
HAL Id: hal-01668437
https://hal.science/hal-01668437v1

Preprint submitted on 20 Dec 2017 (v1), last revised 17 Aug 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Alternating Proximal Approach for Blind Video
Deconvolution

Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues
Chenot, Louis Laborelli

To cite this version:
Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Hugues Chenot, Louis Laborelli.
An Alternating Proximal Approach for Blind Video Deconvolution. 2017. �hal-01668437v1�

https://hal.science/hal-01668437v1
https://hal.archives-ouvertes.fr


An Alternating Proximal Approach for Blind Video

Deconvolution
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Abstract

Blurring occurs frequently in video sequences captured by consumer devices, as

a result of various factors such as lens aberrations, defocus, relative camera-

scene motion, and camera shake. When it comes to the contents of archive

documents such as old films and television shows, the degradations are even

more serious due to several physical phenomena happening during the sensing,

transmission, recording, and storing processes. We propose in this paper a ver-

satile formulation of blind video deconvolution problems that seeks to estimate

both the sharp unknown video sequence and the underlying blur kernel from an

observed video. This inverse problem is severely ill-posed, and an appropriate

solution can be obtained by modeling it as a nonconvex minimization problem.

We provide a novel iterative algorithm to solve it, grounded on the use of re-

cent advances in convex and nonconvex optimization techniques, and having the

ability of including numerous well-known regularization strategies.
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1. Introduction

Video processing has been growing in popularity for the last decades and

plays henceforth a prominent role in many application fields, such as telecom-

munication, video surveillance, microscopy, medical imaging, astronomy and so

on. Real-life video sequences are usually blurred due to the overall effect of

different factors such as defocus, motion blur, and optical blur. These degraded

videos can typically be modeled as the noisy convolution of original ones with

the impulse response of some blur kernel, also called point spread function (PSF)

[1, 2, 3]. Thereby, a deconvolution process becomes mandatory for retrieving a

visually sharp video [4].

Video deconvolution problems can be categorized into two types: non-blind de-

convolution problem where the blur kernel is assumed to be known, and blind

deconvolution problem where one has to estimate both the video and the blur.

The blind scheme is more realistic, and it is frequently encountered, for instance

in optics due to imperfect optical instruments, and in photography due to mis-

focusing or camera shake, resulting in blurry images with unknown PSF. Blind

video deconvolution is a severely ill-posed inverse problem since an infinity of

pairs (images/blur kernel) can lead to the same observed video. Therefore, the

use of some prior knowledge on the sought video and kernels is required to com-

pute a stable solution to the problem and circumvent its ill-posedness. This

usually comes with the formulation of the problem as the optimization of a

nonconvex cost function accounting for the observation model, through a data

fidelity term, and prior information thanks to regularization functions.

Sparsity is often favored and exploited in blind deconvolution, with the use

of regularization terms based on ℓ1/ℓ2-norm [5, 6], ℓ1-norm [7], or ℓ0-norm [8],

applied to linear transforms of the video frames. A very popular approach is

the Total Variation (TV) regularization that has been proposed in [9] in order

to penalize small discontinuities while preserving the edges in the image. An-

other interesting regularization approach consists of resorting to wavelet/frame

decompositions [10, 11, 12, 13], where the sparsity of the frame coefficients of
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the sought images is enforced.

Regularization and hard constraints must also be applied to the blur kernel.

They usually model the physical properties of the imaging system by imposing

the positivity of the kernel coefficients, their smoothness or sparsity, and a mean

or energy preservation property through a sum-to-one constraint [5, 14, 15].

Note that this last condition is widely used in blind deconvolution since it allows

to overcome the scaling ambiguity issue.

In this paper, we address the problem of blind video deconvolution and propose a

versatile formulation with a new alternating proximal algorithm to solve it. One

of the main advantages of our method is its ability to handle numerous convex

and nonconvex regularization functions in a unified optimization framework.

The reminder of this paper is structured as follows: we introduce in Section 2 the

formulation of the blind deconvolution problem as a minimization problem and

present a number of regularization strategies that can be adopted in the context

of image/video processing. Afterwards, we present our minimization approach

in Section 3, which allows us to solve efficiently the resulting nonconvex problem.

Section 4 provides some illustrative experimental results on synthetic and real

video sequences. Finally, some conclusions are given in Section 5.

2. Problem statement

2.1. Observation model

Blind video deconvolution amounts to inferring an original sharp video se-

quence x = (xt)16t6T ∈ R
TN and a spatial convolution kernel h ∈ R

P from

an observed degraded video sequence y = (yt)16t6T ∈ R
TN , satisfying the

following degradation model:

(∀t ∈ {1, . . . , T}) yt = h ∗ xt + wt, (1)

where T denotes the number of frames included in the video sequence, ∗ stands

for the 2D convolution operator, and (wt)16t6T ∈ R
TN represents an additive
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noise. (Throughout the paper, images of size N1 ×N2 are reshaped as column

vectors of dimension N = N1N2). If no additional information is supplied, this

problem is severely ill-conditioned and its resolution may lead to unstable and

unsatisfactory results. Thus, we resort to the following penalized formulation

in order to solve it:

minimize
x∈R

TN ,h∈R
P

(F (x, h) = Φ(x, h) + Ψ(x) + Θ(h)) . (2)

The cost function F is composed of a least squares data fidelity term Φ which

ensures the compliance with Model (1), and is given by

(∀x ∈ R
TN )(∀h ∈ RRP ) Φ(x, h) =

1

2

T∑

t=1

‖h ∗ xt − yt‖2, (3)

and of two regularization functions Ψ and Θ that incorporate prior informa-

tion on the sought images and kernel, respectively. The objective function F

is nonconvex due to the coupling existing in the data fidelity term between the

variables x and h. This suggests the use of an optimization method that al-

ternates between the estimation of the images composing the sequence x, and

the identification of the PSF h in order to reach a critical point of (2). Besides,

it is worth noticing that the choice of the regularization functions Ψ and Θ

plays a prominent role in the quality of the restored video and the identified

kernel. A number of regularization strategies has been proposed in the context

of image/video processing. However, the adopted optimization method depends

heavily on the mathematical properties of the retained penalty functions. The

main contribution of this paper is to propose a unique and versatile optimization

framework that can handle a wide class of regularization functions, as detailed

in the following.

2.2. Video estimation

Let us first focus on the simpler problem of estimating the video sequence

while assuming a known PSF h. The images composing the video sequence can
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be inferred by solving the following problem

minimize
x∈R

TN
Φ(x, h) + Ψ(x). (4)

Here, we propose to define Ψ as follows:

(∀x ∈ R
TN ) Ψ(x) =

T∑

t=1

(
η ψ(xt) + ι[xmin,xmax]N (xt)

)
+ M(x), (5)

where ψ is a spatial regularization function handling each frame xt separately,

ι[xmin,xmax]N denotes an indicator function that sets a range on the pixel val-

ues of each image. Moreover, we propose to rely on the following temporal

regularization term:

(∀x ∈ R
TN ) M(x) =

1

2

T∑

t=1

∑

ℓ∈Vt

βℓ,t‖xt −Mℓ→txℓ‖2, (6)

where, for every t and ℓ, βℓ,t are positive weights selected proportionally to the

distance |t − ℓ| between the frame index of images xt and xℓ, the index set Vt

defines the neighborhood of the current image xt (i.e., ℓ ∈ Vt is such that |ℓ− t|
is small and nonzero), and Mℓ→t ∈ R

N×N is a linear operator modelling the

motion fields between the current image xt and the neighboring image xℓ. Note

that M can be viewed as a smooth version of the temporal regularization we

proposed in our previous work [16].

Various choices for spatial regularization term ψ can be adopted in Model (5).

In this work, we will consider several of them that are listed herebelow:

• Total Variation (TV) is one of the most popular regularization method

in image restoration. It has been initially introduced for image denoising

and reconstruction problems [9], and reads:

(∀z ∈ R
N ) ψ(z) = χ2 (Dz) , (7)

where D ∈ R
2N×N is the discrete gradient operator defined as the con-
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catenation of the horizontal and vertical gradient operators:

D =


 ∇H

∇V


 , with ∇H ∈ R

N×N , ∇V ∈ R
N×N , (8)

and for every q ∈ N
∗, χq : RqN → R is a sparsity promoting function given

by

(
∀(z1, . . . , zq) ∈ (RN )q

)
χq(z1, . . . , zq) =

N∑

k=1

√
(z1,k)

2
+ · · · + (zq,k)

2
.

(9)

The total variation promotes the sparsity of the image derivatives, which

has the advantage of reducing the noise and preserving sharp edges. How-

ever, it may lead to piecewise constant images and induce staircase arte-

facts [17].

• Semi-Local Total Variation (SLTV) that has been proposed in [18], is a

variant of the classical total variation that attenuates the staircase arte-

facts, and is defined as

(∀z ∈ R
N ) ψt(z) =

∑

ℓ∈Ω

χ2 (Dz − VℓDz) , (10)

where D ∈ R
2N×N is the linear operator introduced in (8), Ω = {1, . . . , 6}

and (Vℓ)16ℓ66 ∈ (R2N×2N )6 represent shift operators as illustrated in

Figure 1.
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Figure 1: Shift operators (Vℓ)ℓ∈{1,...,6} applied to a given pixel position n ∈ {1, . . . , N}.

• Total Generalized Variation (TGV) from [19], is a high order total varia-

tion regularization defined as follows

(∀z ∈ R
N ) ψ(z) = min

q∈R2N
α0 χ2 (Dz − q) + α1 χ3 (Gq) ,

with (α0, α1) ∈]0,+∞[2, D ∈ R
2N×N and χq are defined in (8) and (9) re-

spectively. Finally G ∈ R
3N×N can be viewed as a second-order derivative

operator given by

G =




−∇⊤
H 0

−∇⊤
V −∇⊤

H

0 −∇⊤
V



. (11)

• Total Variation on a Staggered Grid (TVSG) that has been recently pro-

posed in [20], introduces a new formulation of the total variation with a

more accurate adaptation of its continuous definition to the discrete do-

main, instead of the one based on the classical finite differences in (8). It
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resorts to a sophisticated gradient operator which is defined as

(∀z ∈ R
N ) ψ(z) = min

(v1,v2,v3)∈R
(2N)3

{
χ2 (v1) + χ2 (v2) + χ2 (v3) |

L⊤
1 v1 + L⊤

2 v2 + L⊤
3 v3 = Dz

}
, (12)

where L⊤
1 , L

⊤
2 , L

⊤
3 denote the adjoint operators of L1, L2, L3 respectively,

defined as follows. Let u ∈ R
2N =


 u1

u2


, then :

L1u ∈ R
2N =


 q1,1

q1,2


 is such that

q
1,1(n,m) = u1(n,m),

q
1,2(n,m) = (u2(n,m) + u2(n,m− 1) + u2(n+ 1,m) + u2(n+ 1,m− 1)) /4,

L2u ∈ R
2N =


 q2,1

q2,2


 is such that

q2,1(n,m) = (u1(n,m) + u1(n− 1,m) + u1(n,m+ 1) + u1(n− 1,m+ 1)) /4,

q2,2(n,m) = u2(n,m),

L3u ∈ R
2N =


 q3,1

q3,2


 is such that

q3,1(n,m) = (u1(n,m) + u1(n− 1,m)) /2,

q3,2(n,m) = (u2(n,m) + u2(n,m− 1)) /2,

where n ∈ {1, . . . , N1} and m ∈ {1, . . . , N2} are vertical and horizontal

pixel indices, with N = N1N2.

This new definition of gradient fields leads to a regularized approach that

improves the sharpness of the edges, and presents a better isotropy com-
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pared to the standard total variation.

• Smoothed One Over Two-Total Variation (SOOT-TV) is a nonconvex

sparsity promoting function combining the ℓ1/ℓ2 norm and the total vari-

ation operator. ℓ1/ℓ2 can be viewed as a more accurate approximation to

ℓ0 compared with the convex ℓ1 norm, as shown in Figure 2.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 2: Sparsity promoting norms: ℓ0 norm (thin solid yellow), ℓ1 norm (thick dashed
red), ℓ1/ℓ2 norm (thick solid blue), log-ℓ1 norm (thin magenta ‘◦’), Welsch penalty
(thin dashed green).

Here, we will focus on the log-smoothed version of the ℓ1/ℓ2 norm called

”SOOT” introduced in [6]. The prior then reads:

(∀z ∈ R
N ) ψ(z) = log

(
ℓ1,α(Dz) + β

ℓ2,λ(Dz)

)
, (13)

where

ℓ1,α(Dz) =

2N∑

i=1

(√
(D(i)z)2 + α2 − α

)
, ℓ2,λ(Dz) =

√√√√
2N∑

i=1

(D(i)z)2 + λ2,

(14)

D ∈ R
2N×N is the discrete gradient operator defined in (8), D(i) ∈ R

1×N

denotes the i-th row of D, and α, β, λ are positive parameters.

• Smoothed log-Total Variation (log-TV) is a nonconvex smooth sparsity
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promoting regularization function from [21] defined as follows

(∀z ∈ R
N ) ψ(z) =

1

2

N∑

i=1

log
(

(∇(i)
H z)2 + (∇(i)

V z)2 + α2
)
, (15)

where α > 0, and ∇(i)
H ∈ R

1×N (resp. ∇(i)
V ∈ R

1×N ) denotes the i-th row

of ∇H (resp. ∇V). Similarly to the ℓ1/ℓ2 norm, the log-based penalty used

in (15) can be viewed as a nonconvex approximation to ℓ0.

• Welsch-Total Variation (Welsch-TV) is based on the so-called “Welsch

function” [22] defined as

φ : R → R : t→ 1 − exp
(
−t2/(2σ2)

)
. (16)

The Welsch function is bounded and approaches 1 exponentially fast as

|t| → +∞, as shown by Figure 2. It is convex near the origin, for t2 < σ2

and nonconvex elsewhere. Its adaptation to the context of image and

video deconvolution is realized by applying it to the image gradients in

order to measure their sparsity:

(∀z ∈ R
N ) ψ(z) =

N∑

i=1

φ(

√
(∇(i)

H z)2 + (∇(i)
V z)2). (17)

2.3. Kernel identification

The spatial convolution kernel can be estimated by solving the minimization

problem (2) with respect to h while keeping the images (xt)16t6T fixed, which

reduces to

minimize
h∈R

P
Φ(x, h) + Θ(h), (18)

where Θ stands for an indicator function of a set H representing a constrained

set, so that a priori information on the sought kernel are satisfied. In the
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proposed method, the following constraints are considered:

(∀h ∈ R
P ) Θ(h) = ιH(h) =





0 if h ∈ H

+∞ otherwise,

(19)

with

H =
{
h = (hp)16p6P ∈ R

P |
P∑

p=1

hp = 1, (20)

(∀p ∈ {1, . . . , P}) hmin,p 6 hp 6 hmax,p

}
. (21)

The first constraint (20) is used to circumvent the so-called scaling ambiguity.

In fact, let (x̂, ĥ) be a solution to (2), then each pair (αx̂, 1
α ĥ) with α 6= 0 is also

a solution satisfying Model (1). This ambiguity is avoided by imposing Con-

straint (20). The second constraint (21) is adjusted regarding prior information

on the physical properties of the sought convolution kernel. As an example, for

old television archive contents, the kernel h may have a narrow spike and small

(possibly negative) components.

3. Optimization method

3.1. Minimization strategy

The objective function F is nonconvex, yet convex with respect to each image

variable xt, t ∈ {1, . . . , T}, and with respect to the kernel h. A standard res-

olution approach is thus to adopt an alternating minimization strategy, where,

at each iteration, F is minimized with respect to one variable while the others

remain fixed. However, its convergence is only guaranteed under restrictive as-

sumptions [23]. We thus propose to resort to the alternating strategy based on

the block-coordinate variable metric forward-backward algorithm proposed in

[24] (see also [25] for related approaches), which benefits from sounder conver-

gence results, particularly in the nonconvex setting.

In order to adapt this alternating minimization strategy to the resolution of
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Problem (2), we propose to rewrite it as follows:

minimize
x∈R

TN , h∈R
P

(F (x, h) = f1(x, h) + f2(x) + Θ(h)) , (22)

where f1 represents the smooth part of Φ(x, h) + Ψ(x) and f2 its nonsmooth

part. Two cases arise depending on the selected regularization function ψ:

• ψ is nonsmooth, e.g., in case of TV, SLTV, TGV and TVSG, then

(∀x ∈ R
TN ), (∀h ∈ R

P ) f1(x, h) = Φ(x, h) + M(x),

(∀x ∈ R
TN ) f2(x) =

T∑

t=1

(
η ψ(xt) + ι[xmin,xmax]N (xt)

)
.

• ψ is smooth, e.g., it corresponds to the nonconvex regularizations, SOOT-

TV, log-TV and Welsch-TV, then

(∀x ∈ R
TN ), (∀h ∈ R

P ) f1(x, h) = Φ(x, h) + η

T∑

t=1

ψ(xt) + M(x),

(∀x ∈ R
TN ) f2(x) =

T∑

t=1

ι[xmin,xmax]N (xt).

Problem (22) is then solved with the proximal-based alternating minimization

strategy presented in [24]. Before stating the algorithm, let us first define the

notion of proximity operator relative to a metric.

Definition 1 Let f : RN →]−∞,+∞] be a convex, proper, lower semicontinu-

ous function, let A ∈ R
N×N be a symmetric positive definite matrix. For every

x ∈ R
N , the minimization problem

minimize
z∈R

N
f(z) +

1

2
‖x− z‖2A, (23)

admits a unique solution, which is denoted by proxA,f (x). The so-defined oper-

ator proxA,f : RN → R
N is the proximity operator of f relative to the metric

induced by A.
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Hereabove, ‖ · ‖A denotes the weighted norm defined by ‖.‖2A = 〈·, A·〉, where

〈·, ·〉 is the usual Euclidean scalar product. Note that, if A is the identity matrix,

one recovers the usual proximity operator proxf : RN → R
N , which is at the

core of numerous convex optimization algorithms (see [26, 27, 28] for tutorials

and use for multicomponent image processing).1 We are now ready to provide

Algorithm 1 for the minimization of function F :

Algorithm 1 Blind video deconvolution

Initialization:

For every k ∈ N,
(
γkt

)
16t6T

∈ ]0, 2[ and µk ∈ ]0,+∞[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌
t,k =

(
xk+1
1 , . . . , xk+1

t−1 , x
k
t , x

k
t+1 . . . , x

k
T

)

x̃kt = xkt − γkt A
−1
t,k

(
∇xt

f1(x̌t,k, hk)
)

xk+1
t = prox(γk

t )
−1At,k,f2

(
x̃kt

)

end for

hk+1 = proxµk (Θ+Φ(xk+1,·))(h
k)

end for

Hereabove, ∇xt
f1 denotes the gradient of f1 with respect to frame xt. The

update rule on each image xt with t ∈ {1, . . . , T} corresponds to a forward-

backward iteration, alternating a gradient descent step on the smooth part f1

and a proximal step on the nonsmooth part f2, preconditioned by a positive

definite matrix At,k ∈ R
N×N at iteration k. This matrix is chosen so as to

satisfy a majorizing condition for f1 at x̌
t,k, i.e. [29]:

(
∀x ∈ R

N
)

Q(x, x̌t,k) = f1(x̌t,k) + 〈x− xkt | ∇xt
f1(x̌t,k)〉 +

1

2
‖x− xkt ‖2At,k

,

> f1(xk+1
1 , . . . , xk+1

t−1 , x, x
k
t+1, . . . , x

k
T ). (24)

After each image has been updated, a proximal step is applied on the restriction

of F to the kernel variable h while all the images of the sequence x are kept

1See also http://proximity-operator.net.
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unchanged.

3.2. Construction of the majorant

The choice of a good majorant function Q(·, x̌t,k) of the restriction of f1 to

the image xt at each iteration k ∈ N has a strong leverage on the numerical

performance of the proposed method. Thereby, one has to favor curvature

matrices (At,k)16t6T,k∈N that are easy to handle.

Depending on the choice of the spatial regularization ψ, (At,k)16t6T,k∈N are

defined as described below (proofs are given in appendix).

1. ψ is non smooth e.g., in case of TV, SLTV, TGV, and TVSG

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,k IdN , (25)

where υt,k is a Lipschitz constant of the gradient of f1 with respect to xkt :

∇
(

1

2
‖hk ∗ · − yt‖2 + M(xk+1

1 , . . . , xk+1
t−1 , · , xkt+1, . . . , x

k
T )

)
.

According to (6), such a Lipschitz constant is thus expressed as

υt,k = ‖Hk‖2 +
∑

ℓ∈Vt

βℓ,t +
∑

ℓ∈{1,...,T}:t∈Vℓ

βt,ℓ‖Mt→ℓ‖2. (26)

where ‖Hk‖ is maximum magnitude of the frequency response of the blur

filter estimate at iteration k and (‖Mt→ℓ‖)16ℓ6T,t∈Vℓ
denote the spectral

norms of the operators used for motion compensation based on xkt . Ex-

pressions of these norms have been derived in [16, Section 5.2.2] for motion

estimation with fractional accuracy. Note that, for every k ∈ N, υt,k is

lower bounded by a positive constant, namely
∑

ℓ∈Vt
βℓ,t.

2

2If no motion compensation is performed, a positive constant ǫ > 0 must be added to the
right-hand side of (26) to guarantee the existence of such a bound independent of k. The
same correction should be made in subsequent expressions of At,k.
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2. ψ is SOOT-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k =

(
υt,k +

9η ‖D‖2
8λ2

)
IdN+

η Aℓ1,α(x̌t,k)

ℓ1,α(Dx̌
t,k) + β

,

(27)

Hereabove,

(∀z ∈ R
N ) Aℓ1,α(z) = Diag

(
Ω⊤s(z)

)
(28)

where, for every z ∈ R
N , s(z) ∈ R

2N is such that, for every i ∈ {1, . . . , 2N},

its i-th component is given by

s(i)(z) = ((D(i)z)2 + α2)−1/2, (29)

and the (i, j) ∈ {1, . . . , 2N}2 element of Ω is

Ω(i,j) =
∣∣∣D(i,j)

∣∣∣
N∑

l=1

∣∣∣D(i,l)
∣∣∣ . (30)

3. ψ is log-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,kIdN + η Alog(x̌t,k), (31)

where

(∀z ∈ R
N ) Alog(z) = Diag

(
Ω⊤s(z)

)
, (32)

for every z ∈ R
N , s(z) =

(
si(z)

)
16i6N

∈ R
N is such that

(∀i ∈ {1, . . . , N}) s(i)(z) =
(
(∇(i)

H z)2 + (∇(i)
V z)2 + α2

)−1
, (33)

and Ω is the matrix ΩH + ΩV whose (i, j) ∈ {1, . . . , N}2 elements are
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expressed as

Ω
(i,j)
H =

∣∣∣∇(i,j)
H

∣∣∣
N∑

l=1

∣∣∣∇(i,l)
H

∣∣∣ , Ω
(i,j)
V =

∣∣∣∇(i,j)
V

∣∣∣
N∑

l=1

∣∣∣∇(i,l)
V

∣∣∣ . (34)

4. ψ is Welsch-TV

(∀t ∈ {1, . . . , T})(∀k ∈ N) At,k = υt,kIdN + η Aw(x̌t,k), (35)

where

(∀z ∈ R
N ) Aw(z) = σ−2Diag

(
Ω⊤s(z)

)
(36)

and, for every z ∈ R
N , s(z) ∈ R

N is such that

(∀i ∈ {1, . . . , N}) s(i)(z) = exp
(
−
(
(∇(i)

H z)2 + (∇(i)
V z)2

)
/(2σ2)

)
,

(37)

and Ω = ΩH + ΩV, the (i, j) elements of ΩH and ΩV being expressed by

(34).

3.3. Implementation of the proximity operator of f2

The retained metric matrices (At,k)16t6T,k∈N
being diagonal, the proximity

operator involved in Algorithm 1 may have a closed form expression when f2

is a “simple” function. However, when the latter is more sophisticated, for

example when it represents a sum of functions possibly composed with linear

operators, we have to resort to iterative strategies in order to evaluate it. In

our framework, the computation of the proximity operator of f2 for each image

xt (i.e., prox(γk
t )

−1At,k,f2
) depends on the choice of the spatial regularization

function ψ. In some instances, it has an explicit form while in others, we must

use specific algorithms to evaluate it, namely:

• for smooth nonconvex regularization functions ψ (i.e., SOOT-TV, log-TV
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and Welsch-TV), we have

(∀z ∈ R
N ) f2(z) = ι[xmin,xmax]N (z),

so that the proximity operator has an explicit expression, since it reduces

to compute scalar projections onto [xmin, xmax].

• for nonsmooth convex regularization functions ψ (i.e., TV, SLTV, TGV,

TVSG), we have

(∀z ∈ R
N ) f2(z) = ψ(z) + ι[xmin,xmax]N (z),

and the proximity operator has been evaluated by using the following

algorithms:

TV SLTV TGV TVSG

Dual forward-backward

[30]

Dual block-coordinate

forward-backward [16]

Primal-dual splitting

[31]

Alternating proximal

gradient [32]

Table 1: List of optimization algorithms used for computing the proximity operator
with respect to the different convex regularization functions.

3.4. Implementation of the proximity operator for kernel estimation

The blur kernel h is estimated in Algorithm 1 by computing the proximity

operator of the sum of the data fidelity term and regularization function Θ (i.e.,

proxµk (Θ+Φ(xk+1,·))). Since there is no closed form expression for the latter

proximity operator, we resort to the parallel proximal algorithm (PPXA) in

[33] to evaluate it.

3.5. Convergence analysis

The convergence properties of Algorithm 1 depend on the settings of pa-

rameters (γkt , µk)16t6T,k∈N and on the choice for the preconditioning matrices

(At,k)16t6T,k∈N. First, let us state the following proposition related to the

quadratic form of the data fidelity term Φ.

17



Proposition 3.1 Let us define the symmetric positive definite matrix

B = µX⊤X + IdP , (38)

where IdP is the identity matrix of RP , µ ∈]0,+∞[ and X ∈ R
TN×P is such

that, for every h ∈ R
P , Xh = (h ∗ xt)16t6T . Then, for every h ∈ R

P and

x ∈ R
TN ,

proxµ (Θ+Φ(x,·)) (h) = proxµ−1B,Θ(h− µB−1∇hΦ(x, h)), (39)

and, for every h′ ∈ R
P ,

Φ(x, h′) + ∇h′Φ(x′, h′)⊤(h− h′) +
1

2
‖h− h′‖2µ−1B > Φ(x, h). (40)

Proof. Let q ∈ R
P be the value of the proximity operator of Φ(x, ·) + Θ at h,

i.e., q = proxµ(Θ+Φ(x,·)) (h). We have the following subdifferential inclusion:

h− q ∈ µ (∂Θ(q) + ∇qΦ(x, q))

⇔ h− q ∈ µ∂Θ(q) + µX⊤(Xq − y)

⇔ h− (IdP + µX⊤X)q + µX⊤
y ∈ µ∂Θ(q)

⇔ (IdP + µX⊤X)−1(h+ µX⊤
y) − q ∈ µ (IdP + µX⊤X)−1∂Θ(q) (41)

where ∂Θ(q) denotes the subdifferential of Θ at q. 3 Thus, by setting B =

IdP + µX⊤X,

q = proxµ−1 B,Θ (B−1(h+ µX⊤
y))

⇔ q = proxµ−1 B,Θ (h− µB−1X⊤(Xh− y))

⇔ q = proxµ−1 B,Θ (h− µB−1∇hΦ(x, h)). (42)

3In our case, it is the normal cone to H at q, but the result is valid for any proper convex
lower-semicontinuous function Θ.
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Because of the quadratic form of Φ,

Φ(x, h′)+∇h′Φ(x′, h′)⊤(h−h′)+1

2
(h−h′)⊤∇2

h′Φ(x′, h′)(h−h′) = Φ(x, h), (43)

where the Hessian of Φ(x′, ·) is

∇2
h′Φ(x′, h′) = X⊤X � X⊤X + µ−1IdP = µ−1B (44)

(� stands for the Loewner order). This yields (40).

This allows us to derive the following convergence result:

Theorem 3.2 Let us consider Algorithm 1. Assume that

(∀t ∈ {1, . . . , T}) 0 < inf
k∈N

γkt and sup
k∈N

γkt < 2, (45)

0 < inf
k∈N

µk and sup
k∈N

µk < +∞. (46)

Then, the sequence (xk, hk)k∈N converges to a critical point (x̂, ĥ) of F . More-

over,
(
F (xk, hk)

)
k∈N

is a nonincreasing sequence converging to F (x̂, ĥ).

Proof. It follows from Proposition 3.1 that the proximal step for kernel estima-

tion in Algorithm 1 at iteration k ∈ N reduces to a preconditioned forward-

backward iteration with the preconditioning matrix (µk)−1Bk where Bk =

µkX⊤
k Xk + IdP and Xk ∈ R

TN×P is such that, for every h ∈ R
P , Xkh =

(h∗xkt )16t6T . Algorithm 1 thus appears as a special case of the block-coordinate

variable metric forward-backward algorithm studied in [24] where T + 1 blocks

of variables are involved (corresponding to the T frames and the kernel to be

estimated). Indeed, the cost function in (22) satisfies the assumptions required

in [24]:

• it is a coercive function (since both variables x and h are constrained to

belong to compact sets) and it satisfies Kurdyka- Lojasiewicz inequality;

• f1 is a function with a Lipschitz continuous gradient;
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• the function (x, h) 7→ f2(x)+Θ(h) is a proper convex lower-semicontinuous

function which is separable with respect to the blocks of variables;

• according to Section (3.2) and Equation (40), the curvature matrices

(At,k)16t6T and (µk)−1Bk used at each iteration k ∈ N provide quadratic

majorant approximations to the restriction of f1 to the current activated

block.

In addition, since (xkt )16t6T,k∈N and (hk)k∈N are constrained to belong to boun-

ded sets, it follows from the expressions derived in Section 3.2 and the positive

lower bound already exhibited on (υt,k)16t6T,k∈N that, for every t ∈ {1, . . . , T},

there exists (at,min, at,max) ∈]0,+∞[2 such that

(∀k ∈ N) at,minIdN � At,k � at,maxIdN . (47)

According to (46), there also exists (bmin, bmax) ∈]0,+∞[2 such that

(∀k ∈ N) bminIdP � (µk)−1Bk = X⊤
k Xk + (µk)−1IdP � bmaxIdP . (48)

The convergence result then follows from [24, Theorem 3.1].

4. Experimental results

We assess in this section the performance of the proposed approach on syn-

thetic and real video sequences. We first start our evaluation on T = 20 frames of

the synthetic video sequences Foreman and Claire of sizes N = 352×288 and

N = 360 × 288, sourced from http://media.xiph.org/video/derf/. The sequences

have been blurred using the four convolution kernels displayed in Figure 3, and

degraded by white Gaussian noise with zero mean, and variance equal to 2. We

also apply the proposed method to the T = 20 frames of the real blurred video

sequences Tachan and Au théâtre ce soir of size N = 720 × 576 supplied by

the French National Audiovisual Institute (INA).
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Since it is usually challenging to develop a blind deconvolution method that

achieves satisfactory results for recovering both the blur kernel and the video

contents in a single step, we propose to apply successively our method in two

stages: First, a blind deconvolution step is performed which aims at identifying

the blur kernel from the input degraded sequence using Algorithm 1. Second, we

apply a non-blind (supervised) deconvolution step where the observed degraded

sequence and the identified kernel from the first step are both employed to

reach an improved estimate for the sought restored video sequence. To this

aim, we resort to the same optimization strategy than in Algorithm 1 (possibly

with other regularizers), where we omit the kernel updates, which results in the

simplified Algorithm 2. The algorithm parameters are set as follows: for every

t ∈ {1, . . . , T} and k ∈ N, γkt = 1.9 and µk = 1.

Algorithm 2 Non-blind video deconvolution

Initialization:

Let h ∈ R
P be the identified kernel

For every k ∈ N,
(
γkt

)
16t6T

∈ ]0, 2[

for k = 0, 1, . . . do

for t = 1, . . . , T do

x̌
t,k =

(
xk+1
1 , . . . , xk+1

t−1 , x
k
t , x

k
t+1 . . . , x

k
T

)

x̃kt = xkt − γkt A
−1
t,k

(
∇xt

f1(x̌t,k, h)
)

xk+1
t = prox(γk

t )
−1At,k,f2

(
x̃kt

)

end for

end for

Regarding the temporal regularization term M, the closest neighboring

frames such that |ℓ − t| = 1 have been taken into account. The motion ma-

trices (Mℓ→t)ℓ,t have been estimated from the degraded sequence y, using the

optical flow estimation algorithm from [34]. It should be noted that all the

experiments for both blind and non-blind steps are initialized with the Dirac

delta function for the kernel identification step, and the input degraded video

sequence.
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(a) P = 1× 53 (b) P = 15× 15 (c) P = 7× 11 (d) P = 17× 17

Figure 3: Synthetic convolution kernels.

4.1. Blind video deconvolution step

Figure 4 shows the quadratic error in kernel identification for the seven reg-

ularization approaches presented in Section 2.2, and the four tested convolution

kernels. This error is evaluated as follows

Error = ‖h− ĥ‖2, (49)

where ĥ ∈ R
P denotes the ground truth kernel and h ∈ R

P is the estimated

one. Note that the parameters involved in the regularization approaches have

been adjusted in each experiment in order to obtain the lowest possible error.

We observe in Figure 4 that the results vary slightly depending on the ker-

nels and video sequences. We can notice that the TVSG achieves low errors

regardless of the kernel and the video sequence. The nonconvex regularizations

also produce low errors on kernel identification in certain cases (e.g., kernels (a)

and (c) with Foreman sequence, and kernel (a) with Claire sequence). Never-

theless, they can also fail in identifying the correct kernel possibly because of the

existence of spurious local minima. In addition, they are harder to adjust since

they involve multiple parameters, that may be quite different from a degraded

sequence to another (see Table 3). Note that the worst results in terms of ker-

nel identification are usually achieved by the SLTV regularization. This may

be due to the fact that the latter relies on second order derivative operators,
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Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 4: Performance in terms of error on kernel identification with respect to the
different regularizations and blur kernels, from left to right: TV, SLTV, TGV, TVSG,
SOOT-TV, log-TV, Welsch-TV.

that tend to over-smooth the images and particularly the edges, resulting in an

unsatisfactory kernel identification.

It should be noted that the convex regularizations SLTV and TVSG are approx-

imately 5 times slower than TV, while TGV is about 10 times slower. Besides,

the nonconvex regularizations are comparable with TV in terms of computa-

tional cost by iteration. Moreover, SOOT-TV leads to a slower convergence

compared with the other nonconvex penalties.

Table 2 illustrates the gap between the best and worst identification qual-

ity scores with respect to the two synthetic sequences and the four convolution

kernels.



Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Worst

Best

9.94× 10−4

(SLTV)

1.98× 10−4

(SOOT-TV)

8.92× 10−3

(TGV)

7.8× 10−3

(Welsch-TV)

3.28× 10−2

(SLTV)

1.41× 10−2

(log-TV)

6.13× 10−2

(SOOT-TV)

1.73× 10−2

(TVSG)

Claire

Worst

Best

3.78× 10−3

(TV)

2.55× 10−3

(Welsch-TV)

9.32× 10−3

(SLTV)

6.93× 10−3

(TVSG)

3.83× 10−2

(SLTV)

1.84× 10−2

(TV)

5.05× 10−2

(SLTV)

3.14× 10−2

(TVSG)

Table 2: Gap between the best and worst kernel identification scores.

4.2. Non-blind video deconvolution step

Let us now investigate the performance of the various tested regularization

strategies in the second stage based on non-blind video deconvolution. We make

use of the estimated kernel with the lowest error at the output of the blind step,

to perform a non-blind deconvolution of the input degraded sequence. Figures 5

and 6 illustrate the restoration quality in terms of SNR and MOVIE [35], for

the different regularization approaches.

The performance in terms of images quality are more stable than those

concerning the errors on kernel identification. High SNR scores are usually

obtained using the TGV and TVSG regularizations, and in some cases by TV

and log-TV. Moreover, the lowest values of SNR are usually obtained with the

SLTV regularization and by some nonconvex regularization such as the Welsch-

TV (e.g., kernel (a) for Foreman and Claire sequences). The regularizations

that have achieved the best scores in terms of restoration quality with respect

to SNR and MOVIE are displayed in Tables 4 and 5, respectively. The latter

emphasizes the good performance of some nonconvex regularizations. Figures 8

and 9 show images extracted from Foreman and Claire sequences respectively.

We present some frames from the degraded sequences and the corresponding

restored frames with the best regularizations in terms of SNR. We can observe
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Foreman Claire

Kernel (a) Kernel (b) Kernel (c) Kernel (d) Kernel (a) Kernel (b) Kernel (c) Kernel (d)

TV
η = 6.24× 10−4

βℓ→t = 6.76× 10−4

η = 9.2× 10−3

βℓ→t = 1.53× 10−3

η = 1.52× 10−2

βℓ→t = 1.33× 10−3

η = 2.82× 10−2

βℓ→t = 8.05× 10−4

η = 7.53× 10−3

βℓ→t = 3.13× 10−3

η = 1.60× 10−2

βℓ→t = 7.02× 10−3

η = 1.52× 10−2

βℓ→t = 1.10× 10−3

η = 2.90× 10−1

βℓ→t = 9.32× 10−2

SLTV
η = 6.17× 10−5

βℓ→t = 2.17× 10−3

η = 3.99× 10−4

βℓ→t = 2.01× 10−2

η = 2.83× 10−3

βℓ→t = 6.97× 10−3

η = 2.08× 10−3

βℓ→t = 7.48× 10−3

η = 3.51× 10−4

βℓ→t = 1.57× 10−3

η = 2.34× 10−3

βℓ→t = 7.59× 10−3

η = 1.44× 10−3

βℓ→t = 3.89× 10−2

η = 2.34× 10−3

βℓ→t = 1.04× 10−2

TGV

α0 = 1− α1

η = 1.99× 10−3, α1 = 0.63

βℓ→t = 4.95× 10−3

η = 5.50× 10−3, α1 = 0.77

βℓ→t = 2.08× 10−2

η = 3.32× 10−1, α1 = 0.68

βℓ→t = 2.12× 10−3

η = 1.34, α1 = 0.51

βℓ→t = 8.65× 10−4

η = 9.36× 10−3, α1 = 0.79

βℓ→t = 1.10× 10−2

η = 5.46× 10−2, α1 = 0.92

βℓ→t = 1.32× 10−2

η = 8.13× 10−2, α1 = 0.32

βℓ→t = 1.70× 10−3

η = 2.44× 10−2, α1 = 0.86

βℓ→t = 2.16× 10−2

TVSG
η = 2.52× 10−3

βℓ→t = 1.18× 10−4

η = 3.30× 10−2

βℓ→t = 6.53× 10−4

η = 4.36× 10−2

βℓ→t = 3.03× 10−4

η = 2.55× 10−2

βℓ→t = 8.26× 10−4

η = 3.16× 10−3

βℓ→t = 1.78× 10−9

η = 2.93× 10−2

βℓ→t = 5.58× 10−4

η = 2.73× 10−2

βℓ→t = 4.44× 10−4

η = 1.84× 10−2

βℓ→t = 6.20× 10−4

SOOT-TV

β = 1.26× 10−5

α = 1.2× 10−3

η = 1.48, λ = 541.43

βℓ→t = 3.55× 10−4

η = 13.65, λ = 13

βℓ→t = 5.58× 10−3

η = 23.48, λ = 7.94

βℓ→t = 8.94× 10−6

η = 30.63, λ = 11.79

βℓ→t = 1.15× 10−5

η = 4.61, λ = 11.40

βℓ→t = 2.31× 10−7

η = 9.80, λ = 14.97

βℓ→t = 1.66× 10−4

η = 29.78, λ = 297.78

βℓ→t = 2.09× 10−4

η = 6.48, λ = 9.50

βℓ→t = 5.18× 10−3

log-TV

η = 2.59× 10−5

α = 1.32× 10−2

βℓ→t = 1.50× 10−3

η = 4.94× 10−5

α = 1.32× 10−2

βℓ→t = 1.12× 10−3

η = 7.38× 10−4

α = 2.79× 10−3

βℓ→t = 1.59× 10−5

η = 2.41× 10−4

α = 3.35× 10−3

βℓ→t = 3.26× 10−4

η = 5.61× 10−5

α = 1.03× 10−2

βℓ→t = 1.35× 10−3

η = 7.24× 10−5

α = 8.44× 10−3

βℓ→t = 1.08× 10−3

η = 4.17× 10−4

α = 3.04× 10−3

βℓ→t = 2.33× 10−4

η = 5.63× 10−5

α = 1.03× 10−2

βℓ→t = 1.47× 10−3

Welsch-TV

η = 7.21× 10−5

σ = 5.66× 10−2

βℓ→t = 3.59× 10−4

η = 1.69× 10−4

σ = 1.61× 10−2

βℓ→t = 3.11× 10−4

η = 5.05× 10−4

σ = 3.66× 10−2

βℓ→t = 1.64× 10−4

η = 5.52× 10−4

σ = 3.80× 10−2

βℓ→t = 1.61× 10−4

η = 2.21× 10−4

σ = 1.92× 10−2

βℓ→t = 2.92× 10−4

η = 2.04× 10−4

σ = 2.16× 10−2

βℓ→t = 3.10× 10−4

η = 4.21× 10−4

σ = 1.19× 10−2

βℓ→t = 4.34× 10−4

η = 2.04× 10−4

σ = 2.46× 10−2

βℓ→t = 3.20× 10−4

Table 3: Regularization parameters used in the blind deconvolution step.

25



from the above figures and tables that the proposed method achieves good

performance in terms of video restoration quality, where a gain up to 7 dB is

obtained.

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 5: Performance in terms of SNR with respect to the different regularizations
and blur kernels, from left to right: TV, SLTV, TGV, TVSG, SOOT-TV, log-TV, and
Welsch-TV.
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Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(a) Foreman sequence

Kernel (a) Kernel (b) Kernel (c) Kernel (d)

(b) Claire sequence

Figure 6: Performance in terms of MOVIE with respect to the different regularizations
and blur kernels, from left to right: TV, SLTV, TGV, TVSG, SOOT-TV, log-TV, and
Welsch-TV.

Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Degraded

Restored

28.72 dB

33.60 dB

(TVSG)

22.72 dB

26.90 dB

(TVSG)

21.58 dB

26.64 dB

(TGV)

19.88 dB

24.83 dB

(TV)

Claire

Degraded

Restored

26.99 dB

30.84 dB

(TVSG)

22.40 dB

28.35 dB

(log-TV)

20.49 dB

27.67 dB

(log-TV)

20.04 dB

27.17 dB

(TVSG)

Table 4: Performance of the best non-blind deconvolution methods in terms of SNR.
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Sequences Kernel (a) Kernel (b) Kernel (c) Kernel (d)

Foreman

Degraded

Restored

2.03×10−4

7.7×10−5

(SOOT-TV)

1.58 ×10−3

4.82×10−4

(SOOT-TV)

2.41×10−3

1.17×10−3

(TV)

3.12×10−3

1.83×10−3

(SOOT-TV)

Claire

Degraded

Restored

2.04×10−3

5.28×10−4

(TVSG)

9.52×10−3

2.9×10−3

(Welsch-TV)

1.18×10−2

3.32×10−3

(log-TV)

1.19×10−2

3.67×10−3

(TGV)

Table 5: Performance of the best non-blind deconvolution methods in terms of Movie.

4.3. Real Data

We have applied our blind deconvolution method to the interlaced real se-

quences Tachan and Au théâtre ce soir provided by INA. The odd and even

fields of each frame are extracted and both blind and non-blind deconvolution

stages are performed on them. Once the restored fields are obtained, they are

merged in order to reconstruct a deblurred interlaced sequence. The estimated

kernels with respect to the different regularization approaches are displayed in

Figure 7.

Figure 7: Identified blur kernels (P = 101) with the different regularization approaches:
Tachan (left), Au théâtre ce soir (right).

Since no ground truth is available for the real sequences, the kernels re-

tained after the blind step are selected based on visual inspection on the re-
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stored videos. In practice, we selected the kernels estimated with SOOT-TV

and log-TV regularizations for Tachan and Au théâtre ce soir sequences re-

spectively. Moreover, we have tested in the second non-blind step the spatial

regularization functions that achieved the best performance on synthetic data,

namely TGV, TVSG and log-TV. Figures 10-13 illustrate images taken from

the input degraded sequences and the restored ones with the above-listed reg-

ularizations. One can notice the enhancement of the sharpness and the visual

quality of the restored images, and the attenuation of several artifacts such as

the ghost effect in Au théâtre ce soir sequence. By visual inspection of the

resulting sequences at video rate, it appears however that the TVSG and log-TV

regularizations are more effective in reducing ghost effects.
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SNR = 28.72 dB SNR = 22.72 dB SNR = 21.58 dB SNR = 19.88 dB

SNR = 33.60 dB SNR = 26.90 dB SNR = 26.64 dB SNR = 24.83 dB

Figure 8: Foreman sequence: images from the degraded sequence (top), correspond-
ing restored images with the best choice of spatial regularizations in terms of SNR
(bottom).

5. Conclusion

In this paper, we have presented a new variational method for blind video

deconvolution. Our approach relies on the minimization of a penalized criterion

to enhance the restoration quality. Our iterative algorithm alternates between

two proximal steps, namely a video estimation step followed by a kernel identifi-

cation stage, and we showed that its convergence is guaranteed. The versatility

of the proposed method allows us to consider a temporal regularization associ-

ated with various convex and nonconvex spatial regularization strategies that

are usually employed for solving image and video restoration problems. The

experimental results on both synthetic and real data revealed that our method

achieves good results in video deconvolution problems, depending on the chosen
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SNR = 26.99 dB SNR = 22.40 dB SNR = 20.49 dB SNR = 20.04 dB

SNR = 30.84 dB SNR = 28.35 dB SNR= 27.67 dB SNR = 27.17 dB

Figure 9: Claire sequence: images from the degraded sequence (top), corresponding restored
images with the best choice of spatial regularizations in terms of SNR (bottom).

spatial regularization and the considered problem (blind/non-blind deconvo-

lution). This approach could be further accelerated through preconditioning

and/or a suitable implementation on parallel computing architectures.

Appendix A. Derivation of the majorants in Section 3.2

Appendix A.1. SOOT-TV

Let us set

(
∀z ∈ R

N
)

η ψ(z) = η log

(
ℓ1,α(Dz) + β

ℓ2,λ(Dz)

)
= ψ1(z) + ψ2(z), (A.1)

where ψ1(z) = η log(ℓ1,α(Dz) + β) and ψ2(z) = −η log(ℓ2,λ(Dz)). We shall

prove that

1. Aℓ1,α(z) satisfies the majoration condition for ℓ1,α at z,
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2.
Aℓ1,α

(z)

ℓ1,α(Dz)+β satisfies the majoration condition for ψ1 at z,

3. 9η ‖D‖2

8λ2 is a Lipschitz constant of ψ2.

Proving Statements 2 and 3 is similar to the proof provided in [6]. Let us now

consider Statement 1, by first defining

ℓ1,α(D ·) =

2N∑

i=1

φ
(
D(i) ·

)
, (A.2)

where

(∀v ∈ R) φ(v) =
√
v2 + α2 − α. (A.3)

We have [36]

(∀u ∈ R) φ (u) 6 φ (v) + (u− v)φ̇ (v) +
κ(v)

2
(u− v)

2
, (A.4)

with, for every v ∈ R,

φ̇(v) =
v√

v2 + α2
and κ(v) =

1√
v2 + α2

. (A.5)

Thus, for every (ω, z) ∈ (RN )2,

φ
(
D(i)ω

)
6 φ

(
D(i)z

)
+ (ω − z)⊤D(i)⊤φ̇

(
D(i)z

)
+
κ(D(i)z)

2

(
D(i)(ω − z)

)2

,

(A.6)

By combining (A.2) and (A.6), we deduce that

ℓ1,α(Dω) 6 ℓ1,α(Dz) + 〈ω − z,∇ (ℓ1,α ◦D) (z)〉

+
1

2
(D(ω − z))

⊤
Diag(s(z))D(ω − z), (A.7)

where s(z) ∈ R
2N is such that its i-th component with i ∈ {1, . . . , 2N} is given

by (29).

Let us define (σj)16j6N ∈]0,+∞[N such that
∑N

j=1 σj = 1, so that, for every
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i ∈ {1, . . . , 2N},

(
D(i)(ω − z)

)2

=




N∑

j=1

D(i,j)(ωj − zj)




2

,

=




N∑

j=1

σj
D(i,j)(ωj − zj)

σj




2

. (A.8)

According to the Jensen’s inequality, we get




N∑

j=1

σj
D(i,j)(ωj − zj)

σj




2

6

N∑

j=1

σj

(
D(i,j)(ωj − zj)

σj

)2

,

=

N∑

j=1

(
D(i,j)(ωj − zj)

)2

σj
. (A.9)

Setting, for every j ∈ {1, . . . , N}, σj =
|D(i,j)|

∑
N
l=1|D(i,l)| , leads to

(
D(i)(ω − z)

)2

=
N∑

j=1



(
D(i,j)(ωj − zj)

)2

|D(i,j)|
∑

N
l=1|D(i,l)|


 ,

=

N∑

j=1

∣∣∣D(i,j)
∣∣∣

N∑

l=1

∣∣∣D(i,l)
∣∣∣ (ωj − zj)2. (A.10)

This yields

‖D(ω − z)‖2 6 ‖ω − z‖2Aℓ1,α
(z), (A.11)

with Aℓ1,α(z) given by (28) and (30).

33



Appendix A.2. log-TV

The process of constructing the majorant when ψ stands for log-TV regu-

larization, is similar to the one of SOOT-TV, by setting [24]

(∀z ∈ R
N ) ψ(z) =

1

2

N∑

i=1

log
(

(∇(i)
H z)2 + (∇(i)

V z)2 + α2
)
,

=
N∑

i=1

φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
, (A.12)

where

(∀v ∈ R) φ(v) =
1

2
log

(
v2 + α2

)
. (A.13)

By proceeding similarly to the derivation of (A.6) we obtain, for every (ω, z) ∈
(RN )2,

φ

(
√

(∇
(i)
H ω)2 + (∇

(i)
V ω)2

)

6 φ

(
√

(∇
(i)
H z)2 + (∇

(i)
V z)2

)

+ κ

(
√

(∇
(i)
H z)2 + (∇

(i)
V z)2

)

(ω − z)⊤((∇
(i)
H )⊤∇

(i)
H + (∇

(i)
V )⊤∇

(i)
V )z

+

κ

(

√

(∇
(i)
H z)2 + (∇

(i)
V z)2

)

2

(

(∇
(i)
H (ω − z))2 + (∇

(i)
V (ω − z))2

)

,

(A.14)

where

(∀v ∈ R) κ(v) =
φ̇(v)

v
=

1

v2 + α2
. (A.15)

By combining (A.12) and (A.14), we obtain

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉 +
1

2
(ω − z)

⊤
Diag(s(z)) (ω − z) , (A.16)

where the components of s(z) ∈ R
N are given by (33). Therefore, for every

ω ∈ R
N ,

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉 +
1

2
‖ω − z‖2Alog(z)

, (A.17)

where, for every z ∈ R
N , matrix Alog(z) is expressed by (32) where Ω = ΩH+ΩV
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and the elements of ΩH and ΩV are given by (34).

Appendix A.3. Welsch-TV

The construction of this majorant is analogous to the one of log-TV regu-

larization, by taking

(∀z ∈ R
N ) ψ(z) =

N∑

i=1

(
1 − exp

(
−
(

(∇(i)
H z)2 + (∇(i)

V z)2
)
/(2σ2)

))
,

=

N∑

i=1

φ

(√
(∇(i)

H z)2 + (∇(i)
V z)2

)
, (A.18)

where φ is given by (16). Inequality (A.14) still holds where

(∀v ∈ R) κ(v) =
1

σ2
exp

(
−v2/(2σ2)

)
. (A.19)

By combining this inequality with (A.18) and following the same approach as

in the previous proof, we have, for every (ω, z) ∈ (RN )2,

ψ(ω) 6 ψ(z) + 〈ω − z,∇ψ(z)〉 +
1

2
‖ω − z‖2Aw(z), (A.20)

where Aw(z) is given by (36), (37), and (34).
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(a) Tachan sequence

(b) Au théâtre ce soir sequence

Figure 10: 4-th and 9-th frames from the input degraded and interlaced sequences.
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(a) TGV regularization

(b) TVSG regularization

(c) log-TV regularization

Figure 11: Tachan sequence: 4-th and 9-th frames from the restored sequences with
the best spatial regularizations in non-blind deconvolution.
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(a) TGV regularization

(b) TVSG regularization

(c) log-TV regularization

Figure 12: Au théâtre ce soir sequence: 4-th and 9-th frames from the restored
sequences with the best spatial regularizations in non-blind deconvolution.

42



(a) Tachan sequence

(b) Au théâtre ce soir sequence

Figure 13: Zoom on part of images, from left to right: degraded sequence, restored
sequence with TGV, restored sequence with TVSG, restored sequence with log-TV.
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