ε3/2F cos((1 + εσ)t+ εφm(t) + ε
√
η0∆Wφ) (2)

where x(t) accounts for the displacement of the mem-
brane and ε is a small control parameter (ε � 1). This
parameter is introduced to properly balance the scaling
between the dissipation and injection of energy in the
system, and also control the frequency detuning. The
natural frequency has been rescaled to one (ω0 = 1),
µ � 1 is the damping coefficient that accounts for dis-
sipation of energy, α accounts for the nonlinear stiffness
of the spring, which is positive (negative) for soft (hard)
spring [7] and F the strength of the driving. The near-
resonant drive has an angular frequency of ωd = 1 + σ,
where σ � 1 stands for the detuning between the drive
and the natural resonant frequency. The system is also
subject to a slow phase modulation φm(t) (φ̇m � ω0φm)
and to a phase noise term in the form of a Wiener process
∆Wφ with Gaussian noise strength η0. In the conserva-
tive limit and for small displacements, the system ex-
hibits harmonic motion with a small arbitrary amplitude
D such that x(t) = Re[Deit]. When considering the non-
linear terms, dissipation and forcing, the displacement of
the membrane response can be approximated by [7, 28]:

x(t) = ε3/2D(T = εt)ei[t+ε(σt+φm(t)+
√
η0∆Wφ)]

+
αε9/2

8
D3ei3[t+ε(σt+φm(t)+

√
η0∆Wφ)] + c.c.+ o(ε5)(3)
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FIG. 4: (a) Experimental (red triangles) and theoretical (open black squares) spectral amplification in amplitude R as a function
of phase noise strength. (b) Experimental (blue circles) and theoretical (open black stars) spectral amplification in phase Φ as
a function of phase noise strength. Theoretical curves have been obtained by use of Eq.(4). (c) Experimental polar plot for
ξRMS = 0.44 rad (maximum amplification), highlighting the shape of the two stable points as well as the directions imprinted
by the modulation on the input phase or amplitude. The two dashed grey lines are guide for the eyes indicating the two distinct
amplitude states and the dotted white line highlights the threshold.

where the envelope of the oscillations D is promoted to
a temporal variable [7, 28, 35], T accounts for the slow
temporal scale (Ḋ ' εD and D̈ ' ε2D), and the symbol
c.c. stands for complex conjugate. Introducing the above
ansatz in Eq. (2) to order ε3/2 and using the rules of
calculus in stochastic normal form theory [12] one finds
the stochastic nonlinear amplitude equation:

dD

dT
= −(

µ

2
+i(σ+

dφm
dT

+
√
η0ξ))D+

3iα

8
|D|2D− iF

2
(4)

where ξ = d∆Wφ/dT is a zero-mean and delta-correlated
white Gaussian noise term. Note that φm is a slow phase
modulation, that is, dφm/dt = εdφm/dT . To derive the
above model, we have considered ansatz (3) as a change
of variable. Here, the Stratonovich prescription for noise
has been adopted. Namely, the stochastic term can in-
duce a non-zero drift, 〈ξ (T )D (T )〉 6= 0. Note that even
though Eq.(2) would give rise to additive noise with time-
dependent coefficients in a Fokker-Planck equation, the
reduced equation (Eq.(4)) for the response amplitude of
the oscillations satisfies a stochastic differential equation
with multiplicative noise as a result of the stochastic
normal-form derivation [12].

Stochastic numerical simulations of Eq.(4) are per-
formed with the help of the XMDS2 package [14]. We
use the semi-implicit numerical scheme which converges
to the Stratonovich integral. The time step is kept fixed
in the simulation and is chosen to be dT = 0.1. The slow
phase modulation is sinusoidal with an amplitude ∆φ =
5 × 10−5 and an angular frequency Ωm = 2π/2 × 105.
The detuning is σ = 1.77× 10−3. The model reproduces
well the bistable response in amplitude and phase of our
nano-electromechanical oscillator (see Fig. bottom), as
well as the temporal evolution of the response in am-
plitude or phase, in the case of pure phase modulation,

pure phase noise (see Supplementary Information) and
stochastic resonance (see Fig. 3 and 4). Moreover, multi-
plicative noise shall translate into a shift of the operating
point in the hysteresis and thus into an effective detuning
in Eq. (4) which reduces to σeff = σ+ η0/2. Physically,
this translates in a drift of the operating point for in-
creased noise strengths, a signature of the multiplicative
nature of the added noise, as observed in our experiment
(see Fig. 2). The measured ∆θ is slightly smaller in the
experiment compared to theory presumably because of
extra low-frequency noise sources which are not taken
into account in the model.

Stochastic resonance amplification of the modulated
signal is here limited by the relative orientation of the
modulation and of the minimal energy path between
the two basins of attraction, which is almost in a di-
rect straight line (see Fig. 4-c). In the same frame,
the added phase modulation shakes the upper state pref-
erentially in the azimuthal direction. These two ori-
entations being not parallel, higher amplification value
can not be achieved in this configuration. This reveals
the importance of the modulation format of the signal:
optimal stochastic resonance would certainly require a
mixed amplitude-phase format to follow the minimal en-
ergy path in the nanomechanical oscillator phase space.
The distribution of the two states in the phase plane gets
also distorted: The system switches between a symmetric
branch (with a quasi-circular state in the phase portrait)
to an asymmetric branch (with an elongated state in the
polar plot). Such distortion is reminiscent to thermal
noise squeezing observed e.g. in parametrically-driven
oscillators [8, 36, 38, 40].

In conclusion, we have demonstrated phase stochastic
resonance with phase noise in a bidimensional nonlinear
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oscillator consisting of a nano-electromechanical device.
The applied phase noise reveals to act as a multiplicative
noise on the system which introduces an effective detun-
ing that plays a crucial role in the residence probability
asymmetry. The derived stochastic amplitude equation
(4) is a universal model that describes the evolution of
the envelope of the oscillations near a nonlinear reso-
nance and subjected simultaneously to phase noise and
to a phase modulation. That is, it applies to any non-
linear oscillator with such forcing provided one makes
use of a suitable nonlinear and periodic change of vari-
ables in the initial equations that describe the system.
Our model applies to e.g. dispersive optical bistability
that plays an important role in nonlinear optical science
[41] and can thus shed a new light on coherent processes
involving phase fluctuations in these systems [9]. Such
stochastic resonance obtained by the assistance of phase
noise may also enable various noise-aided applications,
including signal transmission [26, 27] in particular involv-
ing novel coherent schemes such as Phase Key Shifting
protocol, or metrology with improved detection in noise-
floor limited systems [10, 13, 24].
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