Hugo Lavenant 
email: hugo.lavenant@u-psud.fr.
  
HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE

Keywords: Wasserstein space, harmonic maps, Dirichlet problem

published or not. The documents may come    

Harmonic mappings valued in the Wasserstein space

If f : Ω Ñ R is a real-valued function defined on a subset Ω of R p , one says that f is harmonic if (1.1) ∆f " 0, where ∆ " ř p α"1 B αα denotes the Laplacian operator. Although this equation can be traced back to physics (for instance it corresponds to the equation satisfied by the electric potential in the absence of charge, or the one satisfied by the temperature in some homogeneous and isotropic medium when the permanent regime is reached), it has revealed to have its own mathematical interest [START_REF] Hélein | Harmonic maps[END_REF]. In particular it is associated to a concept of equilibrium, as for an harmonic function f , the value of f at a point ξ P Ω is always equal to the mean of the values of f on a ball centered at ξ. A whole line of research has been devoted to define harmonic mappings f : X Ñ Y where X and Y are spaces without a structure as strong as the Euclidean one. If X and Y are Riemannian manifolds, one can define an analogue of (1.1) which involves the metric tensors of both X and Y (see for instance [START_REF] Eells | Harmonic mappings of Riemannian manifolds[END_REF] or, for a modern presentation, [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF][START_REF] Hélein | Harmonic maps[END_REF]). The standard hypothesis to get existence results and nice properties of harmonic mappings is that X has a positive curvature and Y has a negative curvature. In the 90s, Korevaar and Schoen [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF] on one side and Jost [START_REF] Jost | Equilibrium maps between metric spaces[END_REF] on the other side, presented independently a more general setting and showed that one can define harmonic mappings f : Ω Ñ Y provided that Ω is a compact Riemannian manifold and Y is a metric space with negative curvature in the sense of Alexandrov [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF]Section 2.1].

The most robust point of view for the definition of harmonic mappings valued in metric spaces is related to the Dirichlet problem. Indeed, if we go back to the case where Y " R, a function f : Ω Ñ R is harmonic if and only if it is a minimizer of the Dirichlet energy Dirpgq :"

ż Ω 1 2
|∇gpξq| 2 dξ among all functions g : Ω Ñ R having the same values as f on BΩ the boundary of Ω. The main advantage of this formulation is that it involves only first order derivatives, and most of the concepts involving first order derivatives can be defined on metric spaces even without any vectorial structure [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF]. Korevaar, Schoen and Jost proved that for every separable metric space Y , one can define the analogue of the Dirichlet energy of any mapping f : Ω Ñ Y . Then under the assumption that Y has a negative curvature in the sense of Alexandrov, they proved existence and uniqueness of a minimizer of the Dirichlet energy (provided that the values at the boundary BΩ are fixed), interior and boundary regularity of the minimizer and lots of other properties similar to harmonic mappings between manifolds. Most of the proofs mimic the ones in the Euclidean case and rely only on the curvature properties of the target space Y . To quote Korevaar and Schoen: "We find the generality, elegance, and simplicity of the proofs presented here to be an indication that we have found the proper framework for their expression" [22, p. 614].

In this article, our goal is to define and to study harmonic mappings defined over a compact domain Ω of R p and valued in the space of probability measures endowed with the distance coming from optimal transport, the so-called quadratic Wasserstein space [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]. If D is a convex compact domain of R q , and if µ, ν are two probability measures on D (the set of probability measures on D is denoted by PpDq) then the (quadratic) Wasserstein distance W 2 pµ, νq between the two is defined as

W 2 pµ, νq :" inf π g f f e ij DˆD |x ´y| 2 dπpx, yq,
where the infimum is taken over all transport plans π P PpD ˆDq whose marginals are µ and ν. We will define the Dirichlet energy for mappings µ : Ω Ñ pPpDq, W 2 q and study its minimizers under the constraint that the values at the boundary BΩ are fixed. It is known [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Section 7.3] that pPpDq, W 2 q is a positively curved space in the sense of Alexandrov, hence the whole theory of Korevaar, Schoen and Jost does not apply: we have to leave the world of "generality, elegance and simplicity". Though we manage to develop a fairly satisfying theory of Dirichlet energy and harmonic mappings valued in the Wasserstein space, it is ad hoc: it intensively relies on specific properties of pPpDq, W 2 q and is hardly generalizable to other positively curved spaces. 1.2. Related works. This work can be seen as an extension of an article written by Brenier [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF] almost 15 years ago. Recently, few articles [START_REF] Solomon | Dirichlet energy for analysis and synthesis of soft maps[END_REF][START_REF] Solomon | Wasserstein propagation for semi-supervised learning[END_REF][START_REF] Vogt | Measure-Valued Variational Models with Applications to Diffusion-Weighted Imaging[END_REF][START_REF] Lu | Properties of Soft Maps on Riemannian Manifolds[END_REF] have been published on related topics even though none of them seems aware of Brenier's work.

In Section 3 of [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF], Brenier proposed a definition of what he called generalized harmonic functions which is the same thing as our harmonic mappings valued in the Wasserstein space. He defined the Dirichlet energy for such mappings; proved the existence of harmonic mappings in some special cases and gave an explicit solution in the very special case where all measures on BΩ are Dirac masses; indicated the formulation of the dual problem; and formulated some conjectures. In the present article, we will rely on the same definition of Dirichlet energy as in Brenier's article, but we push the analysis much further: we provide a rigorous functional analysis framework; link the Dirichlet energy with already known notions of analysis in metric spaces (in particular with the definition of Korevaar, Schoen and Jost); prove the existence of harmonic mappings in a more general context; and answer Brenier's conjectures.

In [START_REF] Solomon | Dirichlet energy for analysis and synthesis of soft maps[END_REF], the authors study soft maps (which are nothing more than maps Ω Ñ PpDq except that Ω and D are surfaces, i.e. Riemannian manifolds of dimension 2) and define a Dirichlet energy in the same way as Korevaar, Schoen and Jost. These maps are seen as relaxations of "classical" maps Ω Ñ D, and they focus on numerical computation and visualization of theses soft maps, see also [START_REF] Solomon | Wasserstein propagation for semi-supervised learning[END_REF] for applications to supervised learning. On the other hand, they do not analyze in detail the theoretical properties of the Dirichlet energy and harmonic mappings, which in contrast is the main topic of the present article. In [START_REF] Lu | Properties of Soft Maps on Riemannian Manifolds[END_REF], the author provides some theoretical analysis of soft maps by focusing on the cases where the boundary measures on BΩ are either Dirac masses or Gaussian measures.

Finally, in [START_REF] Vogt | Measure-Valued Variational Models with Applications to Diffusion-Weighted Imaging[END_REF] the authors also study mappings valued in the space of probability measures, but are rather interested in the bounded variation norm (the integral of the norm of the gradient) than in the Dirichlet energy. Their provide applications to the denoising of measure-valued images.

Apart from these articles, let us underline the interest of our work by relating it to other already known concepts:

• It is well known that harmonic mappings defined over an interval of R and valued in a geodesic space are precisely the constant-speed geodesics, and it is the case with our definition. Thus our work can be seen as extending the definition of geodesics in the Wasserstein space, the latter being an object which is now well understood. • As we said above, our definition of Dirichlet energy coincides with the one of Korevaar, Schoen and Jost. In particular, our work shows that their definition can be applied to positively curved spaces and still get some non trivial result, even though we rely on the very special structure of the Wasserstein space. • To study the regularity of minimal surfaces, Almgren proposed the notion of Q-valued functions (see [START_REF] Scheffer | Almgren's big regularity paper: Q-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2[END_REF] or [START_REF] Lellis | Q-valued functions revisited[END_REF] for a clear and self-contained reference), which can be seen (up to renormalization) as mappings defined on Ω Ă R p and valued in the subset A Q pDq (where Q ě 1 is an integer) of the Wasserstein space pPpDq, W 2 q defined as

A Q pDq :" # 1 Q Q ÿ i"1 δ x i : px 1 , x 2 , . . . , x Q q P D Q + .
In other words, A Q pDq is the set of probability measures which are combinations of at most Q Dirac masses with weights which are multiples of 1{Q, and is endowed with the Wasserstein distance W 2 . To put it shortly, a Q-function is a function which in every point takes Q unordered different values (counted with multiplicity). There exists a beautiful existence and regularity theory for harmonic Q-functions. As Ť Qě1 A Q pDq is dense in PpDq, it would be tempting to see the Dirichlet problem for mappings valued in the Wasserstein space PpDq as the limit as Q Ñ `8 of the Dirichlet problem for Q-functions. However, it is not so obvious that this limit really holds, and most of the results in the theory of Q-functions are proved by induction on Q through clever decompositions and combinatorial arguments, hence they depend heavily on Q and not much can be passed to the limit Q Ñ `8. Notice that the space A Q pDq is also positively curved in the sense of Alexandrov (the example in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Section 7.3] lives in A 2 pDq), hence the theory of Q-functions is a theory of harmonic mappings valued in a positively curved space. However, it is known [START_REF] Lellis | Q-valued functions revisited[END_REF]Theorem 2.1] that A Q pDq is in a bilipschitz bijection with a subset of R N for some large N : with Q-functions we stay in the finite-dimensional world. On the contrary, in the present article, the target space pPpDq, W 2 q will be both positively curved and genuinely infinite-dimensional.

Main definitions and results.

Let us go into the details and summarize the content of this article as well as the key insights. In this discussion we will stay informal, with sometimes sloppy or non rigorous statements.

In Section 2, we give our notations and collect some known facts about the Wasserstein space, which can be found in standard textbooks. In particular, we take Ω and D two compact domains of respectively R p and R q and assume that D is convex. Section 3 is devoted to the definition and properties of the Dirichlet energy of a mapping µ : Ω Ñ PpDq. The idea is to start from curves valued in the Wasserstein space and the so-called Benamou-Brenier formula [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]. If I is a segment of R and µ : I Ñ PpDq is an absolutely continuous curve, then its Dirichlet energy, which is nothing else than the integral of the square of its metric derivative [4, Section 1.1] is equal to

Dirpµq " inf v "ż I ˆżD 1 2
|vpt, xq| 2 µpt, dxq ˙dt : v : I ˆD Ñ R q and B t µ `∇ ¨pµvq " 0 * , which means that one minimizes the integral over time of the kinetic energy among all velocity fields v such that the continuity equation B t µ `∇ ¨pµvq " 0 is satisfied. What Benamou and Brenier understood is that the correct variable is the momentum E " vµ. Indeed, the continuity equation B t µ `∇ ¨E " 0 becomes a linear constraint and

ż I ˆżD 1 2 |vpt, xq| 2 µpt, dxq ˙dt " ij IˆD |E| 2 2µ
is a convex function of the pair pµ, Eq. In particular, to find the constant-speed geodesic between µ and ν P PpDq, assuming that I " r0, 1s, one minimizes the convex Dirichlet energy over the pairs pµ, Eq with linear constraints given by the continuity equation, that µp0q " µ and that µp1q " ν.

As noticed in [9, Section 3], this formulation can be directly extended to the case where the source space is no longer of dimension 1: if Ω is a subset of R p , one can define a (generalized) continuity equation for the pair µ : Ω Ñ PpDq and E : Ω ˆD Ñ R pq by (1.2) ∇ Ω µ `∇D ¨E " 0, where ∇ Ω stands for the gradient w.r.t. variables in Ω and ∇ D ¨stands for the divergence w.r.t. variables in D. More precisely if pE αi q 1ďαďp,1ďiďq denote the components of E, and if the derivatives w.r.t. Ω (resp. D) are denoted by pB α q 1ďαďp (resp. pB i q 1ďiďq ) then the the continuity equation reads: for any α P t1, 2, . . . , pu, B α µ `q ÿ

i"1

B i E αi " 0.

The Dirichlet energy of the pair pµ, Eq is defined as

ij ΩˆD |E| 2 2µ " ij ΩˆD p ÿ α"1 q ÿ i"1 |E iα | 2 2µ ,
and Dirpµq, the Dirichlet energy of µ, is the minimal Dirichlet energy of the pairs pµ, Eq among all E such that the continuity equation is satisfied (Definition 3.7). It is a straightforward copy of the classical proofs of optimal transport to show that there exists a unique optimal momentum E (which we call the tangent momentum) which is written E " vµ for some velocity field v : Ω ˆD Ñ R pq , and that Dir is convex and lower semi-continuous (l.s.c.). We will prove that for µ : Ω Ñ PpDq, one has Dirpµq ă `8 if and only if for any u : PpDq Ñ R which is 1-Lipschitz, one has that u ˝µ belongs to H 1 pΩq with |∇pu ˝µq| ď g, where g P L 2 pΩq is independent of u. Moreover, the minimal g will be shown to be controlled from above and below by where E " vµ is the tangent momentum (Theorem 3.20). This precisley shows that the space tµ : Ω Ñ PpDq : Dirpµq ă `8u coincides with the set H 1 pΩ, PpDqq, where the latter is defined in the sense of Reshetnyak [START_REF] Reshetnyak | Sobolev classes of functions with values in a metric space[END_REF], and that the gradient of µ in the sense of Reshetnyak (the minimal g above) is related to the tangent velocity field v. The Dirichlet energy is not equal to the L 2 norm of g, as it is already the case in the classical framework [START_REF] Chiron | On the definitions of Sobolev and BV spaces into singular spaces and the trace problem[END_REF]: if we see v : Ω ˆD Ñ R pq as a matrix-valued field, the Benamou-Brenier definition measures the magnitude of v with the Hilbert-Schmidt norm, whereas the optimal g from the definition of Reshetnyak is rather related to the operator norm of the matrices. Nevertheless, it implies for instance, it implies that Lipschitz mappings µ : Ω Ñ PpDq (i.e. such that W 2 pµpξq, µpηqq ď C|ξ ´η| for any ξ, η P Ω) have a finite Dirichlet energy.

We will also prove that our Dirichlet energy coincides with the one of Korevaar and Schoen, as well as Jost. The idea of theses authors goes as follows: if f : Ω Ñ R is smooth, then for any ξ P R p , |∇f pξq| 2 

½ |ξ´η|ďε dξdη.
We are able show that Dir ε converges to Dir as ε Ñ 0: it holds pointwisely but also in the sense of Γ-convergence (Theorem 3.26). For both the equivalence with the definition of Korevaar, Schoen and Jost, or with the one of Reshetnyak, the difficulty is not to guess them (they are fairly simple at the formal level) but to conduct careful approximation arguments.

To conclude the section, we will show how one can define values on BΩ for mappings µ : Ω Ñ PpDq with finite Dirichlet energy. There already exists a trace theory in [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF], however in view of the dual formulation for the Dirichlet problem, we prefer to define trace values by extending the continuity equation up to the boundary of Ω. Indeed, multiplying (1.2) by a test function ϕ P C 1 pΩ ˆD, R p q valued in R p , we get the following weak formulation:

ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE " ż BΩ ˆżD ϕpξ, xq ¨nΩ pξqµpξ, dxq ˙σpdξq,
where n Ω is the outward normal to BΩ and σ the surface measure. We will show that, if Dirpµq ă `8, then the r.h.s. can always be defined as a finite vector-valued measure acting on ϕ called BT µ (Theorem 3.27). Two mappings will have the same values on the boundary BΩ if, by definition, they have the same boundary term.

In Section 4 we define the Dirichlet problem and establish its dual formulation. This is fairly classic in optimal transport theory, our proofs do not bring any new ideas.

To define the Dirichlet problem, we assume that a mapping µ b : Ω Ñ PpDq with finite Dirichlet energy is given and we study min

µ tDirpµq : µ " µ b on BΩu.
Thanks to the Benamou-Brenier formulation, existence of a solution is a straightforward application of the direct method of calculus of variations (Theorem 4.3). As we discuss it in the core of the article, we do not know if uniqueness holds. Only in some particular case where the boundary values belong to a family of elliptically contoured distributions we are able to prove uniqueness (see below in the introduction).

In the formulation of the Dirichlet problem, we define the boundary conditions through a mapping µ b defined on the whole Ω. A natural question arises: if µ b : BΩ Ñ PpDq is given, is it possible to extend it on Ω in such a way that Dirpµ b q ă `8? We will show that the answer to this question is positive if µ b is Lipschitz on BΩ, indeed in this case one can extend it as a Lipschitz mapping on Ω. The question of the existence of a Lipschitz extension for mappings f : Z Ñ Y , where Z Ă X and X, Y are metric spaces has been intensively studied, see for instance [START_REF] Lang | Kirszbraun's Theorem and Metric Spaces of Bounded Curvature[END_REF][START_REF] Ohta | Extending Lipschitz and Hölder maps between metric spaces[END_REF] and references therein. The general philosophy is that lower bounds on the curvature are required for the source space X, whereas upper bounds on the curvature are required for the target space Y . In our case, there are no upper bounds for the curvature of the target space PpDq, hence we cannot apply classical results. However, we use the fact that we want to extend Lipschitz mappings defined not on an arbitrary closed subset of Ω, but on the boundary BΩ which has some regularity. By some ad hoc construction, we are able to treat the case where Ω is a ball, but we cannot control the Lipschitz constant of the extension on Ω by the Lipschitz constant of the mapping on BΩ. Nevertheless, we can conclude for smooth domains, as they can be cut in a finite number of pieces, each piece being in a bilipschitz bijection with a ball (Theorem 4.4).

Let us establish here the dual formulation via a formal inf ´sup exchange, it was already done in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]. Indeed, given the definition of Dir and the weak formulation of the continuity equation, min

µ tDirpµq : µ " µ b on BΩu " inf µ,v » - ij ΩˆD 1 2 |v| 2 µ `sup ϕPC 1 pΩˆD,R p q ¨BT µ b pϕq ´ij ΩˆD ∇ Ω ¨ϕdµ ´ij ΩˆD ∇ D ϕ ¨vµ 'fi fl " sup ϕPC 1 pΩˆD,R p q » -BT µ b pϕq `inf µ,v ij ΩˆD ˆ1 2 |v| 2 ´∇D ϕ ¨v ´∇Ω ¨ϕ˙µ fi fl .
Optimizing in v, we have that v " ∇ D ϕ, and then the infimum in µ is translated into the constraint ∇ Ω ¨ϕ `1 2 |∇ D ϕ| 2 ď 0. Hence, we have (formally, and it is proved rigorously in the core of the article, see Theorem 4.7) the following identity:

sup ϕ # BT µ b pϕq : ϕ P C 1 pΩ ˆD, R p q and ∇ Ω ¨ϕ `|∇ D ϕ| 2 2 ď 0 + " min µ tDirpµq : µ " µ b on BΩu.
We do not have an existence result for solutions ϕ of the dual problem. Notice that ϕ is a vector-valued function, but there is only a scalar constraint on it: the dual problem looks harder than in the case where Ω is a segment of R. Formally, as it is done in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF], one can get optimality conditions out of the dual formulation. Indeed, we have that v " ∇ D ϕ and, from the optimization in µ, that ∇ Ω ¨ϕ `1 2 |∇ D ϕ| 2 " 0 µ-a.e. If we assume that µ is strictly positive a.e., we end up with the following system for v (the first equation is just a rewriting of the fact that v is a gradient, the second one is obtained by differentiating

∇ Ω ¨ϕ `1 2 |∇ D ϕ| 2 " 0 w.r.t. D): $ ' & ' % B i v αj " B j v αi
for α P t1, 2, . . . , pu and i, j P t1, 2, . . . , qu,

p ÿ α"1 B α v αi `p ÿ α"1 q ÿ j"1
v αj B j v αi " 0 for i P t1, 2, . . . , qu.

However, we will not push the analysis further and try to derive a rigorous version of theses optimality conditions, it might be the topic of an other study.

In Section 5, we answer to a a problem formulated by Brenier [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]Problem 3.1]. The question is the following: if µ : Ω Ñ PpDq, does there exists a probability Q over functions f : Ω Ñ D such that µ is represented by Q, i.e. ż D apxqµpξ, dxq " ż apf pξqqQpdf q for all a P CpDq continuous and ξ P Ω; and such that the Dirichlet energy is the mean of the Dirichlet energy of the f :

Dirpµq " ż ˆżΩ 1 2 |∇f pξq| 2 dξ ˙Qpdf q?
If Ω is a segment of R the answer is positive as shown in [4, Section 8.2] (it is known as the probabilistic representation or the superposition principle). However, as soon as Ω is two or more dimensional (in fact it already fails if Ω is a circle), the answer becomes negative. We will provide a counterexample and explain the obstruction. The main consequence is the following: there is no Lagrangian formulation for mappings µ : Ω Ñ PpDq. There can be no static formulation of the Dirichlet problem analogue to transport plans or multimarginal formulation. One is forced to work only with the Eulerian formulation, namely the Benamou-Brenier formula. It explains why it is substantially more difficult to study mappings µ : Ω Ñ PpDq as soon as the dimension of Ω is larger than 2, as most of the difficult results of optimal transport are proved thanks to the Lagrangian point of view.

In Section 6, we prove a maximum principle (more specifically a Ishihara-type property) for harmonic mappings, meaning roughly speaking that harmonic mappings reach their maximum on the boundary of the domain Ω. Of course, there is no canonical order on the Wasserstein space, thus this assertion does not really make sense: only the composition of a (real-valued) geodesically convex function over PpDq with an harmonic mapping will satisfy the maximum principle. In particular, it allows us to give a positive answer to [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]Conjecture 3.1] If f : Ω Ñ R is a real-valued harmonic function, then pF ˝f q : Ω Ñ R is a subharmonic function for every F : D Ñ R convex, which means that ∆pF ˝f q ě 0. It can be checked by a direct computation using the chain rule. If we take f : X Ñ Y , where X and Y are two Riemannian manifolds, then the result still holds (provided that harmonicity, subharmonicity and convexity are properly defined through the Riemannian structures) and it is even a characterization of harmonic mappings: this was first remark by Ishihara [START_REF] Ishihara | A mapping of Riemannian manifolds which preserves harmonic functions[END_REF] (hence the denomination "Ishihara type property"), one can find a statement and a proof in [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]Corollary 8.2.4]. Extensions of this result when the target is a metric space with negative curvature are available, see for instance [START_REF] Sturm | A semigroup approach to harmonic maps[END_REF]Section 7].

In the Wassertein space, mappings which are convex w.r.t. the metric structure, which means convex along geodesics, are well understood (see for instance [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chapter 9] or [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Chapter 7]). Actually, we will need something a little stronger, which is convexity along generalized geodesics [4, Section 9.2]. In our case the Ishihara property reads: if F : PpDq Ñ R is convex along generalized geodesics and if µ : Ω Ñ PpDq is a solution of the Dirichlet problem, then pF ˝µq : Ω Ñ R is subharmonic (Theorem 6.3).

The proof of geodesic convexity usually relies on the Lagrangian formulation, which, as we said above, is not available in our case. To overcome this difficulty, we use the approximate Dirichlet energies Dir ε as a substitute for Dir. Indeed, as explained by Jost [START_REF] Jost | Equilibrium maps between metric spaces[END_REF], if µ ε is a minimizer of Dir ε (with for instance fixed values around the boundary BΩ), then for a.e. ξ P Ω,

µ ε pξq is a minimizer of ν Þ Ñ ż Bpξ,εq W 2 2 pν, µ ε pηqqdη,
in other words µ ε pξq is a barycenter of the µ ε pηq, for η P Bpξ, εq (for barycenters in the Wasserstein space, see [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF] for the finite case and [START_REF] Bigot | Consistent estimation of a population barycenter in the Wasserstein space[END_REF][START_REF] Kim | Wasserstein barycenters over Riemannian manifolds[END_REF] for the infinite case). Notice that if f : Ω Ñ R is real-valued and harmonic, then for any ε ą 0 f pξq is the barycenter of f pηq for η P Bpξ, εq, while in the metric case this property only holds asymptotically as ε Ñ 0. For barycenters in the Wasserstein space, there exists a generalized Jensen inequality: it was already proved in the finite case by Agueh and Carlier [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]Proposition 7.6] under the assumption that F is convex along generalized geodesics, and in a more general case (in particular with an infinite numbers of measures defined on a compact manifold, whereas Agueh and Carlier worked in the Euclidan space) by Kim and Pass [21, Section 7], but with rather strong regularity assumptions on the measures. We reprove this Jensen inequality in a case adapted to our context by letting the barycenter µ ε pξq follow the gradient of the functional F (for gradients flows in the Wasserstein space see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]) and use the result as a competitor: through arguments first advanced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF] in a very different context under the name of flow interchange, one can show (estimating the derivative of the Wasserstein distance along the flow of F with the so-called (EVI) inequality) that for a.e. ξ P Ω

(1.3) ż Bpξ,εq rF pµ ε pηqq ´F pµ ε pξqqsdη ě 0.
Then, as Dir ε Γ-converges to Dir, one knows that µ ε converges to µ a solution of the Dirichlet problem. Passing in the limit (1.3), one concludes that pF ˝µq is subharmonic in the sense of distributions. Actually, for technical reasons, we do not minimize exactly the ε-Dirichlet energy, hence using the flow interchange leads to an inequality reminiscent of Jensen's one, but not exactly the same.

Let us make a few comments. The main drawback of the proof, as we proceed by approximation and that uniqueness in the Dirichlet problem is not known, is that we are only able to show subharmonicity of F ˝µ for one solution of the Dirichlet problem (which moreover depends on F ), and not for all. To overcome this limitation, the best thing to do would be to prove uniqueness in the Dirichlet problem. Let us also discuss the regularity that we need on F . Either we require F to be continuous (which is very restrictive: it excludes the internal energies); or, if F is only lower semi-continuous, we need F to be bounded on bounded subsets of L 8 pDq X PpDq (which is not very restrictive), but we also need the weak lower semi-continuity of

µ Þ Ñ ż Ω F pµpξqqdξ.
More precisely, a mapping µ : Ω Ñ PpDq can be seen as an element of PpΩ ˆDq (by "fubinization") and we require lower semi-continuity of µ Þ Ñ ş Ω pF ˝µq w.r.t. the weak convergence on PpΩ ˆDq. This weak lower semi-continuity holds heuristically if F is convex for the usual (and not geodesic) convexity on PpDq. Indeed, even if the Dirichlet energy has a nice behavior w.r.t. geodesic convexity, the approximate Dirichlet energies Dir ε behave well w.r.t. usual convexity. At the end of the day, the Ishihara property works for potential energies (for a convex, L 1 and lower semi-continuous potential), for internal energies (which have a super linear growth and satisfy McCann's conditions) and for the interaction energies (but only for a convex continuous interaction potential). Indeed, for a generic lower semi-continuous potential, the interaction energy W is itself lower semi-continuous on pPpDq, W 2 q, but µ Þ Ñ ş Ω pW ˝µq is not. Finally, notice that we do not have the converse statement: we do not know if the fact that F ˝µ is subharmonic for any F convex along generalized geodesics is enough to prove that µ is harmonic. To prove such a result, one would need a better understanding of the optimality conditions of the Dirichlet problem.

Finally, we conclude in Section 7 with two examples. The first one is the case where the set D, on which the target space PpDq is modeled, is a segment of R. In this case, the Wasserstein space pPpDq, W 2 q is in an isometric bijection with a convex subset of the Hilbert space L 2 pr0, 1sq. Hence, the Dirichlet problem reduces to the study of the Dirichlet problem for mappings valued in a Hilbert space, which is fairly simple.

The second one is the case where we restrict our attention to a family of elliptically contoured distributions. This terminology comes from [START_REF] Gelbrich | On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces[END_REF] and denotes a generalization of the family of Gaussian measures. In statistics this type of family is sometimes called a location-scatter family. More precisely, we take ρ P L 1 pR q q a positive and compactly supported function such that the measure ρpxqdx has a unit mass, zero mean, and the identity matrix as covariance matrix. The family of elliptically contoured distributions built on ρ is nothing else than the sets of measures obtained as image measures from ρpxqdx by symmetric positive linear transformations. For instance, if ρ is the indicator function of a ball, the family of elliptically contoured distributions built on ρ consists in probability measures uniformly distributed on centered ellipsoids (in general the level sets of the density are ellipsoids, hence the terminology). The Gaussian case would be obtained by taking for ρpxqdx a centered standard Gaussian, but this probability measure is not compactly supported (recall that we work in PpDq where D Ă R q is compact). As in the Gaussian case, the elements of the family of elliptically contoured distributions are parametrized by their covariance matrix. Notice that it is already known that the geodesic between Gaussian measures and more generally the barycenter of Gaussian measures stay in the Gaussian family [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]Section 6.3]. If the boundary values µ : BΩ Ñ PpDq are valued in a family of elliptically contoured distributions, we show that there exists at least one solution of the Dirichlet problem which takes values in the same family everywhere on Ω (Theorem 7.8).

Under the additional assumption that the covariance matrices on the boundary BΩ are non singular we are able to show much more (Theorem 7.9). It implies that there is a solution of the Dirichlet problem with covariance matrices non singular everywhere in Ω: to prove it we use the maximum principle for the Boltzmann entropy, which translates in a minimum principle for the determinant of the covariance matrices. From this we are able to derive the Euler-Lagrange equation satisfied by the covariance matrix. Moreover we can show the uniqueness of the solution to the Dirichlet problem even in the class of mappings not necessarily valued in the family of elliptically contoured distributions. Let us give the structure of the proof as it is almost the only case where we know how to prove uniqueness. The observation is that all solutions of the Dirichlet problem must have the same tangent velocity field. Indeed, if ϕ is a solution of the dual problem, from optimality the tangent velocity field to any solution must be equal to ∇ D ϕ. Now, if the velocity field ∇ D ϕ is regular enough (namely Lipschitz w.r.t. variables in D), then the solution of the (1-dimensional) continuity equation with velocity field ∇ D ϕ is unique. As the (generalized) continuity equation implies the 1-dimensional one, and as all solutions of the Dirichlet problem coincide on BΩ they must be equal everywhere. In the case of a family of elliptically contoured distributions the tangent velocity field is linear w.r.t. variables in D with some uniform bounds which allow us to make this argument rigorous. If we leave the world of families of elliptically contoured distributions, we do not think that we could get enough regularity on the tangent velocity field for this strategy to work.

Still under this additional assumption, we are also able to show the regularity of the minimizer: as the problem boils down to the study of Dirichlet minimizing mappings valued in a Riemannian manifold, the only thing to show, following the theory of Schoen and Uhlenbeck [START_REF] Schoen | A regularity theory for harmonic maps[END_REF][START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF] is the absence of non-constant tangent minimizing mappings. We prove the latter property with the help of the maximum principle: even though the Wasserstein space is positively curved, there is a lot of functionals convex along geodesics defined on it.

In summary, under the assumption that the covariance matrices on the boundary BΩ are non singular we are able to give a full solution to the problem: existence, uniqueness regularity and Euler-Lagrange equation.

Let us comment on the somehow restrictive framework that we have chosen. The compactness assumption of Ω and D allows to simplify proofs by avoiding tails estimates: we believe that there is enough technical difficulties and non trivial statements even in this case, and that the key features of the Dirichlet problem are captured, which is the reason why we have restricted ourselves to the compact case. Although we have stuck to the Euclidean case, we see no deep reason which would prevent our definitions and results to be applied to the case where Ω and D are compact Riemannian manifolds. In particular, our regularization procedures rely on heat flows which are available in Riemannian manifolds. Finally, we have stick to the quadratic Wasserstein distance. We believe that if p P p1, `8q is given, the machinery that we use can be adapted in a straightforward way to define

ż Ω 1 p |∇µ| p ,
where µ : Ω Ñ PpDq but PpDq is endowed with the p-Wassertsein distance. However the Ishihiara type property is related to the Riemannian framework; also the explicit computations in the case of a family of elliptically contoured distributions are no longer avalaible. The case p " 1 which corresponds the total variation of µ : Ω Ñ PpDq (where PpDq is equipped with the 1-Wasserstein distance) has been defined and studied very recently [START_REF] Vogt | Measure-Valued Variational Models with Applications to Diffusion-Weighted Imaging[END_REF] in the context of image denoising.

To conclude the introduction, let us explain the connection between the different parts of the paper. If one just wants to understand the definition of the Dirichlet problem, then Subsections 3.1, 3.5 and Section 4 are enough. Section 5, about the failure of the superposition principle, can be read independently from the rest of the article (except for Subsection 3.1 to get the definition of the objects involved). To have the full proof of the Ishihara property in Section 6, one needs also to read entirely Section 3 and Subsections 4.1, 4.2 as some necessary results are proved there. To understand the examples in Section 7, the reading of Section 3 is advised.

Preliminaries

2.1. Notations. Let p and q be two integers larger than 1. The space R p and R q are endowed with their Euclidean structure: the scalar product is denoted by ¨and the norm by | ¨|. The closed ball of center ξ and radius r is denoted by Bpξ, rq. We will take Ω Ă R p and D Ă R q two compact domains, their interior, assumed to be non empty, are denoted by Ω and D. The outward normal vector to BΩ (resp. BD) is denoted by n Ω (resp. n D ). In general, all elements related to Ω will be denoted with Greek letters, and those related to D with Latin ones. For instance, points in Ω (resp. D) will be denoted by ξ, η (resp. x, y), and pe α q 1ďαďp (resp. pe i q 1ďiďq ) is the canonical basis of R p (resp. R q ). We make the following regularity assumptions:

Assumption. We assume that Ω is a connected compact subset of R p . Moreover, BΩ is assumed to be Lipschitz, which means that around any point of BΩ, up to a rotation, Ω is the epigraph of a Lipschitz function.

We assume that D is a convex compact subset of R q .

Notice that we assume more regularity on D than on Ω. We will consider mappings Ω Ñ PpDq with prescribed values on BΩ, the regularity of the latter is important. On the contrary, we assume that D is convex, which translates in the fact that pPpDq, W 2 q is a geodesic space: in some sense, the boundary BD of D will be invisible. The restriction of the Lebesgue measure on R p (resp. R q ) to Ω (resp. D) will be denoted by L Ω (resp. L D ). To avoid normalization constants, we assume that Ω has unit mass, thus L Ω is a probability measure.

If X is a polish space (metric, complete and separable), it is endowed with its Borel σ-algebra. We define PpXq as the space of Borel positive measure with unit mass. It is endowed with the topology of weak convergence, which means convergence in duality with CpXq the space of continuous bounded and real-valued functions defined on X. We also define MpX, R n q, for n ě 1 as the space of Borel (vectorial) measures valued in R n with finite mass, still endowed with the topology of weak convergence. In the case n " 1, we use the shortcut MpXq :" MpX, Rq. If µ P PpXq or MpX, R n q, integration w.r.t. µ is denoted by dµ, or by µpdxq if the variable cannot be omitted. If no measure is specified or simply dξ or dx is used, it means that the integration is performed w.r.t. the Lebesgue measure. If x P X, the Dirac mass at point x is denoted by δ x . The indicator function of a set X will be denoted by ½ X .

If T : X Ñ Y is a measurable application between two measurable spaces X and Y and µ is a measure on X, then the image measure of µ by T , denoted by T #µ, is the measure defined on Y by pT #µqpBq " µpT ´1pBqq for any measurable set B Ă Y . It can also be defined by If pX, µq is a measured space and pY, dq is any metric separable space, L 2 µ pX, Y q will denote the space of measurable mappings f : X Ñ Y for which dpf, yq 2 integrable w.r.t. µ for some y P Y . If Y " R, then the letter Y is omitted, and if µ is the Lebesgue measure, then the letter µ is omitted. If Y is an Euclidean space, then we set

}f } 2 L 2 µ pX,Y q :" ż X |f pxq| 2 µpdxq.
If X is an Euclidean space, the space H 1 pΩ, Xq is the set of functions f : Ω Ñ X such that both f and B α f , for 1 ď α ď p are in L 2 pΩ, Xq.

If X and Y are two subsets of Euclidean spaces, the L 8 norm of a measurable function f : X Ñ Y is defined as }f } 8 :" ess sup xPX |f pxq|, where the essential supremum is taken w.r.t. the Lebesgue measure.

If X and Y are two subsets of Euclidean spaces, CpX, Y q and C 1 pX, Y q will denote respectively the continuous and C 1 functions defined on X and valued in Y . If Y " R, then the target space is omitted and we use CpXq or C 1 pXq. On the space C 1 pΩ ˆD, Y q the following differential operators can be defined. The derivatives w.r.t. variables in Ω will be denoted by ∇ Ω , or simply pB α q 1ďαďp , and those w.r.t. variables in D by ∇ D , or simply pB i q 1ďiďq . If X is of dimension 1, the derivative of a function f will be denoted 9

f . The gradient will be denoted by ∇, and the divergence by ∇¨. As an example, if ϕ P C 1 pΩ ˆD, R p q, with components pϕ α q 1ďαďp , then ∇ Ω ¨ϕ P CpΩ ˆDq is defined as

∇ Ω ¨ϕpξ, xq " p ÿ α"1 B α ϕ α pξ, xq,
for all ξ P Ω and x P D; and ∇ D ϕ P CpΩ ˆD, R pq q is defined as, for any α P t1, 2, . . . , pu and i P t1, 2, . . . , qu, p∇ D ϕq αi pξ, xq " B i ϕ α pξ, xq P R.

The notation C 1 c p Ω ˆD, Y q will stand for the smooth functions which are compactly supported in Ω but not necessarily in D (and valued in Y ): if ϕ P C 1 c p Ω ˆD, Y q, it means that there exists a compact set X Ă Ω such that ϕpξ, xq " 0 as soon as ξ R X.

2.2. The Wasserstein space. We recall well known facts about the Wasserstein space. All these results can be found in classical books like [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

We endow the space PpDq with the L 2 -Wasserstein distance W 2 . If µ and ν are elements of PpDq, then W 2 pµ, νq :"

g f f f emin π $ & % ij DˆD |x ´y| 2 πpdx, dyq : π P Πpµ, νq , .
-, where Πpµ, νq is the set of transport plans, i.e. of probability measures on D ˆD which have µ and ν as marginals. There exists at least one π P Πpµ, νq realizing the infimum, it is called an optimal transport plan. The Wasserstein distance admits a dual formulation which reads

W 2 2 pµ, νq 2 " max ϕ,ψ "ż D ϕpxqµpdxq
`żD ψpxqνpdxq : ϕ, ψ P CpDq and @x, y P D, ϕpxq `ψpyq ď |x ´y| 2 2 * .

Notice that we have inserted a factor 2, it slightly simplifies the expressions in the sequel. There exists at least one solution of the dual problem, and any pair pϕ, ψq which is a solution is called a pair of Kantorovicth potentials. Moreover, if µ has a density w.r.t. L D and pϕ, ψq is a solution of the dual problem, there exists a unique optimal transport plan π and it is given by π " pId, Id ´∇ϕq#µ. Notice that thanks to the dual formulation, we see that W 2 2 : PpDq ˆPpDq Ñ R is the supremum of continuous affine functionals, hence it is convex for the affine structure on PpDq (and continuous by definition). In particular, there is a Jensen's inequality: if µ and ν are measurable mappings defined on Ω and valued in PpDq, and if f : Ω Ñ R is a weight, i.e. a positive measurable function whose integral is 1, then

W 2 2 ˆżΩ µpξqf pξqdξ, ż Ω νpξqf pξqdξ ˙ď ż Ω W 2 2 pµpξq, νpξqqf pξqdξ.
In the formula above the integral ş Ω µf P PpDq is defined according to the affine structure on PpDq for instance by duality: for any a P CpDq, (2.1)

ż D ad "ż Ω µpξqf pξqdξ  :" ż Ω ˆżD adµpξq ˙f pξqdξ.
The space pPpDq, W 2 q is a metric space whose topology is the one of weak convergence. In particular, according to Prokhorov's theorem, it is a compact separable space. The space pPpDq, W 2 q is a geodesic space. If µ, ν P PpDq and π P Πpµ, νq is an optimal transport plan between µ and ν, then a constant speed geodesic µ : r0, 1s Ñ PpDq joining µ to ν is given by µptq :" f t #π where f t : px, yq P D ˆD Þ Ñ p1 ´tqx `ty P D (Notice that we have assumed D to be convex).

We will briefly use the 1-Wasserstein distance W 1 in the proof of Proposition Moreover, there exists a unique (for a.e. t P I, v t is unique µptq a.e.) family pv t q tPI for which equality holds in (2.3) for a.e. t P I. This optimal family is characterized by the fact that for a.e. t P I, there exists a sequence pψ n q nPN of elements of C 1 pDq such that p∇ψq nPN converges to v t in L 2 µptq pD, R q q. 2.4. Gradient flows. At some point (in Section 6) we will need the notion of gradient flow in the Wassertsein space. Roughly speaking, if F : PpDq Ñ R Y t`8u is a given functional, a gradient flow is a curve µ : r0, `8q Ñ PpDq along which F decreases "the most" w.r.t. the Wasserstein distance, in a formal way it can be written (2.4) dµ dt ptq " ´∇F pµptqq.

Of course nor the notion of gradient or of time derivative make sense as vectors in the Wassertsein space.

In [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] (see also [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Chapter 8]), it is shown how the notion of gradient flow can still be defined through the use of metric quantities only.

A standard assumption to ensure the existence and uniqueness of a gradient flow with a given value µp0q is that F is convex along generalized geodesic. If µ, ν and µ 0 are three probability measures on D, one can always build a transport plan π P Πpµ 0 , µ, νq Ă PpD ˆD ˆDq such that the 2-marginals are optimal transport plans between µ 0 , µ on the one hand and µ 0 , ν on the other hand (notice that in general the last 2-marginal is not an optimal plan between µ and ν). Then, the generalized geodesic µ : r0, 1s Ñ PpDq between µ and ν with base point µ 0 is defined as µptq :" f t #π, with f t : px, y, zq P D 3 Þ Ñ p1´tqy `tz P D.

A functional F : PpDq Ñ RYt`8u is said convex along generalized geodesics if for any points µ 0 , µ and ν, there exists a generalized geodesic µ joining µ to ν with base point µ 0 such that F ˝µ : r0, 1s Ñ RYt`8u is a convex function.

The only result that we will need is called the Evolution Variational Inequality (EVI) formulation of gradient flows (which is a way to make sense of (2.4) in the metric framework). It is summarized in the following theorem, whose proof can be found in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 11.2.1].

Theorem 2.3. Let F : PpDq Ñ R Y t`8u a functional l.s.c. and convex along generalized geodesics. Then, for any µ P PpDq such that F pµq ă `8, there exists an absolutely continuous curve t P r0, `8q Þ Ñ S F t µ P PpDq such that S F 0 µ " µ and for any t ě 0 and any ν such that F pνq ă `8

lim sup hÑ0, hą0 W 2 2 pS F t`h µ, νq ´W 2 2 pS F t µ, νq 2h ď F pνq ´F pS F t µq.
Moreover, the function t Þ Ñ F `SF t µ ˘is decreasing. The curve S F µ (which can be shown to be unique) is nothing else than the gradient flow of F source form µ.

Heat flow.

To regularize probability measures the main tool will be the heat flow. We recall in this subsection classical results that we will use in the sequel. We will denote by Φ D : r0, `8qˆPpDq Ñ PpDq the heat flow with Neumann boundary conditions acting on D. For a proper definition, one can view Φ D as the gradient flow of the Boltzmann entropy, which is convex along generalized geodesics because D is convex, see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] (iii) For a fixed t ą 0 and for any µ P PpDq and a P CpDq, one has

ż D ad `ΦD t µ ˘" ż D `ΦD t a ˘dµ.
(iv) For any µ, ν P PpDq and any t ě 0, We mention that except for (iv), all of the statements of Proposition 2.4 remain true if we drop the convexity assumption on D, and only assume that D is connected and has a Lipschitz boundary.

(2.5) W 2 pΦ D t µ, Φ D t νq ď W 2 pµ, νq. Proof. Point (i)
With the help of the last point, we can prove this uniform estimate about the behavior of the heat flow for small values of t. Proposition 2.5. There exists a function ω D : r0, `8q Ñ R, continuous and with ωp0q " 0 such that, for any µ P PpDq and any t ě 0, W 2 pΦ D t µ, µq ď ω D ptq. Proof. The only thing to check is that ω D is continuous in 0. Assume by contradiction that it is not the case. We can find pµ n q nPN a sequence in PpDq and pt n q nPN a sequence that tends to 0 such that, for some δ ą 0, there holds W 2 pΦ D tn µ n , µ n q ě δ. Up to extraction, we can assume that µ n converges to some limit µ. We can write

W 2 pΦ D tn µ n , µ n q ď W 2 pΦ D tn µ n , Φ D tn µq `W2 pΦ D tn µ, µq `W2 pµ, µ n q ď W 2 pΦ D tn µ, µq `2W 2 pµ, µ n q
, where we have used the last point of Proposition 2.4. But then it is clear that the two terms of the r.h.s. tend to 0, which is a contradiction.

The Dirichlet energy and the space H 1 pΩ, PpDqq

In this section, we define the Dirichlet energy of a function µ P L 2 pΩ, PpDqq following the idea of [9, Section 3]. We relate the space of µ with finite Dirichlet energy with H 1 pΩ, PpDqq using the theory of Sobolev spaces valued into metric spaces of Reshetnyak [START_REF] Reshetnyak | Sobolev classes of functions with values in a metric space[END_REF][START_REF] Reshetnyak | Sobolev-type classes of functions with values in a metric space[END_REF], and we also prove that this Dirichlet energy coincides with the limit of ε-Dirichlet energies introduced by Korevaar, Schoen and Jost [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF][START_REF] Jost | Equilibrium maps between metric spaces[END_REF].

Let us first define the space L 2 pΩ, PpDqq. As PpDq is bounded, it coincides with the measurable mappings valued in PpDq. Definition 3.1. We denote by L 2 pΩ, PpDqq the quotient space of measurable mappings µ : Ω Ñ PpDq by the equivalence relation of being equal L Ω -a.e. This space is endowed with the distance d L 2 defined by: for any µ and ν in L 2 pΩ, PpDqq,

d 2 L 2 pµ, νq :" ż Ω W 2
2 pµpξq, νpξqqdξ.

If µ P L 2 pΩ, PpDqq, we can define a probability measure on Ω ˆD, that we will call temporary μ, in the following way: for any a P CpΩ ˆDq,

(3.1) ij ΩˆD ad μ :" ż Ω ˆżD
apξ, ¨qdµpξq ˙dξ.

As we have assumed (without any loss of generality) that the Lebesgue measure of Ω is 1, the measure μ is an actual probability measure. If we take a function a P CpΩq which depends only on variables in Ω, one can see that

(3.2) ij ΩˆD ad μ " ż Ω apξqdξ.
In other words, the marginal of μ is the Lebesgue measure L Ω . We will denote by P 0 pΩ ˆDq the subspace of PpΩ ˆDq such that (3.2) is satisfied for all a P CpΩq. Thanks to the disintegration Theorem [4, Theorem 5.3.1], one can see that, reciprocally, to each μ P P 0 pΩ ˆDq, one can associate a unique element µ of L 2 pΩ, PpDqq such that (3.1) holds. In all the sequel, we will drop the "bar" on μ and use the same letter µ to denote an element of L 2 pΩ, PpDqq and its counterpart in P 0 pΩ ˆDq through the bijection that we have just described. Any µ P L 2 pΩ, PpDqq can be seen in two different ways: either as a mapping Ω Ñ PpDq, or as a probability measure on Ω ˆD, and we will very often switch between the two points of view. To clarify the notations:

• if µ P L 2 pΩ, PpDqq, then µpξq or µpξ, dxq, which is an element of PpDq, will denote the mapping µ evaluated at ξ; • µpdξ, dxq will indicate that we consider µ as an element of P 0 pΩˆDq, integration on ΩˆD will be denoted by dµ or µpdξ, dxq, notice that we have the following relation: µpdξ, dxq " µpξ, dxqdξ; • the mapping µ P L 2 pΩ, PpDqq is said continuous (resp. Lipschitz) if there is one representative of µ such that W 2 pµpξq, µpηqq goes to 0 if η Ñ ξ (resp. is bounded by C|ξ ´η| for some C ă `8). The topologies on L 2 pΩ, PpDqq are defined as follows.

Definition 3.2. The strong topology on L 2 pΩ, PpDqq is the one induced by the distance d L 2 , and the weak topology is the one induced on P 0 pΩ ˆDq by the weak topology on PpΩ ˆDq. Proposition 3.3. W.r.t. the strong topology, L 2 pΩ, PpDqq is a polish space. W.r.t. the weak topology, L 2 pΩ, PpDqq is a separable compact space. Moreover, the strong topology is finer than the weak topology.

Proof. The statement concerning the strong topology is a consequence of the fact that PpDq is itself a polish space, see for instance [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF]Section 1.1]. As P 0 pΩ ˆDq is closed in PpΩ ˆDq, for the second statement we simply use the fact that PpΩ ˆDq is itself a separable compact space.

To compare the topologies we take a sequence pµ n q nPN which converges strongly to some µ P L 2 pΩ, PpDqq. Up to extraction, we know that we can assume that µ n pξq converges in PpDq to µpξq for a.e. ξ P Ω. In particular, if a P CpΩ ˆDq, we have that ş D apξ, ¨qdµ n pξq converges to ş D apξ, ¨qdµpξq for a.e. ξ P Ω. With the help of Lebesgue dominated convergence Theorem, we see that

lim nÑ`8 ij ΩˆD adµ n " lim nÑ`8 ż Ω ˆżD apξ, ¨qdµ n pξq ˙dξ " ż Ω ˆżD apξ, ¨qdµpξq ˙dξ " ij ΩˆD adµ.
As a is arbitrary, this allows us to conclude that pµ n q nPN converges to µ for the weak topology.

A Benamou-Brenier type definition.

We are now ready to define the Dirichlet energy. The first step is to define the (generalized) continuity equation. Recall that C 1 c p ΩˆD, R p q is the set of C 1 functions defined on Ω ˆD and valued in R p , whose support is compactly included in Ω, but not necessarily in D, and MpΩ ˆD, R pq q denotes the space of vector-valued measures on Ω ˆD with finite mass. Definition 3.4. If µ P L 2 pΩ, PpDqq and if E P MpΩ ˆD, R pq q, we say that the pair pµ, Eq satisfies the continuity equation if, for every ϕ

P C 1 c p Ω ˆD, R p q, one has ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE " 0.
In other words, the pair pµ, Eq satisfies the continuity equation if the equation ∇ Ω µ `∇D ¨E " 0. with no-flux boundary conditions on BD is satisfied in a weak sense. If we develop in coordinates, it means that for every α P t1, 2, . . . , pu, one has B α µ `řq

i"1 B i E iα " 0. If the pair pµ, Eq satisfies the continuity equation, we want to define its Dirichlet energy by

ť ΩˆD |E| 2
2µ . It is well known in optimal transport that this definition can be made by duality. -

,
where K Ă R 1`pq is the set of pair px, yq with x P R and y P R pq such that x `1 2 |y| 2 ď 0.

Note that |y| is the euclidean norm of y P R pq . In other words, if y is seen as pˆq matrix, |y| is the Hilbert-Schmidt norm of the matrix. The following proposition is identical to the case of the Benamou-Brenier formula.

Proposition 3.6. If pµ, Eq satisfies the continuity equation and Dirpµ, Eq ă `8, then E is absolutely continuous w.r.t. µ, and if v : Ω ˆD Ñ R pq is the density of E w.r.t. µ, then one has Dirpµ, Eq " Dirpµ, vµq "

ij ΩˆD 1 2 |v| 2 dµ.
Proof. There is nothing to add to the proof of this when Ω is 1-dimensional, and such a proof can be found for instance in [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Proposition 5.18].

Definition 3.7. Let µ P L 2 pΩ, PpDqq. Its Dirichlet energy Dirpµq is defined by Dirpµq :" inf E tDirpµ, Eq : E P MpΩ ˆD, R pq q and pµ, Eq satisfies the continuity equationu .

Let us underline that if there exists no E P MpΩ ˆD, R pq q such that pµ, Eq satisfies the continuity equation, then by convention Dirpµq " `8. To be sure that it is written somewhere, let us state the following proposition which identifies the Dirichlet energy if Ω is a segment of R. It is a consequence of Theorem 2.2 and of the above definitions (see [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Theorem 5.28]).

Proposition 3.8. Assume that I is a segment of R and let µ P L 2 pI, PpDqq. Then Dirpµq ă `8 if and only if µ is absolutely continuous, and in this case

Dirpµq " ż I 1 2 | 9 µ| 2 ptqdt.
Now, let us show easy properties, which are straightforward adaptations on the ones for curves.

Proposition 3.9. If µ P L 2 pΩ, PpDqq is such that Dirpµq ă `8, then there exists a unique E P MpΩ ˆD, R pq q such that pµ, Eq satisfies the continuity equation and Dirpµq " Dirpµ, Eq. Definition 3.10. If µ P L 2 pΩ, PpDqq and if E " vµ is such that pµ, Eq satisfies the continuity equation and Dirpµq " Dirpµ, Eq ă `8, then E and v are said tangent to µ.

The terminology tangent comes from [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. As in the case of absolutely continuous curves, there is a characterization of the tangent velocity field v which looks like the one of Theorem 2.2.

Proposition 3.11. Let µ P L 2 pΩ, PpDqq such that Dirpµq ă `8 and v P L 2 µ pΩ ˆD, R pq q such that pµ, vµq satisfies the continuity equation. Then v is tangent to µ if and only if there exists a sequence pψ n q nPN in C 1 pΩ ˆD, R p q such that p∇ D ψ n q nPN converges to v in L 2 µ pΩ ˆD, R pq q. Proof of Proposition 3.9 and Proposition 3.11. In the Hilbert space L 2 µ pΩ ˆD, R pq q the set X of v such that pµ, vµq satisfies the continuity equation is clearly an affine set, and it is not empty as Dirpµq ă `8. Denoting by Y " t∇ψ :

ψ P C 1 p Ω ˆD, R p qu, it is clear that X is parallel to Y K .
Thanks to Proposition 3.6, the problem of calculus of variations in Definition 3.7 corresponds to finding the orthogonal projection of the vector 0 P L 2 µ pΩ ˆD, R pq q on the set of X, i.e. Proposition 3.9 is proved. It is well known that the projection v is characterized by the fact that v is orthogonal to any vector in the linear space parallel to X. In other words, v is characterized (beside the fact that it satisfies the continuity equation) by v P X K " pY K q K . The latter is nothing else than the closure in L 2 µ pΩ ˆD, R pq q of Y . An easy argument involving cutoff functions shows that this closure is the same as the closure of the set of ∇ D ψ for ψ P C 1 pΩ ˆD, R p q, hence Proposition 3.11 is proved.

As an immediate corollary, Proposition 3.11 implies a localization property: the tangent velocity field v, depends only locally on the values of µ. In the next proposition, µ| Ω and v| Ω will denote the restrictions of µ and v to a subset Ω of Ω. Corollary 3.12. Let µ P L 2 pΩ, PpDqq such that Dirpµq ă `8 and let v P L 2 µ pΩ ˆD, R pq q be tangent to µ. Then, if Ω is any subdomain compactly supported in Ω, v| Ω is tangent to µ| Ω.

Still building from Proposition 3.11, we can build some sort of dual representation for the Dirichlet energy. Namely, we can say that

(3.3) Dirpµq " sup ϕ $ & % ´ij ΩˆD ˆ∇Ω ¨ϕ `1 2 |∇ D ϕ| 2 ˙dµ : ϕ P C 1 c p Ω ˆD, R p q , .
-.

Indeed, if v is the tangent velocity field to µ, given the continuity equation and elementary algebra,

´ij ΩˆD ˆ∇Ω ¨ϕ `1 2 |∇ D ϕ| 2 ˙dµ " ij ΩˆD ˆ∇D ϕ ¨v ´1 2 |∇ D ϕ| 2 ˙dµ " Dirpµq ´1 2 ij ΩˆD |∇ D ϕ ´v| 2 dµ.
Hence the l.h.s. is always smaller than Dirpµq, and we can make the discrepancy arbitrary small thanks to Proposition 3.11.

Proposition 3.13. The mapping Dir :

L 2 pΩ, PpDqq Ñ R Y t`8u is l.s.c. w.r.t. weak convergence.
Moreover it is convex: for any µ and ν in L 2 pΩ, PpDqq and any t P r0, 1s, Dirpp1 ´tqµ `tνq ď p1 ´tqDirpµq `tDirpνq.

Proof. From (3.3), we see that Dir is the supremum of linear and continuous (w.r.t. weak convergence) functionals on L 2 pΩ, PpDqq. Hence it is convex and continuous.

We will conclude this subsection by showing the following approximation result, which will be useful to prove the equivalences with the metric definitions. We will not be able to regularize up to the boundary of Ω, though it will be sufficient for our purpose. Dirpµ n q " Dirpµ| Ωq.

Notice that µ n is defined only on Ω, i.e. not on the full domain Ω.

Proof. On Ω, we will regularize with a convolution kernel χ. Specifically, we fix χ : R p Ñ r0, 1s a smooth function, radial, compactly supported in Bp0, 1q and of total integral 1, and we set χ n pξq " n p χpnξq. On the other hand, on D we will regularize with the heat flow that we denote by Φ D . We set μn pξq :" rΦ D 1{n srµpξqs for any ξ P Ω. Hence μn P L 2 pΩ, PpDqq is defined on the whole Ω. For n large enough and ξ P Ω we define

µ n pξq :" ż Ω χ n pξ ´ηq μn pηqdη,
where here we do the usual (Euclidean) mean of probability measures. In short, µ n " χ n ‹ Ω μn . We need n such that the support of χ n is small compared to the distance between Ω and BΩ.

Assertion (i) holds because of the regularization properties of the convolution and the lower bound on the solution of the heat flow.

Assertion (ii) is standard: if we fix a P Cp Ω ˆDq, given the self-adjacency of the heat flow and the symmetry of the heat kernel,

ij ΩˆD adµ n " ij ΩˆD Φ D
1{n rχ n ‹ Ω as dµ and the r.h.s. converges strongly to the integral of a against µ because of standard functional analysis. Assertion (iii) is slightly trickier. As we have already seen in Proposition 2.4, applying the heat flow decreases the Wasserstein distance. Provided we admit the representation given below by Theorem 3.26 and the contraction property of the heat flow, it is straightforward that we should have Dirp μn q ď Dirpµq. But the current theorem will be used to prove Theorem 3.26, hence we cannot invoke it. We adopt a different strategy: we start with the "dual" representation for the Dirichlet energy given by (3.3). We want to show that Dirp μn q ď Dirpµq. For any fixed ϕ P C 1 c p Ω ˆD, R p q, and given that the heat flow is self-adjoint,

ij ΩˆD ˆ∇Ω ¨ϕ `1 2 |∇ D ϕ| 2 ˙d μn " ij ΩˆD ˆ∇Ω ¨pΦ D 1{n ϕq `ΦD 1{n ˆ1 2 |∇ D ϕ| 2 ˙˙dµ.
Notice that we used the property that the heat flow acting on D commutes with ∇ Ω ¨. Now, the key point is the so-called Bakery-Émery estimate

1 2 ˇˇ∇ ´ΦD 1{n ϕ ¯ˇˇ2 ď Φ D 1{n ˆ1 2 |∇ D ϕ| 2 ˙ which is valid because D is a convex domain [16, Equation (2.4)]. Hence ij ΩˆD ˆ∇Ω ¨ϕ `1 2 |∇ D ϕ| 2 ˙d μn ě ij ΩˆD ˆ∇Ω ¨pΦ D 1{n ϕq `1 2 ˇˇ∇ ´ΦD 1{n ϕ ¯ˇˇ2 ˙dµ ě ´Dirpµq,
where the last inequality comes from (3.3). Taking the supremum in ϕ and using the representation formula (3.3) we conclude that Dirp μn q ď Dirpµq. Now we want to control the Dirichlet energy of µ n with the one of μn . Recall that Dir is a convex function. But µ n is the average, w.r.t. to the weights χ n pηq, of the mappings ξ Þ Ñ μn pξ ´ηq. Hence, by Jensen's inequality,

Dirpµ n q ď ż Bp0,1{nq χ n pηqDir `μ n | Ω p¨´ηq ˘.
Hence, calling Ω n the set of points which are distant at most 1{n from Ω, one has Dirpµ n q ď Dirp μn | Ωn q.

Sending n to `8 and using the lower semi-continuity of Dir and assertion (ii) to get the reverse inequality, we get (iii). In particular, it implies ρ is uniformly bounded (from above) on the closed set Ω. Notice that Theorem 3.14 says that any µ P L 2 pΩ, PpDqq with finite Dirichlet energy can be approximated by a sequence of smooth functions (only in the interior of Ω) according to Definition 3.15. Let us start by explaining how, in the smooth case, one can compute the tangent velocity field.

Proposition 3.16. Let µ P L 2 pΩ, PpDqq be smooth. Then, for every ξ P Ω, there exists a unique ϕpξ, ¨q P H 1 pD, R p q with 0-mean solution to the elliptic equation

(3.4) # ∇ D ¨pρpξ, ¨q∇ D ϕpξ, ¨qq " ´∇Ω ρpξ, ¨q in D ∇ D ϕpξ, ¨q ¨nD " 0 on BD.
Moreover ∇ D ϕ P L 2 µ pΩ ˆD, R pq q is the tangent velocity field to µ and it is continuous as a mapping from Ω to L 2 pD, R pq q.

Proof. The existence of a unique solution to the elliptic equation (3.4) derives from standard arguments. Notice that ∇ Ω ρpξ, ¨q has always 0-mean on D, hence the equation is well-posed. In particular, as ρ is bounded from below, the equation is uniformly elliptic. We have the usual estimate

}∇ D ϕpξ, ¨q} L 2 pD,R pq q ď C}∇ D ϕpξ, ¨q} L 2
ρpξ,¨q pD,R pq q ď C}∇ Ω ρpξ, ¨q} 8 , which tells us that ∇ D ϕpξ, ¨q is uniformly bounded (w.r.t. ξ) in L 2 pD, R pq q. By construction, v :" ∇ D ϕ is such that pµ, vµq satisfies the continuity equation.

To prove continuity of ξ Þ Ñ ∇ D ϕpξ, ¨q, let us fix ξ P Ω and a sequence ξ n which converges to ξ. We use momentarily the compact notations φ " ϕpξ, ¨q P H 1 pD, R pq q and ϕ n " ϕpξ n , ¨q P H 1 pD, R pq q. Similarly, we set ρ " ρpξ, ¨q and ρ n " ρpξ n , ¨q. The r.h.s. of the elliptic equations will be h " ´∇Ω ρpξ, ¨q and h n " ´∇Ω ρpξ n , ¨q. We want to show that ϕ n converges to φ in H 1 pD, R pq q, while we know that ρ, ρ n are uniformly bounded from below and above, and that ρ n (resp. h n ) converges to ρ (resp. h) in L 8 pDq. Clearly, ϕ n ´φ satisfies the elliptic equation

∇ D ¨pρ∇ D pϕ n ´φqq " h n ´h `∇D ¨ppρ n ´ρq∇ D ϕ n q
with Neumann boundary conditions. Testing this equation against ϕ n ´φ, we deduce that

}∇ D pϕ n ´φq} L 2 pD,R pq q ď C `}h n ´h} L 2 pDq `}ρ n ´ρ} 8 }∇ D ϕ n } L 2 pD,R pq q ˘.
We can use the convergence of ρ n to ρ, h n to h and the fact that }∇ D ϕ n } L 2 pD,R pq q is uniformly bounded in n to conclude that the l.h.s. goes to 0 as n Ñ `8.

Now take µ P L 2 pΩ, PpDqq smooth and denote by v " ∇ D ϕ its tangent velocity field. If γ : I Ñ Ω is a smooth curve going from an interval of R to Ω, then, multiplying (3.4) by 9 γ, one can see that µ γ " µ ˝γ : I Ñ PpDq defines a curve valued in the Wasserstein space for which the (classical) continuity equation B t µ γ `∇ ¨pv γ µ γ q with Neumann boundary conditions is satisfied (at least in a weak sense), provided that we define v γ :" v ¨9 γ : I ˆD Ñ R q . More precisely, if i P t1, 2, . . . , qu, the i-the component of v γ at time t P I and at the point x P D is

pv γ pt, xqq i " p ÿ α"1 vpγptq, xq iα 9 γ α ptq.
In other words, the (generalized) continuity equation implies that we get (classical) continuity equation for every curve of Ω. In some sense, the (generalized) continuity equation is much stronger in higher dimensions.

As we recalled previously, the velocity field v γ is related to the metric derivative of the curve µ γ in the Wasserstein space. As the tangent velocity field v P L 2 pΩ ˆD, R pq q is the gradient of a function ∇ D ϕ, by Proposition 3.11 v γ is the tangent velocity field to the curve µ γ . Using Theorem 2.2, we see that for all s ď t P I, The important point of this proposition is that the estimate holds for all points of Ω, there is no "almost everywhere" in the statement.

(3.5) W 2 2 pµpγptq
Proof. We fix ξ P Ω and use γptq :" ξ `tη which is defined for t sufficiently close to 0. Notice that v γ pt, xq " vpξ `tη, xq ¨η. We denote by ρ the density of µ w.r.t. L Ω ˆLD . To prove that µ is Lipschitz, we use (3.5) and the fact that ρ P L 8 pΩ ˆDq and v P L 8 pΩ, L 2 pD, R pq qq.

The fact the l.h.s. of (3.6) (provided the lim is replaced by a lim sup) is bounded by the r.h.s. comes directly from (3.5) and the continuity of v : Ω Ñ L 2 pD, R pq q.

To prove the reverse inequality, take a sequence pε n q nPN realizing the lim inf for the l.h.s. of (3.6). Call ψ n P C 0 pDq the function with 0-mean such that ε n ψ n is the Kantorovich potential from µpξq to µpξ `εn ηq, it is unique because µpξq is supported on the whole D, see for instance [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Proposition 7.18]. As Id ´εn ∇ D ψ n is the optimal transport map from µpξq onto µpξ `εn ηq, there holds

ε n }∇ D ψ n } L 2 µpξq pDq " W 2 pµpξq, µpξ `εn ηqq ď Cε n ,
where C is the Lipschitz constant of µ. In particular, using the lower bound on ρ, one sees that, up to a subsequence, pψ n q nPN converges weakly in H 

ż D f px ´εn ∇ D ψ n pxqqρpξ, xqdx " ż D f pxqρpξ `εn η, xqdx.
Using a Taylor expansion on f and dividing by ε n ,

ˇˇˇż D ∇ D ψ n pxq ¨∇D f pxqρpξ, xqdx `żD ρpξ `εn η, xq ´ρpξ, xq ε n f pxqdx ˇˇˇď Cε n ż D |∇ D ψ n pxq| 2 dx,
where the constant C is a bound on the second derivative of f . Using the H 1 bound on ψ n and the weak convergence to ψ, as well as the fact that ρ is differentiable w.r.t. variables in Ω, we conclude that ψ solves weakly the elliptic equation

∇ D ¨pρpξ, ¨q∇ D ψq " ´∇Ω ρpξ, ¨q ¨η.
Using the uniqueness (recall that ψ n has 0-mean, hence ψ too) result for equation (3.4), this allows to conclude that ∇ D ψ " vpξ, ¨q ¨η where v is the tangent velocity field to µ, hence the proposition is proved.

3.3.

Equivalence with Sobolev spaces valued in metric spaces. Until now, we have not discussed the existence of solutions to the (generalized) continuity equation: this notion could be too strong or too loose. In this subsection, we will show that the set of µ with finite Dirichlet energy coincides with an already known definition of Sobolev spaces valued in metric spaces given by Reshetnyak [START_REF] Reshetnyak | Sobolev classes of functions with values in a metric space[END_REF][START_REF] Reshetnyak | Sobolev-type classes of functions with values in a metric space[END_REF]. This definition is restricted to the case where the source space has a smooth structure (which is precisely our framework), but can be seen as particular case of a more general definition given by Hajłasz (a pedagogic and clear introduction to the latter can be found in [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF]Chapter 5]). Proof. Is is enough to copy the proof of [START_REF] Reshetnyak | Sobolev classes of functions with values in a metric space[END_REF]Theorem 5.1]. Indeed, in this proof, one only uses the functions rµs ν for measures ν belonging to a dense and countable subset of PpDq.

In particular, if µ P H 1 pΩ, PpDqq, then rµs ν P H 1 pΩq with gradient bounded by g µ for all ν P PpDq.

Notice that the definition above can be stated for mappings valued in arbitrary metric spaces (separability of the target space is required). The main theorem of this subsection is the following, which states that the framework that we have developed coincides with the one of Reshetnyak. The inequalities are sharp. The function g µ measures the norm of the gradient of µ as an operator norm, whereas the norm of the velocity field v is measured with an Hilbert-Schmidt norm, which explains the discrepancy, see [START_REF] Chiron | On the definitions of Sobolev and BV spaces into singular spaces and the trace problem[END_REF] for a more detailed discussion.

We will prove this theorem in three steps. The first one is to prove it if Ω is a segment of R (Proposition 3.21). It is just a rewriting of the definition of Reshetnyak and does not rely of the special structure of the Wasserstein space. The second step is to say that, roughly speaking, a function is in H 1 pΩq if it is in H 1 for a.e. lines, with some uniform control on the gradients. It enables us to get the result if Ω is a cube (Proposition 3.23). The third step is simply to write that every domain can be written as a (countable) union of cubes.

Proposition 3.21. Theorem 3.20 holds if Ω is a segment of R.
Proof. Assume Ω " I is a segment of R. The set of curves with finite Dirichlet energy coincides with the set of absolutely continuous curves, see Proposition 3.8. Given Theorem 2.2, we want to prove the equality g µ " | 9 µ| a.e. on I. Assume that Dirpµq ă `8 and take ν P PpDq. Then, as W 2 p¨, νq is 1-Lipschitz, for all s ă t elements of I,

|rµs ν ptq ´rµs ν psq| ď W 2 pµptq, µpsqq ď ż t s | 9 µ|prqdr.
It shows that the function rµs ν is in H 1 pIq and its gradient is smaller than | 9 µ|. Hence, as ν is arbitrary, µ P H 1 pI, PpDqq and g µ ď | 9 µ|. Reciprocally, assume µ P H 1 pI, PpDqq, take pν n q nPN countable and dense in PpDq such that rµs νn P H 1 pIq for every n P N with gradient bounded by g µ . In particular, for any n P N and any s ă t elements of I, |rµs νn ptq ´rµs νn psq| ď ż t s g µ prqdr.

Then we choose ν n arbitrary close to µptq: the r.h.s. is unchanged and the l.h.s. is arbitrary close to W 2 pµptq, µpsqq. Hence we conclude that

W 2 pµpsq, µptqq ď ż s t g µ prqdr,
which is enough to say that µ is an absolutely continuous curve and | 9 µ| ď g µ a.e. on I by minimality of | 9 µ|. Now we will prove Theorem 3.20 at least locally, which means in the case where Ω is a cube. Up to an isometry and a dilatation, we can assume that Ω is the unit cube of R p . Recall that pe α q 1ďαďp is the canonical basis of R p . In the sequel, we will denote by Ω α Ă R p the α-face of the cube, which means the set of pξ 1 , . . . , ξ α´1 , 0, ξ α`1 , . . . , ξ p q, with 0 ď ξ β ď 1 for all β ‰ α. The measure on Ω α will be the p ´1-dimensional Lebesgue measure. If f : Ω Ñ X is a given mapping (where X is any set) and ξ P Ω α is fixed, then f ξ : r0, 1s Ñ X is defined by f ξ ptq " f pξ `te α q: it is the restriction of f to a line directed by e α and crossing Ω α at ξ. Recall the following characterization for real-valued mappings: As a test function ϕ P C 1 c pΩ ˆD, R p q in the weak formulation of the continuity equation, choose ϕpξ `te α , xq :" p0, 0, . . . , 0, ψpt, xqapξq, 0, . . . , 0q for ξ P Ω α and t P r0, 1s (only the α-th component of ϕ is not 0). If we expand we find that ∇ Ω ¨ϕ " aB t ψ hence 0 "

ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨vdµ " ż Ωα ¨ij r0,1sˆD B t ψpt, xqdtµpξ `te α , dxq ‹ 'apξqdξ `żΩα ¨ij r0,1sˆD ∇ D ψpt, xq ¨pvpξ `te α , xq ¨eα qdtµpξ `te α , dxq ‹ 'apξqdξ.
Using the arbitrariness of a, we deduce that for a.e. ξ P Ω α , and for a fixed

ψ P C 1 c ps0, 1rˆD, R p q, (3.8) ij r0,1sˆD B t ψpt, xqdtµpξ `te α , dxq `ij r0,1sˆD
∇ D ψpt, xq ¨pvpξ `te α , xq ¨eα qdtµpξ `te α , dxq " 0. Now, taking a sequence pψ n q nPN which is dense in C 1 c ps0, 1rˆD, R p q, we can say that for a.e. ξ P Ω α , for all ψ P C 1 c ps0, 1rˆD, R p q, (3.8) holds. For ξ P Ω α define µ ξ : r0, 1s Ñ PpDq by µ ξ ptq " µpξ `te α q and v ξ : r0, 1s ˆD Ñ R q by v ξ pt, xq " vpξ `te α , xq ¨eα . By Fubini's theorem, for a.e. ξ P Ω α , v ξ P L 2 µ ξ pr0, 1s ˆD, R q q. Hence (3.8) rewrites as: for a.e. ξ P Ω α , the curve µ ξ is an absolutely continuous curve in the Wasserstein space with a velocity field given by v ξ . By Proposition 3.21, if ν P PpDq, then the function rµ ξ s ν is in H 1 pr0, 1sq and Implication µ P H 1 pΩ, PpDqq ñ Dirpµq ă `8. Let µ P H 1 pΩ, PpDqq. Take pν n q nPN a sequence which is dense in PpDq. For any n P N, the function rµs νn belongs to H 1 pΩq. Fix α P t1, 2, . . . , pu. For any n P N, for a.e. ξ P Ω α , the function rµ ξ s νn : t Þ Ñ W 2 pµpξ `te α q, ν n q is in H 1 pr0, 1sq with a gradient bounded by g µ pξ `te α q. As N is countable, we can exchange the "for a.e. ξ P Ω α " and the "for all n P N". Hence, for a.e. ξ P Ω α , the function µ ξ : r0, 1s Ñ PpDq belongs to H 1 pr0, 1s, PpDqq with a gradient bounded by g µ pξ `te α q. For a given ξ P Ω α , we can use Proposition 3.21 and Theorem 2.2 to get the existence of a velocity field w α ξ P L 2 µ ξ pr0, 1s ˆD, R q q such that pµ ξ , w α ξ µ ξ q satisfies the (1-dimensional) continuity equation and for a.e. 

|B t rµ ξ s ν ptq| ď d ż D |v ξ pt, xq| 2 µ ξ pt, dxq " d ż D |vpξ `te α ,
v P L 2 µ pΩ ˆD, R pq q. Moreover, if ϕ P C 1 c pΩ ˆD, R p q, ij ΩˆD ∇ Ω ¨ϕdµ " p ÿ α"1 ij ΩˆD B α ϕ α pξ, xqµpdξ, dxq " p ÿ α"1 ż Ωα ˆż 1 0 B α ϕ α pξ `te α , xqµpξ `te α , dxqdt ˙dξ " ´p ÿ α"1 ż Ωα ˆż 1 0 ∇ D ϕ α pξ `te α , xq ¨wα ξ pt, xqµpξ `te α , dxqdt ˙dξ " ´p ÿ α"1 ż Ωα ˆż 1 0 ∇ D ϕ α pξ `te α , xqpvpξ `te α , xq ¨eα qµpξ `te α , dxqdt ˙dξ " ´ij ΩˆD ∇ D ϕ ¨vdµ.
(The second and last inequalities are Fubini's theorem and the third one comes from the 1-dimensional continuity equations). Hence, we see that pµ, vµq satisfies the continuity equation. Even though one could prove that v is the tangent velocity field (using the fact that the w α are and the characterization given in Proposition 3.11), it is enough to use Corollary 3.12 to see that the l.h.s. is a.e. larger than the L 2 µpξq pD, R pq q-norm of the tangent velocity field.

To conclude the proof of the theorem, we just have to justify that we can put the pieces together.

Proof of Theorem 3.20. The domain Ω can be cut in a (countable) number of cubes pΩ m q mPN . The boundary BΩ does not play any role as L Ω pBΩq " 0. Implication Dirpµq ă `8 ñ µ P H 1 pΩ, PpDqq. Assume first that µ P L 2 pΩ, PpDqq is such that Dirpµq ă `8 and take v P L 2 µ pΩ ˆD, R pq q the velocity field tangent to µ. Fix n P N. On each cube Ω m , we know that the function rµs νn is in H 1 pΩ m q with a gradient which is bounded by a function which does not depend on n and is in L 2 pΩq, which is sufficient to say that rµs νn P H 1 pΩq with a gradient bounded by a function which does not depend on n P N.

Implication µ P H 1 pΩ, PpDqq ñ Dirpµq ă `8. Assume that µ P H 1 pΩ, PpDqq. For any m P N, one can construct a tangent velocity field v P L 2 µ pΩ m ˆD, R pq q. Combining Proposition 3.9 giving the uniqueness µ-a.e. of the tangent velocity field and Corollary 3.12 which enables to localize, one sees that if Ω m 1 X Ω m 2 ‰ H, then the tangent velocity fields v 1 P L 2 µ pΩ m 1 ˆD, R pq q and v 2 P L 2 µ pΩ m 2 ˆD, R pq q coincide µ-a.e. on Ω m 1 X Ω m 2 . Thus, one can define a velocity field v on the whole Ω, and it is straightforward to check that v is tangent to µ.

3.4.

Equivalence with Dirichlet energy in metric spaces. In this subsection we will show that our definition coincides with the one of Korevaar, Schoen, and Jost [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF][START_REF] Jost | Equilibrium maps between metric spaces[END_REF]. As explained in the introduction, their formulation is related to the following object. Definition 3.24. Let ε ą 0 and µ P L 2 pΩ, PpDqq. We define the ε-Dirichlet energy of µ by

Dir ε pµq :" C p ij ΩˆΩ W 2 2 pµpξq, µpηqq 2ε p`2 ½ |ξ´η|ďε dξdη,
where the normalization constant C p is defined as C p :" |η| 2 ´şBp0,1q |ξ ¨η| 2 dξ ¯´1 .

One can notice that the ε-Dirichlet energy is always finite as PpDq has a finite diameter, but it can blow up when ε Ñ 0. The goal is to prove that Dir ε is a good approximation of Dir if ε is small enough. Before stating the main result, let us do the following observation, which will be useful in the sequel. We are now ready to state and prove the main theorem of this subsection.

Theorem 3.26. Let µ P L 2 pΩ, PpDqq. Then Dir ε pµq converges to Dirpµq as ε Ñ 0, and the sequence pDir 2 ´nε 0 pµqq nPN is increasing for any ε 0 ą 0.

In addition for any ε 0 ą 0, Dir 2 ´nε 0 Γ-converges to Dir on the space L 2 pΩ, PpDqq endowed with the weak topology as n Ñ `8.

In the case of a smooth mapping µ, the equivalence will directly derives from Proposition 3.17. The difficulty of the proof is to study the behavior of Dir ε w.r.t. approximations.

Proof. Monotonicity of Dir ε . If µ P L 2 pΩ, PpDqq, ε ą 0 and λ P p0, 1q then one has Dir ε pµq ď λDir λε pµq `p1 ´λqDir p1´λqε pµq.

Indeed, this is a consequence of the triangle inequality and is valid for mappings valued in arbitrary metric spaces, see for instance [19, Example 1) (i)] or [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]Equation (8.3.4)] for a proof. In particular, by taking λ " 1{2, we see that the sequence pDir 2 ´nε 0 pµqq nPN is increasing for any ε 0 ą 0. Moreover, with well chosen λ, one sees that for a fixed µ P L 2 pΩ, PpDqq the function ε Þ Ñ εDir ε pµq is subadditive, which is enough to ensure the convergence of Dir ε pµq to some limit in r0, `8s as ε Ñ 0.

The smooth case. Let µ P H 1 pΩ, PpDqq be smooth in the sense of Definition 3.15. Let v be its tangent velocity field, by Proposition 3.16, there holds v P CpΩ, L 2 pD, R pq qq. We will show that the limit of Dir ε pµq is equal to Dirpµq. Indeed, one can write Dir ε pµq "

ż Ω dir ε pξqdξ, where dir ε pξq :" C p ż ΩXBpξ,εq W 2 2 pµpξq, µpηqq 2ε p`2 dη.
If ξ R BΩ (it happens for a.e. ξ), for ε small enough, Bpξ, εq Ă Ω and we can perform the following change of variables in spherical coordinates: denoting by S p´1 the unit sphere of R p and σ its surface measure,

dir ε pξq " C p 2 ż S d´1 ˆż 1 0 W 2 2 pµpξq, µpξ `rεθqq ε 2 r p´1 dr ˙σpdθq.
Thanks to Proposition 3.17 we have the pointwise limit of the integrand, and we can pass to the limit as ε Ñ 0: recall that µ is Lipschitz, which gives a uniform bound from above of the Wasserstein distances. General case: lim ε Dir ε ď Dir. Let µ P H 1 pΩ, PpDqq. As µ is in H 1 in the sense of Reshetnyak, and using the main result of [START_REF] Reshetnyak | Sobolev-type classes of functions with values in a metric space[END_REF], we know that l :" lim ε Dir ε pµq is finite. It implies, thanks to the theory of Korevaar and Schoen [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF]Theorem 1.10], that the so-called energy density is absolutely continuous w.r.t. L Ω which means lim ε Dir ε pµq does not decrease too much if we restrict µ to a domain Ω slightly smaller than Ω. More precisely, it implies that for any δ there exists Ω compactly embedded in Ω such that, for some ε 0 small enough, l ´δ ď Dir ε 0 pµ| Ωq ď l.

Let pµ n q nPN the sequence of elements of L 2 p Ω, PpDqq given by Theorem 3.14. We choose n large enough so that Dirpµ n q ď Dirpµ| Ωq `δ and Dir ε 0 pµ n q ě Dir ε 0 pµ| Ωq ´δ: it is possible because Dir ε 0 is lower semi-continuous w.r.t. weak convergence on L 2 p Ω, PpDqq. Hence, l ď Dir ε 0 pµ| Ωq `δ ď Dir ε 0 pµ n q `2δ ď Dirpµ n q `2δ ď Dirpµ| Ωq `3δ ď Dirpµq `3δ, where the third inequality comes from monotonicity and the smooth case treated above. As δ is arbitrary, we get that l ď Dirpµq, which means lim εÑ0 Dir ε pµq ď Dirpµq. This equation still holds if µ R H 1 pΩ, PpDqq as the r.h.s. is infinite.

General case: lim ε Dir ε ě Dir. For this part, we need to control in a fine way the behavior of Dir ε w.r.t. the approximation procedure of Theorem 3.14. Let µ P H 1 pΩ, PpDqq be given. Fix Ω Ă Ω compactly included and let μn , µ n the sequences used in the proof of Theorem 3.14. We recall that they are defined by μn pξq :" rΦ D 1{n srµpξqs, µ n pξq :"

ż Ω χ n pξ ´ηq μn pηqdη,
where χ n : R p Ñ R is a compactly supported convolution kernel and µ n is defined only over Ω. Using the result for the smooth case, As the heat flow is a contraction in the Wasserstein space (Proposition 2.4), we know that Dir ε p μn q ď Dir ε pµq. As W 2 2 is jointly convex w.r.t. to its two arguments, the function Dir ε is convex for the affine structure on L 2 p Ω, PpDqq. Hence, exactly by the same argument than in the proof of Theorem 3.14, Dir ε pµ n q ď Dir ε p μn q ď Dir ε pµq, and the important point is that the r.h.s. does not depend on n. Taking the limit ε Ñ 0 and using equation (3.15), we see that Dirpµ n q " lim εÑ0 Dir ε pµ n q ď lim εÑ0 Dir ε pµq.

Now we can send n Ñ `8 and use Theorem 3.14 to say that the l.h.s. converges to Dirpµ| Ωq. As Ω is now arbitrary, it yields the result Dirpµq ď lim εÑ0 Dir ε pµq.

In the case µ R H 1 pΩ, PpDqq, to justify that lim εÑ0 Dir ε pµq, we can use for instance [10, Proposition 4] which is valid for mappings valued in arbitrary metric spaces.

The Γ-convergence. The statement of Γ-convergence is now easy. To summarize, until now we have proved the monotonicity and that Dirpµq " lim εÑ0 Dir ε pµq for every µ P L 2 pΩ, PpDqq. It is an exercise that we leave to the reader to check that any sequence of functionals which are l.s.c. (which is the case for the Dir ε , see Proposition 3.25) and which converges in a increasing way in fact Γ-converges. Then there exists a vector-valued measure BT µ P MpΩ ˆD, R p q supported on n Ω BΩ ˆD (which means that BT µ pϕq " 0 if ϕ ¨nΩ " 0 on BΩ ˆD) such that for any ϕ P C 1 pΩ ˆD, R p q and for any E P MpΩ ˆD, R pq q for which pµ, Eq satisfies the continuity equation and Dirpµ, Eq ă `8,

(3.16) ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE " BT µ pϕq.
Moreover if µ is continuous then for any ϕ P C 1 pΩ ˆD, R p q, BT µ pϕq "

ż BΩ ˆżD ϕpξ, xq ¨nΩ pξqµpξ, dxq ˙σpdξq,
where σ is the surface measure on BΩ.

BT µ stands for "Boundary Term" of µ. It is not surprising that, if µ is continuous, the value of BT µ depends only on the values of µ on the boundary.

Proof. Take µ P H 1 pΩ, PpDqq and E " vµ P MpΩ ˆD, R pq q such that pµ, Eq satisfies the continuity equation and Dirpµ, Eq ă `8. The l.h.s. of (3.16) defines a vector-valued distribution on Ω ˆD acting on ϕ. We need to show that it is of order 0 and that it does not depend on E.

We define f : Ω Ñ R p by, for a.e. ξ P Ω,

f pξq :" ż D ϕpξ, xqµpξ, dxq.
Using the continuity equation with test functions of the form χϕ α , for χ P C 1 c p Ω, R p q and α P t1, 2, . . . , pu, one can see that f P H 1 p Ω, R p q and

B α f β pξq " ż D B α ϕ β pξ, xqµpξ, dxq `żD ∇ D ϕ β pξ, xq ¨vα pξ, xqµpξ, dxq.
for all α, β P t1, 2, . . . , pu. In particular f admits on BΩ a trace f : BΩ Ñ R p . We apply the divergence theorem: one can find in [14, Section 4.3] a statement when BΩ is only Lipschitz and f has Sobolev regularity. In our case, given the expression of ∇f , it reads (3.17)

ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE " ż BΩ f pξq ¨nΩ pξqσpdξq
where n Ω is the outward normal to BΩ and σ its the surface measure. In particular we see that the r.h.s. of (3.16) does not depend on E. Moreover, as }f } 8 ď }ϕ} 8 , the same L 8 bounds holds for f , thus ˇˇˇż BΩ f pξq ¨nΩ pξqσpdξq ˇˇˇď σpBΩq}ϕ} 8 .

It allows to conclude that the r.h.s. of (3.16) is a distribution of order 0 acting on ϕ, hence it can be represented by a measure BT µ P MpΩ ˆD, R p q. From (3.17) it is clear that BT µ is supported on n Ω BΩ ˆD.

If we assume moreover that µ is continuous, so is f . Indeed, for any ξ, η P Ω, Proof. The proof is straightforward. Indeed, take a sequence pµ n q nPN in P L 2 pΩ, PpDqq such that µ n | BΩ " µ b | BΩ and Dirpµ n q ď C for any n P N, and assume it converges weakly to some µ P L 2 pΩ, PpDqq. By lower semi-continuity of Dir, we know that Dirpµq ď C. For any n P N choose E n P MpΩ ˆD, R pq q tangent to µ n , similarly take E b tangent to µ b . The identity µ n | BΩ " µ b | BΩ can be written: for every ϕ P C 1 pΩ ˆD, R p q (3.18)

|f
ij ΩˆD ∇ ¨ϕdµ n `ij ΩˆD ∇ D ϕ ¨dE n " ij ΩˆD ∇ ¨ϕdµ b `ij ΩˆD ∇ D ϕ ¨dE b .
As seen in the proof of Proposition 3.13, one can assume that, up to extraction, pE n q nPN weakly converges to some E. It is easy to see that pµ, Eq satisfies the continuity equation and that Dirpµ, Eq ď C ă `8. Thus, we can pass to the limit in (3.18) and see that for any ϕ P C 1 pΩ ˆD, R p q, With the work of the previous section, the existence of at least one solution is a straightforward application of the direct method of calculus of variations. Proof. There exists at least one µ with finite Dirichlet energy which satisfies the boundary conditions, namely µ b . Thus, one can consider a minimizing sequence pµ n q nPN . By compactness of L 2 pΩ, PpDqq, we can assume, up to extraction, that this sequence converges weakly to some µ P L 2 pΩ, PpDqq. By Proposition 3.29, we know that µ also satisfies µ| BΩ " µ b | BΩ . The lower semi-continuity of Dir allows to conclude that µ is a minimizer of Dir.

ij ΩˆD ∇ ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE " ij ΩˆD ∇ ¨ϕdµ b `ij ΩˆD ∇ D ϕ
Let us spend a few words about the question of uniqueness. Of course, the proof above provides no information about it. By convexity of the Dirichlet energy (Proposition 3.13), we know that the set of solutions of the Dirichlet problem is convex. Recall that if Ω " r0, 1s is a segment of R, then the Dirichlet problem reduces to the problem of finding a geodesic between the two endpoints µ b p0q and µ b p1q. It is well known that a sufficient condition for uniqueness is to impose that either µ b p0q or µ b p1q are absolutely continuous w.r.t. L D , and there can be non uniqueness when it is not the case (see for instance [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Chapter 5]). Hence, it would natural, in order to investigate the question of uniqueness, to impose that for every ξ P BΩ, the measure µ b pξq is absolutely continuous w.r.t. L D (or maybe just for ξ belonging to a positive fraction of BΩ). We do not know if uniqueness holds under this hypothesis: a difference with the case where Ω is a segment is the fact that we do not know a static or Lagrangian formulation. In other words, we do not know the equivalent of transport plans, which in the case of a 1-dimensional Ω, allow to parametrize geodesics and to greatly simply the problem. However we are able to prove uniqueness in a non trivial case: the one of a family of elliptically contoured distributions treated in Subsection 7.2, see also the introduction where the strategy of the proof is discussed.

Lipschitz extension.

To give ourselves the boundary conditions, we need a mapping µ b defined on the whole Ω, even though only its values near BΩ will play a role. Thus a natural question arises: if µ b is only defined on BΩ, is it possible to extend it on Ω? The next theorem shows that the answer is positive in the case where µ b is Lipschitz on BΩ. Indeed, in this case we can build an extension which is Lipschitz on Ω, thus in H 1 pΩ, PpDqq thanks to Theorem 3.20. Lemma 4.6. Let Bp0, 1q be the unit ball of R p and S p´1 :" BBp0, 1q its boundary. Let µ l : S d´1 Ñ PpDq a Lipschitz mapping and take x 0 P D. Define, for any r P r0, 1s the map T r : D Ñ D by T r pxq " rx `p1 ´rqx 0 . Then the mapping µ : Bp0, 1q Ñ PpDq defined by µprξq :" T r #rµpξqs for any r P r0, 1s and any ξ P S d´1 is Lipschitz.

Proof. If ξ P S d´1 is fixed, then r P r0, 1s Þ Ñ µprξq is the constant speed geodesic joining δ x 0 to µ l pξq. Hence, we can write that W 2 pµprξq, µpsξqq ď C|r ´s|, where C depends only on the diameter of PpDq. On the other hand, as T r is r-Lipschitz in D, then ν Þ Ñ T r #ν is also r-Lipschitz in PpDq. Hence, for any ξ and η in S d´1 , one has W 2 pµprξq, µprηqq ď Cr|ξ ´η|, where C is the Lipschitz constant of µ l . Putting the two estimates together, we deduce that for any r, s P r0, 1s and any ξ, η P S p´1 , W 2 pµprξq, µpsηqq ď Cr|r ´s| `minpr, sq|ξ ´η|s, which is enough to conclude that µ is Lipschitz.

Notice that the Lipschitz constant of the extension is not controlled by the Lipschitz constant of µ l : the distance between δ x 0 and the range of µ l also plays a role as µp0q " δ x 0 . Hence, we cannot use a decomposition with Withney cubes to extend mappings defined on arbitrary closed subsets Ω, but only on the boundary of smooth sets: basically we need to use Lemma 4.6 only a finite number of times.

Proof of Theorem 4.4. We will use Lemma 4.6 in the following form: if Ω is a domain which is in a bilipschitz bijection with a ball, then Theorem 4.4 holds for this domain.

We reason by induction on p ě 1 the dimension of Ω. In dimension 1, Ω " I is a segment. To extend a mapping defined only on the boundary of the segment I, we take the constant speed geodesic in PpDq between the values of µ l at the two endpoints of I. Now assume that the result holds for some p ´1 ě 1 and let Ω be a compact domain with Lipschitz boundary in R p . The goal is to cut Ω in a finite number of pieces on which Lemma 4.6 apply. For each ξ P Ω we choose r ξ ą 0 such that Bpξ, r ξ q X Ω is in a bilipschitz bijection with a ball. It is obvious that we can do that for ξ P Ω, and for points on BΩ we use the fact that Ω is locally the epigraph of a Lipschitz function. By compactness, we find balls B 1 , B 2 , . . . , B N covering Ω such that B n X Ω is in a bilipschitz bijection with a ball for any n P t1, 2, . . . , N u. We can of course assume that B n is not included in B m for any n ‰ m. Then we define recursively X 1 :" B 1 X Ω and X n " pB n X Ωqz Xn´1 for n P t2, . . . , N u. For any n P t1, 2, . . . , N u, X n is still in a bilipschitz bijection with a ball. On Ť n BX n , which is made of BΩ and of pieces of spheres of R p , thus locally in bilipschitz bijection with Lipschitz domains of R p´1 , we can use the induction assumption and extend µ l . Then, we use Lemma 4.6 to extend µ on Xn for each n P t1, 2, . . . , N u. We have obtained a function µ which is continuous and Lipschitz on each X n , n P t1, 2, . . . , N u: it is globally Lipschitz on Ω. 4.3. The dual problem. We will know show a rigorous proof of the absence of duality gap. The dual problem was already obtained, at least formally, in the introduction. Proof. We rely on the Fenchel-Rockafellar duality theorem which can be found in [37, Theorem 1.9]. Let X :" CpΩ ˆD, R 1`pq q the space of continuous functions defined on the compact space Ω ˆD and valued in R 1`pq endowed with the norm of uniform convergence. An element of X will be written pa, bq, where a P CpΩˆDq and b P CpΩˆD, R pq q. The dual space X ‹ is, by the Riesz theorem, MpΩˆD, R 1`pq q. Again an element of X ‹ will be written pµ, Eq where µ P MpΩ ˆDq is a signed measure and E P MpΩ ˆD, R pq q is a vector-valued measure. We introduce the functionals F : X Ñ R and G : X Ñ R defined as, for any pa, bq P X, -

F
,
where K is defined in Definition 3.5. In particular, if µ is not a positive measure, then choosing suitable negative a, one sees that F ‹ pµ, Eq " `8. Moreover, if µ P L 2 pΩ, PpDqq and pµ, Eq satisfies the continuity equation, then F ‹ pµ, Eq " Dirpµ, Eq: this is precisely Definition 3.5. On the other hand, we can compute G ‹ : for any pµ, Eq P X ‹ , G ‹ p´µ, ´Eq " sup

ϕPC 1 pΩˆD,R p q ¨BT µ b pϕq ´ij ΩˆD ∇ Ω ¨ϕdµ ´ij ΩˆD ∇ D ϕ ¨dE '.
By linearity of the expression inside the sup w.r.t. ϕ, we see that G ‹ p´µ, ´Eq ă `8 if and only if G ‹ p´µ, ´Eq " 0, which translates in

BT µ b pϕq " ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE
for every ϕ P C 1 pΩ ˆD, R p q. Let a P CpΩq a continuous function. It can always be written a " ∇ Ω ¨ϕ, where ϕ P C 1 pΩ, R p q (take ϕ " ∇f where f solves ∆f " a), thus using the fact that for such a ϕ,

BT µ b pϕq " ij ΩˆD ∇ Ω ¨ϕdµ b " ij ΩˆD adµ b " ż Ω apξqdξ, one sees that if G ‹ p´µ, ´Eq ă `8, then ż Ω apξqdξ " ij ΩˆD adµ.
Provided that µ is a positive measure (recall that it happens if F ‹ pµ, Eq ă `8) and by arbitrariness of a, it implies that the disintegration of µ w.r.t. L Ω is made of probability measures on D, in other words that µ P L 2 pΩ, PpDqq. Once we have this information, testing with functions ϕ which are compactly supported on Ω, we see that if G ‹ p´µ, ´Eq ă `8 then pµ, Eq satisfies the continuity equation, and testing with arbitrary ϕ, we see that BT µ " BT µ b . In the end, one concludes that min pµ,EqPX ‹ rF ‹ pµ, Eq `G‹ p´µ, ´Eqs " min A natural question which arises is the existence of an optimal ϕ P C 1 pΩ ˆD, R p q (or in a space of less regular functions). If Ω is a segment, the constraint on ϕ translates into the Hamilton-Jacobi equation

B t ϕ `|∇ϕ| 2 2 ď 0,
whose explicit solutions are known. In particular, one can parametrize the function ϕ by its value at the initial time, the unknown becomes a scalar function defined on D. In the compact case, by the double convexification trick, one can get compactness in a maximizing sequence. In our case, the constraint reads in full coordinate

p ÿ α"1 B α ϕ α `1 2 p ÿ α"1 q ÿ i"1 |B i ϕ α | 2 ď 0.
Now we do not know if one can parametrize a ϕ which satisfies the constraint by its values on the boundary of BΩ (and even if it were the case, on which part of the boundary?). Moreover, notice that the function ϕ is vector-valued, though the constraint involves only one scalar equation: to get compactness out of it seems more complicated. We have not investigated deeply the question of the existence of an optimal ϕ, but we believe that it can be substantially more complicated than in the case where Ω is a segment of R.

5.

Failure of the superposition principle 5.1. The superposition principle. In this section, we want to explain why a powerful tool to study curves valued in the Wasserstein space (i.e. the case where Ω is a segment of R), namely the superposition principle, fails in higher dimensions. To say it briefly, there is no Lagrangian point of view for mappings into the Wasserstein space, one has to work only with the Eulerian one. Notice that the question of the existence of a superposition principle was already formulated by Brenier [9, Problem 3.1], but left unanswered. As we want to prove a negative result, we will not only provide a counterexample to the superposition principle, but also try to explain the obstruction and why this principle fails for all but few exceptional cases. Let us first recall the superposition principle for absolutely continuous curves.

The set Ω will be replaced by the unit segment I " r0, 1s. As stated in Proposition 3.8, the set H 1 pI, PpDqq coincides with the set of absolutely continuous curves. We denote by Γ " CpI, Dq the set of continuous curves valued in D endowed with the norm of uniform convergence, it is a polish space. If f P Γ, then 9 f denotes the derivative w.r.t. time of f provided that it exists. For any t P I, e t : Γ Ñ D is the evaluation operator, which means e t pf q " f ptq for any f P Γ. The following result can be found in [4, Section 8.2]. Theorem 5.1. Let µ P H 1 pI, PpDqq. Then there exists a probability measure Q P PpΓq such that (i) for any t P I, e t #Q " µptq ;

(ii) the following equality holds:

Dirpµq " ż Γ ˆżI 1 2 | 9 f ptq| 2 dt ˙Qpdγq.
The measure Q can be seen as a multimarginal transport plan coupling all the different instants, whose 2-marginals are almost optimal transport plans if they are taken between two very close instants. In other words, for any t and s in I, pe s , e t q#Q is a transport plan between µpsq and µptq (by (i)), and it is almost an optimal transport plan if s is very close to t by (ii).

Another way to see it is the following: if f P Γ, then we can also see it as an element µ f of H 1 pI, PpDqq. Indeed, just set µptq " δ f ptq for any t P I, and one can define E f P MpI ˆD, R q q by, for any b P CpI ˆD, R q q, ij IˆD b ¨dE f :"

ż I bpt, f ptqq ¨9 f ptqdt.
With this choice, one can check that

Dirpµ f q " Dirpµ f , E f q " ż I 1 2 | 9 f ptq| 2 dt.
Then, Theorem 5.1 is saying that there exists Q P PpΓq such that µ is the mean w.r.t. Q of the µ f (this is (i)), and such the E which is tangent to µ is the mean w.r.t. Q of the E f . Indeed, by linearity of the continuity equation the mean of the E f is an admissible momentum. Using Jensen's inequality, Dirpµq " Dir

ˆżΓ µ f Qpdf q ˙ď Dir ˆżΓ µ f Qpdf q, ż Γ E f Qpdf q ˙ď ż Γ Dirpµ f , E f qQpdf q
and the r.h.s. is equal to the l.h.s. by (ii). Hence, all inequalities are equalities, which tells us that ş Γ E f Qpdf q is the tangent momentum to µ.

Let us try to see what a superposition principle would look like if the dimension of Ω is larger than 1. We denote by F the space L 2 pΩ, Dq which is a polish space. As it was already done in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF], if f P H 1 pΩ, Dq, then we can see it as an element µ f of H 1 pΩ, PpDqq by setting µ f pξq :" δ f pξq . In other words, a classical function can be seen as a mapping valued in the Wasserstein space by identifying f pξq P D with δ f pξq P PpDq. More precisely, we define µ f P L 2 pΩ, PpDqq and E f P MpΩ ˆD, R pq q by, for any a P CpΩ ˆDq and b P CpΩ ˆD, R pq q, ij ΩˆD adµ f :" Dq, andif µ f andE f are defined as above, then E f is tangent to µ f and

ż Ω apξ, f pξqqdξ, ij ΩˆD b ¨dE f :" ż Ω bpξ, f pξqq ¨∇f pξqdξ. Proposition 5.2. If f P H 1 pΩ,
Dirpµ f q " Dirpµ f , E f q " ż Ω 1 2 |∇f pξq| 2 dξ.
Proof. To check the first part, take ϕ P C 1 c p Ω ˆD, R p q. Defining φ P H 1 pΩ, R p q by φpξq " ϕpξ, f pξqq, we have that φ is compactly supported in Ω and ∇ ¨φ " p∇ Ω ¨ϕqpξ, f pξqq `p∇ D ϕqpξ, f pξqq ¨∇f pξq.

Integrating this identity w.r.t. Ω, as the l.h.s. vanishes by compactness of the support of φ, we see that we can conclude that pµ f , E f q satisfies the continuity equation.

Notice that E f has a density v f P L 2 µ f pΩ ˆD, R pq q w.r.t. µ given by v f pξ, xq " ∇f pξq. In particular, for a fixed ξ, v f pξ, ¨q is constant hence the gradient of a function. Using Proposition 3.11, one sees that it is enough to conclude that E f is tangent. Moreover, as v f does not depend on x,

Dirpµ f q " Dirpµ f , E f q " ij ΩˆD 1 2 |v f pξq| 2 µpdξ, dxq " ż Ω 1 2 |v f pξq| 2 dξ " ż Ω 1 2 |∇f pξq| 2 dξ.
We mention that [9, Theorem 3.1] states that if f : Ω Ñ D is a (classical) harmonic map, then µ f is also an harmonic mapping. To prove such a fact, Brenier showed how one can build a solution of the dual problem (with boundary values µ f ) from the function f . A more recent analysis of such result, in the case where D is replaced by a Riemannian manifold, can be found in [START_REF] Lu | Properties of Soft Maps on Riemannian Manifolds[END_REF].

By analogy, the superposition principle would read as follows: If µ P H 1 pΩ, PpDqq and E P MpΩ D, R pq q is tangent to µ, does there exist Q P PpFq such that µ is the mean of µ f w.r.t. Q and E is the mean of E f w.r.t. Q? Thanks to Jensen's inequality and the uniqueness of the tangent momentum, the second condition can in fact be rewritten as Dirpµq " Dirpµ, Eq "

ż F Dirpµ f , E f qQpdf q " ż F ˆżΩ 1 2
|∇f pξq| 2 dξ ˙Qpdf q.

These considerations can be summarized by the following definition, which is the same as [9, Problem 3.1]. For f P F we define its "classical" Dirichlet energy Dir c pf q by Dir c pf q "

$ & % ż Ω 1 2 |∇f pξq| 2 dξ if f P H 1 pΩ, Dq, ` 8 else. 
Definition 5.3. Let µ P H 1 pΩ, PpDqq. We say that µ admits a superposition principle if there exists Q P PpFq such that (i) for any a P CpΩ ˆDq;

ij ΩˆD adµ " ż F ˆżΩ apξ, f pξqqdξ ˙Qpdf q,
(ii) the following identity holds:

ż F Dir c pf qQpdf q ď Dirpµq.
In particular, with our definition, if Q represents µ P H 1 pΩ, Dq, then for Q-a.e. function f one has Dir c pf q ă `8 hence f belongs to H 1 pΩ, Dq. Let us underline that (i) is heuristically the same as (i) of Theorem 5.1, but in a form integrated over Ω because the evaluation operator does not make sense in higher dimensions: the elements of F are not necessarily continuous. In Definition 5.3, if (i) and (ii) holds, then the inequality in (ii) is in fact an equality because the reverse inequality always holds. Indeed, if µ satisfies the superposition principle, we can say that µ " ş F µ f Qpdf q. By convexity of the Dirichlet energy (Proposition 3.13), we can apply Jensen's inequality, thus

Dirpµq ď ż F Dirpµ f qQpdf q " ż F Dir c pf qQpdf q.
5.2. Counterexample. We will first provide a counterexample which we will try to make as generic as possible. In what follows, we take Ω :" B to be the unit disk of R 2 and S 1 " BB its boundary. We also take D " B. We view B as a subset of the complex plane C: multiplication on B means complex multiplication.

Let µ s : S 1 :Ñ PpBq be the (complex) square root: it is the mapping defined by, for ξ P S 1 ,

µ s pξq :" 1 2 ÿ z 2 "ξ δ z " 1 2 pδ ? ξ `δ´?ξ q,
where ? ξ is a (complex) square root of ξ. The function µ s is clearly Lipschitz (with Lipschitz constant equals to 2). In fact, if ξ " e it with t P R, one can write

µ s pe it q " 1 2 `δexppit{2q `δexppit{2`iπq ˘.
The function t Þ Ñ µ s pe it q is 2π-periodic, but it cannot be written as a superposition of continuous 2πperiodic functions, only 4π-periodic ones. Hence, the superpositon principle with continuous functions fails for this mapping. This example is well known in the theory of Q-functions [START_REF] Lellis | Q-valued functions revisited[END_REF], we took it from there. To our purpose, we will need the fact that the superposition principle with H 1{2 functions fails for the mapping µ s : roughly speaking, it holds because H 1{2 functions, in dimension 1, cannot have jumps.

Lemma 5.4.

There is no function f P H 1{2 pS 1 , Bq such that f pξq 2 " ξ for a.e. ξ P S 1 .

As this lemma is not directly related to harmonic mappings, we postpone its proof to the end of this article in Section B. With the help of this lemma, we can prove that no mapping µ P H 1 pB, PpBqq such that µ| BB " µ s can have a superposition principle: indeed, if it were the case, then we could restrict the superposition to BB, and we would have a superposition principle for µ s with functions in H 1{2 which is a contradiction. To make this argument rigorous is a bit technical given the definition we chose for the boundary values of mappings in H 1 pB, PpBqq: µ is not necessarily continuous.

Proposition 5.5. Let µ P H 1 pB, PpBqq such that µ| BB " µ s . Then µ cannot admit a superposition principle.

Proof. We will of course reason by contradiction. We assume that there exists Q P PpFq which satisfies the points (i) and (ii) of Definition 5.3 (in fact only point (i) will be sufficient). Let E " vµ tangent to µ. Take δ ą 0 and ε ą 0. We choose χ ε P C 1 pr0, 1sq an increasing function supported on r1 ´ε, 1s, such that χ ε p1q " 1. Define a ε P C 1 pB, R 2 q and b δ P C 1 pB ˆBq by, for any ξ, x P B,

a ε pξq " ξ |ξ| χ ε p|ξ|q, b δ pξ, xq " |ξ ´x2 | 2 δ 2 .
In words, a ε is a vector-valued function, parallel to lines issued from the origin, and whose norm is increasing on the annulus of radii 1 ´ε and 1 from 0 to 1 Indeed, in the r.h.s, the reminder ∇ ¨aε ´χ1 ε p|ξ|q of order 1 has been integrated over A ε whose area scales like ε. For the first integral, we use the assumption that µ satisfies the superposition principle. For the second one, we bound ∇b δ by Cδ ´2, notice that a ε vanishes outside A ε and use Cauchy-Schwarz:

ż F ˆżB χ 1 ε p|ξ|qb δ pξ, f pξqqdξ ˙Qpdf q " ij BˆB χ 1 ε p|ξ|qb δ pξ, xqµpdξ, dxq ď C δ 2 ij AεˆB p1 `|vpξ, xq|qµpdξ, dxq `Cε ď C δ 2 g f f e ij BˆB p1 `|vpξ, xq| 2 qµpdξ, dxq g f f e ij AεˆB µpdξ, dxq `Cε ď C δ 2 a 1 `2Dirpµq ? ε `Cε ď C ? ε δ 2 ,
where C denotes a generic constant which changes from one line to another and the inequality may hold only for small ε and δ. Let us call F δ,ε Ă F the set of f P F such that

ż B χ 1 ε p|ξ|q|f pξq 2 ´ξ| 2 dξ ě δ 2 .
By Markov's inequality, one can say that

QpF δ,ε q " Q ˆ"f P F : ż B χ 1 ε p|ξ|qb δ pξ, f pξqqdξ ě 1 *˙ď ż F ˆżB χ 1 ε p|ξ|qb δ pξ, f pξqqdξ ˙Qpdf q ď C ? ε δ 2 .
Now take the sequence ε n :" 2 ´n. By the previous estimate, one sees that

`8 ÿ n"1
QpF δ,εn q ă `8.

By the Borel-Cantelli lemma, one has that Qplim sup n F δ,εn q " 0 which means that for Q-a.e. f P F, there exists n 0 (which may depend on f ) such that

ż B χ 1 εn p|ξ|q|f pξq 2 ´ξ| 2 dξ ď δ 2
for all n ě n 0 . Recall also that Q-a.e. f belongs to H 1 pΩ, Dq. For such an f , sending n to `8 and by definition of the trace of f , ż

S 1 | f pξq 2 ´ξ| 2 σpdξq ď δ 2 ,
where in this formula f stands for the trace of f on S 1 and σ the surface measure on BB. Then using this estimate for smaller and smaller δ along a countable sequence, we conclude that Q-a.e. function f satisfies f pξq 2 " ξ a.e. on S 1 . But on the other hand the trace of Q-a.e. function f belongs to H 1{2 pS 1 , Bq, which is a clear contradiction with Lemma 5.4.

From this Proposition, we deduce that there exists an harmonic and a Lipschitz mapping µ P H 1 pΩ, PpDqq for which the superposition principle fails: just take respectively a solution of the Dirichlet problem with boundary values µ s , or a Lipschitz extension of µ s .

Though, these examples can seem too particular and rely too much on some singular boundary conditions. To produce stronger examples, we will use the fact that, roughly speaking, the set of µ admitting a superposition principle is stable by approximation. Thus, by contraposition, any neighborhood of a µ which does not admit a superposition principle will contain other measures not admitting a superposition principle.

Proposition 5.6. Let pµ n q nPN a sequence of elements of H 1 pΩ, PpDqq such that, for every n P N, µ n admits a superposition principle. We assume that pµ n q nPN converges weakly to µ P H 1 pΩ, PpDqq and that lim n Dirpµ n q " Dirpµq. Then µ admits a superposition principle.

Proof. For any n P N, let Q n P PpFq such that (i) and (ii) of Definition 5.3 are satisfied. By Rellich's theorem (recall that D is compact), the functional Dir c : F Ñ R has compact sublevel sets in the L 2 pΩ, Dq-topology. As

sup nPN ż F Dir c pf qQ n pdf q " sup nPN Dirpµ n q ă `8,
we can say [4, Remark 5.1.5] that pQ n q nPN is tight, hence up to extraction it weakly converges in PpFq to some Q P PpFq. We will show that Q represents µ.

Let us take a P CpΩ ˆDq and define A : F Ñ R by, for any f P F,

Apf q :" ż Ω apξ, f pξqqdξ.
The function A is continuous for the L 2 topology. Thus, starting from

ż F Apf qQ n pdf q " ij ΩˆD adµ n ,
which is valid by Definition 5.3, we can pass both terms to the limit (recall that µ n weakly converges to µ) and see that pµ, Qq satisfies (i) of Definition 5. Dirpµ n q " Dirpµq, which gives point (ii) of Definition 5.3 and concludes the proof.

With this proposition, one can use for instance the heat flow to regularize mappings and produce "smoother" counterexamples. For instance, let µ P H 1 pB, PpBqq which does not satisfy the superposition principle. Set µ n pξq :" Φ B 1{n µpξq: for a fixed ξ P B, we regularize µpξq with the help of the heat flow acting on PpBq. One can check easily that µ n converges weakly in L 2 pB, PpBqq to µ. As Φ B 1{n is a contraction in the Wasserstein space (Proposition 2.4), Dirpµ n q ď Dirpµq and by lower semi-continuity of Dir we deduce that lim n Dirpµ n q " Dirpµq. According to Proposition 5.6, we deduce that µ n does not satisfy the superposition principle for n large enough. On the other hand, the for any ξ and any n the measure µ n pξq is smooth: it admits a density bounded from below and from above.

5.3.

Local obstruction to the superposition principle. The counterexample provided above shows a global obstruction. Indeed, the mapping µ s can be thought locally in Ω as a superposition of classical functions, but there is a contradiction if we try to make this superposition global. On the other hand, there is also (at least formally) local obstructions to the superposition principle. To describe them we will stay sloppy about the regularity issues and concentrate on heuristic explanations. Indeed, if µ admits a superposition principle given by Q P PpFq, and if v is the velocity field tangent to µ, then for Q-a.e. f , one has ∇f pξq " vpξ, f pξqq. To prove this fact, notice that the tangent momentum E " vµ is equal to ş F E f Qpdf q (see the discussion preceding Definition 5.3), i.e. for any b P CpΩ ˆD, R pq q, ij ΩˆD b ¨dE :" ż F ˆżΩ bpξ, f pξqq ¨∇f pξqdξ ˙Qpdf q.

Thus, one can say that Dirpµq "

ij ΩˆD 1 2 |v| 2 dµ " ij ΩˆD 1 2 v ¨dE " ż F ˆżΩ 1 2 vpξ, f pξqq ¨∇f pξqdξ ˙Qpdf q ď ż F ˆżΩ 1 4 " |vpξ, f pξqq| 2 `|∇f pξq| 2 ‰ dξ ˙Qpdf q " 1 4 ij ΩˆD |v| 2 dµ `1 2 ż F ˆżΩ 1 2 |∇f pξq| 2 dξ ˙Qpdf q " Dirpµq.
In particular, the inequality is an equality: one sees that for Q-a.e. f P F, one has ∇f pξq " vpξ, f pξqq for a.e. ξ P Ω.

The analogue if Ω is a segment is the fact that (using notations from Theorem 5.1) for Q-a.e. f , 9 f ptq " vpt, f ptqq: the measure Q is supported on the flow of the vector field v (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 8.2.1]). In dimension larger than 1, the constraint ∇f " vp¨, f q is much stronger. In particular, it implies that along every curve γ : I Ñ Ω, the function f ˝γ follows the flow of v ¨9 γ. However, there are many different curves going from one point to another: if we want all the results to be coherent, some commutation properties of the flow of v along different directions are needed, which turns out to be a very strong constraint. Indeed, coordinatewise, the constraint reads for every α P t1, 2, . . . , pu and i P t1, 2, . . . , qu, B α f i pξq " v αi pξ, f pξqq.

If we differentiate w.r.t. β, we find that

B βα f i pξq " B β v αi pξ, f pξqq `q ÿ j"1 B β f j pξqB j v αi pξ, f pξqq " ˜Bβ v αi `q ÿ j"1 v βj B j v αi ¸pξ, f pξqq.
The l.h.s is clearly symmetric if we exchange the role of α and β, so must be the r.h.s. It implies that for all α, β P t1, 2, . . . , pu,

B α v βi `q ÿ j"1 v αj B j v βi " B β v αi `q ÿ j"1 v βj B j v αi ,
at least on the support of µ in Ω ˆD. In other words, we see that v must satisfy a differential constraint for the superposition principle to hold, and there is no reason why this constraint would be satisfied for a generic µ P H 1 pΩ, PpDqq, even for a harmonic mapping. An other way to understand the local failure of the superposition principle is the following. We will be sloppy and use the evaluation operators e ξ : F Ñ D defined by e ξ pf q :" f pξq (these operators are in principle not defined as elements of F are not continuous). If µ admits a superposition principle, it would mean that for ξ and η very close, pe ξ , e η q#Q P PpD ˆDq is a transport plan between µpξq and µpηq (because of point (i)) which is almost optimal (between of point (ii)). It also works with three measures: if ξ, η and θ are three points of Ω very close to each other (for instance located at the vertices of an equilateral triangle), then pe ξ , e η , e θ q#Q P PpD ˆD ˆDq is a coupling between µpξq, µpηq and µpθq whose 2-marginals are almost optimal transport plans. However, it is known that, if µ 1 , µ 2 and µ 3 P PpDq, then in general there exists no coupling between the three whose 2-marginals are optimal transport plans.

A Ishihara type property

As explained in the introduction, we want to show in this section that F ˝µ is subharmonic (which means ∆pF ˝µq ě 0) as soon as µ P H 1 pΩ, PpDqq is harmonic and F : PpDq Ñ R is convex along generalized geodesics. As far as the regularity of F is concerned the simplest would be to assume that F is continuous on PpDq. Nevertheless, this assumption is very strong and excludes natural functionals (like the internal energies). In the case where F is only l.s.c., we will need additional assumptions: it is the object of the following definition. Definition 6.1. We say that F :

PpDq Ñ R Y t`8u is regular if it is l.s.c. on PpDq, if µ P L 2 pΩ, PpDqq Þ Ñ ż Ω F pµpξqqdξ is l.s.c
. for the weak convergence on L 2 pΩ, PpDqq, and if F is bounded on the bounded sets of L 8 pDq X PpDq.

Lower semi-continuity of F is a reasonable assumption. To impose that F is bounded on bounded sets of L 8 pDq X PpDq is not a strong constraint as D is compact, we will need it to ensure that, by regularizing probability measures with the heat flow, we get measures for which F is finite.

Lower semi-continuity of F : µ Þ Ñ ş Ω pF ˝µq is less usual: by a standard argument left to the reader, it implies that F is convex for the affine structure on PpDq. However, we do not know in the general case if the fact that F is convex and l.s.c. on PpDq is enough to ensure lower semi-continuity of F. Indeed, to apply abstract functional analysis arguments, we would like to work in the space MpΩ ˆDq endowed with the total variation norm: it is the dual of the Banach space pCpΩ ˆDq, } ¨}8 q. If F is convex and l.s.c. on PpDq, it can be shown easily that F is convex and l.s.c. on MpΩ ˆDq endowed with the total variation norm. However, it only implies that F is l.s.c. for the topology on MpΩ ˆDq defined by duality w.r.t. the dual of MpΩ ˆDq, the latter being strictly larger than CpΩ ˆDq.

However, for the usual functionals on PpDq we can do an ad hoc analysis and we have the following results. Proposition 6.2. Let V P L 1 pDq a l.s.c. function. Then the functional

F : µ P PpDq Þ Ñ ż D V dµ is regular.
Let f : r0, `8q Ñ R a proper and convex function such that lim tÑ`8

f ptq{t " `8. Then the functional defined by

F : µ P PpDq Þ Ñ $ & % ż D f pµpxqqdx if µ is absolutely continuous w.r.t. L D `8 else, is regular.
Proof. As V is l.s.c. on the compact D, it is bounded from below. As V is in L 1 pΩq, the function F is clearly bounded on bounded sets of L 8 pDq X PpDq. Then, we can use [30, Proposition 7.1], seeing either V as a l.s.c. function on D, or as a l.s.c. on Ω ˆD (constant w.r.t. its first variable) to get that both F and ş Ω pF ˝¨q are l.s.c.

For the internal energy, to get lower semi-continuity of F we rely on [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF]Proposition 7.7]. To get the lower semi-continuity of ş Ω pF ˝¨q, we can see that

ż Ω F pµpξqqdξ " $ ' & ' % ij ΩˆD f pµpξ, xqqdξdx if µ is absolutely continuous w.r.t. L Ω b L D `8 else,
thus [30, Proposition 7.7] still applies. As f is bounded on bounded sets of r0, `8q, we see that F is bounded on bounded sets of L 8 pDq X PpDq.

However, the interaction energy is not regular: it lacks convexity w.r.t. the affine structure on PpDq [30, Chapter 7]. For instance, take Ω " D " r0, 1s and define F : PpDq Ñ R by

F pµq :" ij DˆD |x ´y| 2 µpdxqµpdyq.
This functional is continuous on PpDq and bounded on bounded subsets of L 8 pDq X PpDq. However, if we define µ n pξq :" δ xnpξq with x n pξq " 1{2 `1{2 cospnξq, one can see that F pµ n pξqq " 0 for all ξ P Ω and n P N, but pµ n q nPN converges weakly on PpΩ ˆDq to µ :" L Ω b L D , for which the value ş Ω pF ˝µq is strictly positive. On the other hand, as soon as the interaction potential is continuous, the interaction energy is continuous on PpDq.

Finally, let us recall that a function f : Ω Ñ R is said subharmonic on Ω in the sense of distributions if ∆f ě 0 as a distribution in Ω. Theorem 6.3. Let F : PpDq Ñ R Y t`8u a functional which is convex along generalized geodesics. Assume either that F is continuous (and everywhere finite) on PpDq or that F is regular. Let µ l : BΩ Ñ PpDq a Lipschitz mapping such that sup BΩ pF ˝µl q ă `8.

Then there exists at least one solution µ P H 1 pΩ, PpDqq of the Dirichlet problem with boundary conditions µ l such that pF ˝µq : Ω Ñ R is subharmonic in Ω in the sense of distributions and Moreover, if F is regular then µ can be chosen in such a way that (6.2)

ż Ω F pµpξqqdξ ď ż Ω F pνpξqqdξ.
if ν is any other solution of the Dirichlet problem with boundary values µ l .

Let us make some comments. The first one is that (6.1) is nothing else than the maximum principle. It is not implied by the subharmonicity of pF ˝µq as the latter holds only in Ω and we do not know if pF ˝µq is continuous. The second one is that (6.2) characterizes µ if F is strictly convex. More generally, the subharmonicity of F ˝µ would hold for µ solution of the Dirichlet problem minimizing

ż Ω apξqF pµpξqqdξ,
where a P CpΩq is a continuous and strictly positive function (it comes from a slight modification of the proof which is left to the reader). The last comment is that this result is somehow disappointing because we cannot guarantee the subharmonicity to hold for all solutions. The main issue is that we reason by approximation, thus the solution µ is constructed as the limit of some approximate mappings, the existence of the limit is coming from compactness. But as we have no uniqueness result for the Dirichlet problem, we can only identify the limit through (6.2) (which is a byproduct of the approximation process) but we cannot say much more.

The rest of this section is devoted to the proof of Theorem 6.3. In Subsection 6.1 we prove some preliminary results. The most difficult and interesting case is the one where F is not assumed to be continuous but only regular: it is the object of Subsections 6.2 and 6.3. To conclude, in Subsection 6.4, we briefly comment about the simplifications of the proof in the case of a continuous F . 6.1. Preliminary results. We prove first some technical results which would have overburdened the previous sections. The first one deals with Rellich compactness theorem, as we will want some strong convergence of our solutions of the approximate problems. Proposition 6.4. Let pµ n q nPN a sequence in H 1 pΩ, PpDqq such that sup n Dirpµ n q ă `8. Then, up to extraction, the sequence pµ n q nPN converges strongly in L 2 pΩ, PpDqq to some µ P H 1 pΩ, PpDqq.

Proof. This is nothing else than the Rellich compactness theorem, but for mappings valued in metric spaces. Remark that PpDq has a finite diameter, thus in this result we only need a control on the Dirichlet energy of µ n . We can find this result for instance in [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF]Theorem 1.13] or in [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF]Theorem 5.4.3]. Any way, this result is also a consequence of the next proposition.

In fact, we will need a stronger result, as we want so show compactness if we only have a control of the approximate Dirichlet energies. Proposition 6.5. Let pµ ε q εą0 a family in L 2 pΩ, PpDqq such that lim inf ε Dir ε pµ ε q ă `8. Then there exists a sequence pε n q nPN which goes to 0 such that pµ εn q nPN converges strongly in L 2 pΩ, PpDqq to some µ P H 1 pΩ, PpDqq. There is a well known criterion for compactness in L 2 pΩq: the Riesz-Fréchet-Kolmogorov theorem. It requires a uniform control of the L 2 -norm of the difference between a function and its translated. Here, we have only a control of the distance between a function and its translation in average (thanks to Dir ε ), and our mappings take values in PpDq rather than R. Nevertheless, the strategy of the proof of the Riesz-Fréchet-Kolmogorov theorem is rather straightforward to adapt. Recall that K Ω denotes the heat kernel on Ω.

Proof. There exists a sequence pε m q mPN , converging to 0, such that sup m Dir εm pµ εm q ă `8.

As in the proof of Theorem 3.14, let χ be a smooth function, radial, compactly supported in Bp0, 1q and we set χ t pξq " t ´pχpξ{tq. We will regularize µ εm only w.r.t. the source space Ω. More specifically, for any Ω compactly supported in Ω and t small enough, we define μm,t P L 2 p Ω, PpDqq by (6. C p Dir t pµ εm q " Ct 2 Dir t pµ εm q. Now, because of the monotonicity of Dir t (Theorem 3.26) remember that Dir t pµ εm q ď Dir εm pµ εm q if m is large enough (and t should in fact be of the form 2 N ε m but it does not really matter). In consequence, for any δ ą 0, there exists t ą 0 (small) and m 0 P N, such that for any m ě m 0 ,

d L 2 p μm,t , µ εm | Ωq ď δ.
On the other hand, for a fixed t ą 0, we want to show compactness of the family p μm,t q in L 2 p Ω, PpDqq. We will show that this family is uniformly equi-Hölder as mappings defined on Ω and valued in pPpDq, W 2 q: it implies compactness in Cp Ω, PpDqq from which we easily deduce compactness in L 2 p Ω, PpDqq. Here Ω is a compact subset of Ω lying at a distance larger than t from BΩ. We prefer to work on the 1-Wasserstein distance whose definition is recalled in Section 2. Take ϕ P CpDq a 1-Lipschitz function, up to translation by a constant we can assume that }ϕ} 8 ď C with C independent of ϕ. Then for any ξ, η P Ω, 

t p`1 }χ 1 } 8 }ϕ} 8 .
As the bound is independent on ϕ, we deduce that W 1 p μm,t pξq, μm,t pηqq ď Ct ´pp`1q |ξ ´η| for all ξ and η in Ω. Using W 2 ď C ? W 1 [30, Equation (5.1)], we see that, for a fixed t, the family p μm,t q mPN , defined on Ω, is uniformly equi-continuous (more precisely 1{2-Hölder continuous). Now we put the pieces together. For each n ě 1, take Ωn Ă Ω compactly supported in Ω such that L Ω pΩz Ωn q ď 1{n. Choose also t n small enough such that d L 2 p μm,tn , µ εm | Ωn q ď 1{n holds for m large enough and the distance between Ωn and BΩ is smaller than t n . Then, using Ascoli-Arzelà theorem, up to a subsequence, we know that p μm,tn q mPN converges strongly in L 2 p Ωn , PpDqq, in particular it is a Cauchy sequence. Up to a diagonal extraction in pε m q mPN (we do not relabel the sequence), we can assume that p μm,tn | Ωn q mPN is a Cauchy sequence for all n P N. Notice, as PpDq has a finite diameter, that |d L 2 pµ, νq ´dL 2 p µ| Ωn , ν| Ωn q| ď C{n for all µ, ν P L 2 pΩ, PpDqq. Hence, for any n P N, one has for m and m 1 large enough,

d L 2 pµ εm , µ ε m 1 q ď d L 2 p µ εm | Ωn , μm,tn q `dL 2 p μm,tn , μm 1 ,tn q `dL 2 p µ ε m 1 ˇˇΩ n , μm 1 ,tn q `2C n ď 2 `2C
n `dL 2 p μm,tn , μm 1 ,tn q, and d L 2 p μm,tn , μm 1 ,tn q can be made arbitrary small for m and m 1 large enough. In other words, pµ εm q mPN is a Cauchy sequence in L 2 pΩ, PpDqq, thus it converges strongly.

We will also need a result about the boundary conditions. Indeed, as the minimizers of Dir ε will only live in L 2 pΩ, PpDqq, we cannot define and impose boundary values. To bypass this difficulty, we extend slightly our domain into a larger domain Ω e Ą Ω and impose the values of the mappings everywhere on Ω e z Ω. Proposition 6.6. Let µ l : BΩ Ñ PpDq a Lipschitz mapping. There exists a compact Ω e such that Ω Ă 8 Ω e , and a Lipschitz mapping µ e P L 2 pΩ e z Ω, PpDqq such that µ e " µ l on BΩ and (6.4) tµ e pξq : ξ P Ω e z Ωu " tµ l pξq : ξ P BΩu.

Moreover, a mapping µ P H 1 pΩ, PpDqq satisfies µ| BΩ " µ l if and only if the mapping μ defined on Ω e by μpξq "

# µpξq if ξ P Ω µ e pξq if ξ P Ω e z Ω,
belongs to H 1 pΩ e , PpDqq.

Proof.

As Ω has a Lipschitz boundary, one can say [22, Section 1.12] that there exists a compact Ω e such that Ω Ă 8 Ω e , and Ψ : r0, 1s ˆBΩ Ñ Ω e z Ω a bilipschitz mapping such that Ψp0, ¨q is the identity on BΩ.

Roughly speaking (for instance if BΩ is C 1 ), Ψpt, ξq " ξ `tn Ω pξq where n Ω is the outward normal to BΩ. Then, one can define µ e pΨpt, ξqq :" µ l pξq for every t P r0, 1s and ξ P BΩ: we extend µ l by keeping it constant along the normal to BΩ. Because Ψ is bilipschitz and µ l is Lipschitz, it is clear that µ e is a Lipschitz mapping. Moreover, by construction, (6.4) obviously holds.

Let us prove the second point. Take E P MpΩ ˆD, R pq q and E e P MppΩ e z Ωq ˆD, R pq q the momenta tangent to respectively µ and µ e . The tangent momentum of μ, if it were to exist, must coincide with E on Ω ˆD and with E e on pΩ e z Ωq ˆD because of Corollary 3.12. Hence, if must be Ẽ P MpΩ e ˆD, R pq q defined by ij

ΩeˆD b ¨d Ẽ " ij ΩˆD b ¨dE `ij pΩez ΩqˆD b ¨dE e .
As we already have Dirp μ, Ẽq ă `8, we see that μ P H 1 pΩ e , PpDqq if and only if p μ, Ẽq satisfies the continuity equation.

If ϕ P C 1 c pΩ e , R p q, ij ΩeˆD ∇ Ω ¨ϕd μ `ij ΩeˆD ∇ D ϕ ¨d Ẽ " ij ΩˆD ∇ Ω ¨ϕdµ `ij ΩˆD ∇ D ϕ ¨dE `ij pΩez ΩqˆD ∇ Ω ¨ϕdµ e `ij pΩez ΩqˆD ∇ D ϕ ¨dE e
" BT µ pϕq `BT µe pϕq.

By Whitney's theorem, the restriction of functions in C 1 c p 8 Ω e , R p q to Ω coincide with C 1 pΩ, R p q, thus we see that μ P H 1 pΩ e , PpDqq if and only if BT µ " ´BT µe . Considering the fact that the outward normal to Ω e z Ω is ´nΩ , and that µ e is continuous with values on BΩ given by µ l , the proposition is proved. 6.2. The approximate problems and their optimality conditions. In all this subsection, we assume that F is regular. As explained before, we use Dir ε to approximate Dir, as the optimality conditions of Dir ε imply that for each ξ P Ω, µpξq is a barycenter of all µpηq for η in the ball of center ξ and radius ε.

Let us introduce some notations that we will keep during the rest of the proof. We denote by Ω e Ą Ω and µ e P H 1 pΩ e z Ω, PpDqq the objects given by Proposition 6.6. Take ε 0 ą 0 such that Bpξ, ε 0 q Ă Ω e for all ξ P BΩ. We denote by

L 2
e pΩ e , PpDqq :" tµ P L 2 pΩ e , PpDqq : µ| Ωez Ω " µ e u the set of L 2 mappings which coincide with µ e on Ω e z Ω. This set L 2 e pΩ e , PpDqq is clearly closed for the weak convergence on L 2 pΩ e , PpDqq, in particular it is compact for the weak convergence. We also define H 1 e pΩ e , PpDqq :" H 1 pΩ e , PpDqq X L 2 e pΩ e , PpDqq. In the rest of the proof, we extend the definitions of Dir ε and Dir on L (we integrate over Ω e and not only on Ω). We also use the notation

M :" sup BΩ pF ˝µl q,
by assumption M is finite. Remark that by construction, if µ P L 2 e pΩ e , PpDqq, then for all ξ P Ω e z Ω one has F pµpξqq ď M .

As F is l.s.c. on the compact set PpDq, it is bounded from below. Hence, we can translate it by a constant and assume that F ě 0 on PpDq.

Let ε ą 0 and λ ą 0 be fixed. The approximate problem is defined as To add the term λ ş Ωe F ˝µ has two purposes: on the one hand, it ensures that F ˝µ will be regular enough (namely in L 1 pΩ e q) to extract information from the optimality conditions; on the other hand by taking the limit ε Ñ 0 and then λ Ñ 0, we will be able to say that F ˝µε,λ (where µ ε,λ is a minimizer of the approximate problem) converges pointewisely, and it is necessary to pass to the limit the (approximate) subharmonicity that we will get from the optimality conditions of the approximate problem.

The following result is easy with all the tools developed above. Proposition 6.7. For any ε ą 0 and λ ą 0, there exists a solution to the approximate problem (6.5).

Proof. Let ν P PpDq any measure such that F pνq ă `8 (it exists as F is regular). If we define µ P L 2 e pΩ e , PpDqq by µ| Ω :" ν and µ| Ωez Ω :" µ e , one can see that ş Ωe F pµpξqqdξ ă `8, moreover as PpDq has a finite diameter Dir ε pµq ă `8. Hence, the minimization problem is non empty. In consequence, we are minimizing over the set L 2 e pΩ e , PpDqq, which is compact for the weak convergence, a functional which is l.s.c. (see Proposition 3.25 and the regularity assumption on F ): we can use the direct method of calculus of variations.

Starting from now, for any ε ą 0 and λ ą 0, we denote by µ ε,λ a solution of the approximate problem (6.5). Proposition 6.8. Let 0 ă ε ď ε 0 and λ ą 0 be fixed. Then for a.e. ξ P Ω, µ ε,λ pξq is a minimizer over

PpDq of ν Þ Ñ C p ε p`2 ż Bpξ,εq W 2 2 pν, µ ε,λ pηqqdη `λF pνq.
Proof. We reason by contradiction. If the property does not hold, there exists c ą 0 and a set X Ă Ω of strictly positive measure such that for all ξ P X, (6.6)

C p ε p`2 ż Bpξ,εq W 2 2 pµ ε,λ pξq, µ ε,λ pηqqdη `λF pµ ε,λ pξqq ě c `min νPPpDq ˜Cp ε p`2 ż Bpξ,εq W 2 2 pν, µ ε,λ pηqqdη `λF pνq ¸.
Now, consider δ ą 0 small and Y Ă X such that L Ω pY q " δ. On every point of ξ P Y , we want to select a minimizer ν (which depends on ξ) of the r.h.s. of ( The integral over Ω e ˆΩe can be split over four parts: the one over pΩ e zY q ˆpΩ e zY q, which vanishes because µ ε,λ " μ on this set; the one over Y ˆY , which can be bounded by Cδ 2 , where C depends on the diameter of PpDq and on ε; and the ones over pΩ e zY q ˆY and Y ˆpΩ e zY q which are equal by symmetry. Moreover, one has where the inequality comes from the fact that we have add the piece Y ˆY which is of size δ 2 and one which we integrate a function which is bounded. Notice that we have used that Bpξ, εq Ă Ω e for ξ P Ω as ε ă ε 0 . The part on pΩ e zY q ˆY gives exactly the same amount, thus

C p 2ε p`2 ij Y ˆpΩezY q " W 2 2 pµ ε,λ pξq, µ ε,λ pηqq ´W 2 2 p μpξq, μpηqq ‰ ½ |ξ´η|ďε dξdη " C p 2ε p`2 ij Y ˆpΩezY q " W 2 2 pµ ε,λ pξq, µ ε,
˜Dir ε p μq `λ ż Ωe F p μpξqqdξ ¸´ˆD ir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ď Cδ 2 `żY ˜Cp ε p`2 « ż Bpξ,εq rW 2 2 pµ ε,λ pξq, µ ε,λ pηqq ´W 2 2 p μpξq, µ ε,λ pηqqsdη ff `λ rF p μpξqq ´F pµ ε,λ pξqqs ¸dξ ď Cδ 2 ´cδ,
where the last inequality comes precisely form the way we chose μ on Y and of L Ω pY q " δ. Hence, taking δ small enough, the r.h.s. is strictly negative, which is a contradiction with the optimality of µ ε,λ .

Remark that if λ " 0, our proof still works, and it precisely shows that µ ε,0 pξq is a barycenter of the µ ε,0 pηq for η running over the ball of center ξ and radius ε, a fact which was already stated by Jost [START_REF] Jost | Equilibrium maps between metric spaces[END_REF]. The crucial result which allows us to get subharmonicity is the following. If λ " 0, it is exactly Jensen's inequality for functionals convex along generalized geodesics, however here the situation is slightly different as µ ε,λ pξq is not really a barycenter. Notice that F ˝µε,λ is integrable on Ω e . Proposition 6.9. Let 0 ă ε ď ε 0 and λ ą 0 be fixed. Then, for a.e. ξ P Ω, ż

Bpξ,εq rF pµ ε,λ pηqq ´F pµ ε,λ pξqqsdη ě 0.

Proof. Let us take a point ξ P Ω for which the conclusion of Proposition 6.8 holds and such that F pµ ε,λ pξqq ă `8: it is the case for a.e. points of Ω. As a competitor, we use S F t rµ ε,λ pξqs for small t ą 0, which means that we let µ ε,λ pξq follow the gradient flow of F , see Theorem 2. Let us conclude this subsection by proving a maximum principle, but for mappings which are εsubharmonic. Recall that M is the supremum of F ˝µ on Ω e z Ω for any µ P L 2 e pΩ e , PpDqq. Proposition 6.10. Let 0 ă ε ď ε 0 and λ ą 0 be fixed. Then, for a.e. ξ P Ω e , one has F pµ ε,λ pξqq ď M .

Proof. Let δ ą 0 be fixed and consider f δ : Ω e Ñ R Y t`8u defined by f δ pξq " F pµ ε,λ pξqq `δ|ξ ´ξ0 | 2 , where ξ 0 is any point of Ω. By strict convexity of the square function and thanks to Proposition 6.9, for a.e. ξ P Ω, ż

Bpξ,εq rf δ pηq ´fδ pξqsdη ą 0.

In particular, the essential supremum of f δ cannot be reached on Ω, it must be reached on Ω e z Ω.

On Ω e z Ω we control the values of F ˝µε,λ by M , in consequence ess sup Ωe f δ ď M `Cδ, where C depends on the diameter of Ω. Sending δ to 0 (along a sequence), we get the result.

6.3. Limit to the Dirichlet problem. In all this subsection, we still assume that F is regular. The goal is now to pass to the limit and to show that µ ε,λ converges to µ a solution of the Dirichlet problem such that F ˝µ is subharmonic. Recall that Dir ε Γ-converges to Dir when ε Ñ 0, see Theorem 3.26. To get subharmonicity, we will need strong convergence, it implies to take first the limit ε Ñ 0 and then λ Ñ 0. But on the other hand, we need a uniform bound on the minimal values of the approximate problems to pass to the limit. To get them implies that we need to produce at least one mapping µ in H 1 e pΩ e , PpDqq such that ş Ωe pF ˝µq ă `8. To do this, we cannot rely on the Lipschitz extension (Theorem 4.4): there is no way to guarantee that ş Ω pF ˝µq ă `8. To get this uniform bound, we will take first the limit λ Ñ 0 and then ε Ñ 0 (relying only on weak convergence). It will produce a solution μ P H 1 e pΩ e , PpDqq of the Dirichlet problem with ş Ωe pF ˝μq ă `8 but we cannot guarantee subharmonicity of F ˝μ. However it brings uniform bounds and enables us to take the limit ε Ñ 0, λ Ñ 0 and get a solution μ of the Dirichlet problem for which F ˝μ is subharmonic.

We take two sequences pε n q nPN , pλ m q mPN that both converge to 0 while being strictly positive. More precisely we take ε n :" ε 0 2 ´n for any n P N, thus we always have ε n ď ε 0 and Dir εn converges in an increasing way and Γ-converges to Dir. We will not relabel the sequences when extracting subsequences. Moreover, to avoid heavy notations, we will drop the indexes n and m; and lim nÑ`8 , lim mÑ`8 will be denoted respectively by lim εÑ0 and lim λÑ0 . Proof. The existence of μ P L 2 e pΩ e , PpDqq is trivial: recall that L 2 e pΩ e , PpDqq is compact for the weak convergence. Moreover, using Proposition 6.10, we have that for ε ď ε 0 and λ ą 0,

ż Ωe F pµ ε,λ pξqqdξ ď M |Ω e |.
By the regularity assumption on F , we can pass this inequality to the weak limit and get (6.7).

The minimizing property of μ is more involved. Assume by contradiction that there exists ν P H In particular, we can choose ε ą 0 small enough such that (by monotonicity of Dir ε )

Dir ε pνq ď Dirpνq ă lim inf λÑ0 ˆDir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ˙.
We regularize ν in the following way: for t ą 0, we denote by ν t :" p½ ΩΦ D t qν the element of L 2 e pΩ e , PpDqq for which the heat flow on D has been followed only in Ω: in other words, for any t ą 0,

ν t pξq :" # pΦ D t qrνpξqs if ξ P Ω, νpξq " µ e pξq if ξ P Ω e z Ω.
Clearly, ν t P L 2 e pΩ e , PpDqq. Moreover, as W 2 pν t pξq, νpξqq ď ω D ptq with ω D ptq Ñ 0 as t Ñ 0 (see Proposition 2.5), we see that ν t converges strongly in L 2

e pΩ e , PpDqq to ν. In particular, thanks to the continuity of Dir ε , there exists t small enough such that Dir ε pν t q ă lim inf

λÑ0 ˆDir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ˙.
Because of the standard L 8 ´L1 estimate for the heat flow (see (ii) of Proposition 2.4), one has that tν t pξq : ξ P Ωu is included in a bounded set of L 8 pDq X PpDq. In particular, F ˝νt is bounded on Ω.

As it is also bounded on Ω e z Ω by M , we see that ş Ωe F ˝νt ă `8. Hence, for some λ small enough, where the constant C is uniform in ε ą 0 and 0 ă λ ď 1. In particular, using the Rellich-like theorem (Proposition 6.5), we see that, up to extraction, µ ε,λ converges strongly in L 2 e pΩ e , PpDqq to some μλ when ε Ñ 0. Moreover, by Γ-convergence of Dir ε and the regularity of F , (6.9)

Dir ε pν t q `λ ż Ωe F pν t pξqqdξ ă Dir ε pµ ε,λ q `λ ż Ωe F pµ ε,
Dirp μλ q `λ ż Ωe F p μλ pξqqdξ ď lim inf

εÑ0 ˆDir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ˙ď C.
Hence, we have a uniform bound on Dirp μλ q, and we can apply Rellich theorem (Proposition 6.4) to see that μλ converges strongly in L 2 pΩ e , PpDqq to some μ P H 1 e pΩ e , PpDqq when λ Ñ 0. Moreover, using the lower semi-continuity of Dir and positivity of F , Let us assume by contradiction that μ is not a minimizer of Dir. Thanks to Proposition 6.11, it boils down to assume that Dirp μq ă Dirp μq. In particular, as F ˝μ is integrable on Ω e and with the help of (6.10), it means that there exists λ small enough such that Dirp μq `λ ż Ωe F p μpξqqdξ ă Dirp μλ q `λ ż Ωe F p μλ pξqqdξ.

Using the fact that Dir ε p μq Ñ Dirp μq to handle the l.h.s. and (6.9) to deal with the r.h.s., we see that for ε ą 0 small enough,

Dir ε p μq `λ ż Ωe F p μpξqqdξ ă Dir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ,
which is a contradiction with the optimality of µ ε,λ . Hence, μ is a minimizer of Dir over H 1 e pΩ e , PpDqq. Remark that in (6.8) the first inequality is a consequence of the fact that F is regular. Assume by contradiction that there exists ν P H 1 e pΩ e , PpDqq a minimizer of Dir such that (6.8) does not hold. In particular as Dirp μq " Dirpνq, and by Γ-convergence of Dir it leads to the same contradiction as before by taking ε ą 0 small enough. Now, the key result to get subharmonicity of F ˝μ is that we can pass at the pointwise limit the quantity F ˝µε,λ . By combining the two equations above (recall that all the functions F ˝µε,λ and F ˝μ are positive and bounded above by M thanks to Proposition 6.10), we reach the desired conclusion (this is just an adaptation of the proof of Scheffé's lemma). Proof. The fact that the essential supremum of F ˝μ is bounded by M is a simple combination of Propositions 6.10 and 6.13. For the subharmonicity, take ψ P C 8 c p Ωq a smooth and positive function compactly supported in Ω. For 0 ă ε ď ε 0 small enough, one has, thanks to Proposition 6.9,

ż Ωe ψpξq ˜1 ε d`2 ż
Bpξ,εq rF pµ ε,λ pηqq ´F pµ ε,λ pξqqsdη ¸dξ ě 0.

Performing a discrete integration by parts (which is possible if ε is smaller than the distance between BΩ and the support of ψ), one sees that

ż Ωe F pµ ε,λ pξqq ˜1 ε d`2 ż
Bpξ,εq rψpηq ´ψpξqsdη ¸dξ ě 0. Now send ε Ñ 0 and then λ Ñ 0. By smoothness of ψ, the quantity ε ´pd`2q ş Bpξ,εq rψpηq ´ψpξqsdη converges to ∆ψpξq (up to a multiplicative constant). On the other hand, F pµ ε,λ pξqq converges pointwisely to F p μq (see Proposition 6.13) while being bounded by M . By Lebesgue dominated convergence theorem, ż

Ωe F pµpξqq∆ψpξqdξ ě 0, which exactly means that F ˝µ is subharmonic in the sense of distributions as ψ is an arbitrary smooth and positive function.

Now we can conclude:

Proof of Theorem 6.3 if F is regular. We take µ the restriction of μ to Ω. Thanks to Proposition 6.6, the fact that μ is a minimizer of Dir among H 1 e pΩ e , PpDqq is translated into the fact that µ is a solution of the Dirichlet problem with boundary values µ l . The subharmonicity and the upper bound of F ˝μ are preserved by restriction. To get the minimality of ş Ω pF ˝μq, we just use (6.8). 6.4. Simplifications in the continuous case. In this subsection, we assume that F is continuous. In particular, as PpDq is compact, it implies that F is bounded. The proof is simpler because we do not need to add the term λ ş F ˝µ in the approximate problem. Indeed, strong convergence in L 2 pΩ, PpDqq of a sequence µ n to µ implies, up to extraction, the convergence a.e. of pF ˝µn q to pF ˝µq.

We define Ω e , µ e and the functional spaces L 2 e pΩ e , PpDqq, H 1 e pΩ e , PpDqq as in the beginning of Subsection 6.2.

Proof of Theorem 6.3 if F is continuous. For any ε ą 0, we take µ ε P L 2 e pΩ e , PpDqq a minimizer of Dir ε over L 2 e pΩ e , PpDqq. We can still apply Proposition 6.8 and conclude that for a.e. ξ P Ω, µ ε pξq is a barycenter of the µ ε pηq for η P Bpξ, εq. The proof of Jensen's inequality (Proposition 6.9) works in the same way as F is bounded on PpDq. Hence, the maximum principle given by Proposition 6.10 is still true as it is only implied by Proposition 6.9.

To pass to the limit ε Ñ 0, we use the fact that (along an appropriate sequence) Dir ε Γ-converges to Dir. Hence, up to extraction, µ ε converges to μ which is a minimizer of Dir over L 2 e pΩ e , PpDqq. Thanks to Proposition 6.5, the convergence takes place strongly in L 2 e pΩ e , PpDqq and a.e. By continuity of F , we deduce that the conclusion of Proposition 6.13 still holds: F ˝µε converges a.e. to F ˝μ as ε Ñ 0. Thus the proof of Proposition 6.14 works exactly in the same way and it is enough to take for µ the restriction of μ to Ω.

Examples

To conclude, we give examples of situations where the computation of harmonic mappings can be done explicitly. The first one is rather simple: when D is a segment of R the space PpDq has a structure of Hilbert space, hence the study is considerably simpler and all the machinery developed above is too heavy. The second one is trickier: we restrict ourselves to a family of elliptically contoured distributions, which is a geodesically convex subset of finite dimension. Thus we end up with mappings valued in a finite-dimensional Riemannian manifold, on which we can write explicit Euler-Lagrange equations.

Before studying these examples, let us say that the case where the measures on BΩ are Dirac masses has already been treated. Indeed, we have already mentioned [9, Theorem 3.1] which states that if f : Ω Ñ D is harmonic, then the measure µ f (defined by µ f pξq " δ f pξq for all ξ P Ω) is a measured-valued harmonic mapping. This result has been extended in [START_REF] Lu | Properties of Soft Maps on Riemannian Manifolds[END_REF]Theorem 3.3] to the case where space D is a simply connected manifold with negative curvature. 7.1. One dimensional target. In this subsection, we assume that D " I " r0, 1s is the unit interval. The important point is that the space PpIq has a very simple structure: the right object to characterize an element µ P PpDq is its inverse distribution function F It is well known that F r´1s µ is increasing, right continuous, and that there is a bijection between the set of increasing and right continuous mappings r0, 1s Ñ r0, 1s and PpIq. Moreover, for any µ, ν P PpIq, one has (see for instance [30, , then Ψ is a one-to-one isometry between PpIq and H i .

Now we need to make the bridge between the Dirichlet energy in the space H 1 pΩ, PpIqq and the one in H 1 pΩ, Hq. In fact, it was already proved by Korevaar and Schoen [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF] that their definition of Dirichlet energy coincides with the usual one if the target space is R. By Pythagore's theorem, the equivalence still holds if the target space is a separable Hilbert space, as one can work on the coordinates in an orthogonal basis. As our definition of Dirichlet energy coincides with the one of Korevaar Proof. Everything relies on (7.2). With the help of Proposition 6.6, one can be convinced that imposing BT µ " BT µ b is the same as saying that the the trace of pΨ ˝µq is pΨ ˝µl q. Then, one takes f to be the unique harmonic extension of pΨ ˝µl q in H 1 pΩ, Hq: it is the minimizer of (7.3). By the maximum principle, as pΨ˝µ l q P H i on BΩ, it is clear that f P H 1 pΩ, H i q. Thus, we can simply set µ :" Ψ ´1 ˝f .

7.2. Family of elliptically contoured distributions. We finish by studying the case where the boundary values belong to a family of elliptically contoured distributions: they are parametrized by their covariance matrix. It can be seen as a generalization of the case where the measures are Gaussian. In this subsection, we would like to show that at least one solution of the harmonic problem is valued in the family of elliptically contoured distributions if it is the case for the boundary values, and to give a full solution (existence, uniqueness, regularity and Euler-Lagrange equation) under the additional assumption that the covariance matrices of the boundary values are non singular. We will deal with centered measures (i.e. measures with zero mean) because the contribution of the mean to the Dirichlet energy can be handled independently. More precisely if µ P PpDq we denote by mpµq :" ş D xµpdxq P D its mean and µ 0 the centered measured defined as the push forward of µ by px Þ Ñ x ´mpµqq. It is well known [37, Problem 1] that if µ, ν are two probability measures then W 2 2 pµ, νq " W 2 2 pµ 0 , ν 0 q `|mpµq ´mpνq| 2 .

More precisely, if A and B are in S q pRq it is known (see for instance [START_REF] Gelbrich | On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces[END_REF]) that

W 2 2 pρ A , ρ B q " Tr ´A2 `B2 ´2pAB 2 Aq 1{2 ¯.
Notice that if A and B commute then W 2 2 pρ A , ρ B q " TrppA ´Bq 2 q, which justifies that the right choice is to parametrize elements of the family of elliptically contoured distributions by the square root of their covariance matrix. Denote by S `q pRq the set of q ˆq symmetric definite positive matrices. If A P S q pRq, we can define the linear map L A : S q pRq Ñ S q pRq by L A :" A b Id `Id b A. More explicitly for any H P S q pRq L A pHq " AH `HA. The map L A is symmetric, and is moreover positive definite as soon as A is positive definite (in this case in particular it is invertible). If A is diagonal, then L A is also diagonal in the canonical basis for matrices. In particular, if A and B commute, then L A and L B also commute. If A P S `q pRq and B P S q pRq, a lengthy but straightforward computation leads to

(7.4) lim tÑ0 W 2 2 pρ A , ρ A`tB q t 2 " xB, g A pBqy
where g A : S q pRq Ñ S q pRq is a linear map defined as

g A :" 1 2 pL A q 2 pL A 2 q ´1.
More explicitly, if A is a diagonal matrix with eigenvalues λ 1 , λ 2 , . . . , λ q and B " pB ij q 1ďi,jďq then xB, g A pBqy "

1 2 ÿ 1ďi,jďq pλ i `λj q 2 λ 2 i `λ2 j B 2 ij .
Notice that g A always defines a scalar product on the space S q pRq. As a consequence, we can define the Riemannian manifold pS `q pRq, gq: at each point A P S `q pRq the tangent space, which is isomorphic to S q pRq, is endowed with the scalar product g A . If we do that, as we already know that P ec pR q q is a geodesic space and thanks to (7.4), we see that the Riemannian distance d g induced by g satisfies d g pA, Bq " W 2 pρ A , ρ B q for any A, B P S `q pRq. From this identity we can derive the following consequence. Take A P H 1 pΩ, pS `q pRq, gqq a matrix-valued function and define ρ A P L 2 pΩ, PpDqq by ρ A pξq " ρ Apξq for a.e. ξ P Ω. Then ρ A P H 1 pΩ, PpDqq and (7.5)

Dirpρ A q " ż Ω 1 2 p ÿ α"1
xB α Apξq, g Apξq pB α Apξqqydξ.

To justify this identity, one can use for instance the formulation with Dir ε (Theorem 3.26), replace the Wasserstein distance W 2 by the Riemannian distance d g , and use the already known equivalence between Dir and the limit of Dir ε when ε Ñ 0 for mappings valued in a Riemannian manifold [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]Theorem 8.3.1]. Notice that the metric tensor g A diverges as A becomes singular. Thus, it is natural to assume that the boundary values have non singular covariance matrices. With this assumption we are able to provide the full solution of the Dirichlet problem. Theorem 7.9. Take D Ă D compatible with ρ. Let µ l : BΩ Ñ P ec p Dq a Lipschitz mapping such that det pcovpµ l pξqqq ą 0 for all ξ P BΩ and define A l pξq " covpµ l pξqq 1{2 for all ξ P BΩ.

Then there exists a unique solution μ P H 1 pΩ, PpDqq of the Dirichlet problem with boundary values µ l and μpξq P P ec pDq for a.e. ξ P Ω. Moreover, if Ā P H 1 pΩ, pS `q pRq, gqq is defined by Āpξq :" covp μpξqq 1{2 for a.e. ξ P Ω, then the following holds:

(i) ess inf ξPΩ detp Āpξqq ą 0;

(ii) Ā is a minimizer of

ż Ω 1 2 p ÿ α"1 xB α Bpξq, g Bpξq pB α Bpξqqydξ.
among all B P H 1 pΩ, pS `q pRq, gqq which have boundary values A l ; (iii) Ā is a weak solution of (7.6)

p ÿ α"1 B α ´L ĀL ´1 Ā2 pB α Āq ¯`p ÿ α"1
´L ĀL ´1 Ā2 pB α Āq ¯2 " 0.

(iv) The mapping Ā is smooth (namely C 8 ) in the interior of Ω, and regularity up to the boundary holds provided A l and BΩ are smooth enough.

Notice that we are able to prove uniqueness among all mappings valued in the Wasserstein space and not only those valued in the family of elliptically contoured distributions: it is one of the only case where we can prove that uniqueness holds for the Dirichlet problem. Remark also that (7.6) is nothing else than the Euler-Lagrange equation associated to the problem of calculus of variations (ii). The last point is the application of the standard theory of elliptic regularity for harmonic mappings valued in Riemannian manifolds, in particular we refer the reader to [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF] for the precise assumptions required for the regularity to hold up to the boundary. The only thing we will need to show is the absence of non constant minimizing tangent maps, which we will prove thanks to an argument based on the maximum principle.

The rest of this subsection (and, incidentally, this article) is dedicated to the proof of Theorem 7.9 which is obtained by putting together Propositions 7.10, 7.11, 7.14 and 7.16. More precisely, the first step is to show the existence of one solution μ of the Dirichlet problem taking values in the family of elliptically contoured distributions for which the covariance matrices stay non singular inside Ω (Proposition 7.10). Then, using the explicit expression (7.5), it is fairly easy to show that (ii) and (iii) are satisfied (Proposition 7.11). The hardest part is the question of uniqueness. As explained in the introduction, we will first show that any solution µ of the Dirichlet problem with boundary values µ l must have v as tangent velocity field, where v is the tangent velocity field of μ. Then, as v will happen to be smooth enough (linear, hence Lipschitz w.r.t. variables in D), we will use the results about uniqueness of the (1-dimensional) continuity equation for smooth velocity field (Proposition 7.14). For the last point of the theorem, as Ā is a Dirichlet minimizing mapping valued in a compact subset of the Riemannian manifold pS `q pRq, gq (thanks to point (i)), we can apply the classical theory: see [31, Theorem IV] for the interior regularity and [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF] for the boundary regularity. The only point to show is the absence of non constant minimizing tangent maps, which a consequence of Proposition 7.16 proved below.

Let us begin by showing that for at least one solution of the Dirichlet problem the covariance matrices stay non singular inside Ω. As a tool to measure regularity of elliptically contoured distributions, we will use the Boltzmann entropy. We define H : PpDq Ñ r0, `8s by (7.7)

Hpµq :"

$ & % ż D µpxq lnpµpxqqdx if µ is absolutely continuous w.r.t. L D , ` 8 else. 
It is known that H is convex along generalized geodesics [4, Theorem 9.4.10] and it is regular according to Proposition 6.2. Moreover, an explicit computation leads to Hpρ A q " ´lnpdet Aq `HpρL D q (with the convention lnp0q " ´8). Also, using the fact that Gaussian measures are the ones which minimize H for a covariance matrix, we get that for any µ P PpDq, Proof. Notice, thanks to the explicit formula for H on P ec pR q q and as µ l is continuous, that sup BΩ pH μl q ă `8. Take µ P H 1 pΩ, Pp Dqq the solution of the Dirichlet problem with boundary values µ l given by Theorem 6.3 (with F " H). Set μ :" R˝µ. By the same argument as in Theorem 7.8, μ P H 1 pΩ, P ec pDqq is a solution of the Dirichlet problem with boundary values µ l . Using first the estimate (7.8) and then the maximum principle ( 6 Until the end of the subsection, μ P H 1 pΩ, P ec pDqq will denote the object defined in Proposition 7.10 and for a.e. ξ P Ω, one defines Āpξq " covp μpξqq 1{2 . Notice that (i) of Theorem 7.9 is proved. Now let us derive the equation satisfied by Ā.

Proposition 7.11. The mapping Ā P H 1 pΩ, pS `q pRq, gqq is a weakly harmonic map, more precisely a minimizer of B P H 1 pΩ, pS `q pRq, gqq Þ Ñ Proof. We need to prove that, for any B P H 1 pΩ, pS `q pRq, gqq with boundary values A l one has To prove it, if we take any B P H 1 pΩ, pS `q pRq, gqq we can build µ :" ρ B and we have, thanks to (7.5), the identity Dirpµq " A priori, µ is valued in PpR q q. If we denote by P D : R q Ñ D the Euclidean projection on D, then Dirp μq ď DirpP D #µq ď Dirpµq, where the first inequality comes from the optimality of μ (notice that P D #¨leaves the boundary values unchanged) and the second one from the fact that P D #¨is a contraction (Lemma 7.6).

To get the Euler-Lagrange equation it is actually easier if we take the covariance matrix and not its square root as the variable. In other words we define C :" Ā2 . As Ā is never singular, this change of variables is smooth. We have B α C " L ĀpB α Āq and in particular xB α Ā, g ĀpB α Āqy " xB α C, L ´1 C pB α Cqy.

If we take D : Ω Ñ S q pRq smooth and compactly supported on Ω and that we consider B :" C `tD as a competitor for small t, we reach the conclusion that Coming back to C " Ā2 and B α C " L ĀpB α Āq, as D is arbitrary we see that we get the weak formulation of (7.6).

As far as the regularity issues are concerned, notice that Ā is uniformly bounded from below as a symmetric matrix (this is (i) of Theorem 7.9) and also bounded from above as a symmetric matrix (as ρ Ā P PpDq and D is compact), hence the operators L Āpξq : S q pRq Ñ S q pRq are bounded with a bounded inverse uniformly in ξ P Ω. In other words, the metric tensor g Āpξq is equivalent to the canonical scalar product uniformly in ξ P Ω. In particular, the regularity μ P H 1 pΩ, PpDqq translates in Ā P H 1 pΩ, S q pRqq where S q pRq is endowed with its usual euclidean norm | ¨|.

Let us prove uniqueness. The first step is to identify the tangent velocity field to μ and a (at least formal) solution of the dual problem. Proposition 7.12. For any α P t1, 2, . . . , pu we define Bα :" L ĀL ´1 Ā2 pB α Āq P L 2 pΩ, S q pRqq and we set vα pξ, xq :" Bα pξqx P R q .

for ξ P Ω and x P D. Then v P L 2 μpΩ ˆD, R pq q is the tangent velocity field to μ.

Proof. Take ψ P C 1 c pΩ ˆD, R p q a test function. If we define ψ P H 1 pΩ, R p q by ψpξq :" ż By doing for a fixed ξ P Ω the change of variables y " Āpξqx, one can see that p μ, w μq satisfies the continuity equation where w : Ω ˆD Ñ R p is given by w α pξ, yq :" B α Āpξq Āpξq ´1y.

Notice that wpξ, ¨q is not a gradient because B α Āpξq and Āpξq ´1 do not necessarily commute. On the contrary, as the matrices Bα pξq for α P t1, 2, . . . , pu are symmetric, vpξ, ¨q is a gradient. Fix ξ P Ω and α P t1, 2, . . . , pu. We claim that the velocity field vα pξ, ¨q is the orthogonal projection in L 2 μpξq pD, R q q of w α pξ, ¨q on the space of gradients (actually, this is exactly how vα was chosen). Not to overburden the notations, we drop momentarily the dependence on ξ, i.e. Ā :" Āpξq, Bα :" Bα pξq and B α Ā :" B α Āpξq are considered as given matrices. Take f P C 1 pDq a test function defined on D and compute: ż D ∇f pxq ¨pw α pξ, xq ´v α pξ, xqq μpξ, dxq " ż D p∇f qp Āxq ¨`pB α Ā Ā´1 ´B α q Āx ˘ρpxqdx " ż D p∇ f qpxq ¨`Ā ´1pB α Ā Ā´1 ´B α q Āx ˘ρpxqdx, where f pxq :" f p Āxq. On the other hand, as the reader can check, Bα is the projection on the set of symmetric matrices of B α Ā Ā´1 where the scalar product between two matrices C and D is given by Trp Āt CD Āq. In particular, the matrix pB α Ā Ā´1 ´B α q Ā2 is skew-symmetric, thus the matrix Ā´1 pB α Ā Ā´1 ´B α q Ā is also skew-symmetric. As ρ is radial, it implies that the function then v " ∇ D ϕ. More precisely, for a.e. ξ P Ω, φpξ, ¨q (resp. vpξ, ¨q) is defined everywhere on D as a smooth function belonging to C 1 pD, R p q (resp. C 1 pD, R pq q). Moreover the Euler-Lagrange equation (7.6), which can be written (7.9)

x P D Þ Ñ `Ā ´1pB α Ā Ā´1 ´B α q
p ÿ α"1 B α Bα `p ÿ α"1
p Bα q 2 " 0, translates at the level of φ in

∇ Ω ¨φ `1 2 |∇ D φ| 2 " 0.
In fact, at least formally (because of the lack of smoothness of φ), the function φ is a solution of the dual problem. For φ to be an actual solution, we would need the Bα to be C 1 up to the boundary: even with the elliptic regularity proved below (i.e. point (iv) of Theorem 7.9), we would not reach such a strong result if we just assume that BΩ and A l are Lipschitz. We will use φ to show that the tangent velocity field of any other solution of the Dirichlet problem with boundary values µ l must coincide with v. About the smoothness of the objects involved, notice that for any α P t1, 2, . . . , pu one has Bα P L 2 pΩ, S q pRqq and, given (7.9), the function We claim that we can insert ϕ " φ even though φ is a priori not regular enough. In other words, given (7.2) and the fact that v " ∇ D φ, we claim that (7.10)

ij ΩˆD ˆ´1 2 |v| 2 `v ¨v˙d µ " ij ΩˆD 1 2 |v| 2 d μ.
Notice that the r.h.s. is (formally) equal to both BT µ l p φq and Dirp μq: it is not surprising as φ is a solution of the dual problem.

To prove such an equality we regularize φ in the following way. For each α P t1, 2, . . . , pu we apply to the matrix field Bα the standard truncation and convolution procedure (see [14, Theorem 3 of Section 4.2]) to produce a sequence p Bα n q nPN which belongs to C 1 pΩ, S q pRqq and which converges to Bα in L 2 pΩ, S q pRqq. Moreover, as derivatives commute with convolution, we can say that p Bα q 2 , and the limit takes place in L 1 pΩ, S q pRqq as we already know that the r.h.s. belongs to such a space. In particular, up to extraction the convergences hold a.e. on Ω. Then we set It remains to show that we can pass to the limit n Ñ `8. Given the convergence a.e. of the Bα n and of ř B α Bα n , we can assume that for a.e. ξ P Ω, the functions ∇ Ω ¨ϕn pξ, ¨q and ∇ D ϕ n pξ, ¨q converge to respectively ´1 2 |v| 2 pξ, ¨q and vpξ, ¨q in respectively CpDq and CpD, R pq q respectively (notice that we use the fact that D is bounded). Hence for a.e. ξ P Ω, ( Of course, the result still holds if we take pµ, vq " p μ, vq. Thus, passing in the limit in (7.11) we get (7.10). Until now we have not used the optimality of µ. We notice that the r.h.s. of (7.10) is nothing else than Dirp μq which coincides with Dirpµq " ť Proof. Take µ a solution of the Dirichlet problem with boundary conditions µ l and define ν " µ ´μ.

We extend ν on R p zΩ by 0: with such a choice ν P L 2 pR p , MpDqq is a (signed) measure-valued mapping defined on the whole space R p which vanishes outside a compact set. We also define v as a function R p ˆD Ñ R pq by extending it to 0 outside Ω ˆD. If ϕ P C 1 pR p ˆD, R p q is any smooth function then where we have used the fact that both pµ, vµq and p μ, v μq satisfy the continuity equation. In other words, pν, vνq satisfy the continuity equation on the whole space R p ˆD. We take an arbitrary direction in R p : we fix α " 1. As we have seen in the proof of Proposition 3.23, the (generalized) continuity equation implies that for a.e. ξ P R p´1 " pe α q K , the curve t P R Þ Ñ νppt, ξqq satisfies the (1-dimensional) continuity equation with a velocity field given by wpt, xq " vα ppt, ξq, xq. Notice that for a fixed t the velocity field wpt, ¨q is Lipschitz and bounded with Lipschitz constant and upper bound controlled by C½ pt,ξqPΩ | Bα ppt, ξqq| where C ă `8 depends only on D. Given that Bα P L 2 pΩq, for a.e. ξ P R p´1 one has that ż R ½ pt,ξqPΩ | Bα ppt, ξqq|dt ă `8.

Hence for a.e. ξ P R p´1 the assumptions of [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Proposition 8.1.7] are satisfied: the curve t P R Þ Ñ νppt, ξqq is solution of a continuity equation which has at most one solution. As the curve identically equal to 0 is a solution (recall that νppt, ξqq " 0 for |t| large enough), so must be νpp¨, ξqq. As this result holds for a.e. ξ P R p´1 , it implies that ν is identically zero, which is the desired result.

Eventually, to prove regularity, following the theory of Schoen and Uhlenbeck [START_REF] Schoen | A regularity theory for harmonic maps[END_REF][START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF], we only need to show that there is no minimizing tangent maps, i.e. no Dirichlet minimizing mapping which is 0homogeneous. We start with the following result.

where H Z pxq :" min z tF px, zq `Gpzq : z P Zu. Thanks to Lemma A.2, both H and H Z are measurable, thus the set on which they coincide is measurable, which concludes the proof.

Appendix B. H 1{2 determination of the square root

In this appendix we want to prove Lemma 5.4, which states that, with S 1 the unit circle of the complex plane C and B its unit disk, there is no function f P H 1{2 pS 1 , S 1 q such that f pξq 2 " ξ for a.e. ξ P S 1 (where the multiplication is understood as a complex multiplication). We take for granted that there is no continuous function f P CpS 1 , S 1 q such that f pξq 2 " ξ for all ξ P S 1 . Hence, it is enough to reason by contradiction and to prove that a function f P H 1{2 pS 1 , S 1 q such that f pξq 2 " ξ for a.e. ξ P S 1 admits a continuous representative.

We start with some easy lemma which states that H 1{2 pS 1 , Bq is stable by composition with Lipschitz function.

Lemma B.1. Let u : S 1 Ñ R a Lipschitz function and f P H 1{2 pS 1 , S 1 q. Then pu ˝f q P H 1{2 pS 1 , Rq.

Proof. It is well known (see [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Chapter 3]) that there exists f P H 1 pB, Bq whose trace on S 1 is f . Clearly, the function u ˝f stays in H 1 pB, Rq, hence its trace, which is nothing else than u ˝f , is in H 1{2 pS 1 , Rq.

Then, let us prove that an H 1{2 function cannot have a jump. Proposition B.2. Let f P H 1{2 pr0, 1s, Rq such that f pξq P t0, 1u for a.e. ξ P r0, 1s. Then there is a representative of f which is constant.

Proof. We reason by contraposition: we assume that f is not constant, which translates in 0 ă ş 1 0 f ă 1 and we want to show that f R H 1{2 pr0, 1s, Rq. Recall that it is sufficient to prove, given the definition of the H 1{2 norm [26, Chapter 3] With these two lemmas, we can easily arrive to our conclusion.

Proof of Lemma 5.4. Let f P H 1{2 pS 1 , S 1 q such that f pξq 2 " ξ for a.e. ξ P S 1 . We want to show that f is continuous. Take X an arc of circle of S 1 . If X is small enough, there are two continuous functions f 0 and f 1 (the complex square roots) defined on X such that for all ξ P X, z 2 " ξ if and only if z P tf 0 pξq, f 1 pξqu. Moreover, if X is small, the ranges of f 0 and f 1 are far apart, hence we can find a Lipschitz function u : B Ñ t0, 1u such that u ˝f0 " 0 and u ˝f1 " 1 on X. Thus, pu ˝f qpξq P t0, 1u for ξ P X. The previous lemmas allow us to conclude that the function is in H 1{2 pX, t0, 1uq, hence constant, which means that f is continuous on X. As X is arbitrary, f is continuous on S 1 , which is a contradiction.

D

  |vp¨, xq| 2 µp¨, dxq P L 2 pΩq,

  this identity being valid as soon as a : Y Ñ R is an integrable function [4, Section 5.2].

  is standard interior parabolic regularity. Point (ii) comes from L 8 ´L1 estimates for the Neumann Laplacian, see[START_REF] Arendt | Semigroups and evolution equations: functional calculus, regularity and kernel estimates[END_REF] Section 7]. Point (iii) just states that the heat flow is self-adjoint. Point (iv) comes from the convexity along generalized geodesics of the Boltzmann entropy and the fact that the heat flow is the gradient flow of the latter, see[4, Example 11.2.4 and Theorem 11.2.1].

Definition 3 . 5 .

 35 If pµ, Eq satisfies the continuity equation, we define its Dirichlet energy Dirpµ, Eq by Dirpµ, Eq :" sup b ¨dE : pa, bq P CpΩ ˆD, Kq , .

Theorem 3 . 14 .

 314 Fix Ω Ă Ω compactly embedded in Ω. Let µ P L 2 pΩ, PpDqq with Dirpµq ă `8. Then there exists a sequence µ n P L 2 p Ω, PpDqq with the following properties: (i) For any n P N, µ n pdξ, dxq " ρ n pξ, xqdξdx, where the density ρ n of µ n w.r.t. to L Ω b L D satisfies ρ n P C 8 p Ω, L 8 pDqq and ess inf ΩˆD ρ n ą 0. (ii) The sequence pµ n q nPN converges weakly to µ in L 2 p Ω, PpDqq. (iii) There holds lim nÑ`8

εÑ0

  Dir ε pµ n | Ωq " Dirpµ n | Ωq.

Proposition 3 . 29 .

 329 Let µ b P H 1 pΩ, PpDqq and C P R be fixed. Then the set tµ P H 1 pΩ, PpDqq : µ| BΩ " µ b | BΩ and Dirpµq ď Cu is closed for the weak topology on L 2 pΩ, PpDqq.

Theorem 4 . 3 .

 43 Let µ b P H 1 pΩ, PpDqq. Then there exists at least one solution of the Dirichlet problem with boundary values µ b .

Theorem 4 . 4 .Definition 4 . 5 .

 4445 Let µ l : BΩ Ñ PpDq a Lipschitz mapping. Then there exists µ : Ω Ñ PpDq Lipschitz such that µpξq " µ l pξq for every ξ P BΩ. For a continuous µ the boundary term BT µ depends only on the values of µ on BΩ (Theorem 3.27), hence the boundary term of the Lipschitz extension of µ l : BΩ Ñ PpDq does not depend on the extension. In other words, the following problem is well defined: Let µ l : BΩ Ñ PpDq a Lipschitz mapping. Then the Dirichlet problem with boundary values µ l is defined as the Dirichlet problem with boundary values µ b , where µ b is any Lipschitz extension of µ l on Ω. Now, let us prove the Lipschitz extension theorem. It relies on the following Lemma, which allows to treat the case where Ω is a ball.

Theorem 4 . 7 .#

 47 Let µ b P H 1 pΩ, PpDqq. Then one has sup ϕ BT µ b pϕq : ϕ P C 1 pΩ ˆD, R p q and ∇ Ω ¨ϕ `|∇ D ϕ| 2 2 ď 0 on Ω ˆD+ " min µ Dirpµq : µ P H 1 pΩ, PpDqq and µ| BΩ " µ b | BΩ ( .

µ

  Dirpµq : µ P H 1 pΩ, PpDqq and µ| BΩ " µ b | BΩ ( .

3 .F 8 żF

 38 Moreover, as Dir c is l.s.c. (for the L 2 pΩ, Dq topology), we can say that ż Dir c pf qQpdf q ď lim inf nÑ`Dir c pf qQ n pdf q " lim inf nÑ`8

  ż D ϕpxq μm,t pξ, dxq ´żD ϕpxq μm,t pη, dxq " ij ΩˆD ϕpxq pχ t pξ ´θq ´χt pη ´θqq µpθ, dxqdθ ď |ξ ´η| 1

2 eE

 2 pΩ e , PpDqq. More precisely, if µ P L 2 e pΩ e , PpDqq, Dir ε pµq :" C p tDirpµ, Eq : E P MpΩ e ˆD, R pq q and pµ, Eq satisfies the continuity equation on Ω e ˆDu .

F

  pµpξqqdξ : µ P L 2 e pΩ e , PpDqq * .

1 e

 1 pΩ, PpDqq such that Dirpνq ă Dirp μq. By the Γ-convergence of Dir ε to Dir and the positivity of F , one has Dirpνq ă Dirp μq ď lim inf εÑ0 ˆlim inf λÑ0 ˆDir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ˙˙.

  ε and lower semi-continuity of Dir, Dirpνq " Dirp μq ď lim inf λÑ0 ´lim inf εÑ0 pDir ε pµ ε,λ qq ¯, thus one can write that for some λ small enough, Dirpνq `λ ż Ωe F pνpξqqdξ ă lim inf εÑ0 ˆDir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ˙:

Proposition 6 . 13 .

 613 For a.e. ξ P Ω, F p μpξqq " lim λÑ0 ´lim εÑ0 pF pµ ε,λ pξqqq ¯. Proof. As the convergence of µ ε,λ to μ holds strongly in L 2 e pΩ, PpDqq, we can, up to extraction, assume that it holds a.e. In other words, for a.e. ξ P Ω, μpξq " lim λÑ0 ´lim εÑ0 pµ ε,λ pξqq īn PpDq. By lower semi-continuity of F on PpDq, the inequality F p μpξqq ď lim inf λÑ0 ´lim inf εÑ0 pF pµ ε,λ pξqqq holds for a.e. ξ P Ω. On the other hand, use (6.8) with ν " μ: up to extraction one has ż Ωe F p μpξqqdξ " lim λÑ0 ˆlim εÑ0 ˆżΩe F pµ ε,λ pξqqdξ ˙˙.

Proposition 6 . 14 .

 614 The function F ˝μ is subharmonic on Ω. Moreover, ess sup Ω pF ˝μq ď M.

:

  r0, 1s Ñ r0, 1s defined by F r´1s µ ptq :" inftx P r0, 1s : µpr0, xsq ě tu.

  .1), ess sup ξPΩ r´ln pdet pcovp μpξqqqqs " ess sup ξPΩ r´ln pdet pcovpµpξqqqqs ď ´2C `2 ess sup ξPΩ Hpµpξqq ď ´2C `2 sup ξPBΩ Hpµ l pξqq ă `8.

  Bpξq, g Bpξq pB α Bpξqqydξ. among all B which have boundary values A l . In particular, Ā satisfies the Euler-Lagrange equation (7.6).

  Bpξq, g Bpξq pB α Bpξqqydξ ě ż Āpξq, g Āpξq pB α Āpξqqydξ " Dirpρ Āq " Dirp μq.

  Bpξq, g Bpξq pB α Bpξqqydξ.

  α C, L ´1 C`tD pB α Cqy " 0.A simple computation leads toL ´1 C`tD pB α Cq " L ´1 C pB α Cq ´tL ´1 C " DpL ´1 C pB α Cqq `pL ´1 C pB α CqqD ı `opt 2 q.Using the properties of the Trace and the symmetry of L ´1 C , we conclude that the Euler-Lagrange equation readsp ÿ α"1 xB α D, L ´1 C pB α Cqy ´p ÿ α"1xD, pL ´1 C pB α Cqq 2 y " 0.

DΩˆD p ÿ α" 1 pBα

 1 ψpξ, xq μpξ, dxq " ż D ψpξ, Āpξqxqρpxqdx, then we see that ψ is compactly supported in Ω, in particular the integral of ∇ ¨ψ over Ω vanishes. It reads ij ΩˆD p∇ Ω ¨ψqpξ, Āpξqxqρpxqdx `ij Āpξqxq ¨p∇ D ψ α qpξ, Āpξqxqρpxqdx " 0.

2

 2 Āx ˘ρpxq is divergence-free. It allows us to conclude that ż D ∇f pxq ¨pw α pξ, xq ´v α pξ, xqq μpξ, dxq "ż D f pxq∇ D ¨"`Ā ´1pB α Ā Ā´1 ´B α q Āx ˘ρpxq ‰ dx " 0,hence the claim is proved as f is arbitrary. The claim implies that p μ, v μq also satisfies the continuity equation: for anyψ P C 1 c pΩ ˆD, R p q, ij ΩˆD ∇ Ω ¨ψd μ `ij ΩˆD ∇ D ψ ¨vd μ " ij ΩˆD ∇ Ω ¨ψd μ `ij ΩˆD ∇ D ψ ¨wd μ `ij ΩˆD ∇ D ψ ¨pv ´wqd μ " 0,as the last integral vanishes because of the claim. As vpξ, ¨q is a gradient (because the Bα are symmetric), Proposition 3.11 implies that v is the tangent velocity field to μ.Notice that if we define φ : Ω ˆD Ñ R p by, for any ξ P Ω, x P D and α P t1, 2, . . . , pu, φα pξ, xq :" 1 Bα pξqx ¨x;

Proposition 7 . 13 .

 713 Bαbelongs to L 1 pΩ, S q pRqq. Let µ a solution of the Dirichlet problem with boundary conditions µ l and v its tangent velocity field. Then, for a.e. ξ P Ω, one has vpξ, xq " vpξ, xq for µpξq-a.e. x.Proof. If ϕ P C 1 pΩ ˆD, R p q then, as µ and μ share the same boundary conditions, ij ΩˆD p∇ Ω ¨ϕ `∇D ϕ ¨vqdµ " BT µ l pϕq " ij ΩˆD p∇ Ω ¨ϕ `∇D ϕ ¨vqd μ.

  .for ξ P Ω and x P D. By construction ϕ n P C 1 pΩ ˆD, Rq so that (7.11)ij ΩˆD p∇ Ω ¨ϕn `∇D ϕ n ¨vqdµ " BT µ l pϕ n q " ij ΩˆD p∇ Ω ¨ϕn `∇D ϕ n ¨vqd μ.

ΩˆD 1 2 2 Proposition 7 . 14 .

 12714 |v| 2 dµ by optimality of µ. From there, an algebraic manipulation leads to ij ΩˆD 1 |v ´v| 2 dµ " 0, which easily implies the result: recall that for a.e. ξ P Ω, the velocity field v is continuous on D. Let µ a solution of the Dirichlet problem with boundary conditions µ l . Then µ " μ.

ijRp

  ˆD p∇ Ω ¨ϕ `∇D ϕ ¨vq dν "ij ΩˆD p∇ Ω ¨ϕ `∇D ϕ ¨vq dν " ij ΩˆD p∇ Ω ¨ϕ `∇D ϕ ¨vq dµ ´ij ΩˆD p∇ Ω ¨ϕ `∇D ϕ ¨vq d μ" BT µ l pϕq ´BT µ l pϕq " 0,

  " lim C p which depends on the dimension p of Ω, where Bpξ, εq is the ball of center ξ and radius ε. Thus, if ε ą 0 is small, a good approximation of the Dirichlet energy of f would be

				εÑ0	C p	ż Bpξ,εq	|f pηq ´f pξq| 2 ε p`2	dη,
	for some constant Dirpf q "	ż Ω	1 2	|∇f pξq| 2 dξ » C p	ΩˆΩ ij	|f pξq ´f pηq| 2 2ε p`2	½ |ξ´η|ďε dξdη.

Notice that the right hand side (r.h.s.) involves only metric quantities, thus its definition can be extended if f : Ω Ñ Y where pY, dq is an arbitrary metric space by replacing |f pξq ´f pηq| 2 by dpf pξq, f pηqq 2 : this is what is done and extensively studied in [22, Section 1] (curvature assumptions on Y are not required for the definition of the Dirichlet energy, but are used to derive existence, uniqueness and properties of the minimizers). The counterpart in our case is to define the ε-Dirichlet energy of a mapping µ : Ω Ñ PpDq by Dir ε pµq :" C p ij ΩˆΩ W 2 2 pµpξq, µpηqq 2ε p`2

Absolutely continuous curves in the Wasserstein space. A central tool when one is studying

  the infinitesimal properties of the Wasserstein space is the concept of (2-)absolutely continuous curves valued in the Wasserstein space. Let I be a segment of R. A curve µ : I Ñ PpDq is said to be absolutely continuous if there exists g P L 2 pIq such that for any s ă t elements of I,

				6.5. The definition by
	duality will be enough: if µ and ν are probability measures on D,
	"ż			*
	W 1 pµ, νq :" max ϕ Moreover, as D is compact, there exists a constant C such that W 2 ď C D ϕpxqµpdxq ´żD ϕpxqνpdxq : ϕ P CpDq and ϕ is 1-Lipschitz ? W 1 .	.
	2.3. (2.2)	W 2 pµptq, µpsqq ď	ż t s	gprqdr.
	Let us recall the following result, which holds in fact for absolutely continuous curves valued in arbitrary
	metric spaces, see [4, Theorem 1.1.2].			
	Theorem 2.1. If µ : I Ñ PpDq is an absolutely continuous curve, then the quantity | 9 µ|ptq :" lim hÑ0 W 2 pµpt `hq, µptqq |h| exists and is finite for a.e. t P I. Moreover, | 9 µ| ď g a.e. on I for all g such that (2.2) holds. In the Wasserstein space, absolutely continuous curves are related to solutions of the continuity equa-
	tion: see [4, Chapter 8].			

Theorem 2.2. Let µ :

  I Ñ PpDq an absolutely continuous curve. If pv t q tPI is a measurable family such that ş I }v t } L 2 µptq pD,R q q dt ă `8 and the equation B t µ `∇D ¨pvµq " 0 is satisfied in a weak sense on I ˆD with no-flux boundary conditions on D, then one has

		d		
		ż		
	(2.3)	| 9 µ|ptq ď	D	|v t | 2 dµptq
	for a.e. t P I.			

  . If µ P PpDq and t ą 0, then Φ D t µ P PpDq is defined as the measure upt, xqdx with a density u : p0, `8q ˆD Ñ R which is the solution of the Cauchy Problem For any µ P PpDq and any t ą 0, the measure Φ D t µ has a density w.r.t. L D which is bounded from below by a strictly positive constant and belongs to C 1 p Dq. (ii) For any t ą 0, the density of Φ D t µ w.r.t. L D is bounded in L 8 pDq by a constant that depends on t, but not on µ P PpDq.

	$ ' & ' %	B s ups, xq " ∆ups, xq if ps, xq P p0, `8q ˆD, ∇ups, xq ¨nD pxq " 0 if ps, xq P p0, `8q ˆBD, lim sÑ0 rups, xqdxs " µ in PpDq,
	where n D is the outward normal to D.
	Proposition 2.4. The heat flow Φ D satisfies the following properties:
	(i)	

  1 µpξq pDq to some function ψ such that d ż

	nÑ`8	W 2 pµpξq, µpξ `εn eqq ε n	.

D

|∇ D ψpxq| 2 µpξ, dxq " }∇ D ψ} L 2 µpξq pDq ď lim inf Thus, to conclude, it is enough to show that ∇ D ψ " ´vpξ, ¨q ¨η.

As Id ´εn ∇ D ψ n transports µpξq onto µpξ `εn ηq, for any f P C 1 pDq, one has

  Theorem 3.20 holds if Ω is the unit cube of R p .Proof. Implication Dirpµq ă `8 ñ µ P H 1 pΩ, PpDqq. Assume first that µ P L 2 pΩ, PpDqq is such that Dirpµq ă `8 and take v P L 2 µ pΩ ˆD, R pq q the velocity field tangent to µ. Fix α P t1, 2, . . . , pu. Take two compactly supported test functions ψ P C 1 c ps0, 1rˆDq and a P C 1 c pΩ α q.

	Ωα f Proof. One can look at [14, Section 4.9]. ˆż 1 0 | 9
	Proposition 3.23.

Proposition 3.22. Assume Ω is the unit cube of R p and let f P L 2 pΩq be a given function. The function f belongs to H 1 pΩq if and only if for any α P t1, 2, . . . , pu, for a.e. ξ P Ω α , the function f ξ is in H 1 pr0, 1sq and ż ξ ptq| 2 dt ˙dξ ă `8. Moreover, for a.e. ξ P Ω α and a.e. t P r0, 1s, pB α f qpξ `te α q " 9 f ξ ptq.

  Now, do this for a.e. ξ P Ω α and then for any α P t1, 2, . . . , pu. Define the velocity field v : Ω ˆD Ñ R pq component by component, the α-th component at the point ξ `te α (with ξ P Ω α ) being defined as w α ξ ptq. To justify that v is measurable, notice that w α ξ is the solution of an optimization problem[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] Equation (8.3.11)] which depends in a measurable way of ξ, thus one can apply Proposition A.1. By the bound (3.10), it is clear that

	d	t P r0, 1s,
	ż	
	(3.10)	

D

|w α ξ pt, xq| 2 µpξ `te α , dxq ď | 9 µ ξ ptq| " |g µ ξ ptq| ď g µ pξ `te α q.

  P r0, 1s, one has, by definition of g µ ξ and Proposition 3.21,

	d
	ż
	d
	ż
	(3.11)
	Squaring, summing on α and taking the square root, we see that for a.e. ξ P Ω d
	ż

To conclude, we need to show a control of v by g µ . If α P t1, 2, . . . , pu, for a.e. ξ P Ω α and a.e. t D |w α ξ pt, xq| 2 µpξ `te α , dxq " g µ ξ ptq " sup nPN |B α rµs νn pξ `te α q| , which can be rewritten as: for a.e. ξ P Ω, for all α P t1, 2, . . . , pu, D |vpξ, xq ¨eα | 2 µpξ, dxq " sup nPN |∇rµs νn pξqe α | ď g µ pξq. D |vpξ, xq| 2 µpξ, dxq ď ? pg µ pξq.

Proposition 3.25. Let

  ε ą 0 be fixed. Then the functional Dir ε : L 2 pΩ, PpDqq Ñ R is continuous w.r.t. strong convergence and l.s.c. w.r.t. the weak convergence.Proof. The continuity w.r.t. strong convergence is simple: recall that PpDq has a finite diameter, thus Lebesgue dominated convergence theorem is enough. The lower semi-continuity relies on the fact that W2 2 is a supremum of continuous linear functionals, thus is l.s.c. and convex. More precisely, fix µ P L 2 pΩ, PpDqq and a sequence pµ n q nPN which converges weakly to µ in L 2 pΩ, PpDqq. If ξ and η are points of Ω, take pϕpξ, η, ¨q, ψpξ, η, ¨qq a pair of Kantorovitch potential between µpξq and µpηq. In other words, ϕpξ, η, ¨q and ψpξ, η, ¨q are continuous functions (in fact uniformly Lipschitz), such that ϕpξ, η, xq `ψpξ, η, yq ď |x ´y| 2 {2 for any x, y P D, and such that Now, apply Lusin's theorem to the mapping ϕ : Ω ˆΩ Ñ CpDq (for Lusin's theorem to other spaces than R, see for instance[START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations, pdes, and modeling[END_REF] Box 1.6]). For any δ ą 0, we can find a compact X Ă Ω ˆΩ such that L Ω b L Ω prΩ ˆΩszXq ď δ and ϕ : X Ñ CpDq is continuous on X. Now notice, as |ϕpξ, η, xq ´ϕpξ, η, yq| ď C|x ´y| uniformly in ξ and η, that ϕ : X ˆD Ñ R is a continuous function for the product topology on X ˆD Ă Ω ˆΩ ˆD. This function can be extended in a function φ P CpΩ ˆΩ ˆDq. To summarize, there exists a continuous function φ, which coincides with ϕ on X ˆD (the important point is that there is coincidence on all D). Thus, denoting by C a uniform bound of ϕ and φ, one has that for every ν P L 2 pΩ, PpDqq,

	(3.13) ψpξ, η, yqµ (3.14) Dir ε pµ n q ě ij ˆżD C p ε p`2 ΩˆΩ ½ |ξ´η|ďε ϕpξ, η, xqµ n pξ, dxq `żD ˇˇˇˇˇij ΩˆΩ ½ |ξ´η|ďε ˆżD ϕpξ, η, xqνpξ, dxq ˙dξdη ´ij ΩˆΩ ½ |ξ´η|ďε ˆżD φpξ, η, xqνpξ, dxq ˙dξdη	ˇˇˇˇˇď	Cδ.
	On the other hand, using Fubini's theorem one sees that	
	ij		
	Of course there is exactly the same statement with ψ. With the help of this information, combining
	(3.13) and (3.12), we reach the conclusion that	
	lim inf nÑ`8	Dir ε pµ n q	
	(3.12)	W 2 2 pµpξq, µpηqq 2 ě lim inf nÑ`8 C p ε p`2 ij ΩˆΩ ½ |ξ´η|ďε " ż D ˆżD ϕpξ, η, xqµpξ, dxq ϕpξ, η, xqµ n pξ, dxq `żD " C p ε p`2 ij ½ |ξ´η|ďε ˆżD ϕpξ, η, xqµpξ, dxq `żD ψpξ, η, yqµpη, dyq ˙dξdη ψpξ, η, yqµpη, dyq. `żD ψpξ, η, yqµ n pη, dyq ˙dξdη
		ΩˆΩ	

One can do that in such a way that ϕ : Ω ˆΩ Ñ CpDq and ψ : Ω ˆΩ Ñ CpDq are measurable. Indeed, for fixed ξ and η, pϕpξ, η, ¨q, ψpξ, η, ¨qq P CpDq ˆCpDq is a maximizer a functional which is continuous on CpDq ˆCpDq and which depends on ξ and η in a measurable way: hence we can apply Proposition A.1. Then, using the double convexification trick (see

[37, 

Section 2.1]) which is a measurable operation, we can assume that pϕ, ψq are uniformly (w.r.t. ξ and η) Lipschitz and bounded as elements of CpDq. By the Kantorovitch duality, for every n P N, n pη, dyq ˙dξdη. ΩˆΩ ½ |ξ´η|ďε ˆżD φpξ, η, xqµ n pξ, dxq ˙dξdη " ij ΩˆD ˜żBpξ,εqXΩ φpξ, η, xqdη ¸µn pdξ, dxq. As φ is continuous and bounded, it is not difficult to see that pξ, xq P Ω ˆD Þ Ñ ż Bpξ,εqXΩ φpξ, η, xqdη P R is continuous. Hence, using the weak convergence of pµ n q nPN , lim nÑ`8 ij ΩˆΩ ½ |ξ´η|ďε ˆżD φpξ, η, xqµ n pξ, dxq ˙dξdη " ij ΩˆΩ ½ |ξ´η|ďε ˆżD φpξ, η, xqµpξ, dxq ˙dξdη. Using equation (3.14) with both µ n and µ as ν, and using moreover the arbitrariness of δ, we conclude that we can replace φ by ϕ in the equation above: lim nÑ`8 ij ΩˆΩ ½ |ξ´η|ďε ˆżD ϕpξ, η, xqµ n pξ, dxq ˙dξdη " ij ΩˆΩ ½ |ξ´η|ďε ˆżD ϕpξ, η, xqµpξ, dxq ˙dξdη. " Dir ε pµq.

  3.5. Boundary values.It is well known that it is possible to make sense of the values of a H 1 realvalued function on hypersurfaces, in particular to give a meaning to the values of such a function on the boundary of a domain. As we want to define the Dirichlet problem, which consists in minimizing the Dirichlet energy with fixed values on the boundary BΩ, we need to give a meaning to the boundary values of elements of H 1 pΩ, PpDqq. Korevaar and Schoen have already developed a trace theory in a fairly general context [22, Section 1.12]. However, in our specific situation and in view of proving the dual formulation of the Dirichlet problem, we will define the boundary values by showing how one can extend the continuity equation for test functions ϕ P C 1 pΩ ˆD, R p q which are no longer compactly supported in Ω. Even if we do not prove it in this article, our definition of trace coincides with the one of[START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF]: to be convinced one can look at Proposition 6.6 and compare it to[START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF] Theorem 1.12.3]. Recall that n Ω denotes the outward normal to BΩ.

Theorem 3.27. Let µ P H 1 pΩ, PpDqq.

  pξq ´f pηq| " ˇˇˇż When ξ Ñ η, the first term obviously goes to 0, and the second one too by definition of the weak convergence (by assumption µpξq Ñ µpηq in the weak sense). Thus f coincides with f , which gives the announced result.

	D	ϕpξ, xqµpξ, dxq	´żD	ϕpη, xqµpξ, dx ˇˇď
	ż D	|ϕpξ, xq ´ϕpη, xq|µpξ, dxq	`ˇˇˇż D	ϕpη, xqµpξ, dxq	´żD	ϕpη, xqµpη, dxq ˇˇď
	}∇ Ω ϕ} 8 |ξ ´η|	`ˇˇˇż	D	ϕpη, xqµpξ, dxq	´żD	ϕpη, xqµpη, dxq ˇˇˇ.

If µ P H 1 pΩ, PpDqq, using the disintegration theorem and testing against well chosen functions, one can show that there exists μ : BΩ Ñ PpDq defined σ-a.e. such that BT µ " n Ω μ b σ. The mapping μ can be seen as a definition of the values of µ on BΩ.

Now we can define what it means to share the same boundary values and prove that the set of µ with fixed boundary values is closed. Definition 3.28. Let µ and ν two elements of H 1 pΩ, PpDqq. We say that µ| BΩ " ν| BΩ if BT µ " BT ν .

  ´BT µ b pϕq if pa, bq " p∇ Ω ¨ϕ, ∇ D ϕq for some ϕ P C 1 pΩ ˆD, R p q `8 else.Notice that thanks to(3.16), G is well defined and does not depend on the choice of ϕ such that pa, bq " p∇ Ω ¨ϕ, ∇ D ϕq. Notice also that at the point p´1, 0q P X, one has that F is finite and continuous and that G is finite (take ϕpξ, xq :" p´ξ 1 , 0, 0, . . . , 0q, where ξ 1 is the first component of ξ). As moreover F and G are convex, one can apply Fenchel-Rockafellar duality which means ´min pµ,EqPX ‹ rF ‹ pµ, Eq `G‹ p´µ, ´Eqs " inf

	pa, bq "	$ & % #	0 `8 else, if apξ, xq	`|bpξ, xq| 2 2	ď 0 for every pξ, xq P Ω	ˆD
	Gpa, bq "					
							X	pF `Gq
			" ´sup	
				$		
				&	ij	
			a,b	% ΩˆD	adµ	`ij ΩˆD

ϕ

#

BT µ b pϕq :

ϕ P C 1 pΩ ˆD, R p q and ∇ Ω ¨ϕ `|∇ D ϕ| 2 2 ď 0 + ,

where the last inequality is just a rewriting of the definition of F and G. Let us compute F ‹ pµ, Eq. By definition, F ‹ pµ, Eq " sup b ¨dE : pa, bq P CpΩ ˆD, Kq , .

  Aε pξq, where C does not depend on ε. On the other hand, b δ is a smooth scalar function, which vanishes if x 2 " ξ, which is larger than 1 if |x 2 ´ξ| ě δ and whose derivative is bounded by Cδ ´2. As a test function for the continuity equation, we take ϕpξ, xq " a ε pξqb δ pξ, xq. With this choice, for every ξ P S 1 , one has

	ż B	ϕpξ, xqµ s pξ, dxq "	1 2	ÿ x 2 "ξ	ϕpξ, xq " 0.
	Thus, BT µs pϕq " 0 and the continuity equation tested against ϕ reads
	ˇˇˇˇij				
	χ 1 ε p|ξ|qb δ pξ, xqµpdξ, dxq				
	BˆB				
	`ij BˆB	ra		

. Define A ε " tξ P B : 1 ´ε ď |ξ| ď 1u the annulus outside which a ε vanishes. A simple computation gives ˇˇ∇ ¨aε pξq ´χ1 ε p|ξ|q ˇˇď C½ ε pξq ¨∇Ω b δ pξ, xq `pa ε pξq b ∇ D b δ pξ, xqq ¨vpξ, xqsµpdξ, dxq ˇˇˇˇď Cε.

  We first estimate d L 2 p μm,t , µ εm | Ωq. Using Jensen's inequality and the definition of Dir t , d L 2 p μm,t , µ εm | Ωq "

					ż
	3)	μm,t pξq :"
			ż	Ω W 2 2	˜żBp0,tq	χ t pηqµ εm pξ ´ηqdη, µpξq ¸dξ
		ď	ż	Ω ż Bp0,tq	χ t pηqW 2 2 pµ εm pξ ´ηq, µpξqq dηdξ
		ď	2t p`2 }χ t } 8

Ω

χ t pξ ´ηqµ εm pηqdη for any ξ P Ω.

  is the sum of a functional continuous w.r.t. ν and measurable w.r.t. ξ, and the functional λF which is l.s.c. w.r.t. ν but which does not depend on ξ. The fact that F is only l.s.c. prevents us from using directly Proposition A.1, though by some ad hoc measurable selection result which is stated and proved in the appendix (Proposition A.3), one can still choose νpξq a minimizer in such a way that it is measurable in ξ. In other words, we construct μ P L 2 e pΩ e , PpDqq such that μ " µ ε,λ on Ω e zY and

									for
	C p ε p`2	ż Bpξ,εq	W 2 2 pµ ε,λ pξq, µ ε,λ pηqqdη `λF pµ ε,λ pξqq ě c	`˜C p ε p`2	ż	Bpξ,εq	W 2 2 p μpξq, µ ε,λ pηqqdη `λF p μpξqq
	all ξ P Y . Now we evaluate:
	˜Dir ε p μq	`λ ż	Ωe	F p μpξqqdξ	¸´ˆD ir ε pµ ε,λ q	Ωe `λ ż	F pµ ε,λ pξqqdξ	"
		C p 2ε p`2	ij ΩeˆΩe	" W 2 2 pµ ε,λ pξq, µ ε,λ pηqq ´W 2 2 p μpξq, μpηqq ‰ ½ |ξ´η|ďε dξdη	`λ ż	Y	rF p μpξqq ´F pµ ε,λ pξqqsdξ
									6.6), and we want to dot it in a measurable way.
	Notice that				ν Þ Ñ	C p ε p`2	ż	Bpξ,εq	W 2 2 pν, µ ε,λ pηqqdη `λF pνq

  λ pηqq ´W 2 2 p μpξq, µ ε,λ pηqq

				‰ ½ |ξ´η|ďε dξdη
		ij	
	ď Cδ 2 `Cp 2ε p`2	Y ˆΩe	" W 2 2 pµ ε,λ pξq, µ ε,λ pηqq ´W 2 2 p μpξq, µ ε,λ pηqq ‰ ½ |ξ´η|ďε dξdη
	" Cδ 2 `Cp 2ε p`2	ż Y ˜żBpξ,εq	" W 2 2 pµ ε,λ pξq, µ ε,λ pηqq ´W 2 2 p μpξq, µ ε,λ pηqq ‰ dη ¸dξ,

  By the very definition of gradient flows, F pS F t rµ ε,λ pξqsq ď F pµ ε,λ pξqq. Thus, rearranging the terms and dividing by 2t ą 0, Bpξ, εq, one has that F pµ ε,λ pηqq ă `8. Hence, using Theorem 2.3, we see that for a.e. η P Bpξ, εq, the quantity W2 2 pS F t rµ ε,λ pξqs, µ ε,λ pηqq ´W 2 2 pµ ε,λ pξq, µ ε,λ pηqq 2t has a lim sup bounded by F pµ ε,λ pηqq ´F pµ ε,λ pξqq and is uniformly bounded in t by F pµ ε,λ pηqq (by Theorem 2.3 and positivity of F ), the latter being integrable on Bpξ, εq. Hence, by Fatou's lemma, we can pass to the limit t Ñ 0 and conclude that ż

					3. By Proposition
	6.8,			
	C p ε p`2	ż	Bpξ,εq	W 2 2 pµ ε,λ pξq, µ ε,λ pηqqdη `λF pµ ε,λ pξqq
					ď	C p ε p`2	ż Bpξ,εq	W 2 2 pS F t rµ ε,λ pξqs, µ ε,λ pηqqdη `λF pS F t rµ ε,λ pξqsq.
		ż Bpξ,εq	W 2 2 pS F t rµ ε,λ pξqs, µ ε,λ pηqq ´W 2 2 pµ ε,λ pξq, µ ε,λ pηqq 2t	dη ě 0.
	For a.e. η P Bpξ,εq	rF pµ ε,λ pηqq ´F pµ ε,λ pξqqsdη ě 0.

  Proposition 6.11. Up to extraction, there exists μ P H 1 e pΩ e , PpDqq such that

				ˆlim	˙,
		μ :" lim εÑ0	λÑ0	µ ε,λ
	where the limits are taken weakly in L 2 e pΩ e , PpDqq. Moreover, μ is a minimizer of Dir in the space H 1 e pΩ e , PpDqq and ż
	(6.7)	Ωe	F p μpξqqdξ ă `8.

  λ pξqqdξ, which is a contradiction with the optimality of µ ε,λ .where the limits are taken strongly in L2 e pΩ e , PpDqq. Moreover, μ is a minimizer of Dir in the space H1 e pΩ e , PpDqq and for any other minimizer ν of Dir in H 1 e pΩ e , PpDqq,

	Proposition 6.12. Up to extraction, there exists μ P H 1 e pΩ e , PpDqq such that λÑ0 εÑ0 µ ε,λ μ :" lim ´lim ¯,
	(6.8)	ż	Ωe	F p μpξqqdξ ď lim inf λÑ0	ˆlim inf εÑ0 ˆżΩe	F pµ ε,λ pξqqdξ ˙˙ď	ż Ωe	F pνpξqqdξ.
	Proof. Using μ as a competitor in the approximate problem, given the monotonicity of Dir ε , one has that Dir ε pµ ε,λ q `λ ż Ωe F pµ ε,λ pξqqdξ ď Dirp μq `λ ż

Ωe

F p μpξqqdξ ď C,

  Introduce the Hilbert space H :" L 2 pr0, 1sq with its usual norm (denoted by | ¨|H ) and the subspace H i of increasing functions: if f P H, then we say that f P H i if f ptq P r0, 1s for a.e. t P r0, 1s and if for any 0 ď t 1 ă t 2 ď t 3 ă t 4 ď 1, one has Notice that H i is clearly a convex and closed subset of H. Any f P H i has a unique increasing and right continuous representative. Indeed, take the representative given by the Lebesgue differentiation theorem: except on a subset N which is negligible, it is increasing. Then, on N and on any point of discontinuity, choose the right limit. Uniqueness is easy as any increasing and right continuous representative is continuous except at a countable number of points. This discussion can be summarized in the following proposition.

		1 t 2 ´t1	ż t 2 t 1	f ptqdt ď	1 t 4 ´t3	ż t 4 t 3	f ptqdt
	Proposition 7.1. If we define Ψpµq :" F µ r´1s		
		Proposition 2.17])			
	(7.1)	W 2 2 pµ, νq "	ż 1 0	|F r´1s µ	ptq ´F r´1s ν	ptq| 2 dt.

  where the constant C is the entropy of a standard normal distribution. Take D Ă D compatible with ρ. Let µ l : BΩ Ñ P ec p Dq a Lipschitz mapping such that det pcovpµ l pξqqq ą 0 for all ξ P BΩ. Then there exists μ P H 1 pΩ, PpDqq a solution of the Dirichlet problem with boundary values µ l such that μpξq P P ec pDq for a.e. ξ P Ω and such that

	Proposition 7.10. ess inf	
	)	Hpµq ě	´1 2	ln pdet pcovpµqqq `C,

ξPΩ rdet pcovp μpξqqqs ą 0.

D

  p∇ Ω ¨ϕn pξ, xq `∇D ϕ n pξ, xq ¨vpξ, xqq µpξ, dxq " pξ, xq `vpξ, xq ¨vpξ, xq ˙µpξ, dxq. It remains to integrate this limit over Ω. The natural upper bound for the l.h.s. of (7.12) is obtained by Cauchy-Schwarz and the boundedness of D: for any n P N, ˇˇˇˇż D p∇ Ω ¨ϕn pξ, xq `∇D ϕ n pξ, xq ¨vpξ, xqqµpξ, dxqwhere C depends only on D. The r.h.s. is not bounded uniformly w.r.t. n P N but on the other hand it converges in L 1 pΩq which is enough to say that the l.h.s. is uniformly integrable. Hence, up to extraction we can integrate (7.12) w.r.t. Ω:

	ij		ij	ˆ´1		
	lim nÑ`8	p∇ Ω ¨ϕn `∇D ϕ n ¨vqdµ "	2	|v| 2 `v	¨v˙d	µ.
	ΩˆD		ΩˆD		
	7.12)					
	ż		ż	ˆ´1		
	lim nÑ`8		D |v| 2 ˇˇˇď 2	
		C	¨p ÿ			
			α"1			

| Bα n pξq| 2 `dż D |vpξ, xq| 2 µpξ, dxq g f f e p ÿ α"1 | Bα n pξq| 2 ',

  ´1{2 {2, 1 ´t´1{2 {2s and has a means which belongs to rc, 1 ´cs, where 0 ă c ă 1 is independent of t (provided it is large enough) and is related to 0 ă ş 1 0 f ă 1. Hence, there exists ξ t such thatż ξt`t ´1{2 {2Heuristically, ξ t is close to a point where f "jumps". In particular, it implies that L r0,1s b L r0,1s ˜#pη, θq P

	This estimate leads to								
	ij r0,1sˆr0,1s	|f pηq ´f pθq| |θ ´η| 2 dηdθ "	ż `8 0	"	L r0,1s b L r0,1s ˆ"pη, θq P r0, 1s 2 :	|f pηq ´f pθq| |θ ´η| 2	ě t	*˙	dt " `8.
		, that							
			ij r0,1sˆr0,1s	|f pηq ´f pθq| |θ ´η| 2 dηdθ " `8.
	Take t ą 0 large enough. The function	ξ Þ Ñ	1 ? t	ż ξ`t ´1{2 {2 ξ´t ´1{2 {2	f pηqdη
	is continuous on rt ξt´t ´1{2 {2	f pηqdη P	"	c ?	t	, 1 ´c ?	t		.
			" ξ t	´1 2 ?	t	, ξ t	`1 2 ?	t	 2	: f pηq " 1 and f pθq " 0 +¸ě	c 2 t	.
	As a consequence,								
											|f pηq ´f pθq| |θ ´η| 2	ě t	*˙ě	c 2 t	.

L r0,1s b L r0,1s ˆ"pη, θq P r0, 1s 2 :
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If µ P L 2 pΩ, PpDqq, we use the formula above on Dir ε pµq:

Then, sending ε to 0 and using [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]Theorem 8.3.1] to handle the part involving the Dirichlet energy of the means, one sees that Dirpµq " Dirpµ 0 q `1 2

The term involving mpµq is easy to minimize (because mpµq is a vector-valued function, it boils down to take the harmonic extension) and it can be done independently from the term involving Dirpµ 0 q. In other words, it is not restrictive to work only with centered measures.

Let us go back to the family of elliptically contoured distributions. As we have assumed that D is compact, we cannot work with non compactly supported measures, in particular with Gaussian measures. For the rest of the subsection, we fix ρ P L 1 pR q q a positive function compactly supported such that ρL D is a probability measure with zero mean and the identity matrix as a covariance matrix. Recall that the covariance matrix covpµq of a centered measure µ P PpR q q is defined as: for any i, j P t1, 2, . . . , qu,

For technical reasons, we also assume that ρ is radial and that the Boltzmann entropy of ρL D (see (7.7) below) is finite. Let us denote by S q pRq the set of symmetric q ˆq matrices and S q pRq Ă S q pRq the set of symmetric and semi-definite positive q ˆq matrices. The space S q pRq is equiped with its canonical scalar product x¨, ¨y defined by xA, By " TrpABq. The unique symmetric square root of a matrix A P S q pRq is denoted by A 1{2 . Instead of parametrizing measures by their covariance matrix we will do it by the square root of their covariance matrix, i.e. by their standard deviation: it is more natural for homogeneity reasons and the formulas are slightly simpler. Definition 7.3. For any A P S q pRq we denote by ρ A P PpR q q the image measure of ρL D by the map

The set of all ρ A for A P S q pRq is denoted by P ec pR q q and is called a family of elliptically contoured distributions (with reference measure ρL D ).

Thanks to the normalization of ρ, the measure ρ A has zero mean and covariance matrix A 2 . Notice that if A is invertible then

We would recover the Gaussian case by taking ρpxq " p2πq ´q{2 expp´|x| 2 {2q, but this function is not compactly supported.

The crucial tool to establish that a harmonic extension of a mapping valued in a family of elliptically contoured distributions stays in the same family is the existence of a retraction on the set P ec pR q q. Let us call P 2 pR q q the set of probability measures on R q with finite second moment. Definition 7.4. Let R : P 2 pR q q Ñ P ec pR q q the application defined by Rpµq :" ρ A , where A :" covpµq 1{2 is the symmetric square root of the covariance matrix of µ. Proposition 7.5. The application R : P 2 pR q q Ñ P ec pDq leaves P ec pR q q unchanged and is a contraction (i.e. is 1-Lipschitz) provided that P 2 pR q q and P ec pR q q are endowed with the quadratic Wasserstein distance W 2 .

Proof. The first part is obvious by the way we normalize ρ. The second part is a reformulation of Theorem 2.1 and Theorem 2.4 of [START_REF] Gelbrich | On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces[END_REF].

Let us prove state and prove here an easy technical lemma which will be crucial in the sequel. Lemma 7.6. Let µ l : BΩ Ñ PpDq a Lipschitz function and µ P H 1 pΩ, PpDqq such that µ| BΩ " µ l . Let T : PpDq Ñ PpDq a 1-Lipschitz mapping. Then T ˝µ P H 1 pΩ, PpDqq with pT ˝µq| BΩ " pT ˝µl q and DirpT ˝µq ď Dirpµq.

Proof. As T is a contraction and from the definition of Dir ε it is obvious that Dir ε pT ˝µq ď Dir ε pµq holds for any ε ą 0. Then it is sufficient to send ε to 0. To get the assertion involving the boundary conditions, one can use for instance Proposition 6.6.

As we work in the compactly supported case, we add some assumption that D is large enough in order for the boundary of D to be invisible. More precisely, the following lemma will help us to handle the finiteness of D. Proof. It relies on a simple observation. Let P D : D Ñ D be the Euclidean projection on D. One has that ν Þ Ñ P D #ν is a 1-Lipschitz function from pPpDq, W 2 q to pPp Dq, W 2 q which leaves the boundary values µ l unchanged. Thus we can apply Lemma 7.6 to see that P D maps any competitor from H 1 pΩ, PpDqq into a competitor in H 1 pΩ, Pp Dqq.

We will say that D Ă D is compatible with ρ if it is a compact convex subset of D and for any µ P Pp Dq, one has Rpµq P PpDq. It holds if D is large enough compared to D and the diameter of the support of ρ. In the sequel, we will use the notations P ec p Dq :" Pp Dq X P ec pR q q and P ec pDq :" PpDq X P ec pR q q Theorem 7.8. Take D Ă D compatible with ρ. Let µ l : BΩ Ñ P ec p Dq a Lipschitz mapping valued in the family of elliptically contoured distributions. Then there exists µ P H 1 pΩ, PpDqq a solution of the Dirichlet problem with boundary values µ l such that µpξq P P ec pDq for a.e. ξ P Ω.

The assumption that D is compatible with D can be translated in the fact that the supports of the µ l pξq for ξ P BΩ are small compared to D.

Proof. Let μ be a solution of the Dirichlet problem with boundary values µ l , it exists thanks to Theorem 4.4 and Theorem 4.3. According to Lemma 7.7, we can choose μ such that μ P Pp Dq a.e. As R is a contraction which leaves the boundary values unchanged, it is clear thanks to Lemma 7.6 that µ :" R ˝μ is a solution of the Dirichlet problem with boundary values µ l . By construction, µ is valued in P ec pR q q and also in PpDq as D is compatible with ρ.

We believe that, conducting a careful analysis, one can prove that all solutions of the Dirichlet problem with boundary values µ l are valued in P ec pDq. Now, we want to go further and give a more explicit description of the solution valued in the family of elliptically contoured distributions. To this extent, we rely on the fact that the manifold S q pRq, when endowed with the distance induced by W 2 through the application A Þ Ñ ρ A , has a structure of Riemannian manifold, at least when restricted to the set of non singular matrix. The computation of Wasserstein distance between gaussians distributions has been discovered independently many times (see for instance [START_REF] Dowson | The Fréchet distance between multivariate normal distributions[END_REF][START_REF] Gelbrich | On a formula for the L2 Wasserstein metric between measures on Euclidean and Hilbert spaces[END_REF]), while the resulting geometry was first investigated by Takatsu [START_REF] Takatsu | Wasserstein geometry of Gaussian measures[END_REF]. The restriction of the Wasserstein distance to the set of gaussian measures is sometimes called the Bures metric. Proposition 7.15. Let A P H 1 pΩ, S `q pRqq be a weak solution of (7.6), bounded from above and uniformly away from singular matrices, and C P S q pRq a semi-definite positive matrix. Then the (realvalued) mapping

Actually, this is nothing else than the Ishihara property (Theorem 6.3) for the functional µ Þ Ñ ş D ξ pCξqµpdξq, though in this simpler case we can show that it holds for any solution, as we can check it by a straightforward computation.

Proof. As in Proposition 7.12, for α P t1, 2, . . . , pu, we set B α :" L A L ´1 A 2 pB α Aq. Thanks to the assumptions on A, we know that B α P L 2 pΩ, S q pRqq: this regularity is enough to justify the following computations. Indeed, with this notation at hand, for any α P t1, 2, . . . , pu

Hence, taking the derivative again and summing over α,

Now, using (7.6) which reads ř α B α B α " ´řα pB α q 2 , one reaches the conclusion that ∆f " 2

The matrix B α A 2 B α belongs to S q pRq because A does, and so does C by assumption. As the trace of the product of two elements of S q pRq is non negative, we deduce ∆f ě 0 which was the claim.

With this result, it is easy to see that there exists no non constant 0-homogeneous tangent maps. Notice, by point (i) of Theorem 7.9, and as D is bounded, that any minimizing tangent map, if it were to exist, would be bounded from above and uniformly away from singular matrices.

Proposition 7.16. Assume Ω " B the unit ball of dimension p and A P H 1 pΩ, S `q pRqq is a weak solution of (7.6), bounded from above and uniformly away from singular matrices, which is 0-homogeneous, meaning that Apλξq " Apξq for any λ ą 0. Then A is constant.

Proof. According to Proposition 7.15, for any C P S q pRq, the function

is subharmonic and 0-homogeneous, hence it is constant by the maximum principle. But clearly, the scalar product between A and any given symmetric positive matrix is constant if and only if A is itself constant.

Appendix A. Measurable selection of the arg min

We want to show a result which states that if F : X ˆY Ñ R is a function which is measurable w.r.t. X, then one can find a selection m : X Ñ Y such that F px, mpxqq " min Y F px, ¨q for every x P X, i.e. such that mpxq P arg min Y F px, ¨q. Recall the following result which can be found in [START_REF] Aliprantis | Infinite dimensional analysis: a hitchhiker's guide[END_REF]Theorem 18.19].

Proposition A.1. Let X be a measured space and Y a polish space. Let F : X ˆY Ñ R a function such that F px, ¨q : Y Ñ R is continuous for every x P X, and F p¨, yq : X Ñ R is measurable for every y P Y . Assume that for every x P X, the function F px, ¨q has a minimizer over Y .

Then there exists m : X Ñ Y a measurable function such that for all x P X, F px, mpxqq " min yPY F px, yq.

However, in particular for Proposition 6.8, we need a case where F px, ¨q is only l.s.c.. Thus, we prove some ad hoc result relying on the particular structure of our problem which allows to treat lower semi-continuity.

Lemma A.2. Let X be a measured space and Y a compact metrizable space. Let F : X ˆY Ñ R a function such that F px, ¨q : Y Ñ R is continuous for every x P X, and F p¨, yq : X Ñ R is measurable for every y P Y ; and let G : Y Ñ R a l.s.c. function.

Then the function H : X Ñ R defined by Hpxq :" min y tF px, yq `Gpyq : y P Y u is measurable.

Proof. Notice that Y is separable as it is compact and metrizable. For any rational number a, the exists a sequence dense in ty P Y : Gpyq ď au. Hence, we can construct a sequence py n q nPN such that for any rational number a there is a subsequence of py n q nPN which is included and dense in ty P Y : Gpyq ď au. Set Hpxq :" inf n F px, y n q `Gpy n q which is measurable and larger than H. Let us prove that it is equal to H. Indeed, if x P X, by standard arguments of calculus of variations, there exists ȳ such that Hpxq " F px, ȳq `Gpȳq. For any a ą Gpȳq rational, take a subsequence py n k q kPN which belongs to ty P Y : Gpyq ď au and which converges to ȳ. By continuity of F , one has Hpxq ď lim inf kÑ`8 pF px, y n k q `Gpy n k qq ď F px, ȳq `a.

As a can be chosen arbitrary close to Gpȳq, we have that Hpxq ď F px, ȳq `Gpȳq " Hpxq.

Proposition A.3. Let X be a measured space and Y a compact metrizable space. Let F : X ˆY Ñ R a function such that F px, ¨q : Y Ñ R is continuous for every x P X, and F p¨, yq : X Ñ R is measurable for every y P Y ; and let G : Y Ñ R a l.s.c. function. Then there exists m : X Ñ Y a measurable function such that for any x P X, F px, mpxqq `Gpmpxqq " min y tF px, yq `Gpyq : y P Y u.

Proof. As in the previous lemma, define Hpxq :" min y tF px, yq `Gpyq : y P Y u, it is a measurable function valued in R. Let Γ be the mapping going from X and valued in the compact subsets of Y defined by Γpxq " arg min x pF px, ¨q `Gp¨qq which means Γpxq :" ty P Y : F px, yq `Gpyq " Hpxqu.

Notice that Γpxq is never empty thanks to standard arguments of calculus of variations. To prove the existence of a measurable selection of Γ, we rely on [2, Theorem 18.13]: it is sufficient to show that Γ is measurable, which means that tx P X : Γpxq X Z ‰ Hu is a measurable set of X for any closed set Z Ă Y . But one can be convinced that, for a fixed Z Ă Y closed, Γpxq X Z ‰ H ô Hpxq " H Z pxq,