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HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE

HUGO LAVENANT

ABSTRACT. We propose a definition of the Dirichlet energy (which is roughly speaking the integral
of the square of the gradient) for mappings p : Q@ — (P(D),W>) defined over a subset 2 of R? and
valued in the space P(D) of probability measures on a compact convex subset D of R? endowed with
the quadratic Wasserstein distance. Our definition relies on a straightforward generalization of the
Benamou-Brenier formula (already introduced by Brenier) but is also equivalent to the definition of
Koorevaar, Schoen and Jost as limit of approximate Dirichlet energies, and to the definition of Reshet-
nyak of Sobolev spaces valued in metric spaces.

We study harmonic mappings, i.e. minimizers of the Dirichlet energy provided that the values on the
boundary 012 are fixed. The notion of constant-speed geodesics in the Wasserstein space is recovered by
taking for Q a segment of R. As the Wasserstein space (P (D), W>) is positively curved in the sense of
Alexandrov we cannot apply the theory of Koorevaar, Schoen and Jost and we use instead arguments
based on optimal transport. We manage to get existence of harmonic mappings provided that the
boundary values are Lipschitz on 02, uniqueness is an open question.

If Q is a segment of R, it is known that a curve valued in the Wasserstein space P(D) can be seen
as a superposition of curves valued in D. We show that it is no longer the case in higher dimensions: a
generic mapping 2 — P (D) cannot be represented as the superposition of mappings 2 — D.

We are able to show a Ishihara-type property: the composition F o p of a function F : P(D) - R
convex along generalized geodesics and a harmonic mapping p : 2 — P(D) is a subharmonic real-
valued function.

We also study the special case where we restrict ourselves to a given family of elliptically contoured
distributions (a finite-dimensional and geodesically convex submanifold of (P(D), W2) which general-
izes the case of Gaussian measures) and show that it boils down to harmonic mappings valued in the
Riemannian manifold of symmetric matrices endowed with the distance coming from optimal transport.
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1. INTRODUCTION

1.1. Harmonic mappings. If / : ) — R is a real-valued function defined on a subset 2 of R?, one
says that f is harmonic if

(1.1) Af =0,

where A = >?_ 0,, denotes the Laplacian operator. Although this equation can be traced back to
physics (for instance it corresponds to the equation satisfied by the electric potential in the absence
of charge, or the one satisfied by the temperature in some homogeneous and isotropic medium when
the permanent regime is reached), it has revealed to have its own mathematical interest [14]. In
particular it is associated to a concept of equilibrium, as for an harmonic function f, the value of
/ at a point £ € Q is always equal to the mean of the values of f on a ball centered at £. A whole
line of research has been devoted to define harmonic mappings f : X — Y where X and Y are
spaces without a structure as strong as the Euclidean one. If X and Y are Riemannian manifolds,
one can define an analogue of (1.1) which involves the metric tensors of both X and Y (see for
instance [11] or, for a modern presentation, [17, 14]). The standard hypothesis to get existence
results and nice properties of harmonic mappings is that X has a positive curvature and Y has a
negative curvature. In the 90s, Koorevaar and Schoen [19] on one side and Jost [16] on the other
side, presented independently a more general setting and showed that one can define harmonic
mappings f :  — Y provided that Q) is a compact Riemannian manifold and Y is a metric space
with negative curvature in the sense of Alexandrov [19, Section 2.1].

The most robust point of view for the definition of harmonic mappings valued in metric spaces
is related to the Dirichlet problem. Indeed, if we go back to the case where ¥ = R, a function
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f : Q — R is harmonic if and only if it is a minimizer of the Dirichlet energy

Dir(g) = fﬂ V() de

among all functions g : 2 — R having the same values as f on 02 the boundary of 2. The main
advantage of this formulation is that it involves only first order derivatives, and most of the con-
cepts involving first order derivatives can be defined on metric spaces even without any vectorial
structure [3]. Koorevaar, Schoen and Jost proved that for every separable metric space Y, one can
define the analogue of the Dirichlet energy of any mapping f : 2 — Y. Then under the assumption
that Y has a negative curvature in the sense of Alexandrov, they proved existence and uniqueness
of a minimizer of the Dirichlet energy (provided that the values at the boundary 0<) are fixed), in-
terior and boundary regularity of the minimizer and lots of other properties similar to harmonic
mappings between manifolds. Most of the proofs mimic the ones in the Euclidean case and rely
only on the curvature properties of the target space Y. To quote Koorevaar and Schoen: "We find
the generality, elegance, and simplicity of the proofs presented here to be an indication that we have
found the proper framework for their expression" [19, p. 614].

In this article, our goal is to define and to study harmonic mappings defined over a compact
domain 2 of R? and valued in the space of probability measures endowed with the distance coming
from optimal transport, the so-called quadratic Wasserstein space [31, 4, 27]. If D is a convex
compact domain of RY, and if i, v are two probability measures on D (the set of probability measures
on D is denoted by P(D)) then the (quadratic) Wasserstein distance W5(u, ) between the two is
defined as

Wa(y,v) = inf f & — yl2dn(z,y),
™ DxD

where the infimum is taken over all transport plans 7 € P(D x D) whose marginals are ; and v.
We will define the Dirichlet energy for mappings p : Q@ — (P(D), Ws) and study its minimizers
under the constraint that the values at the boundary 0 are fixed. It is known [4, Section 7.3]
that (P(D),Ws) is a positively curved space in the sense of Alexandrov, hence the whole theory
of Koorevaar, Schoen and Jost does not apply: we have to leave the world of "generality, elegance
and simplicity". Though we manage to develop a fairly satisfying theory of Dirichlet energy and
harmonic mappings valued in the Wasserstein space, it is ad hoc: it intensively relies on specific
properties of (P(D), W>) and is hardly generalizable to other positively curved spaces.

1.2. Related works. This work can be seen as an extension of an article written by Brenier [9]
almost 15 years ago. Recently, few articles [28, 29, 32, 21] have been published on related topics
even though none of them seems aware of Brenier’s work.

In Section 3 of [9], Brenier proposed a definition of what he called generalized harmonic functions
which is the same thing as our harmonic mappings valued in the Wasserstein space. He defined
the Dirichlet energy for such mappings; proved the existence of harmonic mappings in some special
cases and gave an explicit solution in the very special case where all measures on 02 are Dirac
masses; indicated the formulation of the dual problem; and formulated some conjectures. In the
present article, we will rely on the same definition of Dirichlet energy than in Brenier’s article,
but we push the analysis much further: we provide a rigorous functional analysis framework; link
the Dirichlet energy with already known notions of analysis in metric spaces (in particular with
the definition of Koorevaar, Schoen and Jost; prove the existence of harmonic mappings in a more
general context; and answer to Brenier’s conjectures.

In [28], the authors study soft maps (which are nothing more than maps 2 — P(D) except that
Q and D are surfaces, i.e. Riemannian manifolds of dimension 2) and define a Dirichlet energy in
the same way as Koorevaar, Schoen and Jost. These maps are seen as relaxations of "classical"
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maps ) — D, and they focus on numerical computation and visualization of theses soft maps, see
also [29] for applications to supervised learning. On the other hand, they do not analyze in detail
the theoretical properties of the Dirichlet energy and harmonic mappings, which in contrast is the
main topic of the present article. In [21], the author provides some theoretical analysis of soft maps
by focusing on the cases where the boundary measures on 052 are either Dirac masses or Gaussian
measures.

Finally, in [32] the authors also study mappings valued in the space of probability measures, but
are rather interested in the bounded variation norm (the integral of the norm of the gradient) than
in the Dirichlet energy. Their provide applications to the denoising of measure-valued images.

Apart from these articles, let us underline the interest of our work by relating it to other already
known concepts:

e It is well known that harmonic mappings defined over an interval of R and valued in a geo-
desic space are precisely the constant-speed geodesics, and it is the case with our definition.
Thus our work can be seen as extending the definition of geodesics in the Wasserstein space,
the latter being an object which is now well understood.

e As we said above, our definition of Dirichlet energy coincides with the one of Koorevaar,
Schoen and Jost. In particular, our work shows that their definition can be applied to pos-
itively curved spaces and still get some non trivial result, even though we rely on the very
special structure of the Wasserstein space.

e To study the regularity of minimal surfaces, Almgren proposed the notion of Q-valued func-
tions (see [5] or [10] for a clear and self-contained reference), which can be seen (up to
renormalization) as mappings defined on 2 < R? and valued in the subset A (D) (where
@ > 11is an integer) of the Wasserstein space (P(D), W>) defined as

Q
Ag(D) := {% Zém D (x1,29,...,2Q) € DQ}.
i=1

In other words, Ag(D) is the set of probability measures which are combinations of at most
@ Dirac masses with weights which are multiples of 1/Q, and is endowed with the Wasser-
stein distance W5. To put it shortly, a Q-function is a function which in every point takes
Q unordered different values (counted with multiplicity). There exists a beautiful existence
and regularity theory for harmonic Q-functions. As (-, Aq(D) is dense in P(D), it would
be tempting to see the Dirichlet problem for mappings valued in the Wasserstein space
P(D) as the limit as ) — +0 of the Dirichlet problem for )-functions. However, it is not
so obvious that this limit really holds, and most of the results in the theory of Q-functions
are proved by induction on @ through clever decompositions and combinatorial arguments,
hence they depend heavily on Q and not much can be passed to the limit Q) — +o0. No-
tice that the space Ag(D) is also positively curved in the sense of Alexandrov (the example
in [4, Section 7.3] lives in A3(D)), hence the theory of Q-functions is a theory of harmonic
mappings valued in a positively curved space. However, it is known [10, Theorem 2.1] that
Ag(D) is in a bilipschitz bijection with a subset of R" for some large N: with Q-functions
we stay in the finite-dimensional world. On the contrary, in the present article, the target
space (P(D), W5) will be both positively curved and genuinely infinite-dimensional.

1.3. Main definitions and results. Let us go into the details and summarize the content of this
article as well as the key insights. In this discussion we will stay informal, with sometimes sloppy
or non rigorous statements.
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In Section 2, we give our notations and collect some known facts about the Wasserstein space,
which can be found in standard textbooks. In particular, we take Q2 and D two compact domains of
respectively R? and R? and assume that D is convex.

Section 3 is devoted to the definition and properties of the Dirichlet energy of a mapping 1 : Q —
P (D).

The idea is to start from curves valued in the Wasserstein space and the so-called Benamou-
Brenier formula [7]. If I is a segment of R and p : I — P(D) is an absolutely continuous curve, then
its Dirichlet energy, which is nothing else than the integral of the square of its metric derivative [4,
Section 1.1] is equal to

Dir(p) = inf{f <f %|V(t,:ﬂ)|2u(t,daj)> dt : v:IxD—>R? and oy + V- (uv) = 0} ’
I D

which means that one minimizes the integral over time of the kinetic energy among all velocity
fields v such that the continuity equation o, + V - (uv) = 0 is satisfied. What Benamou and
Brenier understood is that the correct variable is the momentum E = vu. Indeed, the continuity
equation d;pu + V - E = 0 becomes a linear constraint and

SVt o) Pu(tde) ) dt = |
I D ; IxD |Elf

is a convex function of the pair (i, F). In particular, to find the constant-speed geodesic between p
and v € P(D), assuming that I = [0, 1], one minimizes the convex Dirichlet energy over the pairs
(u, F) with linear constraints given by the continuity equation, that p(0) = p and that p(1) = v

As noticed in [9, Section 3], this formulation can be directly extended to the case where the
starting space is no longer of dimension 1: if (2 is a subset of RP, one can define a (generalized)
continuity equation for the pair p: Q — P(D) and E : Q x D — RP? by

(1.2) Vo +Vp-E=0,

where V(, stands for the gradient w.r.t. variables in Q2 and V- stands for the divergence w.r.t.
variables in D. More precisely if (E*")<a<p.1<i<q denote the components of F, and if the derivatives
w.r.t. Q (resp. D) are denoted by (dn)1<a<p (resp. (0;)i1<i<q) then the the continuity equation reads:
for any a € {1,2,...,p},

q
dapt + Y 0;E* = 0.
i=1
The Dirichlet energy of the pair (i, F) is defined as

f ‘E|2 f Z Z ‘E2a|2
QxD 2lJ’ QXDQ 1i=1 ’

and Dir(u), the Dirichlet energy of u, is the minimal Dirichlet energy of the pairs (i, £) among all
E such that the continuity equation is satisfied (Definition 3.7). It is a straightforward copy of the
classical proofs of optimal transport to show that there exists a unique optimal momentum F (which
we call the tangent momentum) which is written £ = vu for some velocity field v : Q x D — RP9,
and that Dir is convex and lower semi-continuous (l.s.c.).

We will prove that for p : Q@ — P(D), one has Dir(u) < +o0 if and only if for any v : P(D) - R
which is 1-Lipschitz, one has that u o u belongs to H'(Q2) with |V(u o u)| < g, where g € L?(Q) is
independent of u. Moreover, the minimal g will be shown to be equal to

(€) = \/L V(€ 2) (e, da)
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for a.e. £ € ), where E = v is the tangent momentum (Theorem 3.17). This precisley shows that
the space {p : Q — P(D) : Dir(u) < +o0} coincides with the set H'(Q2,P(D)), where the latter
is defined in the sense of Reshetnyak [25], and that the gradient of p in the sense of Reshetnyak
(the minimal g above) is related to the tangent v. For instance, it implies that Lipschitz mappings
p:Q — P(D) (i.e. such that Wy(u(§), u(n)) < C|€ —n| for any &, n € Q) have a finite Dirichlet energy.

We will also prove that our Dirichlet energy coincides with the one of Koorevaar and Schoen, as
well as Jost. The idea of theses authors goes as follows: if f : 0 — R is smooth, then for any £ € RP,

o) = FEOP,,

€p+2 ’

IVf(©)]? = 1im C,
=0 " UBge)
for some constant C,, which depends on the dimension p of (2, where B(¢,¢) is the ball of center &
and radius . Thus, if ¢ > 0 is small, a good approximation of the Dirichlet energy of f would be

_ 2
pir(f) - [ givs@pae~c, [ TEZLI | acay

Notice that the right hand side (r.h.s.) involves only metric quantities, thus its definition can be
extended if f : O — Y where (Y,d) is an arbitrary metric space by replacing |f(¢) — f(n)|> by
d(f(€), f(n))?: this is what is done and extensively studied in [19, Section 1] (curvature assump-
tions on Y are not required for the definition of the Dirichlet energy, but are used to derive exis-
tence, uniqueness and properties of the minimizers). The counterpart in our case is to define the
e-Dirichlet energy of a mapping p : Q — P(D) by

W3 (u(§),
5 (l;iplzu(n)) Lie_.dédn.

Dir.(p) := C,
QxQ
We are able show that Dir. converges to Dir as ¢ — 0: it holds pointwisely but also in the sense of
I'-convergence (Theorem 3.24). For both the equivalence with the definition of Koorevaar, Schoen
and Jost, or with the one of Reshetnyak, the difficulty is not to guess them (they are fairly simple
at the formal level) but to conduct careful approximation arguments.

To conclude the section, we will show how one can define values on 0S) for mappings p : Q@ — P(D)
with finite Dirichlet energy. There already exists a trace theory in [19], however in view of the dual
formulation for the Dirichlet problem, we prefer to define trace values by extending the continuity
equation up to the boundary of Q. Indeed, multiplying (1.2) by a test function ¢ € C'(2 x D, RP)
valued in RP, we get the following weak formulation:

LXD Va - edp + pr Vop-dB = | (JD o(E,7) - nQ(g)MQ,dm)) o (de),

where ng, is the outward normal to 02 and o the surface measure. We will show that, if Dir(u) <
+00, then the r.h.s. can always be defined as a finite vector-valued measure acting on ¢ called BT,
(Theorem 3.25). Two mappings will have the same values on the boundary 092 if, by definition, they
have the same boundary term.

In Section 4 we define the Dirichlet problem and establish its dual formulation. This is fairly
classic in optimal transport theory, our proofs do not bring any new ideas.

To define the Dirichlet problem, we assume that a mapping p;, : Q@ — P(D) with finite Dirichlet
energy is given and we study

min{Dir(p) : @ = pp on 0N}.

Thanks to the Benamou-Brenier formulation, existence of a solution is a straightforward applica-
tion of the direct method of calculus of variations (Theorem 4.3). As we discuss it in the core of
the article, we do not know if uniqueness holds. Only in some particular case where the boundary
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values belong to a family of elliptically contoured distributions we are able to prove uniqueness (see
below in the introduction).

In the formulation of the Dirichlet problem, we define the boundary conditions through a map-
ping u;, defined on the whole 2. A natural question arises: if y;, : 0Q — P(D) is given, is it possible
to extend it on ) in such a way that Dir(u,) < +00? We will show that the answer to this question
is positive if u; is Lipschitz on 052, indeed in this case one can extend it as a Lipschitz mapping on
Q. The question of the existence of a Lipschitz extension for mappings f : 7 — Y, where Z ¢ X
and X,Y are metric spaces has been intensively studied, see for instance [20, 24] and references
therein. The general philosophy is that lower bounds on the curvature are required for the starting
space X, whereas upper bounds on the curvature are required for the target space Y. In our case,
there are no upper bounds for the curvature of the target space P(D), hence we cannot apply clas-
sical results. However, we use the fact that we want to extend Lipschitz mappings defined not on
an arbitrary closed subset of €2, but on the boundary 092 which has some regularity. By some ad hoc
construction, we are able to treat the case where () is a ball, but we cannot control the Lipschitz
constant of the extension on 2 by the Lipschitz constant of the mapping on 0. Nevertheless, we
can conclude for smooth domains, as they can be cut in a finite number of pieces, each piece being
in a bilipschitz bijection with a ball (Theorem 4.4).

Let us establish here the dual formulation via a formal inf — sup exchange, it was already done
in [9]. Indeed, given the definition of Dir and the weak formulation of the continuity equation,

min{Dir(p) : @ = pp on 0N}

. 1
inf f SvPu+  sup <BTub(<p) — f Va - pdp — f Ve - VM)
mv | Joxp 2 0eC (Qx D,RP) QxD QxD

. 1
= sup [BT%(@) —i—mff <—|V\2 —Vpy-v—Vq 'cp> ,u} )
peC1(Qx D,RP) mv Joxp \ 2

Optimizing in v, we have that v = Vpp, and then the infimum in u is translated into the constraint
Vo -+ %|V pel? < 0. Hence, we have (formally, and it is proved rigorously in the core of the article,
see Theorem 4.7) the following identity:

IV el|?
2

sup {BT“b(go) : peCHQ x D,RP) and Vgq- ¢ + < 0} = min{Dir(p) : p = pp on 0N}
We do not have an existence result for solutions ¢ of the dual problem. Notice that ¢ is a vector-
valued function, but there is only a scalar constraint on it: the dual problem looks harder than in
the case where (2 is a segment of R. Formally, as it is done in [9], one can get optimality conditions
out of the dual formulation. Indeed, we have that v = V¢ and, from the optimization in p, that
Va-p+ %|VD90|2 = 0 p-a.e. If we assume that p is strictly positive a.e., we end up with the following
system for v (the first equation is just a rewriting of the fact that v is a gradient, the second one is
obtained by differentiating Vg - ¢ + 5|Vpy|? = 0 w.r.t. D):

0ivoI = o;v™ fora e {1,2,...,p}andi,j € {1,2,...,q},
P P g

Dloave+ > Y vov =0 forie{l1,2,...,q}.

a=1 Ol=1j:1

However, we will not push the analysis further and try to derive a rigorous version of theses opti-
mality conditions, it might be the topic of an other study.

In Section 5, we answer to a a problem formulated by Brenier [9, Problem 3.5]. The question is
the following: if i : Q — P(D), does there exists a probability @ over functions f : Q2 — D such that
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w is represented by f, i.e.
| atomte.an = [arenaan

for all a € C(D) continuous and ¢ € 2; and such that the Dirichlet energy is the mean of the Dirichlet
energy of the f:

Dir(u) = | ( [ %IVf(é)Pd&) 0(df)?

If Q is a segment of R the answer is positive as shown in [4, Section 8.2] (it is known as the
probabilistic representation or the superposition principle). However, as soon as () is more than
2-dimensional (in fact it already fails if Q is a circle), the answer becomes negative (Corollary 5.7).
We will provide a counterexample and explain the obstruction.

The main consequence is the following: there is no Lagrangian formulation for mappings u :
2 — P(D). There can be no static formulation of the Dirichlet problem analogue to transport plans
or multimarginal formulation. One is forced to work only with the Eulerian formulation, namely
the Benamou-Brenier formula. It explains why it is substantially more difficult to study mappings
@ Q — P(D) as soon as the dimension of 2 is larger than 2, as most of the difficult results of
optimal transport are proved thanks to the Lagrangian point of view.

In Section 6, we prove a Ishihara type property (see below) for harmonic mappings valued in the
Wasserstein space, which in particular allows us to give a positive answer to [9, Conjecture 3.3].
This can be considered as the main result of this article, and many properties proved before this
section are there to prepare this proof.

If f : Q@ —» Ris areal-valued harmonic function, then (Fof) : @ — R is a subharmonic function for
every F : D — R convex, which means that A(F o f) > 0. It can be checked by a direct computation
using the chain rule. If we take f : X — Y, where X and Y are two Riemannian manifolds, then
the result still holds (provided that harmonicity, subharmonicity and convexity are properly defined
through the Riemannian structures) and it is even a characterization of harmonic mappings: this
was first remark by Ishihara [15] (hence the denomination "Ishihara type property"), one can find a
statement and a proof in [17, Corollary 8.2.4]. Extensions of this result when the target is a metric
space with negative curvature are available, see for instance [30, Section 7].

In the Wassertein space, mappings which are convex w.r.t. the metric structure, which means
convex along geodesics, are well understood (see for instance [4, Chapter 9] or [27, Chapter 7]).
Actually, we will need something a little stronger, which is convexity along generalized geodesics [4,
Section 9.2]. In our case the Ishihara property reads: if /' : P(D) — R is convex along generalized
geodesics and if pu : Q@ — P(D) is a solution of the Dirichlet problem, then (Fopu) : @ — R is
subharmonic (Theorem 6.3).

The proof of geodesic convexity usually relies on the Lagrangian formulation, which, as we said
above, is not available in our case. To overcome this difficulty, we use the approximate Dirichlet
energies Dir. as a substitute for Dir. Indeed, as explained by Jost [16], if @ is a minimizer of Dir,
(with for instance fixed values around the boundary 0?), then for a.e. £ € 2, p.(£) is a minimizer of

v f W2, e (n)dn,
B(&e)

in other words p.(§) is a barycenter of the u.(n), for n € B(&, ¢) (for barycenters in the Wasserstein
space, see [1] for the finite case and [8, 18] for the infinite case). Notice that if f :  — R is real-
valued and harmonic, then for any ¢ > 0 f(&) is the barycenter of f(n) for n € B(&,¢), while in the
metric case this property only holds asymptotically as ¢ — 0. For barycenters in the Wasserstein
space, there exists a generalized Jensen inequality: it was already proved in the finite case by
Agueh and Carlier [1, Proposition 7.6] under the assumption that F' is convex along generalized
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geodesics, and in a more general case (in particular with an infinite numbers of measures defined
on a compact manifold, whereas Agueh and Carlier worked in the Euclidan space) by Kim and
Pass [18, Section 7], but with rather strong regularity assumptions on the measures. We reprove
this Jensen inequality in a case adapted to our context by letting the barycenter p.(¢) follow the
gradient of the functional F' (for gradients flows in the Wasserstein space see [4]) and use the
result as a competitor: through arguments first advanced in [22] in a very different context under
the name of flow interchange, one can show (estimating the derivative of the Wasserstein distance
along the flow of F' with the so-called (EVI) inequality) that for a.e. £ € Q

(1.3) f [F(p1e(n)) — F(pe(€))]dn > 0.
B(&,e)

Then, as Dir. I'-converges to Dir, one knows that u. converges to u a solution of the Dirichlet
problem. Passing in the limit (1.3), one concludes that (F o p) is subharmonic in the sense of
distributions.

Let us make a few comments. The main drawback of the proof, as we proceed by approxima-
tion and that uniqueness in the Dirichlet problem is not known, is that we are only able to show
subharmonicity of F' o u for one solution of the Dirichlet problem (which moreover depends on F),
and not for all. To overcome this limitation, the best thing to do would be to prove uniqueness in
the Dirichlet problem. Let us also discuss the regularity that we need on F'. Either we require F
to be continuous (which is very restrictive: it excludes the internal energies); or, if F is only lower
semi-continuous, we need I’ to be bounded on bounded subsets of L (D) n P(D) (which is not very
restrictive), but we also need the weak lower semi-continuity of

M L F(p(§))dg.

More precisely, a mapping p :  — P(D) can be seen as an element of P(2 x D) (by "fubinization")
and we require lower semi-continuity of pu — {,(F o u) w.r.t. the weak convergence on P(Q2 x D).
This weak lower semi-continuity holds heuristically if F' is convex for the usual (and not geodesic)
convexity on P(D). Indeed, even if the Dirichlet energy has a nice behavior w.r.t. geodesic convexity,
the approximate Dirichlet energies Dir. behave well w.r.t. usual convexity. At the end of the day,
the Ishihara property works for potential energies (for a convex, L' and lower semi-continuous
potential), for internal energies (which have a super linear growth and satisfy McCann’s conditions)
and for the interaction energies (but only for a convex continuous interaction potential). Indeed, for
a generic lower semi-continuous potential, the interaction energy W is itself lower semi-continuous
on (P(D),Ws), but p — §,(W op) is not. Finally, notice that we do not have the converse statement:
we do not know if the fact that F o u is subharmonic for any F' convex along generalized geodesics is
enough to prove that p is harmonic. To prove such a result, one would need a better understanding
of the optimality conditions of the Dirichlet problem.

Finally, we conclude in Section 7 with two examples.

The first one is the case where the set D, on which the target space P(D) is modeled, is a segment
of R. In this case, the Wasserstein space (P(D), W3) is in an isometric bijection with a convex subset
of the Hilbert space L%([0,1]). Hence, the Dirichlet problem reduces to the study of the Dirichlet
problem for mappings valued in a Hilbert space, which is fairly simple.

The second one is the case where we restrict our attention to a family of elliptically contoured
distributions. This terminology comes from [13] and denotes a generalization of the family of Gauss-
ian measures. In statistics this type of family is sometimes called a location-scatter family. More
precisely, we take p € L'(RY) a positive and compactly supported function such that the measure
p(z)dx has a unit mass, zero mean, and the identity matrix as covariance matrix. The family of
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elliptically contoured distributions built on p is nothing else than the sets of measures obtained
as image measures from p(z)dz by symmetric positive linear transformations. For instance, if p is
the indicator function of a ball, the family of elliptically contoured distributions built on p consists
in probability measures uniformly distributed on centered ellipsoids (in general the level sets of
the density are ellipsoids, hence the terminology). The Gaussian case would be obtained by taking
for p(z)dz a centered standard Gaussian, but this probability measure is not compactly supported
(recall that we work in P(D) where D — RY is compact). As in the Gaussian case, the elements
of the family of elliptically contoured distributions are parametrized by their covariance matrix.
Notice that it is already known that the geodesic between Gaussian measures and more generally
the barycenter of Gaussian measures stay in the Gaussian family [1, Section 6.3]. If the boundary
values p : 00 — P(D) are valued in a family of elliptically contoured distributions, we show that
there exists at least one solution of the Dirichlet problem which takes values in the same family
everywhere on 2 (Theorem 7.9).

Under the additional assumption that the covariance matrices on the boundary o) are non sin-
gular we are able to show much more (Theorem 7.10). It implies that there is a solution of the
Dirichlet problem with covariance matrices non singular everywhere in : to prove it we use the
fact that the Boltzmann entropy is subharmonic because of the Ishihara type property. From this
we are able to derive the Euler-Lagrange equation satisfied by the covariance matrix. Moreover we
can show the uniqueness of the solution to the Dirichlet problem even in the class of mappings not
necessarily valued in the family of elliptically contoured distributions. Let us give the structure of
the proof as it is almost the only case where we know how to prove uniqueness. The observation
is that all solutions of the Dirichlet problem must have the same tangent velocity field. Indeed,
if p is a solution of the dual problem, from optimality the tangent velocity field to any solution
must be equal to Vpy. Now, if the velocity field Vpp is regular enough (namely Lipschitz w.r.t.
D), then the solution of the (1-dimensional) continuity equation with velocity field V py is unique.
As the (generalized) continuity equation implies the 1-dimensional one, and as all solutions of the
Dirichlet problem coincide on 092 they must be equal everywhere. In the case of a family of ellipti-
cally contoured distributions the tangent velocity field is linear w.r.t. D with some uniform bounds
which allow us to make this argument rigorous. If we leave the world of families of elliptically con-
toured distributions, we do not think that we could get enough regularity on the tangent velocity
field for this strategy to work. In summary, under the assumption that the covariance matrices
on the boundary 02 are non singular we are able to give a full solution to the problem: existence,
uniqueness and Euler-Lagrange equation.

Let us comment the somehow restrictive framework that we have chosen. The compactness
assumption of ©2 and D allows to simplify proofs by avoiding tails estimates: we believe that there is
enough technical difficulties and non trivial statements even in this case, and that the key features
of the Dirichlet problem are captured, which is the reason why we have restricted ourselves to
the compact case. Although we have stick to the Euclidan case, we see no deep reason which would
prevent our definitions and results to be applied to the case where 2 and D are compact Riemannian
manifolds. In particular, our regularization procedures rely on heat flows which are available in
Riemannian manifolds. Finally, we have stick to the quadratic Wasserstein distance. We believe
that if p € (1, +0o0) is given, the machinery that we use can be adapted in a straightforward way to

define .
f —|Vul?,
Qb

where p : Q — P(D) but P(D) is endowed with the p-Wassertsein distance. However the Ishihiara
type property is related to the Riemannian framework; also the explicit computations in the case
of a family of elliptically contoured distributions are no longer avalaible. The case p = 1 which



HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE 11

corresponds the total variation of p : Q@ — P(D) (where P(D) is equipped with the 1-Wasserstein
distance) has been defined and studied very recently [32] in the context of image denoising.

To conclude the introduction, let us explain the connection between the different parts of the
paper. If one just wants to understand the definition of the Dirichlet problem, then Subsections
3.1, 3.5 and Section 4 are enough. Section 5 can be read independently from the rest of the article
(except for Subsection 3.1 to get the definition of the objects involved). To have the full proof of the
Ishihara property in Section 6, one needs also to read entirely Section 3 and Subsections 4.1, 4.2 as
some necessary results are proved there. To understand the examples in Section 7, the reading of
Section 3 is advised.

2. PRELIMINARIES

2.1. Notations. Let p and ¢ be two integers larger than 1. The space R? and R? are endowed with
their Euclidean structure: the scalar product is denoted by - and the norm by | - |. The closed ball of
center ¢ and radius r is denoted by B(¢,r). We will take 2 ¢ R? and D < R? two compact domains,
their interior, assumed to be non empty, are denoted by () and D. The outward normal vector to 09
(resp. 0D) is denoted by ng (resp. np). In general, all elements related to Q2 will be denoted with
Greek letters, and those related to D with Latin ones. For instance, points in 2 (resp. D) will be
denoted by &, 7 (resp. x,y), and (eqs)1<a<p (resp. (ei)i1<i<q) is the canonical basis of R? (resp. R?). We
make the following regularity assumptions:

Assumption. We assume that (2 is a connected compact subset of RP. Moreover, o) is assumed to be
Lipschitz, which means that around any point of 052, up to a rotation, () is the epigraph of a Lipschitz
function.

We assume that D is a convex compact subset of RY .

Notice that we assume much regularity on D than on 2. We will consider mappings Q2 — P (D) with
prescribed values on 012, the regularity of the latter is important. On the contrary, we assume that
D is convex, which translates in the fact that (P(D),Ws) is a geodesic space: in some sense, the
boundary 0D of D will be invisible.

The restriction of the Lebesgue measure on R? (resp. RY?) to Q (resp. D) will be denoted by
Lo (resp. Lp). To avoid normalization constants, we assume that Q has unit mass, thus L is a
probability measures.

If X is a polish space (metric, complete and separable), it is endowed with its Borel o-algebra. We
define P(X) as the space of Borel positive measure with unit mass. It is endowed with the topol-
ogy of weak convergence, which means convergence in duality with C'(X) the space of continuous
bounded and real-valued functions defined on X. We also define M(X,R"), for n > 1 as the space
of Borel (vectorial) measures valued in R™ with finite mass, still endowed with the topology of weak
convergence. In the case n = 1, we use the shortcut M(X) := M(X,R). If p € P(X) or M(X,R"),
integration w.r.t. ; is denoted by dy, or by u(dz) if the variable cannot be omitted. If no measure is
specified or simply d¢ or dx is used, it means that the integration is performed w.r.t. the Lebesgue
measure. If x € X, the Dirac mass at point z is denoted by ¢,.. The indicator function of a set X will
be denoted by 1.

If T: X — Y is a measurable application between two measurable spaces X and Y and x is a
measure on X, then the image measure of 1 by T', denoted by T#, is the measure defined on Y by
(T#u)(B) = u(T~(B)) for any measurable set B Y. It can also be defined by

j aly) (T44)(dy) :—j oT(2))u(dz),
Y X

this identity being valid as soon as a : Y — R is an integrable function [4, Section 5.2].
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If (X, ) is a measured space and (Y, d) is any metric separable space, Li(X ,Y') will denote the
space of measurable mappings f : X — Y for which d(f,y)? integrable w.r.t. ; for some y € Y. If
Y = R, then the letter Y is omitted, and if i1 is the Lebesgue measure, then the letter 1 is omitted.
If Y is an Euclidean space, then we set

g ocr o= | 1F@Pa(da).

The space H'(12) is the set of functions f : O — R such that both f and 0, f, for 1 < o < p are in
L3(9).

If X and Y are two subsets of Euclidean spaces, the L* norm of a measurable function f : X - Y
is defined as | f|« := esssup,cx |f(z)|, where the essential supremum is taken w.r.t. the Lebesgue
measure.

If X and Y are two subsets of Euclidean spaces, C(X,Y) and C'(X,Y) will denote respectively
the continuous and C! functions defined on X and valued in Y. If Y = R, then the target space is
omitted and we use C(X) or C'(X). On the space C*(Q2 x D,Y) the following differential operators
can be defined. The derivatives w.r.t. Q2 will be denoted by Vg, or simply (dn)1<a<p, and those w.r.t.
D by Vp, or simply (0;)1<i<q. (If X is of dimension 1, the derivative of a function f will be denoted .
The gradient will be denoted by V, and the divergence by V-. As an example, if ¢ € C'(Q x D,RP),
with components (¢“)1<a<p, then Vg - ¢ € C(2 x D) is defined as

P
Va- 80(571') = Z aa@a(f,l'),
a=1

for all ¢ € Q and « € D; and Vpp € C(Q x D,RPY) is defined as, for any o € {1,2,...,p} and
i1e€{1,2,...,q},
(Vpp)* (€, 2) = 0ip(€,x) € R,

The notation C'cl(Q x D,Y’) will stand for the smooth functions which are compactly supported in Q
but not necessarily in D (and valued in Y): if p € C}(Q2 x D,Y), it means that there exists a compact
set X < Q such that ¢(¢,2) =0 as soon as £ ¢ X.

2.2. The Wasserstein space. We recall well known facts about the Wasserstein space. All these
results can be found in classical books like [31, 27, 4].

We endow the space P(D) with the L2-Wasserstein distance W5. If  and v are elements of P(D),
then

Wa(p,v) := \/min UDxD [z —yPr(dz,dy) = meTl(p, V)},

where II(u, v) is the set of transport plans, i.e. of probability measures on D x D which have p and
v as marginals. There exists at least one 7 € II(u, v) realizing the infimum, it is called an optimal
transport plan. The Wasserstein distance admits a dual formulation which reads

W3(n,v) = max {L} p(e)p(dr) + L) P(x)v(der) = ¢, e C(D) and Yo,y € D, p(x) +¢(y) < |z — yl2} ,

There exists at least one solution of the dual problem, and any pair (¢,+) which is a solution is
called a pair of Kantorovicth potentials. Notice that thanks to the dual formulation, we see that
W2 : P(D) x P(D) — R is the supremum of continuous affine functionals, hence it is convex for the
affine structure on P(D) (and continuous by definition). In particular, there is a Jensen’s inequality:



HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE 13

if 4 and v are measurable mappings defined on 2 and valued in P(D), and if f : Q@ — R is a positive
measurable function whose integral is 1, then

w3 < | s | u(f)f(é)dé) < | Whue). mens (e

In the formula above the integral {, puf € P(D) is defined according to the affine structure on P(D)
for instance by duality: for any a € C(D),

@1 [ UQ u(f)f(f)ds] - (fD adu(é)) Fe)de.

The space (P(D),W>) is a metric space whose topology is the one of weak convergence. In par-
ticular, according to Prokhorov’s theorem, it is a compact separable space. The space (P(D), W3)
is a geodesic space. If y,v € P(D) and « € II(y,v) is an optimal transport plan between p and v,
then a constant speed geodesic p : [0,1] — P(D) joining u to v is given by wu(t) := fi#m where
fi:(z,y) e D x D — (1 —t)x + ty € D (Notice that we have assumed D to be convex).

We will briefly use the 1-Wasserstein distance W; in the proof of Proposition 6.5. The definition
by duality will be enough: if 1 and v are probability measures on D,

W) = max | [ o) - |

D
Moreover, as D is compact, there exists a constant C' such that W, < C'y/W;.

o(z)v(dx) : pe C(D)and ¢ is 1-Lipschitz} .

2.3. Absolutely continuous curves in the Wasserstein space. A central tool when one is
studying the infinitesimal properties of the Wasserstein space is the concept of (2-)absolutely con-
tinuous curves valued in the Wasserstein space. Let I be a segment of R. A curve pu: I — P(D) is
said absolutely continuous if there exists g € L?(I) such that for any s < ¢ elements of I,

t

2.2) Wau(t), u(s)) < j g(r)dr.

S
Let us recall the following result, which holds in fact for absolutely continuous curves valued in
arbitrary metric spaces, see [4, Theorem 1.1.2].

Theorem 2.1. If . : I — P(D) is an absolutely continuous curve, then the quantity

al(t) := lim Wa(p(t |J;L|h),u(t))

exists and is finite for a.e. t € I. Moreover, |[i| < g a.e. on I for all g such that (2.2) holds.

In the Wasserstein space, absolutely continuous curves are related to solutions of the continuity
equation: see [4, Chapter 8].

Theorem 2.2. Let p : I — P(D) an absolutely continuous curve. If (vi)ies is a measurable family
such that §, |v¢| 2 (D re)dt < +o0 and the equation oy + Vp - (vp) = 0 is satisfied in a weak sense
I‘l’ b

on I x D with no-flux boundary conditions on D, then one has

2.3) () < fD vildpa(t)

fora.e. tel.

Moreover, there exists a unique (for a.e. t € I, vy is unique p(t) a.e.) family (vy¢)wer for which
equality holds in (2.3) for a.e. t € I. This optimal family is characterized by the fact that for a.e.
t € I, there exists a sequence (,)neN Of elements of C'(D) such that (Vi)),eN converges to v; in

L2, (D, R7).
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2.4. Gradient flows. At some point (in Section 6) we will need the notion of gradient flow in the
Wassertsein space. Roughly speaking, if F': P(D) — Ru {+0o0} is a given functional, a gradient flow
is a curve p : [0, +00) — P(D) along which F' decreases "the most" w.r.t. the Wasserstein distance,
in a formal way it can be written

(2.4) i—’:@) — —VF(u(t)).

Of course nor the notion of gradient or of time derivative make sense as vectors in the Wassertsein
space. In [4] (see also [27, Chapter 8]), it is shown how the notion of gradient flow can still be
defined through the use of metric quantities only.

A standard assumption to ensure the existence and uniqueness of a gradient flow with a given
value p(0) is that F' is convex along generalized geodesic. If y,v and p are three probability
measures on D, one can always build a transport plan 7 € II(ug, u,v) € P(D x D x D) such that
the 2-marginals are optimal transport plans between i, x on the one hand and g, v on the other
hand (notice that in general the last 2-marginal is not an optimal plan between . and v). Then, the
generalized geodesic u : [0,1] — P(D) between i and v with base point y is defined as u(t) := fi#m,
with f; : (2,,2) € D3 — (1 — t)y + tz € D. A functional F : P(D) — R u {+0} is said convex along
generalized geodesics if for any points pg, x and v, there exists a generalized geodesic p joining u to
v with base point py such that F o pu: [0,1] > R u {+} is a convex function.

The only result that we will need is called the Evolution Variational Inequality (EVI) formulation
of gradient flows (which is a way to make sense of (2.4) in the metric framework). It is summarized
in the following theorem, whose proof can be found in [4, Theorem 11.2.1].

Theorem 2.3. Let F': P(D) — R u {+w} a functional l.s.c. and convex along generalized geodesics.
Then, for any p € P(D) such that F(u) < +oo, there exists an absolutely continuous curve t €
[0, +00) — Sf' 1€ P(D) such that St = yand for any t > 0 and any v such that F(v) < +o

xx t .

lim sup
h—0, h>0 2h

Moreover, the function t — F (S} 11) is decreasing.

The curve S¥; (which can be shown to be unique) is nothing else than the gradient flow of F
starting form pu.

2.5. Heat flows. To regularize measures the main tool will be the heat flow. We recall in this
subsection classical results that we will use in the sequel. We will denote by & : [0, +o0) x P(D) —
P(D) the heat flow with Neumann boundary conditions acting on D. For a proper definition, one
can view ® as the gradient flow of the Boltzmann entropy, which is convex along generalized
geodesics because D is convex, see [4]. If u € P(D) and ¢ > 0, then ®” 1 € P(D) is defined as the
measure u(t, z)dx with a density « : (0, +o0) x D — R which is the solution of the Cauchy Problem

dsu(s,x) = Au(s,z) if (s,z) € (0,400) x D,
Vu(s,z) -np(z) =0 if (s,z) € (0,+0) x oD,
lin(l][u(s,w)dw] =u inP(D),

where np is the outward normal to D. Thanks to the gradient flow interpretation, we know that
®P is a contraction in the Wasserstein space [4, Theorem 11.2.1]: for any ¢t > 0 and any p,v € P(D),
one has Wy (®P 1, ®Pv) < Wa(u, v).

As far as Q2 is concerned, we will also use the heat flow but only through the heat kernel. We
denote by K : (0, +o0) x 2 x Q — R the heat kernel associated to the Laplacian on 2 with Neumann
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boundary conditions [6, Section 7]. For uq € L'(Q), if we define for any ¢ > 0

ult,€) = (ug) (€) = f KR (€, nyuo(n)dn,
Q

then u is the solution of the heat equation on Q2 with Neumann boundary conditions such that
u(t, ) — up in L*(Q) as t — 0. Notice, as a constant function is preserved by the heat flow, that the
integral of K}(¢,-)is 1 for a.e. £ € Q.

Useful properties of the heat flow and the heat kernel are summarized in the next proposition.

Proposition 2.4. The heat flow ®° and the heat kernel K satisfy the following properties:

(i) For any y € P(D) and any t > 0, the measure ®” 11 has a density w.r.t. Lp which is bounded
from below by a strictly positive constant and belongs to C’l(lo)).
For any t > 0, the heat kernel K;* is bounded from below by a strictly positive constant and
belongs to C1(Q x Q).

(ii) For any t > 0, the density of ®Pj w.rt. Lp is bounded in L™ (D) independently of 11 € P(D).
There exists two constants C1 > 0 and Cy > 0 such that, for any 0 <t < 1 and a.e. £,n € €,

C £ —nl?
K (€0) < 5 exp <—| 02t| >

(iii) For a fixed t > 0 and for any € P(D) and a € C(D), one has
f a ((IDf),u) = f (q)f)a) ds.
D D

Fora fixedt > 0and all £,m € ), one has K} &,n) = K2 (n, €).

Proof Point (i) is standard interior parabolic regularity. Point (ii) comes from L* — L' estimates
and Gaussian estimates for the Neumann Laplacian, see [6, Section 7]. Point (iii) just states that
the heat flow is self-adjoint. O

Let us collect some other results on heat kernel, which are not really difficult but which we did
not find in standard textbooks.

Proposition 2.5. There exists w : Ry — R, with lim;_,gw(t) = 0, such that for every p € P(D) and
every t = 0, one has Wa(®P i, 1) < w(t).

In other words, the convergence ® 1 — 1 as t — 0 holds uniformly in p € P(D).

Proof. Let us assume by contradiction that this is not the case. Then there exists ¢ > 0, a sequence
(tn)nen Which goes to 0, and a sequence (u, )nen of probability measures such that W2(<I>£L Ly fh) =
e. As P(D) is compact, up to extraction we can assume that p, converges to u € P(D). By the
triangular inequality,

e S Wa(®@F fin, ttn) < Wal®P pn, F 1) + Wa(®F 1, 1) + Walpt, ).

As we know that, for any ¢, ®” is a contraction in the Wasserstein space, one has W2(<I>£L s <I>t’:i ) <
Wo(pin, it), thus the r.h.s. of the equation above goes to 0, which is a contradiction. O

Proposition 2.6. Let a € C(2 x Q) a positive continuous function which vanishes on the diagonal
of Q x Q. Then

lim | a(&,n)K; (€ m)dédn = 0.
=0 Jaxq
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Proof. We fix ¢ > 0. By continuity of ¢ and compactness of {2 x 2, we can find a § such that, if
|€ —n| < 4, then a(&,n) < /2. As the heat kernel is positive and its integral is 1, by cutting the
integral in the parts where | — 7| < § and those where |{ — 1| > §, we see that it is enough to show
that

j 5 |>6K§’<§,n>d§dn <e,
.

at least if ¢ is small enough. But this is straightforward to get thanks to the Gaussian estimate, see
(i1) in Proposition 2.4. U

3. THE DIRICHLET ENERGY AND THE SPACE H'(Q,P(D))

In this section, we define the Dirichlet energy of a function u € L*(Q,P(D)) following the idea
of [9, Section 3]. We relate the space of u with finite Dirichlet energy with H'(2,P(D)) using the
theory of Sobolev spaces valued into metric spaces of Reshetnyak [25, 26], and we also prove that
this Dirichlet energy coincides with the limit of e-Dirichlet energies introduced by Korevaar, Schoen
and Jost [19, 16].

Let us first define the space L?(2, P(D)). As P(D) is bounded, it coincides with the measurable
mappings valued in P(D).

Definition 3.1. We denote by L?(2, P(D)) the quotient space of measurable mappings p : Q — P(D)
by the equivalence relation of being equal Lq-a.e. This space is endowed with the distance d;» defined
by: for any pand v in L?(Q, P(D)),

() = f W2(u(E), v(€)) .
Q

If u e L?(Q, P(D)), we can define a probability measure on Q x D, that we will call temporary i,
in the following way: for any a € C(Q2 x D),

3.1) LXD adji = L (L al€, -)du(§)> de.

If we take a function a € C(2) which depends only on (2, one can see that

(3.2) LXD adji = L a(€)de.

We will denote by Py(2 x D) the subspace of P(2 x D) such that (3.2) is satisfied for all a € C'(Q2).
Thanks to the disintegration Theorem [4, Theorem 5.3.1], one can see that, reciprocally, to each
fi € Po(Q2 x D), one can associate a unique element p of L*(Q,P(D)) such that (3.1) holds. In
all the sequel, we will drop the "bar" on & and use the same letter u to denote an element of
L?(92,P(D)) and its counterpart in Py(2 x D) through the bijection that we have just described.
Any p € L?(Q,P(D)) can be seen in two different ways: either as a mapping Q@ — P(D), or as a
probability measure on Q2 x D, and we will very often switch between the two points of view. To
clarify the notations:

o if u € L?(Q,P(D)), then u(¢) or u(¢,dz), which is an element of P(D), will denote the
function p evaluated at &;

e u(d¢,dx) will indicate that we consider p as an element of Py(Q2 x D), integration on Q x D
will be denoted by du or p(d€, dx), notice that we have the following relation: p(d¢,dz) =
ulé, da)de;

e the mapping p € L%(Q, P(D)) is said continuous (resp. Lipschitz) if there is one representa-
tive of p such that Wo(u(§), u(n)) goes to 0 if n — £ (resp. is bounded by C|¢ — 7| for some
C < +w).
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The topologies on L?(Q2, P(D)) are defined as follows.

Definition 3.2. The strong topology on L?(2,P(D)) is the one induced by the distance d», and the
weak topology is the one induced on Py(2 x D) by the weak topology on P(Q x D).

Proposition 3.3. W.r.t. the strong topology, L*(Q), P(D)) is a polish space. W.r.t. the weak topology,
L?(Q2,P(D)) is a separable compact space. Moreover, the strong topology is finer than the weak
topology.

Proof. The statement concerning the strong topology is a consequence of the fact that P(D) is itself
a polish space, see for instance [19, Section 1.1]. As Py(2 x D) is closed in P(2 x D), for the second
statement we simply use the fact that P(Q2 x D) is itself a separable compact space.

To compare the topologies we take a sequence (u,)nen Which converges strongly to some p €
L?(Q,P(D)). Up to extraction, we know that we can assume that u,(¢) converges in P(D) to u(¢)
for a.e. £ € Q. In particular, if a € C(Q x D), we have that §, a(¢, -)dp, (§) converges to §, a(¢, -)du(€)
for a.e. £ € Q0. With the help of Lebesgue dominated convergence Theorem, we see that

Jim e = tm | (fDa@, -)dun@)) a- | (fDa@, ')du(§)> dE= | ad

As a is arbitrary, this allows us to conclude that (u,,),en converges to p for the weak topology. [

3.1. A Benamou-Brenier type definition. We are now ready to define the Dirichlet energy. The
first step is to define the (generalized) continuity equation. Recall that C! (2 x D, RP) is the set of
C' functions defined on © x D and valued in R?, whose support is compactly included in €2, but not
necessarily in D, and M(Q x D,RP?) denotes the space of vector-valued measures on 2 x D with
finite mass.
Definition 3.4. If p € L*(Q,P(D)) and if E € M(Q x D,RP), we say that the pair (u, E) satisfies
the continuity equation if, for every p € C}(Q2 x D, RP), one has
f Vg-cpdu—kf Vpp -dE = 0.

QxD QxD

In other words, the pair (i, F) satisfies the continuity equation if the equation
Vou+Vp-E=0.

with no-flux boundary conditions on 0D is satisfied in a weak sense. In we develop in coordinates,
it means that for every a € {1,2,...,p}, one has d,pu + >,7_, 0; E' = 0. If the pair (u, E) satisfies the
continuity equation, we want to define its Dirichlet energy by §, . , % It is well known in optimal
transport that this definition can be made by duality.

Definition 3.5. If (u, F) satisfies the continuity equation, we define its Dirichlet energy Dir(u, E) by

Dir(p, E) := sup { L

where K < R'74 is the set of pair (z,y) with = € R and y € RP? such that x + §|y|* < 0.

adu+f b-dE : (a,b)eC(QxD,IC)},
xD QxD

The following proposition is identical to the case of the Benamou-Brenier formula.

Proposition 3.6. If (i, E) satisfies the continuity equation and Dir(u, E) < +o, then E is absolutely
continuous w.r.t. u, and if v : Q x D — RP9 is the density of E w.r.t. u, then one has

1
Dir(u, E) = Dir(p, vp) = f —|v[2dp.
Q
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Proof. There is nothing to add to the proof of this when (2 is 1-dimensional, and such a proof can be
found for instance in [27, Proposition 5.18]. O

Definition 3.7. Let p € L*(Q,P(D)). Its Dirichlet energy Dir(u) is defined by
Dir(p) := inf {Dir(p, E) : E € M(Q x D,RP?) and (u, E) satisfies the continuity equation} .

Let us underline that if there exists no £ € M(Q2 x D, RP?) such that (u, F) satisfies the continuity
equation, then by convention Dir(u) = +c0. To be sure that it is written somewhere, let us state the
following proposition which identifies the Dirichlet energy if (2 is a segment of R. It is a consequence
of Theorem 2.2 and of the above definitions (see [27, Theorem 5.28]).

Proposition 3.8. Assume that I is a segment of R and let p € L?(I,P(D)). Then Dir(u) < +o0 if
and only if u is absolutely continuous, and in this case

Dir(u) = | 3lil (o).

Now, let us show easy properties, namely that the Dirichlet energy behaves like the square of a
H' norm: it is convex and l.s.c.

Proposition 3.9. If u € L?(Q,P(D)) is such that Dir(u) < +oo, then there exists a unique E €
M(Q x D,RP9) such that (u, E) satisfies the continuity equation and Dir(u) = Dir(u, E).

Definition 3.10. If u € L?(Q,P(D)) and if E = v is such that (u, E) satisfies the continuity
equation and Dir(u) = Dir(u, E) < +o0o, then E and v are said tangent to p.

The terminology tangent comes from [4]. As in the case of absolutely continuous curves, there is a
characterization of the tangent velocity field v which looks like [4, Proposition 8.4.5]: see Corollary
3.21 proved later.

Proposition 3.11. The mapping Dir : L?(2,P(D)) — R U {+w} is Ls.c. w.rt. weak convergence.
Moreover it is convex: for any pand v in L?(Q,P(D)) and any t € [0,1],

Dir((1 —t)p + tv) < (1 — t)Dir(p) + tDir(v).

Proof of Proposition 3.9. To this extent, we can use the direct method of calculus of variations. Take
(Ey)nen @ minimizing sequence, i.e. such that (u, E,) satisfies the continuity equation for every
n € N and such that Dir(u, F,,) converges to Dir(p) when n — +o0. For n large enough, Dir(u, E,)
is finite, thus E,, = v,,p and Dir(u, E,,) = %anH%i (QxD,Rra)- ID particular, v,, is uniformly bounded
in L2 (Q x D,RP9), up to extraction it converges weakly to some v € L, (22 x D,R??). By Ls.c. of the
norm, we see that %”VHZLg (QxD.Rr1) S Dir(p). Moreover, the weak convergence of v,, to v allows us
to see that (pu, vie) satisfies the continuity equation.

To prove uniqueness, assume that £, and F, are such that Dir(u) = Dir(p, E1) = Dir(u, Es). We
write F1 = vip and Fy = vou. Notice that (u, (E; + E2)/2) satisfies the continuity equation, hence
by convexity of the square,

Ei+ FE 1
Dir(p) < Dir (u, %) = JQ 3
X
1

1f 1, 1,
<3 5lvil du+—f Slval"dp
2 Jaxp 2 2 Jaxp 2

_ %(Dir(u, Ey) + Dir(p, Es)) = Dir(p).

Vi + Vo 2
2

dp

In consequence all inequalities are equalities, thus v; = vy p-a.e., which means F; = F. O
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Proof of Proposition 3.11. Let us first prove the lower semi-continuity. Let (u,)nen @ sequence
which converges weakly to some p € L?(Q, P(D)). Without loss of generality, we can assume that
lim inf ,en Dir(p,) < +0. Up to extraction, we can assume that Dir(u,,) converges to lim inf,, Dir(u,,).
For each n e N, let E,, = v,,u, € M(Q x D,RP?) be tangent to p,,. As

wmﬂxm—f valdn < |wmmn\ﬁmu5
QOxD

we see that the mass of E, is uniformly bounded. Up to extraction, we can assume that F,, weakly
converges in M(Q x D,RP?) to some E. The weak convergence allows to pass to the limit in the
continuity equation, thus (u, F) satisfies the continuity equation. Moreover, as Dir : L2(Q, P(D)) x
M(Q x D,RP?) - Ru {400} is a supremum of continuous (for the weak convergence) functionals, it
is clear that Dir(u, E) < liminf,, Dir(u,,, E,,), which allows to conclude that Dir(u) < liminf,, Dir(u,).

The convexity is simple: if £ and F' are tangent to respectively p and v, then one sees that
(1 = t)p + tv, (1 — t)E + tF) satisfies the continuity equation. Moreover, as Dir : L?(Q2, P(D)) x
M(Q2 x D,RP?) - R U {+0} is a supremum of linear functionals, it is a convex function of its two
arguments, thus

Dir((1 —t)p + tv) < Dir((1 — ) + tv, (1 —t)E + tF) < (1 — t)Dir(u, E) + tDir(v, F),
which is enough to conclude. O
Let us show a localization property: the tangent velocity field v, depends only locally on the
values of p. In other words, if v is tangent on (2, then it is tangent on every subset of (2. In the next
proposition, p|g and v|s will denote the restrictions of 1 and v to a subset 2 of 2.

Proposition 3.12. Let € L?(Q, P(D)) such that Dir(pu) < +oo and let v € Lz(Q x D, RP?) be tangent
to p. Then, if Q is any subdomain compactly supported in Q, V| is tangent to p|g.

Proof Set E = vy and let E = v € P(Q x D) be the tangent momentum to t|g. Take x € cH(Q)

a smooth function compactly supported in Q. As y does not depend on D, (u, (1 — x)E + xE) still
satisfies the continuity equation. By convexity of the square and optimality of v,

—|(1 —x)v +xv[*dp

Dir(s) < Dir(ys, (1 = VE + xE) = |
QxD 2

1 1 .
<[ a-wgivPaer | SuvPaw
QxD QxD
1 1 .
<[ a-wgivPaut | givPd = Dis).
QxD QxD

Hence (1 — x)E + xFE is also tangent to . By uniqueness of the tangent velocity field we deduce
that v|; = Vv at least on the support of x. Arbitrariness of x allows us to conclude. O

We will conclude this subsection by showing the following approximation result, which basically
states that smooth functions are dense in L?(2, P(D)).

Theorem 3.13. Let p € L?(Q2, P(D)). Then there exists a sequence p, € L>(Q, P(D)) with the follow-
ing properties:
(1) For any n € N, p,(d§,dx) = p,(&, z)dédx, where the density p, of pu, w.rt. to Lo® Lp satisfies
pn € CH(2 x D) n L*®(Q x D) and essinfqyp p, > 0.
(ii) The sequence (jt,)neN converges strongly and a.e. to pin L?(Q2, P(D)).
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(ii1)) Moreover, if E € M(Q x D,RP?) is such that (u, E) satisfies the continuity equation and
Dir(u, E) < 400, then we can choose v,, € C1(2 x D, RP?) n L®(Q x D, RP9) a smooth vector
field such that (pn,, v, ) satisfies the continuity equation and Dir(u,,, vy p,) < Dir(u, E) for
all n € N, and such that (v, p,)nen converges weakly to E. In particular, Dir(u,) converges
to Dir(pu) as n — +oo.

Proof. We will rely on the heat flow to regularize u, and we will make it act both on Q and D.
Recall that ®?, &P denote the heat flows, and K*! denotes the heat kernel. For any ¢, s > 0, we set
Wts 1= @?@sD wu, which is a shortcut to say that we define

(€)= fﬂ K2, )L ()]

(the integral is performed according to the affine structure on P(D), see (2.1)). By parabolic regu-
larity, it is clear that for fixed ¢, s > 0, the measure p; ; has a density w.r.t. Lo ® £p which is smooth
on 2 x D and bounded from below and from above by strictly positive constants on  x D. Then we
define p,, := p, s, for sequences (¢, ),en and (sy)nen Which goes to 0. In other words, point (i) is
proved.

Let us prove (ii). It would be easy to get that p,, ;, converges weakly to p as n — +0, but we
want strong convergence. Starting from the definition of 1, ;(¢) and using Jensen’s inequality and
the triangle inequality, one sees that for a.e. £ € ,

W0 (€). 1) < | KP(EmWE (@Dl w(€))c
=? UQ K (& mW3 (27 p(n), p(n)dn + L K& mW3 (u(n), p(€))dn

< 2u(s)? + 2 jﬂ K& n)WE (u(n), w(€))dn,

where we recall that w is defined in Proposition 2.5. Integrating w.r.t. £, we get

A7 5 (Bt 55 1) < 2w(57)% + 2 . QKfi(&n)Wf(u(n),u(i))dfdn-

We have to estimate the r.h.s. of the equation above. Recall that p is not assumed to have a
finite Dirichlet energy, thus we have no regularity w.r.t. Q. Fix § > 0. Thanks to Lusin’s theorem
(for Lusin’s theorem in metric spaces, see [27, Box 1.6]), there exists a compact X < 2 such that
Lo(2\X) < 0 and the restriction of p to X is continuous. In particular, the functiona : X x X - R
defined by a(&,n) := W3 (u(n), u(€)) is continuous, and it stays continuous if we extend a by setting
a(&, &) = 0 for every ¢ € Q. The function a being real-valued, it can be extended to the whole 2 x ©
in a positive continuous function still denoted by a. By construction, a vanishes on the diagonal of
Q x Q. If C is the diameter of P(D), then (to handle the first integral of the r.h.s. we use the fact
that the integral of Kfi w.r.t. its first variable is 1)

; K2 (& m)a(&,n)dédn

Qx X

KL (6, mW2 (u(n), p(€))dédn < 2 f C2K2 (¢, m)dedn + f
Q QX (Q\X) X

< 40%5 + K;* (€,m)a(é,m)dédn.
QxN

Here we can use Proposition 2.6 to conclude that {, , K{* (¢, n)a(¢,n)dédn goes to 0 as n — +oo.
Putting all the pieces together, we conclude that

limsup d? 2 (ps,, s, p) < 4C26.

n— -+
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As § is arbitrary, p,, s, converges strongly to p. Up to extraction, the convergence takes also place
a.e., which means that for a.e. { € Q, p, 5, (£) converges to p(§) in P(D). Thus (ii) is proved.

It remains to prove (iii), let us assume from now that £ € M(Q2 x D,RP9) is such that (u, E)
satisfies the continuity equation and Dir(u, E) < 4. Take v € Li(Q x D) such that F = vu. We

define E, := ®{! 2 F, which is a shortcut to say that

Ey(&,x) = K§ (&,n) [®2), (v(n,)p(n))] dn.
QxD
Call ¢, the density of E,, w.rt. Lo ® Lp, we simply set v,, = E,,/p, which is well defined as p,, > 0
a.e. on  x D. In other words, F, = v,u,. By parabolic regularity, one has v, € Cl(fZ X f?, RP?) N
L*(Q x D,RP?). It is clear that (E,),en converges weakly to E. As the heat flow commutes with
derivatives w.r.t. Q or D, the pair (u,,, E,) satisfies the continuity equation for any n € N. Moreover
for every (a,b) € C( x D,K) (cf. Definition 3.5), one has ({2 ®2 a, ®f* ®L b) € C( x D, K): indeed,
as K is convex, by the maximum principle C({2 x D, K) is stable by the heat flow. Hence, as the heat
flow is self-adjoint and by definition of Dir(u, E),

f adumf b-dEnzf (@&@ﬁa)du+f (9} ®2p) - dE < Dir(u, E).
QxD QxD QxD QxD

As a and b are arbitrary, Dir(u,, E,) < Dir(u, E) for all n € N. If we take for £ the momentum
tangent to u then

lim sup Dir(p,,) < limsup Dir(gy,, Vi pbr) < Dir(p, E) = Dir(p) < liminf Dir(p,),

n—+o n——+0o n—+00

where the last inequality comes from the lower semi-continuity of Dir. Hence Dir(u,,) converges to
Dir(p) as n — +o0. O

3.2. The smooth case. In this subsection, we will briefly study the smooth case, i.e. the one where
p has a smooth and strictly positive density w.r.t. Lo ® Lp. It will help to understand the meaning
of the continuity equation and we will use it in the sequel when reasoning by approximation.

We assume that p € L2(, P(D)) can be written as p(d¢, dz) = p(¢&, 2)d¢dz, where pis C on Q x D.
Let v e C1(Q x D,RP) n L®(Q x D, RP9) be a smooth vector field. If (u, vu) satisfies the continuity
equation, it means that they also satlsfy in a strong sense:

Vap+Vp-(vp)=0 inQxD
v-np =0 onf)x&D,

where np is the outward normal at D. In particular, if v : I — €2 is a smooth curve going from an
interval of R to , then p? = po~y: I — P(D) an defines absolutely continuous curve valued in the
Wasserstein space for which we know one velocity field. Indeed, we know that the (classical) conti-
nuity equation oY + V - (v7u?) is satisfied in a strong sense (with Neumann boundary conditions
on D) provided that we define v? := v -4 : I x D — RY. More precisely, if i € {1,2,...,q}, the i-the
component of v? at time ¢ € I and at the point x € D is

P
(v7(t, x) Z )AL,
In other words, the (generalized) continuity equation implies that we get (classical) continuity equa-

tion for every curve of (2. In some sense, the (generalized) continuity equation is much stronger in
higher dimensions. As we recalled previously, the velocity field v” is related to the metric derivative
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of the curve p” in the Wasserstein space . Applying Theorem 2.2, we see that for any s < t elements
of I,

(3.3) Wa( (), 17 (5)) < f 1 (r)ldr < f \/ fD\vv<r,w>|2p<v<r>,x>dxdr.

With this key estimate, we can prove the following.

Proposition 3.14. Let p € L?(2,P(D)) be smooth: it admits a density p w.rt. Lo ® Lp satisfying
peCHQ x D) A L2 x D). Suppose that v e C1(Q) x D,RPY) n L*(Q x D, RP?) is such that (p, vp)
satisfies the continuity equation.

Then the function p is Lipschitz. Moreover, if £ € Q) and e € R?,

(3.4) lim sup Wa(p(€ + ee), nle)) < \/fD [v(& x) - elu(€, dx).

e—0 le]

Proof. To prove that p is Lipschitz, just notice that |[v?| < |v||| and that v and p are in L*(2 x D),
then use (3.3). Moreover, if ¢ € (2 and e € R” is a unit vector, take v : [0,20] — © to be the straight
line defined by ~(t) := £ + te: it is well defined for if g > 0 is small enough. Then just use (3.3) and
the continuity of v in €. O

This result is all we need in the sequel but much more could be proved: for instance, in (3.4), the
limsup is a lim, and the inequality is an equality.

3.3. Equivalence with Sobolev spaces valued in metric spaces. Until now, we have not dis-
cussed the existence of solutions to the (generalized) continuity equation: this notion could be too
strong or too loose. In this subsection, we will show that the set of p with finite Dirichlet en-
ergy coincides with an already known definition of Sobolev spaces valued in metric spaces given
by Reshetnyak [25, 26]. This definition is restricted to the case where the starting space has a
smooth structure (which is precisely our framework), but can be seen as particular case of a more
general definition given by Hajlasz (a pedagogic and clear introduction to the latter can be found in
[3, Chapter 5]).

Definition 3.15. Let u € L*(Q,P(D)). For any v € P(D), define [u], € L*(Q) by [u], (&) :=
Wa(u(€),v). We say that p € HY(Q, P(D)) if there exists a countable family (vy,)en dense in P(D)
such that [u],, € H'(Q) for all n € N and there exists a function g € L*()) such that, for every n € N,
(3'5) |V[IJ/]V7L‘ < g

a.e. on ). The smallest g for which (3.5) holds is called the metric gradient of 1 and is denoted by
Ju-

Notice that g, = sup, |V[u],,|- The definition looks slightly different than in [25]. However, it is
equivalent because of the following result:

Proposition 3.16. Let u € H'(Q,P(D)) and g,, € L?() be its metric gradient. Then for all map-
pings u : P(D) — R which are C-Lipschitz, uo p e H () and |V(uo p)| < Cg, a.e. on Q.

Proof. Is is enough to copy the proof of [25, Theorem 5.1]. Indeed, in this proof, one only uses the
functions [u], for measures v belonging to a dense and countable subset of P(D). O

In particular, if p € H'(Q, P(D)), then [p], € H'(Q) with gradient bounded by g,, for all v € P(D).
Notice that the definition above can be stated for mappings valued in arbitrary metric spaces (sepa-
rability of the target space is required). The main theorem of this subsection is the following, which
states that the framework that we have developed coincides with the one of Reshetnyak.
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Theorem 3.17. Let p € L?(Q,P(D)). Then pu € H'(Q,P(D)) if and only if Dir(u) < +oo. Moreover,
if we H' (Q,P(D)) and if v is tangent to p, then for a.e. £ € (),

gu(§) = \/L V(€ 2)[?p(E, dx).
As an immediate corollary, notice that if u € H' (2, P(D)), then

Dir(p1) = L Sl () de.

We will prove this theorem in three steps. The first one is to prove it if Q is a segment of R
(Proposition 3.18). It is just a rewriting of the definition of Reshetnyak and does not rely of the
special structure of the Wasserstein space. The second step is to say that, roughly speaking, a
function is in H'(Q) if it is in H' for a.e. lines, with some uniform control on the gradients. It
enables us to get the result if 2 is a cube (Proposition 3.20). The third step is simply to write that
every domain can be written as a (countable) union of cubes.

Proposition 3.18. Theorem 3.17 holds if Q) is a segment of R.

Proof. Assume 2 = I is a segment of R. The set of curves with finite Dirichlet energy coincides
with the set of absolutely continuous curves, see Proposition 3.8. Given Theorem 2.2, we want to
prove the equality g,, = |ft| a.e. on I.

Assume that Dir(u) < +oo and take v € P(D). Then, as Ws(-,v) is 1-Lipschitz, for all s < ¢
elements of I,

[ 0) ~ Tl 8)] < W), ) < [ i)

It shows that the function [u], is in H'(I) and its gradient is smaller than |p|. Hence, as v is
arbitrary, p € H'(I,P(D)) and g,, < |f/.

Reciprocally, assume pu € H' (I, P(D)), take (,,)nen countable and dense in P(D) such that [u],, €
HY(I) for every n € N with gradient bounded by g,. In particular, for any n € N and any s < ¢

elements of I,
t

1], (8) — [l ()] < j gu(r)dr.

Then we choose v, arbitrary close to p(¢): the r.h.s. is unchanged and the 1.h.s. is arbitrary close to
Wo(u(t), u(s)). Hence we conclude that

S

Wala(s),u(®) < [ gu(r)ar,
t
which is enough to say that u is an absolutely continuous curve and || < g, a.e. on I by minimality

of |p1|. O

Now we will prove Theorem 3.17 at least locally, which means in the case where () is a cube. Up
to an isometry and a dilatation, we can assume that 2 is the unit cube of R”. Recall that (e, )i1<a<p
is the canonical basis of R?. In the sequel, we will denote by €2, — RP the a-face of the cube, which
means the set of (¢1,...,6271,0,91 . ¢P), with 0 < ¢% < 1 for all 3 # «. The measure on ), will
be the p — 1-dimensional Lebesgue measure. If f : Q — X is a given mapping (where X is any set)
and § € Q, is fixed, then f; : [0,1] — X is defined by f:(t) = f({ + teq): it is the restriction of f
to a line directed by e, and crossing 2, at £&. Recall the following characterization for real-valued
mappings:
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Proposition 3.19. Assume Q) is the unit cube of R? and let f € L*(Q) be a given function. The
function f belongs to H*(2) if and only if for any a € {1,2,...,p}, for a.e. £ € Q,, the function f¢ isin

H'([0,1]) and
fga <Ll 'fg(t)lzdt> d¢ < +.

Moreover, for a.e. £ € Q4 and a.e. t € [0,1],

(aaf)(é + tea) = fﬁ(t)'
Proof. One can look at [12, Section 4.9]. O
Proposition 3.20. Theorem 3.17 holds if ) is the unit cube of RP.

Proof. Implication Dir(u) < +o0 = p € HY(Q,P(D)). Assume first that pu € L?(Q2,P(D)) is such
that Dir(u) < +o0 and take v € L7, (Q x D,R") the velocity field tangent to . Fix a € {1,2,...,p}.
Take two compactly supported test functions v € C}(]0,1[xD) and a € C}(€,). As a test function
¢ € CHQ x D,RP) in the weak formulation of the continuity equation, choose (¢ + te,,x) :=
(0,0,...,0,9%(t,x)a(€),0,...,0) for £ € Q4 and ¢ € [0, 1] (only the a-th component of ¢ is not 0). If we
expand we find that Vg, - ¢ = ady) hence

0= f Vo - pdp + f Vpp- -vdu = f f or(t, x)dtp(€ + teq, dx) | a(§)dE
QxD QxD a [0,1]xD

+ f (J Vpi(t,x) - (v(E + teq, x) - eq)dtp (€ + teq, dx)) a(&)de.
a [0,1]xD
Using the arbitrariness of a, we deduce that for a.e. ¢ € Q,, and for a fixed > € C}(]0,1[x D, RP),

(3.6) j op(t, x)dtp(§ + teq,dz) + j Vp(t,z) - (v(€ + teq, x) - eq)dtp(§ + teq, dx) = 0.
[0,1]xD [0,1]xD

Now, taking a sequence (1, ),en Which is dense in C!(]0, 1[x D, RP), we can say that for a.e. ¢ € Q,
for all ¢ € C1(]0,1[x D, RP), (3.6) holds. For ¢ € Q, define pg : [0,1] — P(D) by pe(t) = (€ + tea)
and v¢ : [0,1] x D — RY by ve¢(t,z) = v(§ + teq,x) - eo. By Fubini’s theorem, for a.e. { € €,
Ve € LZ{([O7 1] x D,R?). Hence (3.6) rewrites as: for a.e. £ € ), the curve p¢ is an absolutely
continuous curve in the Wasserstein space with a velocity field given by v.. By Proposition 3.18, if
v € P(D), then the function [p], is in H'([0,1]) and

|0 e ] ()] < \/fD [ve(t, )| pe(t,dz) = \/fD V(€ 4 teq, ) - eq|2 (€ + teq, dx).

As the rh.s. is integrable over [0,1] x Q, and « is arbitrary, we can use Proposition 3.19 to see
that [p], € H'(Q). Moreover, taking the square of the previous equation and summing over « €
{1,2,...,p}, we see that for a.e. £ € Q

IVl () < fD V(€ 2)P (e, dz).

Thus, we conclude that u € H'(Q,P(D)) and for a.e. £ € Q,

(3.7 gu(§) < \/L) [v(§,z)[2u(, dr).
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Implication pu € H'(Q,P(D)) = Dir(u) < +o0. Let u € H'(Q,P(D)). Take (v,)nen a sequence
which is dense in P(D). For any n € N, the function [u],, belongs to H'(f2). Fix a € {1,2,...,p}. For
any n € N, for a.e. £ € Q,, the function [p¢],, : t — Wa(p(€ +teq),v) is in H([0,1]) with a gradient
bounded by g,.(§£ + te,). As N is countable, we can exchange the "for a.e. £ € Q," and the "for all
n € N". Hence, for a.e. £ € Q,, the function pg : [0,1] — P(D) belongs to H'([0,1],P(D)) with a
gradient bounded by g, (¢ + te,). For a given ¢ € ),, we can use Proposition 3.18 and Theorem
2.2 to get the existence of a velocity field w¢ € L, (([0,1] x D,R?) such that (p, W p¢) satisfies the

(1-dimensional) continuity equation and for a.e. ¢ € [0, 1],

(3.8) \/L) (W (t,2)Pu(§ + tea, dz) < fe(t)] = |gue (D] < gu(€ + tea).

Now, do this for a.e. £ € Q, and then for any a € {1, 2, ..., p}. Define the velocity field v : Qx D — RP4
component by component, the a-th component at the point £ + te, (with £ € Q,) being defined as
wg‘(t). To justify that v is measurable, notice that w¢ is the solution of an optimization problem [4,
Equation (8.3.11)] which depends in a measurable way of £, thus one can apply Proposition A.1. By
the bound (3.8), it is clear that v € L (Q x D, RP9). Moreover, if o € C}(Q x D, RP),

p
foDVQ.(de - Z f Oap® (€, x)pu(dE, dz)

(The second and last inequalities are Fubini’s theorem and the third one comes from the 1-dimensional
continuity equations). Hence, we see that (u, vu) satisfies the continuity equation.

To conclude, we need to show the opposite inequality in (3.7). If o € {1,2,...,p}, for a.e. £ € Q,
and a.e. t € [0, 1], one has, by definition of g,,, and Proposition 3.18,

\/jD |W?(t7$)\zﬂ(§ + teomdw) = gug (t) = Slellgl |aa[ll/]un (f + tea)‘ 5

which can be rewritten as: for a.e. € Q, forall « € {1,2,...,p},
(3.9) \/f V(& @) - eal?n(€; da) = sup |eq - V[uy, (§)]-
D neN

But this is not sufficient as it only holds in particular directions, namely the ones given by the
canonical basis of RP. To go further, we will show that the velocity field v that we have constructed
is tangent to u, i.e. that Dir(u) = Dir(u, v). Indeed, thanks to Theorem 2.2, as each wyg is tangent,

we can say that for a.e. ¢ € (), there exists a sequence (1, ),en in C1(D, RP) such that v(¢, ) is the
limit of the sequence (V,),en in Li(f) (D,RP9). Now take, v € Li(Q x D,RP?) such that (u,vu)
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satisfies the continuity equation. In particular, for any ¢ € C!(Q x D, RP), one has
j Vpe: (v—v)du =0.
QxD

If we take a € C1(2) and v € C1(D, R?) and use (&, z) := a(¢)y(z) as a test function, we see that

Lot ([ vo@)- i) - viganmie.an) ) ag -
As a is arbitrary, we see that for all ¢ € C*(D,RP), for a.e. ¢ € Q,
(3.10) | vo@) - (e~ vieapmie.a) o

Taking a sequence (@n)neN dense in C*(D, R?), we conclude that for a.e. ¢ € 2, (3.10) holds for all ¢ €
C1(D). Hence taking a sequence (¢, )nen such that (Vi),,),en converges to v(¢,-) in Li(&) (D,RP?),
one sees that for a.e. £ € Q,

va@,x) (#(€ 1) — V(€ 2) e, dr) = 0.

In particular, integrating w.r.t. £, we see that v and v — v are orthogonal in Lz(Q x D,RP?). Hence,

Dir(u i) = | SFPdu= | Sl -vvPdu= [ v = Dirtuvi)
QxD 2 QxD 2 QxD 2
As v is arbitrary, we conclude that Dir(u) = Dir(u, vie), which means that v is tangent to p.

We know that there exists a unique (u-a.e.) tangent velocity field, see Proposition 3.9. Hence, our
construction to build v, which was strongly dependent on the canonical basis of R? gives in fact the
tangent velocity field. In consequence, the same construction can be performed in any orthonormal
basis and will lead to the same velocity field v. In particular, for any unit vector e € R?, for a.e.
€ €, (3.9) holds provided that we replace e, by e. Take (é,,)men @ sequence of unit vector which is
dense in the unit sphere of R?. Then, for a.e. £ € 2, one has

\/JD V(& 2) - Em|?p(§, dx) = sup [y, - V], (€],

neN

Taking the supremum in m € N on both sides, and exchanging the supremum in m € N and n e N
one sees that

\/f V(€ 7)€, dz) = sup \/f V(€ 2) - 2l da)
D meN D

= sup sup |&, - V[p]y, (§)| = sup sup |é, - V[u]y, (§)] = sup [V[p]y, (§)] = gu(S),
meN neN neN meN neN

where the last equality comes from the definition of g,,. O
To conclude the proof of the theorem, we just have to justify that we can put the pieces together.

Proof of Theorem 3.17. The domain () can be cut in a (countable) number of cubes (Qm)men- The
boundary 052 does not play any role as L (0f2) = 0.

Implication Dir(p) < +00 = p € HY(Q,P(D)). Assume first that pu € L?(Q2,P(D)) is such that
Dir(p) < 40 and take v € Li(Q x D, RP?) the velocity field tangent to . Fix n € N. On each cube
O, we know that the function [u],, is in H'(£2,,) with a gradient which is bounded by a function
which does not depend on n and is in L?(2), which is sufficient to say that [u],, € H'(Q) with a
gradient bounded by a function which does not depend on n € N.
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Implication pu € H'(Q,P(D)) = Dir(u) < +00. Assume that u € H'(Q,P(D)). For any m € N,
one can construct a tangent velocity field v € Lz(Qm x D,RP?). Combining Proposition 3.9 giving
the uniqueness p-a.e. of the tangent velocity field and Proposition 3.12 which enables to localize,
one sees that if ,,, N Q,,, # &, then the tangent velocity fields v € L, (€, x D,R") and v €
Li(Qm2 x D, RP?) coincide p-a.e. on Q,,, N Q,,. Thus, one can define a velocity field v on the whole
Q, and it is straightforward to check that v is tangent to u. O

Notice that we have proved an interesting corollary when proving the theorem in the case of a
cube, which is a generalization of [4, Proposition 8.4.5].

Corollary 3.21. Let p € H'(Q,P(D)) and v € L?,(Q x D,RP) such that (u,vp) satisfies the conti-
nuity equation. Then v is tangent to p if and only if; for a.e. £ € Q, there exists a sequence (Vy,)neN in
CY(D,RP) such that (Vip,)neN converges to v(€, ) in LZ(S) (D, RP9).

3.4. Equivalence with Dirichlet energy in metric spaces. In this subsection we will show
that our definition coincides with the one of Koorevaar, Schoen, and Jost [19, 16]. As explained in
the introduction, their formulation goes as follows.

Definition 8.22. Let ¢ > 0 and p € L*(Q, P(D)). We define the -Dirichlet energy of u by

W3 (p(€), 1(n))

Dir.(p) := C,p 5ep 2

Lje—pj<-dédn,
QxQ

-1
where the normalization constant C,, is defined as C, := |n|? (SB(O 3 € - n\2d§> .

One can notice that the e-Dirichlet energy is always finite as P(D) has a finite diameter, but it
can blow up when ¢ — 0. The goal is to prove that Dir. is a good approximation of Dir if ¢ is small
enough. Before stating the main result, let us do the following observation, which will be useful in
the sequel.

Proposition 3.23. Let ¢ > 0 be fixed. Then the functional Dir. : L*(Q,P(D)) — R is continuous
w.r.t. strong convergence and l.s.c. w.r.t. the weak convergence.

Proof: The continuity w.r.t. strong convergence is simple: recall that P(D) has a finite diameter,
thus Lebesgue dominated convergence theorem is enough. The lower semi-continuity relies on the
fact that W3 is a supremum of continuous linear functionals, thus is l.s.c. and convex.

More precisely, fix u € L?(Q,P(D)) and a sequence (u,),en Which converges weakly to p in
L?(Q,P(D)). If ¢ and 7 are points of Q, take (p(£,7,-),%(€,1n,-)) a pair of Kantorovitch potential
between wp(¢) and wp(n). In other words, ¢(&,n,-) and (£, n,) are continuous functions (in fact
uniformly Lipschitz), such that p(¢,1,2) +¥(£,n,y) < |z — y|? for any =,y € D, and such that

(3.11) W3 (&), w(n)) = JD p(&,n,z)p(§, dz) + L) Y&, y)u(n, dy).

One can do that in such a way that ¢ : Q@ x Q@ — C(D) and ¢ : Q x Q — C(D) are measurable.
Indeed, for fixed & and 7, (p(&,n,),¥(&,n,)) € C(D) x C(D) is a maximizer a functional which is
continuous on C'(D) x C(D) and which depends on ¢ and 7 in a measurable way: hence we can
apply Proposition A.1. Then, using the double convexification trick (see [31, Section 2.1]) which
is a measurable operation, we can assume that (p,1) are uniformly (w.r.t. £ and n) Lipschitz and
bounded as elements of C'(D). By the Kantorovitch duality, for every n € N,

C
(3.12) Dir () = FZ? LXQ Liep<e (L} (&, n, x)pn (€, dx) + L) V(&0 y) (0, dy)> dédn.
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Now, apply Lusin’s theorem to the mapping ¢ : Q x Q@ — C(D) (for Lusin’s theorem to other spaces
than R, see for instance [27, Box 1.6]). For any § > 0, we can find a compact X < Q x Q such that
Lo®Lo([Q2xQN\X) < dand ¢ : X — C(D)is continuous on X. Now notice, as |p(&,n,x)— (£, n,y)| <
C|z — y| uniformly in £ and 7, that ¢ : X x D — R is a continuous function for the product topology
on X x D c Q x Q x D. This function can be extended in a function ¢ € C(Q2 x Q x D). To sum up,
there exists a continuous function ¢, which coincides with ¢ on X x D (the important point is that
there is coincidence on all D). Thus, denoting by C' a uniform bound of ¢ and ¢, one has that for
every v e L*(Q,P(D)),

(3.13)

foQ Lie—p<e <JD e(&,n,x)v(E, de)) dédn — foQ Lie pi<e <JD Q& m, x)v (€, d;p)) dgdn‘ < C6.

On the other hand, using Fubini’s theorem one sees that

fm Le_yes (fD ¢(s,n,x>un<£,dx>> dedn = fw UB@,M sb(é,n,x)dn) (e, da).

As ¢ is continuous and bounded, it is not difficult to see that

€, )eQxDHf s¢.na)dneR
B(&,e)nQ2

is continuous. Hence, using the weak convergence of (,)nen,

i [ e ([ ptenomiean)acin= [ vee ([ senanean) .

Using equation (3.13) with both u,, and p as v, and using moreover the arbitrariness of §, we
conclude that we can replace & by ¢ in the equation above:

lim Liepi<e (L (&, ) pn (€, dw)) dédn = LXQ Ljepi<e UD (&, z)p(8, dx)) dédn.

n— -+ QOx0

Of course there is exactly the same statement with ). With the help of this information, combining
(3.12) and (3.11), we reach the conclusion that

i i Die 1)

Cp
> liminf —f Lje_p|<e (f o(&,n, ) pn (€, dz) ~|—f (& n,y)pn(n, dy)> dédn
QAxQ D D

n—+o0 QePt2

C
oo [ e ( | etenoute.an + [ venmmun dy>> dédn

= Dirc(p). O

We are now ready to state and prove the main theorem of this subsection.

Theorem 3.24. Let p € L?(Q, P(D)). Then Dir.(u) converges to Dir(u) as ¢ — 0, and the sequence
(Dirg—ng, (1))neN is increasing for any €y > 0.

In addition for any €y > 0, Diry—n_, I'-converges to Dir on the space L*(2, P(D)) endowed with the
weak topology as n — +o.

Proof. For this proof, we are following the proof of [17, Theorem 8.3.1 and Lemma 8.3.4] (where the
same result is shown for mapping from one Riemannian manifold to another) and also using a key
result of [26].
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Monotonicity of Dir.. If u e L?>(Q, P(D)), ¢ > 0 and ) € (0,1) then one has

Dire(p) < ADirye(p) + (1 — /\)Dir(l—A)a ().

Indeed, this is a consequence of the triangle inequality and is valid for mappings valued in arbi-
trary metric spaces, see for instance [16, Example 1) (i)] or [17, Equation (8.3.4)] for a proof. In
particular, by taking A = 1/2, we see that the sequence (Diry—n. (1t))nen is increasing for any ¢¢ > 0.
Moreover, with well chosen ), one sees that for a fixed u € L?(Q, P(D)) the function € > eDir.(u) is
subadditive, which is enough to ensure the convergence of Dir.(x) to some limit in [0, +00] as e — 0.

The smooth case. Let p ¢ H'(Q,P(D)) and v € L2,(Q x D,RP?) be smooth: they have the same
regularity than in Proposition 3.14. Assume moreover that (u, vu) satisfies the continuity equation.
We will show that the limit of Dir.(u) is smaller than Dir(u, vie). Indeed, one can write

Dir, (1) = jﬂ dir (€)de,

where

W3 (p(§), 1(n)) an,

dirc(§) := G, 52

QnB(e)
If ¢ ¢ 09 (it happens for a.e. &), for £ small enough, B(,e) < Q and we can perform the following
change of variables in spherical coordinates: denoting by SP~! the unit sphere of R? and o its

surface measure,
172
dir(¢) = % Ldl <L ik (“(6)’:2(6 il 7466))74’1d7“> o(de).

Thanks to Proposition 3.14 we have an upper bound for the pointwise limit of the integrand, and
we can pass to the limit as ¢ — 0: we can use for instance Fatou’s lemma as we have a pointewise
lim sup and all the quantity are bounded uniformly in ¢ > 0 from above by a constant (recall that u
is Lipschitz). Hence, for a.e. £ € (,

lim sup dir, (£) < % s [ L 1 < JD V(& x) - (re)|2u(§,dx)> rpldr] o(de)

e—0
_ % g2
-2 ( [NACER d@) (. do)

B % jD |V<§7 x)FN(SJ dx)’

where the last inequality comes from the definition of C),. To integrate this inequality over (2, we
can use again Fatou’s lemma as we still have a uniform bound on v, hence

lim sup Dir. (p) < fQ <limsupdir€(§)> d¢é < JQ <JD %|V(§’;p)|2”(£,d:p)> d¢ = Dir(p, vp).

e—0 e—0

General case: lim. Dir, < Dir. Let p € H'(Q,P(D)) and E € M(2 x D, RP?) be tangent to u, we
know that (Dir.(p))e~0 goes to some limit [ € [0,+w] as ¢ — 0. Let § > 0 be fixed. There exists
g0 > 0 such that

I < Dir.,(p) + 6.
Let (p)nen and (vy,)nen be the two sequences given by Theorem 3.13. We choose n large enough so

that Dir.,(p,,) = Dir.,(p) — 6: it is possible because Dir,, is continuous w.r.t. strong convergence on
L?(Q, P(D)). Hence,

I < Dirg,(p) + 0 < Dirgy(pen) + 20 < Dir(pen, Vipn) + 20 < Dir(p, E) + 26 = Dir(p) + 29,
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where the third inequality comes from the monotonicity and the smooth case which is treated above.
As ¢ is arbitrary, we get that | < Dir(u), which means

limo Dir, (p) < Dir(p).
E—>
This equation still holds if u ¢ H'(Q, P(D)) as the r.h.s. is infinite.

General case: lim, Dir. > Dir. For this part, we rely on [26, Theorem 1]. Let us remark that the
constant ¢ given in this theorem is precisely 4/2C),, (one can look closely at equation (2.7) in [26]),
thus this theorem states, with our notations, that if lim sup, Dir.(u) < +o0, then p € H'(Q, P(D))
and

1 . .
. Somter?as < tim Dir.(u),
(9} e—0
where g, is defined in Definition 3.15. Taking in account Theorem 3.17, we end up with
Dir(p) < lir% Dir. ().
£—
If lim sup, Dir.(p) = +00, then the equation above trivially holds.

The T'-convergence. The statement of I'-convergence is now easy. To summarize, until now we
have proved the monotonicity and that

Dir(p) = lim Dire (p)

for every p e L?(2,P(D)). It is an exercise that we leave to the reader to check that any sequence of
functionals which are l.s.c. (which is the case for the Dir., see Proposition 3.23) and which converges
in a increasing way in fact I'-converges. O

3.5. Boundary values. It is well known that it is possible to make sense of the values of a H'!
real-valued function on hypersurfaces, in particular to give a meaning to the values of such a func-
tion on the boundary of a domain. As we want to define the Dirichlet problem, which consists in
minimizing the Dirichlet energy with fixed values on the boundary 052, we need to give a meaning
to the boundary values of elements of H' (2, P(D)). Koorevaar and Schoen have already developped
a trace theory in a fairly general context [19, Section 1.12]. However, in our specific situation and
in view of proving the dual formulation of the Dirichlet problem, we will define the boundary values
by showing how one can extend the continuity equation for test functions ¢ € C*(Q x D, RP) which
are no longer compactly supported in . Even if we do not prove it in this article, our definition of
trace coincides with the one of [19]: to be convinced one can look at Proposition 6.6 and compare it
to [19, Theorem 1.12.3]. Recall that ny denotes the outward normal to 0.

Theorem 3.25. Let pu € H'(Q2, P(D)). Then there exists a vector-valued measure BT, € M(Q2x D, RP)
supported on nqdS) x D (which means that BT ,(¢) = 0if ¢ - ng = 0 on 0Q x D) such that for any
p e CYQ x D,RP) and for any E € M(Q x D,RP9) for which (u, E) satisfies the continuity equation
and Dir(p, E) < 4+,

(3.14) J Va-edp + J Vpe-dE =BT ,(¢).
QxD QxD
Moreover if p is continuous then for any ¢ € C'(Q2 x D, RP),

BT,() = | ( R ~ng<§>u<§,dw>> o(de),

oQ
where o is the surface measure on o).

BT, stands for "Boundary Term" of p. It is not surprising that, if p is continuous, the value of BT,
depends only on the values of 1 on the boundary.
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Proof Take pe H'(Q,P(D)) and E = viu € M(Q2 x D, RP9) such that (u, F) satisfies the continuity
equation and Dir(u, F) < +oo. The Lh.s. of (3.14) defines a vector-valued distribution on Q x D
acting on . We need to show that it is of order 0 and that it does not depend on FE.

We define f : Q — RP by, for a.e. £ € Q,

£(6) = fD (€, 2)p(€, da).

Using the continuity equation with test functions of the form y¢®, for y € C’(}(Q,Rp) and o €
{1,2,...,p}, one can see that f € H' ({2, R?) and

Puf?(€) = fD Pai?™ (€, x) (€, da) + fD Voo (€,) - v (& 2)(, da).

for all o, 5 € {1,2,...,p}. In particular f admits on 02 a trace f : 9 — R?. We apply the divergence
theorem: one can find in [12, Section 4.3] a statement when 0f) is only Lipschitz and f has Sobolev
regularity. In our case, given the expression of V f, it reads

(3.15) f Vn-sodquf Vog-dE= [ [(©) na()o(de)
QxD QxD o0

where ng is the outward normal to 02 and o its the surface measure. In particular we see that the
r.h.s. of (3.14) does not depend on E. Moreover, as | f|x < |¢|«, the same L* bounds holds for f,
thus

\ [ 7@ no©0tag)| < o0l
o0

It allows to conclude that the r.h.s. of (3.14) is a distribution of order 0 acting on ¢, hence it can be
represented by a measure BT, € M(Q2 x D,RP). From (3.15) it is clear that BT,, is supported on
nooQ) x D.

If we assume moreover that u is continuous, so is f. Indeed, for any £, 7 € Q,

) — Fn)] = j so(»:,x)u(s,dx)—jDsom,x)u(s,dx

< [ lete.0) et alute. o) + U ol a)ulédn) ~ | ooty az)

< IVapllé — ] + \ | etnaute.an - [ ptnoutnan).

When ¢ — 7, the first term obviously goes to 0, and the second one too by definition of the weak
convergence (by assumption p(£) — w(n) in the weak sense). Thus f coincides with f, which gives
the announced result. O

If u € HY(Q,P(D)), using the disintegration theorem and testing against well chosen functions, one
can show that there exists 1 : 02 — P(D) defined o-a.e. such that BT, = nojt ® 0. The mapping 1
can be seen as a definition of the values of 1 on 09).

Now we can define what it means to share the same boundary values and prove that the set of
with fixed boundary values is closed.

Definition 3.26. Let p and v two elements of H*(Q, P(D)). We say that p|oo = v|oq if BT,, = BT,.
Proposition 3.27. Let u, € H'(Q, P(D)) and C € R be fixed. Then the set

{ne H'(Q,P(D)) : ploa = mlon and Dir(p) < C}
is closed for the weak topology on L*(Q, P(D)).
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Proof The proof is straightforward. Indeed, take a sequence (p,)nen in € L2(Q, P(D)) such that
Bnloa = wplon and Dir(u,) < C for any n € N, and assume it converges weakly to some pu €
L?(Q,P(D)). By lower semi-continuity of Dir, we know that Dir(u) < C. For any n € N choose
E, € M(Q2 x D,RP?) tangent to u,, similarly take Ej, tangent to p;. The identity p,|o0 = oo can
be written: for every ¢ € C1(Q x D, RP)

(3.16) f V- odp, + f Vpp-dE, = f V- odpy, + f Vpy - dEy.
QxD QxD QxD QxD

As seen in the proof of Proposition 3.11, one can assume that, up to extraction, (E,),en Weakly
converges to some FE. It is easy to see that (u,E) satisfies the continuity equation and that
Dir(p, F) < C < 4. Thus, we can pass to the limit in (3.16) and see that for any ¢ € C'(Q x D, RP),

f V-godu—kf VDgp-dE—f V-cpdub—l—f Vpy - dEy,
QxD QxD QxD QxD

which exactly means that p|og = wyaq- O

4. THE DIRICHLET PROBLEM AND ITS DUAL

4.1. Statement of the problem. With all the tools at our disposal, we are ready to state the
Dirichlet problem. It simply consists in minimizing the Dirichlet energy under the constraint that
the values at the boundary are fixed.

Definition 4.1. Let p, € HY(Q,P(D)). Then the Dirichlet problem with boundary values p, is
defined as

min {Dir(p) : pe H'(Q,P(D)) and ploo = mplon} -
A mapping p € HY(Q,P(D)) which realizes the minimum is called a solution of the Dirichlet prob-
lem.

Definition 4.2. Let u € H'(Q,P(D)). We say that p is harmonic if it is a solution of the Dirichlet
problem with boundary values p.

With the work of the previous section, the existence of at least one solution is a straightforward
application of the direct method of calculus of variations.

Theorem 4.3. Let p, € H(Q, P(D)). Then there exists at least one solution of the Dirichlet problem
with boundary values p,.

Proof. There exists at least one p with finite Dirichlet energy which satisfies the boundary con-
ditions, namely p;,. Thus, one can consider a minimizing sequence (u,),en. By compactness
of L*(Q,P(D)), we can assume, up to extraction, that this sequence converges weakly to some
p e L3(Q,P(D)). By Proposition 3.27, we know that p also satisfies plsn = pplon. The lower
semi-continuity of Dir allows to conclude that p is a minimizer of Dir. O

Let us spend a few words about the question of uniqueness. Of course, the proof above provides
no information about it. By convexity of the Dirichlet energy (Proposition 3.11), we know that the
set of solutions of the Dirichlet problem is convex. Recall that if Q = [0, 1] is a segment of R, then
the Dirichlet problem reduces to the problem of finding a geodesic between the two endpoints 1;(0)
and pp,(1). It is well known that a sufficient condition for uniqueness is to impose that either p;(0)
or py(1) are absolutely continuous w.r.t. £p, and there can be non uniqueness when it is not the
case (see for instance [27, Chapter 5]). Hence, it would natural, in order to investigate the question
of uniqueness, to impose that for every ¢ € 02, the measure p;(§) is absolutely continuous w.r.t.
Lp. We do not know if uniqueness holds under this hypothesis: a difference with the case where
2 is a segment is the fact that we do not know a static or Lagrangian formulation. In other words,
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we do not know the equivalent of transport plans, which in the case of a 1-dimensional €2, allow to
parametrize geodesics and to greatly simply the problem. However we are able to prove uniqueness
in a non trivial case: the one of a family of elliptically contoured distributions treated in Subsection
7.2, see also the introduction where the strategy of the proof is discussed.

4.2. Lipschitz extension. To give ourselves the boundary conditions, we need a mapping p; de-
fined on the whole (2, even though only its values near 02 will play a role. Thus a natural question
arises: if u; is only defined on 01, is it possible to extend it on Q? The next theorem shows that
the answer is positive in the case where p;, is Lipschitz on o). Indeed, in this case we can build an
extension which is Lipschitz on €, thus in H*(Q, P(D)) thanks to Theorem 3.17.

Theorem 4.4. Let p; : 00 — P(D) a lipschitz mapping. Then there exists p : 2 — P(D) Lipschitz
such that p(&) = (&) for every & € €.

For a continuous p the boundary term BT,, depends only on the values of 1 on 052 (Theorem 3.25),
hence the boundary term of the Lipschitz extension of y; : Q2 — P(D) does not depend on the
extension. In other words, the following problem is well defined:

Definition 4.5. Let p; : 02 — P(D) a Lipschitz mapping. Then the Dirichlet problem with boundary
values p; is defined as the Dirichlet problem with boundary values pp, where py, is any Lipschitz
extension of p; on ).

Now, let us prove the Lipschitz extension theorem. It relies on the following Lemma, which
allows to treat the case where ) is a ball.

Lemma 4.6. Let B(0,1) be the unit ball of RP and SP~! := 0B(0,1) its boundary. Let p; : %1 —
P(D) a Lipschitz mapping and take xy € D. Define, for any r € [0,1] the map T, : D — D by
T,(z) = rx + (1 — r)xg. Then the mapping p : B(0,1) — P(D) defined by

p(ré) = Tr#[u(8)]
for any r € [0,1] and any ¢ € S*! is Lipschitz.

Proof. If ¢ € S9! is fixed, then r € [0, 1] — u(r¢) is the constant speed geodesic joining d,, to z;(£).
Hence, we can write that Wy (u(r¢), p(s§)) < C|r—s|, where C depends only on the diameter of P(D).
On the other hand, as 7, is r-Lipschitz in D, then v — T, #v is also r-Lipschitz in P(D). Hence, for
any ¢ and 7 in S%°!, one has Wy (u(ré), u(rn)) < Cr|¢ — n|, where C is the Lipschitz constant of p;.
Putting the two estimates together, we deduce that for any r,s € [0,1] and any ¢, € SP~1,

Wa(p(r§), u(sn)) < C[|r — s + min(r, s)|£ — ],
which is enough to conclude that p is Lipschitz. d

Notice that the Lipschitz constant of the extension is not controlled by the Lipschitz constant of p;:
the distance between 0,, and the range of y; also plays a role as u(0) = ¢,,. Hence, we cannot use
a decomposition with Withney cubes to extend mappings defined on arbitrary closed subsets 2, but
only on the boundary of smooth sets: basically we need to use Lemma 4.6 only a finite number of
times.

Proof of Theorem 4.4. We will use Lemma 4.6 in the following form: if 2 is a domain which is in a
bilipschitz bijection with a ball, then Theorem 4.4 holds for this domain.

We reason by induction on p > 1 the dimension of 2. In dimension 1, Q) = I is a segment.
To extend a mapping defined only on the boundary of the segment I, we take the constant speed
geodesic in P(D) between the values of p; at the two endpoints of 1.

Now assume that the result holds for some p—1 > 1 and let 2 be a compact domain with Lipschitz
boundary in RP. The goal is to cut €2 in a finite number of pieces on which Lemma 4.6 apply. For
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each £ € (2 we choose r¢ > 0 such that B(£,7¢) N2 is in a bilipschitz bijection with a ball. It is obvious
that we can do that for ¢ € , and for points on 92 we use the fact that  is locally the epigraph of a
Lipschitz function. By compactness, we find balls By, Bs, ..., By covering €2 such that B, n Q is in
a bilipschitz bijection with a ball for any n € {1,2,..., N}. We can of course assume that B, is not
included in B,, for any n # m. Then we define recursively X; := B1nQ and X,, = (B, n Q)\X’n_l for
ne{2,...,N}. Forany ne {1,2,..., N}, X, is still in a bilipschitz bijection with a ball. On | J,, 0.X,,,
which is made of 02 and of pieces of spheres of R?, thus locally in bilipschitz bijection with Lipschitz
domains of R?~!, we can use the induction assumption and extend p;. Then, we use Lemma 4.6 to
extend p on X, for each n € {1,2,..., N}. We have obtained a function p which is continuous and
Lipschitz on each X,,,n € {1,2,..., N}: it is globally Lipschitz on €. O

4.3. The dual problem. We will know show a rigorous proof of the absence of duality gap. The
dual problem was already obtained, at least formally, in the introduction.

Theorem 4.7. Let p, € H' (Q,P(D)). Then one has

IV pe|?
2

sup{BTub(gp) : e CYQx D,RP) and Vg ¢+ éOoanD}

= min {Dir(p) : pe H(Q,P(D)) and plog = poloa} -

Proof. We rely on the Fenchel-Rockafellar duality theorem which can be found in [31, Theorem
1.9]. Let X := C(Q x D,R!*P4) the space of continuous functions defined on the compact space
Q x D and valued in R'*?? endowed with the norm of uniform convergence. An element of X will
be written (a,b), where a € C(Q2 x D) and b € C(Q2 x D,RP?). The dual space X* is, by the Riesz
theorem, M(Q2 x D, R!™P7), Again an element of X* will be written (u, E) where pe M(Q2 x D) is a
signed measure and E € M(Q2 x D,RP9) is a vector-valued measure. We introduce the functionals
F:X - RandG: X — R defined as, for any (a,b) € X,

[b(&, 2)?

F(a,b) = 0 ifa(§7x)+T < 0 for every ({,2) € Q x D
+o0  else,
T 4w else.

Notice that thanks to (3.14), G is well defined and does not depend on the choice of ¢ such that
(a,b) = (Va - »,Vpp). Notice also that at the point (—1,0) € X, one has that F' is finite and
continuous and that G is finite (take p(¢,z) := (—£4,0,0,...,0), where ¢! is the first component of
¢). As moreover F' and G are convex, one can apply Fenchel-Rockafellar duality which means

- (u%?x*[F (1, E) + G (—p, = E)] = inf(F + G)

2
= —SUP{BTM,(@) : peCHQYx D,RP) and Vg - ¢ + WL;D‘ <O},

where the last inequality is just a rewriting of the definition of F' and G. Let us compute F*(u, F).
By definition,

F*(,u,E)—sup{f ad,u—i—f b-dE :(a,b)eC(QxD,IC)},
QxD QxD

where K is defined in Definition 3.5. In particular, if px is not a positive measure, then choosing
suitable negative a, one sees that F*(u, F) = +o. Moreover, if p € L?(Q2,P(D)) and (u, E) satisfies
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the continuity equation, then F*(u, ) = Dir(u, E): this is precisely Definition 3.5. On the other
hand, we can compute G*: for any (u, F) € X*,

G (—p,—F) = sup <BT“b(cp) — f Va-edu — f Vpp- dE> .
peCH(Qx D,RP) QxD QxD

By linearity of the expression inside the sup w.r.t. ¢, we see that G*(—u, —F) < +o0 if and only if
G*(—p,—FE) = 0, which translates in

BT/%(‘P) = f

ngpdu—kf Vpp-dE
QxD

QxD

for every p € C'(Q2 x D, RP). Let a € C(2) a continuous function. It can always be written a = Vq - ¢,
where p € C1(Q, RP) (take ¢ = Vf where f solves Af = a), thus using the fact that for such a ¢,

BT,() = | Varedm = | adu = | a(©ds
QxD QxD Q
one sees that if G*(—u, —F) < 400, then
J a(§)d¢ = adp.
Q QxD

Provided that p is a positive measure (recall that it happens if F*(u, F) < +00) and by arbitrariness
of a, it implies that the disintegration of pu w.r.t. Lo is made of probability measures on D, in other
words that p € L?(Q2,P(D)). Once we have this information, testing with functions ¢ which are
compactly supported on 2, we see that if G*(—u,—F) < 4o then (u, F) satisfies the continuity
equation, and testing with arbitrary ¢, we see that BT,, = BT,,. In the end, one concludes that

(unEl)igX*[F*(u, E) + G*(—p,—FE)] = min {Dir(n) : pe H'(Q,P(D)) and ploo = mplon} - O

A natural question which arises is the existence of an optimal ¢ € C'(Q x D, RP) (or in a space of
less regular functions). If ) is a segment, the constraint on ¢ translates into the Hamilton-Jacobi
equation

\V4 2

drp + —‘ ;0 |

whose explicit solutions are known. In particular, one can parametrize the function ¢ by its value

at the initial time, the unknown becomes a scalar function defined on D. In the compact case, by

the double convexification trick, one can get compactness in a maximizing sequence. In our case,
the constraint reads in full coordinate

P 124
Z Oap® + 3 Z Z |6’Z-<,0°‘|2 < 0.
a=1

a=11i=1

<0,

Now we do not know if one can parametrize a p which satisfies the constraint by its values on the
boundary of 052 (and even if it were the case, on which part of the boundary?). Moreover, notice
that the function ¢ is vector-valued, though the constraint involves only one scalar equation: to get
compactness out of it seems more complicated. We have not investigated deeply the question of the
existence of an optimal ¢, but we believe that it can be substantially more complicated than in the
case where () is a segment of R.
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5. FAILURE OF THE SUPERPOSITION PRINCIPLE

5.1. The superposition principle. In this section, we want to explain why a powerful tool to
study curves valued in the Wasserstein space (i.e. the case where () is a segment of R), namely the
superposition principle, fails in higher dimensions. To say it briefly, there is no Lagrangian point of
view for mappings into the Wasserstein space, one has to work only with the Eulerian one. Notice
that the question of the existence of a superposition principle was already formulated by Brenier [9,
Problem 3.4], but left unanswered. As we want to prove a negative result, we will not only provide
a counterexample to the superposition principle, but also try to explain the obstruction and why
this principle fails for all but few exceptional cases. Let us first recall the superposition principle
for absolutely continuous curves.

The set Q will be replaced by the unit segment I = [0,1]. As stated in Proposition 3.8, set
HY(I,P(D)) coincides with the set of absolutely continuous curves. We denote by I' = C(I, D) the
set of continuous curves valued in D endowed with the norm of uniform convergence, it is a polish
space. If f € T, then f denotes the derivative w.r.t. time of f provided that it exists. For any ¢ € I,
e; : I' > D is the evaluation operator, which means e;(f) = f(¢) for any f € I'. The following result
can be found in [4, Section 8.2].

Theorem 5.1. Let € H'(I,P(D)). Then there exists a probability measure Q € P(I') such that

() forany t € I, ei#Q — p(t) ;
(i1) the following equality holds:

ire) = [ ([ 5l70kar) Q)

The measure () can be seen as a multimarginal transport plan coupling all the different instants,
whose 2-marginals are almost optimal transport plans if they are taken between two very close
instants. In other words, for any ¢ and s in I, (e, e;)#Q is a transport plan between p(s) and p(t)
(by (1)), and it is almost an optimal transport plan if s is very close to ¢ by (ii).

Another way to see it is the following: if f € I', then we can also see it as an element p; of
H'(I,P(D)). Indeed, just set pu(t) = 4 for any ¢ € I, and one can define E; € M(I x D,RY) by, for
any be C(I x D,RY),

f b-dEf::fb(t,f(t))-f(t)dt.
IxD I

With this choice, one can check that
. . N
Dir(pys) = Dir(py, Ey) = , S IF @t

Then, Theorem 5.1 is saying that there exists Q) € P(I') such that p is the mean w.r.t. @ of the py’s
(this is (i)), and such the E which is tangent to p is the mean w.r.t. Q of the £y (indeed, thanks to
Jensen’s inequality, (i) translates in the fact that Dir(p) = Dir(p, {p EfQ(df)) ).

Let us try to see what a superposition principle would look like if the dimension of 2 is larger
than 1. We denote by F the space L?(f2, D) which is a polish space. As it was already done in [9], if
f € H'(Q,D), then we can see it as an element 1y of H'(Q2, P(D)) by setting pu;(€) := 64(¢). In other
words, a classical function can be seen as a mapping valued in the Wasserstein space by identifying
f(€) € D with 0y € P(D). More precisely, we define py € L*(Q, P(D)) and Ey € M(Q x D,R??) by,
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foranya e C(2 x D) and b e C(Q2 x D,RP9),

|, odus o= | ate rnag

[ veamy = | we s e
QxD Q

Proposition 5.2. If f € H'(Q, D), and if ps and E; are defined as above, then E; is tangent to ¢
and

Dir(uy) = Dir(yay. ) = | FIV(©Ps

Proof. To check the first part, take ¢ € C1(Q x D, RP). Defining 3 € H (Q,R?) by 3(¢) = ¢(&, £(€)),

o

we have that ¢ is compactly supported in 2 and

Vo= (Va-9)& f&)+ (Voe)& £(8) - VF(E).

Integrating this identity w.r.t. 2, as the 1.h.s. vanishes by compactness of the support of @, we see
that we can conclude that (p ¢, E) satisfies the continuity equation.

Notice that £y has a density vy € Lif (Q2x D,RPY) w.rt. pgivenby vs(§,z) = Vf(£). In particular,
for a fixed &, v¢(&,-) is constant hence the gradient of a function. Using Corollary 3.21, one sees
that it is enough to conclude that E is tangent. Moreover, as v; does not depend on z,

Dir(us) = Dir(us ) = | Sivi(@)Putds.do) = | Sivs©Pde = | GIvs©Pa. O

We mention that [9, Theorem 3.1] states that if f : 2 — D is a (classical) harmonic map, then pif
is also an harmonic mapping. To prove such a fact, Brenier showed how one can build a solution of
the dual problem (with boundary values p ) from the function f.

By analogy, the superposition principle would read as follows: If u € H' (2, P(D)) and E € M (£ x
D,RP9) is tangent to pu, does there exist ) € P(F) such that p is the mean of iy w.r.t. @Q and E is the
mean of Ey w.r.t. Q? Thanks to Jensen’s inequality and the uniqueness of the tangent momentum,
the second condition can in fact be rewritten as

Dir(s) = Dir(u. 9) = | Dir(us E)Q(af) = | < | %Ivf(£)|2d£> Q).

These considerations can be summarized by the following definition, which is the same as [9, Prob-
lem 3.4]. For f € F we define its "classical" Dirichlet energy Dir.(f) by

D) — {fg LIVAQPE if fe H'(Q. D),

+00 else.

Definition 5.3. Let € H'(Q,P(D)). We say that p admits a superposition principle if there exists
Q € P(F) such that

(i) for any a € C(Q2 x D);
[ adu= [ (] oterienac) aan.
QxD F \Ja
(i1) the following identity holds:

L Dir,(£)Q(df) < Dir(ss).



38 HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE

In particular, with our definition, if Q represents u € H'(Q, D), then for Q-a.e. function f one has
Dir.(f) < +oo hence f belongs to H'(f2, D). Let us underline that (i) is heuristically the same as
(i) of Theorem 5.1, but in a form integrated over 2 because the evaluation operator does not make
sense in higher dimensions: the elements of 7 are not necessarily continuous. In Definition 5.3,
if (i) and (ii) holds, then the inequality in (ii) is in fact an equality because the reverse inequality
always holds. Indeed, if y1 satisfies the superposition principle, we can say that u = {- p;Q(df). By
convexity of the Dirichlet energy (Proposition 3.11), we can apply Jensen’s inequality, thus

Dir(u) < | Dir(e)Q(d/) = | Dirc( (1)

5.2. Counterexample. We will first provide a counterexample which we will try to make as generic
as possible. In what follows, we take Q2 := U to be the unit disk of R? and S! = U its boundary.
We also take D = U. We view U as a subset of the complex plane C: multiplication on U means
complex multiplication.

Let p, : S' :— P(U) be the (complex) square root: it is the mapping defined by, for ¢ € S,

1 1
lj's(g) = 5 Z 52 = 5(5\/5 +57\/§)7
22=¢

where /¢ is a (complex) square root of . The function s is clearly Lipschitz (with Lipschitz
constant equals to 2). In fact, if ¢ = ¢ with t € R, one can write

Z' 1
[1,3(6 t) = 5 (6exp(it/2) + 5exp(it/2-‘:—i7r)) :

The function ¢ — pu,(e) is 27-periodic, but it cannot be written as a superposition of continuous
2m-periodic functions, only 4w-periodic ones. Hence, the superpositon principle with continuous
functions fails for this mapping. This example is well known in the theory of Q-functions [10], we
took it from there. To our purpose, we will need the fact that the superposition principle with F'/2
functions fails for the mapping p,: roughly speaking, it holds because H'/2 functions, in dimension
1, cannot have jumps.

Lemma 5.4. There is no function f € H'/?(S', U) such that f(£)? = ¢ for a.e. £ € S'.

As this lemma is not directly related to harmonic mappings, we postpone its proof to Appendix B.
With the help of this lemma, we can prove that no mapping p € H'(U,P(U)) such that p|su = ps
can have a superposition principle: indeed, if it were the case, then we could restrict the superpo-
sition to AU, and we would have a superposition principle for u, with functions in H'/2 which is a
contradiction. To make this argument rigorous is a bit technical given the definition we chose for
the boundary values of mappings in H!(U), P(U)): u is not necessarily continuous.

Proposition 5.5. Let u € H' (U, P(U)) such that p|;u = ps. Then p cannot admit a superposition
principle.

Proof. We will of course reason by contradiction. We assume that there exists Q € P(F) which
satisfies the points (i) and (ii) of Definition 5.3 (in fact only point (i) will be sufficient). Let £ = vpu
tangent to u. Take 6 > 0 and ¢ > 0. We choose x. € C''([0,1]) an increasing function supported on
[1 —&,1], such that x.(1) = 1. Define a. € C*(U,R?) and bs € C*(U x U) by, for any ¢, z € U,

ac(€) = %msn,
€ — 2P
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In words, a. is a vector-valued function, parallel to lines issued from the origin, and whose norm is
increasing on the annulus of radii 1 — ¢ and 1 from 0 to 1. Define A, = {€ €U : 1 —¢ < [{| < 1} the
annulus outside which a. vanishes. A simple computation gives

|V ) aa(i) - Xa(\§|)| < C1A5<§)7

where C does not depend on . On the other hand, b5 is a smooth scalar function, which vanishes
if 22 = ¢, which is larger than 1 if |22 — ¢| > § and whose derivative is bounded by C62. As a
test function for the continuity equation, we take ¢(&, z) = a-(£)bs(&, x). With this choice, for every
¢ e S!, one has

| teamledn - 3 3 ele.n) -

x2=¢

Thus, BT, (¢) = 0 and the continuity equation tested against ¢ reads

U X€(|£|)b6(£a$)“(d£>d$)+f [a=(§) - Vabs(§, x) + (a:(§) ® Vbs(&, ) - v(§, ) |u(dE, dz)| < Ce.
UxU UxU

Indeed, in the r.h.s, the reminder of V - a. of order 1 has been integrated over A. whose area scales
like e. For the first integral, we use the assumption that p satisfies the superposition principle. For
the second one, we bound Vb;s by C5~2, notice that a. vanishes outside A, and use Cauchy-Schwarz:

[ ([, setehmste rnac) @an = [ guleimate mtae

< Cf (1 + [v(&, 2))pa(de, d) + Ce
A xU

\/ f (1 + [vi(&, )2 )u(ds,dm\/f w(de, d) + Ce
UxU AcxU

52«/1+2D1r p)ve + Ce < }g,

where C denotes a generic constant which changes from one line to another and the inequality may
hold only for small € and §. Let us call 75, c F the set of f € F such that

fU X EDIF(©)? — €[2de = 82

By Markov’s inequality, one can say that

QFse) = Q ({f =75 | xehnste Foae > 1}) <[ (L Xa(lf\)b(s(&f(i))df) Q) <Y

Now take the sequence ¢, := 27". By the previous estimate, one sees that

+00
Z Q(Fse,) < +0.

n=1

By the Borel-Cantelli lemma, one has that Q(limsup,, 75.,) = 0 which means that for Q-a.e. f € F,
there exists ng (which may depend on f) such that

fU Xen (EDIF () — e < 82
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for all n > ng. Recall also that Q-a.e. f belongs to H'(€2, D). For such an f, sending n to +c and by
definition of the trace of f,

|, 17©2 ~ ¢Potay < &,

where in this formula f stands for the trace of f on S! and ¢ the surface measure on 0U. Then
using this estimate for smaller and smaller § along a countable sequence, we conclude that Q-a.e.
function f satisfies f(¢)? = ¢ a.e. on S!. But on the other hand the trace of Q-a.e. function f belongs
to H'/2(S',U), which is a clear contradiction with Lemma 5.4. O

From this Proposition, we deduce that there exists an harmonic and a Lipschitz mapping u €
H'(Q,P(D)) for which the superposition principle fails: just take respectively a solution of the
Dirichlet Problem with boundary values u, or a Lipschitz extension of .

Though, these examples can seem too particular and rely too much on some singular boundary
conditions. To produce a stronger example, we will use the fact that, roughly speaking, the set
of 1 admitting a superposition principle is stable by approximation. Thus, by contraposition, any
neighborhood of a ;# which does not admit a superposition principle will contain other measures not
admitting a superposition principle.

Proposition 5.6. Let (i1,,)n.eN @ sequence of elements of H'(Q, P(D)) such that, for every n € N, u,
admits a superposition principle. We assume that (pu, )neN converges weakly to p e H'(Q,P(D)) and
that lim,, Dir(u,) = Dir(u). Then p admits a superposition principle.

Proof. For any n € N, let Q,, € P(F) such that (i) and (ii) of Definition 5.3 are satisfied. By Rellich’s
theorem (recall that D is compact), the functional Dir. : 7 — R has compact sublevel sets in the
L?(2, D)-topology. As

supf Dir.(f)Qn(df) = sup Dir(u,) < 40,

neN JF neN

we can say [4, Remark 5.1.5] that (Q,)nen is tight, hence up to extraction it weakly converges in
P(F) to some Q € P(F). We will show that () represents p.
Let us take a € C(Q2 x D) and define A : ¥ — R by, for any f € F,

A(f) = La(é,f(é))dé

The function A is continuous for the L? topology. Thus, starting from
| an@uan = adp,
F QxD

which is valid by Definition 5.3, we can pass both terms to the limit (recall that u,, weakly converges
to u) and see that (u, Q) satisfies (i) of Definition 5.3.
Moreover, as Dir, is L.s.c. (for the L?(€2, D) topology), we can say that

f Dir.(f)Q(df) < liminff Dir.(f)Qn(df) = liminf Dir(p,,) = Dir(p),
F n—-+0o0 F n—+aoo
which gives point (ii) of Definition 5.3 and concludes the proof. O

Corollary 5.7. There exists a smooth mapping in H'(U,P(U)) (it has the same regularity than in
Proposition 3.14) for which the superposition principle fails.

The ideal result would be the existence of a smooth and harmonic mapping for which the super-
position fails. However, as we lack a theory of regularity for harmonic mappings valued in the
Wasserstein space, we do not know how to produce one.
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Proof Let 1 € H'(U,P(U)) be a solution of the Dirichlet problem with boundary values u,. By
Proposition 5.5, we know that the superposition principle fails for g. Let (w,, vi,)nen the sequence
of approximation of  given by Theorem 3.13. We notice that u,, converges strongly to i and Dir(u,,)
converges to Dir(1) when n — +oo. Thus, using Proposition 5.6, we see that for n large enough, u,,
does not satisfy the superposition principle. a

5.3. Local obstruction to the superposition principle. The counterexample provided above
shows a global obstruction. Indeed, the mapping p; can be thought locally in Q as a superposi-
tion of classical functions, but there is a contradiction if we try to make this superposition global.
On the other hand, there is also (at least formally) local obstructions to the superposition princi-
ple. To describe them we will stay sloppy about the regularity issues and concentrate on heuristic
explanations.

Indeed, if © admits a superposition principle given by Q € P(F), and if v is the velocity field
tangent to p, then for Q-a.e. f, one has Vf(§) = v(&, f(£)). To prove this fact, notice that the
tangent momentum F = vpu is equal to Sf E;Q(df) (see the discussion preceding Definition 5.3),
i.e. for any b e C'(Q2 x D,RPY),

LXD b-dE = L (L b(&, f(£)) - Vf({)d{) Qdf).

Thus, one can say that

Dire) = [ glvPan= [ Gveap= [ ([ gviese)- @) ar)

><D2

<[ ( [ Flvee s + [95©P) d§> Q(df)

[ wPa 3 [ ([ 5ivrrae) e
= Dir(p).

In particular, the inequality is an equality: one sees that for Q-a.e. f € 7, one has Vf(§) = v(§, f(€))
for a.e. £ € QL.

~ The analogue if 2 is a segment is the fact that (using notations from Theorem 5.1) for Q-a.e. f,
f(t) =v(t, f(t)): the measure @ is supported on the flow of the vector field v (see [4, Theorem 8.2.1]).
In dimension larger than 1, the constraint Vf = v(-, f) is much stronger. In particular, it implies
that along every curve v : I — 2, the function f o~ follows the flow of v-4. However, there are many
different curves going from one point to another: if we want all the results to be coherent, some
commutation properties of the flow of v along different directions are needed, which turns out to be
a very strong constraint. Indeed, coordinatewise, the constraint reads for every o € {1,2,...,p} and
ie{l,2,...,q},

0af"(§) = v (&, f(E))-

If we differentiate w.r.t. 3, we find that

Opaf"(€) = O5v™ (6, F(©) + 2, B (0™ (&, 1(€)) = (%v‘”‘ + 2 vﬁjajv“> (& 1(9)).

j=1 Jj=1

The 1.h.s is clearly symmetric if we exchange the role of o and 3, so must be the r.h.s. It implies
that for all o, B € {1,2,...,p},

q q
Ouv? + Z Vo‘JéjvﬁZ = 0gv™ + Z vﬁjajvm,
j=1 J=1
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at least on the support of p in 2 x D. In other words, we see that v must satisfy a differential
constraint for the superposition principle to hold, and there is no reason why this constraint would
be satisfied for a generic u € H'(Q, P(D)), even for a harmonic mapping.

An other way to understand the local failure of the superposition principle is the following. We
will be sloppy and use the evaluation operators e; : 7 — D defined by e¢(f) := f(£) (these operators
are in principle not defined as elements of 7 are not continuous). If u admits a superposition
principle, it would mean that for { and n very close, (e¢,e,)#Q € P(D x D) is a transport plan
between (&) and w(n) (because of point (i)) which is almost optimal (between of point (ii)). It also
works with three measures: if £, 7 and 6 are three points of 2 very close to each other (for instance
located at the vertices of an equilateral triangle), then (e, e,, e9)#Q € P(D x D x D) is a coupling
between p(&), u(n) and p(f) whose 2-marginals are almost optimal transport plans. However, it is
known that, if u;, 42 and pu3 € P(D), then in general there exists no coupling between the three
whose 2-marginals are optimal transport plans.

6. A ISHIHARA TYPE PROPERTY

As explained in the introduction, we want to show in this section that Fou is subharmonic (which
means A(F o ) > 0) as soon as u € H'(Q,P(D)) is harmonic and F : P(D) — R is convex along
generalized geodesics. As far as the regularity of F is concerned the simplest would be to assume
that F' is continuous on P(D). Nevertheless, this assumption is very strong and excludes natural
functionals (like the internal energies). In the case where F' is only l.s.c., we will need additional
assumptions: it is the object of the following definition.

Definition 6.1. We say that F': P(D) — R u {+w} is regular if it is l.s.c. on P(D), if
pe P@PD) ~ | Pl

is l.s.c. for the weak convergence on L?(, P(D)), and if F is bounded on the bounded sets of L (D) n
P(D).

Lower semi-continuity of F' is a reasonable assumption. To impose that F' is bounded on bounded
sets of L*(D) n P(D) is not a strong constraint as D is compact, we will need it to ensure that, by
regularizing probability measures with the heat flow, we get measures for which F is finite.

Lower semi-continuity of § : u — §,(F o u) is less usual: by a standard argument left to the
reader, it implies that F' is convex for the affine structure on P(D). However, we do not know in
the general case if the fact that F' is convex and l.s.c. on P(D) is enough to ensure lower semi-
continuity of §. Indeed, to apply abstract functional analysis arguments, we would like to work
in the space M(€2 x D) endowed with the total variation norm: it is the dual of the Banach space
(C(Qx D), o) If Fis convex and l.s.c. on P(D), it can be shown easily that § is convex and L.s.c.
on M(Q2 x D) endowed with the total variation norm. However, it only implies that § is l.s.c. for
the topology on M(Q2 x D) defined by duality w.r.t. the dual of M(2 x D), the latter being strictly
larger than C(Q2 x D).

However, for the usual functionals on P(D) we can do an ad hoc analysis and we have the follow-
ing results.

Proposition 6.2. Let V € L'(D) a l.s.c. function. Then the functional
F:,ueP(D)»—»f Vdu
D

is regular.
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Let f : [0,4+0) — R a proper and convex function such that lim;_, 4 f(t)/t = +c. Then the
functional defined by

F:uePD)— fo(#(;U))dx if 11 is absolutely continuous w.rt. Lp
40

else,
is regular.

Proof AsV isls.c. on the compact D, it is bounded from below. As V is in L'(Q), the function F is
clearly bounded on bounded sets of L*(D) n P(D). Then, we can use [27, Proposition 7.1], seeing
either V as a l.s.c. function on D, or as a l.s.c. on Q x D (constant w.r.t. its first variable) to get that
both F and {,(F o-) are Ls.c.

For the internal energy, to get lower semi-continuity of I’ we rely on [27, Proposition 7.7]. To get
the lower semi-continuity of {,,(F o -), we can see that

f(p(&, x))dédx  if p is absolutely continuous w.r.t. Lo ® L
LFW@%—~&D ’

+00 else,

thus [27, Proposition 7.7] still applies. As f is bounded on bounded sets of [0, +o0), we see that F' is
bounded on bounded sets of L*(D) n P(D). O

However, the interaction energy is not regular: it lacks convexity w.r.t. the affine structure on P(D)
[27, Chapter 7]. For instance, take 2 = D = [0, 1] and define F': P(D) — R by

F(p) = fDxD |z — y[*u(da)u(dy).

This functional is continuous on P(D) and bounded on bounded subsets of L* (D) nP(D). However,
if we define p,,(§) = 6,,(¢) with x,(§) = 1/2 + 1/2cos(nf), one can see that F'(u,(§)) = 0 for all
¢ e Qandn e N, but (pu,)nen converges weakly on P(Q2 x D) to pu := Lo ® Lp, for which the value
§o(F o p) is strictly positive. On the other hand, as soon as the interaction potential is continuous,
the interaction energy is continuous on P(D).

Finally, let us recall that a function f : Q — R is said subharmonic on € in the sense of distribu-
tions if Af > 0 as a distribution in .

Theorem 6.3. Let F': P(D) — R u {+x} a functional which is convex along generalized geodesics.
Assume either that F is continuous (and everywhere finite) on P(D) or that F is regular. Let p; :
02 — P(D) a Lipschitz mapping such that sup(F o p;) < +0o0.

Then there exists at least one solution p € H'(Q,P(D)) of the Dirichlet problem with boundary
conditions p; such that (F o p) : Q — R is subharmonic in Q) in the sense of distributions and

(6.1) esssup(F o p) < sup(F o ;).
Q oQ

Moreover, if F is regular then u can be chosen in such a way that

6.2) | Futenas < | P

if v is an other solution of the Dirichlet problem with boundary values p,.

Let us make some comments. The first one is that (6.1) is nothing else than the maximum principle.
It is not implied by the subharmonicity of (F o u) as the latter holds only in 2 and we do not know
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if (F o p) is continuous. The second one is that (6.2) characterizes p if F' is strictly convex. More
generally, the subharmonicity of F'ou would hold for p solution of the Dirichlet problem minimizing

f a(€)F(u(€))de,
Q

where a € C'(2) is a continuous and strictly positive function (it comes from a slight modification of
the proof which is left to the reader). The last comment is that this result is somehow disappointing
because we cannot guarantee the subharmonicity to hold for all solutions. The main issue is that
we reason by approximation, thus the solution u is constructed as the limit of some approximate
mappings, the existence of the limit is coming from compactness. But as we have no uniqueness
result for the Dirichlet problem, we can only identify the limit through (6.2) (which is a byproduct
of the approximation process) but we cannot say much more.

The rest of this section is devoted to the proof of Theorem 6.3. In Subsection 6.1 we prove some
preliminary results. The most difficult and interesting case is the one where F' is not assumed to be
continuous but only regular: it is the object of Subsections 6.2 and 6.3. To conclude, in Subsection
6.4, we briefly comment about the simplifications of the proof in the case of a continuous F'.

6.1. Preliminary results. We prove first some technical results which would have overburden
the previous sections. The first one deal with Rellich compactness theorem, as we will want some
strong convergence of our solutions of the approximate problems.

Proposition 6.4. Let (i, ).en a sequence in H'(Q, P(D)) such that sup,, Dir(u,,) < +. Then, up to
extraction, the sequence (fi,)nen converges strongly in L?(2, P(D)) to some p € H'(Q, P(D)).

Proof. This is nothing else than the Rellich compactness theorem, but for mappings valued in met-
ric spaces. Remark that P(D) has a finite diameter, thus in this result we only need a control on the
Dirichlet energy of u,,. We can find this result for instance in [19, Theorem 1.13] or in [3, Theorem
5.4.3]. In any way, this result is also a consequence of the next proposition. d

In fact, we will need a stronger result, as we want so show compactness if we only have a control of
the approximate Dirichlet energies.

Proposition 6.5. Let (u.).~o a family in L?(Q2, P(D)) such that liminf. Dir.(u.) < +co. Then there
exists a sequence (c,)nen Which goes to 0 such that (p., )neN converges strongly in L*(Q, P(D)) to
some p e HY(Q,P(D)).

There is a well known criterion for compactness in L?(Q): the Riesz-Fréchet-Kolmogorov theorem.
It requires a uniform control of the L?-norm of the difference between a function and its translated.
Here, we have only a control of the distance between a function and its translated in average
(thanks to Dir.), and our mappings take values in P(D) rather than R. Nevertheless, the strategy
of the proof of the Riesz-Fréchet-Kolmogorov theorem is rather straightforward to adapt. Recall
that K’ denotes the heat kernel on ().

Proof. There exists a sequence (¢,;)men, converging to 0, such that sup,, Dir. , (¢e,,) < +o0. For
t > 0, define ®p. € L*(Q, P(D)) by, for any ¢ € Q,

(@4, ]() = f KO(€,0) e, (0)d6.
Q

(We follow the heat flow but only in Q). Let us estimate d;»(®{*u.,, , ., ): we first use Jensen’s
inequality, then separate between values close or away from the diagonal of 2 x 2 at the level ¢
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(whose value will be fixed later), and we use the fact that |K*(¢,0)| < C1t=P/2 exp(—|¢ — 6|2/(Cat))
(see Proposition (ii) in 2.4).

42, (D2 pe, ., pe,,) = f W3 (f K?(é,ememw)de,usm(é)) d¢
Q Q

<] QK?(s,mwf(uem(é),uemw))dgde

K€, 0)W3 (He,, (€), ey (0)) L _pj<cdédO + K2 (&, 0)W3 (e, (€), e, (0)) Ly >cdEdD

QxQ Qx0Q
C
<5 | W (€ pen (0) Ve p<cd€dd + Cs | KP(E,0) 1 gpoddd
2 Jova QxQ
201€p+2

 Di ( )+g _i
Oz e TSP\ T )

Choose the free parameters as follows: we fix t > 0 and we use the scaling ¢ = % with p/(2(p +
2)) < B < 1/2. Thanks to this scaling, for ¢+ small enough one has that ¢?*2t~?/2 is small and
and £2t~! is large. Moreover, by monotonicity of the Dirichlet energy, for m large enough one has
Dir.(pte,,) < Dir,,, (fte,,) < C < 400 (more precisely for each m large enough we choose ¢ of the form
2Ne,, with N € N and ¢ ~ ). In consequence, for any ¢ > 0, there exists t > 0 and mg € N, such
that for any m > my,

dr2 (¢l§)“€m7 “&n) < 0.

On the other hand, for a fixed ¢ > 0, we want to show compactness of the family (@? ue). Because

of boundary effects we restrict ourselves to Q < O compactly supported in Q. We will show that
the family ((I)?ua‘ Q)a>0 is uniformly equi-Hé6lder, where (I)?ug‘ﬁ denotes the restriction of ®{’u. to

Q. Rather than to estimate W3 (®$pu.(¢), @ u.(n)), we prefer to work on the 1-Wasserstein distance
W1 (9. (&), @ u-(n)) whose definition is recalled in Section 2. Take € C(D) a 1-Lipschitz func-
tion, up to translation by a constant we can assume that |¢|, < C with C independent of ¢. Then
for any &,n € Q,

| oretuenan - |

| plolofum)(do) - f P(@)[KE(E,0) — K2(n,0)]c(d0, dx)

QxD
< Clplwlé —nl < Cl§ =1,

where we have used the fact that K7}(-,0) is Lipschitz on Q uniformly in 6 € Q: by parabolic reg-
ularity the Lipschitz constant of a solution of the heat equation depends only on ¢, the distance to
the boundary and the L! norm of the initial data. As the bound is independent on ¢, we deduce
that W1 (92, (€), P u.(n)) < CJ¢ — n| for all € and 7 in Q. Using W, < C/W; [27, Equation (5.1)],
we see that, for a fixed ¢, the family (q>?“€m’§))meN is uniformly equi-continuous (more precisely
1/2-Holder).

Now we put the pieces together. For each n € N, take t,, such that dj2(®{ p., ., pe,,) < 1/n holds
for m large enough. Take also 2, O compactly supported in Q such that Lo(O\Q2,) < 1/n. Then,
using Ascoli-Arzela theorem, up to a subsequence, we know that (<I>§L W, |Qn)m€N converges strongly
in L?(Q,,P(D)), in particular it is a Cauchy sequence. Up to a diagonal extraction in (¢,,,)men (We
do not relabel the sequence), we can assume that (<I>% Mem|9n)meN is a Cauchy sequence for all
n € N. Notice, as P(D) has a finite diameter, that |d;>(u,v) — di2(plg, , Vg, )l < C/n for all
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u,v e L2(Q,P(D)). Hence, for any n € N, one has for m and m' large enough,

2C
dL2 (l""57rz7 l""&m/) < dL2 (lJ/&m7 q)gbl‘l’&m) + dL2 ( (PSL l""57rz Qn q)gb/"*am/ Qn) + dL2 ((PSL l”"&m/ ) l""&m/) + 7
24+2C
< + dLQ(q)gL”Embn ) q)&“%/ Qn)’
and dp2 (9] pe,,|o, » P e, |, ) can be made arbitrary small for m and m’ large enough. In other
words, (i, )men is a Cauchy sequence in L?(2, P(D)), thus it converges strongly. O

We will also need a result about the boundary conditions. Indeed, as the minimizers of Dir, will
only live in L?(Q, P(D)), we cannot define and impose boundary values. To bypass this difficulty,
we extend slightly our domain into a larger domain 2, S €2 and impose the values of the mappings
everywhere on Q,\Q.

Proposition 6.6. Let p; : 02 — P(D) a Lipschitz mapping. There exists a compact () such that
Q < (., and a Lipschitz mapping p. € L*(Q.\S), P(D)) such that p. = p; on 0Q and

(6.3) {Be(€) © €€ QM = {m(©) = €0y,
Moreover, a mapping p € H'(Q, P(D)) satisfies p|oq = p if and only if the mapping 1 defined on €.
by
oo ) ifeeq
we) {ue@) e,
belongs to H'(Q., P(D)).

Proof. As ) has a Lipschitz boundary, one can say [19, Section 1.12] that there exists a compact 2,
such that Q = ), and ¥ : [0,1] x 092 — Qe\fl a bilipschitz mapping such that ¥ (0, -) is the identity
on 0Q. Roughly speaking (for instance if 0Q is C1), U(t,£) = £ + tng(¢) where ng is the outward
normal to ¢Q). Then, one can define
pe(V(t,€)) == mi(§)
for every ¢ € [0,1] and £ € 0Q: we extend p; by keeping it constant along the normal to 0. Be-
cause VU is bilipschitz and p; is Lipschitz, it is clear that u. is a Lipschitz mapping. Moreover, by
construction, (6.3) obviously holds.

Let us prove the second point. Take E € M(Q x D,R) and E. € M((Q2\Q) x D,RP) the
momenta tangent to respectively u and u.. The tangent momentum of i, if it were to exist, must
coincide with £ on Q x D and with E, on (Q.\Q) x D because of Proposition 3.12. Hence, if must be
E € M(Q. x D,RP9) defined by

f b-dE:f b-dE+f b-dE.,.
QexD QxD (Q\Q) x D

As we already have Dir(ji, E) < +o, we see that ji € H'(Q,, P(D)) if and only if (f1, E) satisfies the
continuity equation. If p € C1(Q,., RP),

f VQ-cpd[L—Ff Vpe - dE
QexD QexD

—f Vg-cpdu—kf VDgo-dE—i—f ) ngpdue—l—f ) Vpp-dE,
QxD QxD (2\Q)x D (Q2\Q2)x D
=BTu(¢) + BT (¢).

By Whitney’s theorem, the restriction of functions in C*({)., R?) to Q coincide with C*(Q, R?), thus
we see that g € H'(Q,,P(D)) if and only if BT,, = —BT,,,. Considering the fact that the outward
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normal to Qe\Q is —ng, and that u. is continuous with values on 0S2 given by u;, the proposition is
proved. O

6.2. The approximate problems and their optimality conditions. In all this subsection, we
assume that F' is regular. As explained before, we use Dir. to approximate Dir, as the optimality
conditions of Dir. imply that for each £ € Q, u(&) is a barycenter of all p(n) for 7 in the ball of center
¢ and radius ¢.

Let us introduce some notations that we will keep during the rest of the proof. We denote by
Q. > Q and p. € H(Q\Q,P(D)) the objects given by Proposition 6.6. Take ¢y > 0 such that
B(&,g9) < Q for all € € 2. We denote by

LZ(Qe, P(D)) := {p € L*(Qe, P(D)) : plg. = be}

the set of L2 mappings which coincide with s, on Q.\Q. This set L2(Q,, P(D)) is clearly closed for
the weak convergence on L?(Q.,P(D)), in particular it is compact for the weak convergence. We
also define H!(Q.,P(D)) := H(Q,P(D)) n L3(Qe,P(D)). In the rest of the proof, we extend the
definitions of Dir. and Dir on L?(Q., P(D)). More precisely, if u € L2(Q., P(D)),

WE(p(0)
HEO P ey

Dir.(p) := Cp
Qe x Qe

and

Dir(p)
= inf {Dir(p, E) : E e M(Qe x D,RP?) and (u, E) satisfies the continuity equation on 2. x D}.
(we integrate over {2, and not only on 2). We also use the notation

M := sup(F o p;),
o0

by assumption M is finite. Remark that by construction, if u € L2(Q., P(D)), then for all £ € 0.\
one has F(pu(§)) < M.

As Fis l.s.c. on the compact set P(D), it is bounded from below. Hence, we can translate it by a
constant and assume that /' > 0 on P(D).

Let £ > 0 and )\ > 0 be fixed. The approximate problem is defined as

Fu(€)de : pe Li(ﬂe,mm)} |

To add the term A\ SQe F o p has two purposes: on the one hand, it ensures that F' o pu will be regular

enough (namely in L!(£2,)) to extract information from the optimality conditions; on the other hand
by taking the limit ¢ — 0 and then A\ — 0, we will be able to say that F' o u. \ (where p. ) is
a minimizer of the approximate problem) converges pointewisely, and it is necessary to pass to
the limit the (approximate) subharmonicity that we will get from the optimality conditions of the
approximate problem.

The following result is easy with all the tools developed above.

min {Dirg(u) +A
Qe

Proposition 6.7. For any ¢ > 0 and \ > 0, there exists a solution to the approximate problem.

Proof. Let v € P(D) any measure such that F'(v) < +o (it exists as F is regular). If we define
p € L2(Q,P(D)) by plg := v and u|Qe\§2 := ., one can see that SQ F(u(€))d¢ < +00, moreover as
P(D) has a finite diameter Dir.(u) < +c0. Hence, the minimization problem is non empty. In con-
sequence, we are minimizing over the set L2({2., P(D)), which is compact for the weak convergence,
a functional which is l.s.c. (see Proposition 3.23 and the regularity assumption on F'): we can use
the direct method of calculus of variations. O
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Starting from now, for any ¢ > 0 and A > 0, we denote by p. ) a solution of the approximate
problem.

Proposition 6.8. Let 0 < ¢ < gy and A > 0 be fixed. Then for a.e. £ € Q, . \(§) is @ minimizer over
P(D) of

C
v oG W3 (v, pre A (n))dn + AF ().

B(&e)

Proof. We reason by contradiction. If the property does not hold, there exists ¢ > 0 and a set X O
of strictly positive measure such that for all £ € X,

(6.4)

Cp ) , C, J 0

2 W F >c+ min | —2 Wi (v, F(v)|.
7 e 5 (e (§), e n () dn + AF (pe A (§)) ot min ( 7 J e 5 (Vs e x())dn + AF (v)

Now, consider 6 > 0 small and Y < X such that £Lq(Y) = 6. On every point of £ € Y, we want to
select a minimizer v (which depends on &) of the r.h.s. of (6.4), and we want to dot it in a measurable
way. Notice that

C
v i pen W3 (v, e x(n))dn + AF (v)
is the sum of a functional continuous w.r.t. ¥ and measurable w.r.t. £, and the functional \F which
is l.s.c. w.r.t. v but which does not depend on £. The fact that F is only l.s.c. prevents us from using
directly Proposition A.1, though by some ad hoc measurable selection result which is stated and
proved in the appendix (Proposition A.3), one can still choose v(¢) a minimizer in such a way that it
is measurable in ¢. In other words, we construct i € L2(Q2,, P(D)) such that fi = p. » on Q.\Y and

Gy

— mee,A(s),ue,A(n))dmAF%A@))>c+(ﬁj W%(ﬁz(s),ue,m))dmAF@@)))
B( B(&e)

§e)

for all £ € Y. Now we evaluate:

(Diram) =y F<ﬂ<§>>ds> - (Dirgme,m = F(ue,xs))ds)

e e

= 2512 f (W3 (ke n (&), e () — W3 ((€), fu(n))] 1jg_p<cdédn + A f [F(iu()) — F(pen(€))]dé
Qe x Qe v

The integral over Q. x Q. can be split over four parts: the one over (2.\Y) x (Q.\Y'), which vanishes
because p. , = 1 on this set; the one over Y x Y, which can be bounded by C4?, where C depends
on the diameter of P(D) and on ¢; and the ones over (£2.\Y) x Y and Y x (Q.\Y) which are equal by
symmetry. Moreover, one has

C ~ ~
ot [ €0 peal) = WHGHO )] izt
C ~
= g Lx(ﬂe\y) (W3 (e n(€)s en (1) = W3 ((6), e x ()] Tje—p<cdédn

C i
<08 + o LXQ& (W5 (e 7 (€), e n () — W5 (i(E), pen ()] Lje—pj<cdédn

Gy

of gty | (LM (W (117 (©), o (0)) — WEGE(E), per ()] dn> da,
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where the inequality comes from the fact that we have add the piece Y x Y which is of size §2 and
one which we integrate a function which is bounded. Notice that we have used that B({,¢) < Q. for
£eQase <ep. The part on (2.\Y) x Y gives exactly the same amount, thus

(Dirs( )4 A F(ﬂ(é))d£> <D1Te(lﬁax +Aj m(&))d»:)

<C8 + <€p+2 Wz pe(8); pen (1)) — W;(ﬂ(£)>ﬂa,>\(77))]d77] +A[F(p(8)) — F(%,A(é))]) dg

< 06% —¢f,

where the last inequality comes precisely form the way we chose 1 on Y and of L(Y) = §. Hence,
taking 6 small enough, the r.h.s. is strictly negative, which is a contradiction with the optimality of

He - U

Remark that if A = 0, our proof still works, and it precisely shows that . (£) is a barycenter of
the p. o(n) for n running over the ball of center { and radius ¢, a fact which was already stated by
Jost [16]. The crucial result which allows us to get subharmonicity is the following, namely Jensen’s
inequality for functionals convex along generalized geodesics. Notice that F' o . ) is integrable on
Qe.

Proposition 6.9. Let 0 < e < g and )\ > 0 be fixed. Then, for a.e. £ € ,
| PR = Flae (@) > 0.
g

Proof. Let us take a point £ € Q for which the conclusion of Proposition 6.8 holds and such that
F(pe2(€)) < +oo: it is the case for a.e. points of Q. As a competitor, we use S7 [u. \(¢)] for small
t > 0, which means that we let p. »(¢) follow the gradient flow of F', see Theorem 2.3. By Proposition
6.8,

C
Ep% B(g,a)Wg(Ma’)\(g)’ Ma,x(ﬁ))dﬁ + /\F(Ha,k(g))
<ot [ WS T ©0) er()dn + AF(S er(©))).

B(¢.e)

By the very definition of gradient flows, F'(S}' [\ (€)]) < F(pex(€)). Thus, rearranging the terms
and dividing by 2t > 0,

f W22<StF[l"le,)\<§)]7 NE,A(n)) - ‘/V22 (Ns)\(f)? Ns,A(”))
B(&e)

dn = 0.
2t 4

For a.e. n € B(£,¢), one has that F(u. z(n)) < 4+00. Hence, using Theorem 2.3, we see that for a.e.
n € B(&, ), the quantity

Wg(sf[ﬂs,A(f)]a NE,A(n)) - W22(I'L€,)\<§)7 NE,A(n))
2t

has a limsup bounded by F(u. (7)) — F(pe 1 (§)) and is uniformly bounded in ¢t by F(u. (7)) (by
Theorem 2.3 and positivity of F), the latter being integrable on B(¢,¢). Hence, by Fatou’s lemma,
we can pass to the limit ¢ — 0 and conclude that

f oy Weam) = Fluea(©))]dn > 0. .
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Let us conclude this subsection by proving a maximum principle, but for mappings which are
e-subharmonic. Recall that M is the supremum of F o p on .\ for any p € L?(Q,, P(D)).

Proposition 6.10. Let 0 < ¢ < g and A > 0 be fixed. Then, for a.e. { € (., one has F(p. x(€)) < M.

Proof. Let 6 > 0 be fixed and consider fs: Q. — R U {+o0} defined by f5(&) = F(u-(€)) + 0|€ — &l?,
where £ is any point of ). By strict convexity of the square function and thanks to Proposition 6.9,
for a.e. £€Q,

[ st~ sst@an =0
B(¢&e)

In particular, the essential supremum of f; cannot be reached on €, it must be reached on Qe\fl. On
Q.\Q2 we control the values of I'o . ) by M, in consequence esssupg,_ fs < M + Cd, where C' depends
on the diameter of 2. Sending ¢ to 0 (along a sequence), we get the result. 0

6.3. Limit to the Dirichlet problem. In all this subsection, we still assume that F is regular.

The goal is now to pass to the limit and to show that p. ) converges to i a solution of the Dirichlet
problem such that F' o g is subharmonic. Recall that Dir. I'-converges to Dir when ¢ — 0, see
Theorem 3.24. To get subharmonicity, we will need strong convergence, it implies to take first the
limit € — 0 and then A — 0. But on the other hand, we need a uniform bound on the minimal values
of the approximate problems to pass to the limit. To get them implies that we need to produce at
least one mapping p in H! (., P(D)) such that SQ (F op) < +0oo. To do this, we cannot rely on the
Lipschitz extension (Theorem 4.4): there is no way to guarantee that {,(F o u) < +o0. To get this
uniform bound, we will take first the limit A — 0 and then ¢ — 0 (relying only on weak convergence).
It will produce a solution i € H!(Q., P(D)) of the Dirichlet problem with SQ@ (Fof) < +0oo but we
cannot guarantee subharmonicity of F'opi. However it brings uniform bounds and enables us to take
the limit e — 0, A — 0 and get a solution f of the Dirichlet problem for which F o i is subharmonic.

We take two sequences (¢,,)neN, (Am)men that both converge to 0 while being strictly positive.
More precisely we take ¢,, := £927" for any n € N, thus we always have ¢,, < ¢y and Dir., converges
in an increasing way and I'-converges to Dir. We will not relabel the sequences when extracting
subsequences. Moreover, to avoid heavy notations, we will drop the indexes n and m; and lim,,_, | «,
lim,,,_, 1 Will be denoted respectively by lim._,¢ and lim,_,.

Proposition 6.11. Up to extraction, there exists j1 € H!(Q.,P(D)) such that

p = lim (;13% Ns,)\) ;
where the limits are taken weakly in L?(Q., P(D)). Moreover, fi is a minimizer of Dir in the space
H}(Qe,P(D)) and

(6.5) JQ F(iu(€))dé < +om.

Proof. The existence of i € L?(€., P(D)) is trivial: recall that L?(., P(D)) is compact for the weak
convergence. Moreover, using Proposition 6.10, we have that for ¢ < g and A > 0,

LF%xw%<M%L

By the regularity assumption on F', we can pass this inequality to the weak limit and get (6.5).
The minimizing property of £ is more involved. Assume by contradiction that there exists v €
H!(Q,P(D)) such that Dir(v) < Dir(f1). By the I'-convergence of Dir. to Dir and the positivity of F,
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one has
Dir(v) < Dir(gr) < limi(l)lf <h1>]\[1i61f <Dir€(u€,)\) + )\f F(Ms,A(f)Nf)) .

e

In particular, we can choose ¢ > 0 small enough such that (by monotonicity of Dir.)

Dir.(v) < Dir(v) < hI)’\Iljélf <Dir5(u5,>\) + )\f F(ue,x(f))d§> .

We regularize v in the following way: for ¢ > 0, we denote by v; := (]1@@’3 )v the element of
L2(Q,,P(D)) for which the heat flow on D has been followed only in €2: in other words, for any
t >0,
_J@)wE]  ifeeq,
V¢ (g) = . °
v(€) = pe(§) if € e QA
Clearly, v; € L%(Q.,P(D)). Moreover, as Wo(v(€),v(£)) < w(t) with w(t) — 0 as t — 0 (see Propo-

sition 2.5), we see that v; converges strongly in L2(Q.,P(D)) to v. In particular, thanks to the
continuity of Dir., there exists ¢ small enough such that

Dir.(14) < lim inf <Dire(lﬁa,x) = F(ua,x(é))d£> |
A—0 Qe

Because of the standard L® — L' estimate for the heat flow [6, Section 7], one has that {1, (¢) : £ € Q}
is included in a bounded set of L*(D) n P(D). In particular, F' o v; is bounded on 2. As it is also
bounded on Q.\(2 by M, we see that SQ@ F ov; < +o0. Hence, for some )\ small enough,

Dirgm)mj F<Vt<s>>ds<Dirg<ue,A>+Aj F (e (€))dé,

e Qe

which is a contradiction with the optimality of p. . O
Proposition 6.12. Up to extraction, there exists 1 € H!(Q., P(D)) such that

oo oy ()
where the limits are taken strongly in L%(Q.,P(D)). Moreover, jx is a minimizer of Dir in the space
H}(Qe,P(D)) and for any other minimizer v of Dir in H}(Q., P(D)),

(6.6) f F(R(€))dE < lim inf <liminf< F(u€7k(£))d£>> <f Flw(6))de.
Qe A—0 e—0 Qe Qe

Proof. Using 1 as a competitor in the approximate problem, given the monotonicity of Dir., one has
that

Divc(ssc0) + A Fluen(©)d€ < Dir() + [ Flte)ae <
where the constant C is uniform in ¢ > 0 and 0 < A < 1. In particular, using the Rellich-like
theorem (Proposition 6.5), we see that, up to extraction, ., converges strongly in L2(Q., P(D)) to
some 1), when ¢ — 0. Moreover, by I'-convergence of Dir. and the regularity of F',

(6.7) Dir(y) + A | F(x(§))dE < limionf <Dir€(ua7>\) + A F(ua7>\(£))d£) <C.
Qe e~ Qe

Hence, we have a uniform bound on Dir(fz)), and we can apply Rellich theorem (Proposition 6.4) to
see that i) converges strongly in L?(Q., P(D)) to some ji € H!(Qe, P(D)) when A\ — 0. Moreover,
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using the lower semi-continuity of Dir and positivity of F,

A—0

(6.8) Dir(f) < liminf <Dir(ﬁ>\) + )\f F(ﬂA(g))df) .

Let us assume by contradiction that & is not a minimizer of Dir. Thanks to Proposition 6.11, it
boils down to assume that Dir(f) < Dir(@). In particular, as F o @i is integrable on Q. and with the
help of (6.8), it means that there exists A small enough such that

Dir(a) + A 0 F(p(8))ds < Dir(fay) + A 0 F(px(€))dE.

Using the fact that Dir.(fz) — Dir(&) to handle the 1.h.s. and (6.7) to deal with the r.h.s., we see that
for ¢ > 0 small enough,

Dir. (j1) “L F((€))dé < Dire (o) + A fﬂ F (e (€))de,

which is a contradiction with the optimality of p. ,. Hence, f1 is a minimizer of Dir over H}(Q., P(D)).

Remark that in (6.6) the first inequality is a consequence of the fact that F' is regular. Assume
by contradiction that there exists v € H!(Q, P(D)) a minimizer of Dir such that (6.6) does not hold.
In particular as Dir() = Dir(v), and by I'-convergence of Dir. and lower semi-continuity of Dir,

Dir(v) = Dir(2) < lignjgf <1i1€n_)i(1)1f (Dirg(,u&A))) ,
thus one can write that for some )\ small enough,

Dir(v) + A [ F(w(€))d€ < limint (Dm(uavm 2 F(um@)ds) :
Qe £~ Qe
it leads to the same contradiction than before by taking ¢ > 0 small enough. O
Now, the key result to get subharmonicity of F' o 1 is that we can pass at the pointwise limit the
quantity F o p,. .

Proposition 6.13. For a.e. £ € (),
F(a(©) = lim (Tim (F(re(€)))

A—0 \e—

Proof. As the convergence of p. to iz holds strongly in L2(Q2,P(D)), we can, up to extraction,
assume that it holds a.e. In other words, for a.e. £ € (2,

il€) = lim (lim (uor()))
in P(D). By lower semi-continuity of F' on P(D), the inequality

F(a(€) < liminf (liminf (F(10(€))) )

A—0

holds for a.e. £ € Q. On the other hand, use (6.6) with v = f: up to extraction one has

J, P = m (1 ([ Fea@nac) ).

By combining the two equations above (recall that all the functions F o u. \ and F' o i are positive
and bounded above by M thanks to Proposition 6.10), we reach the desired conclusion (this is just
an adaptation of the proof of Scheffé’s lemma). O
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Proposition 6.14. The function F o 1 is subharmonic on Q. Moreover,

esssup(F o) < M.
Q

Proof. The fact that the essential supremum of F o i1 is bounded by M is a simple combination of
Propositions 6.10 and 6.13. For the subharmonicity, take ¢ € CZ(2) a smooth and positive function
compactly supported in 2. For 0 < ¢ < g small enough, one has, thanks to Proposition 6.9,

f Y(& <sd+2f a)[F(NE,A<77))_F(/"*e,)\@))]dn) d¢ =0

Performing a discrete integration by parts (which is possible if ¢ is smaller than the distance be-
tween 02 and the support of ¥)), one sees that

| Fla) (di [IREOR ¢(£)]d77> aE >0

e

Now send ¢ — 0 and then A — 0. By smoothness of v, the quantity ¢~ (¢+2) SB (€ a) P(n) —¥(§)]dn
converges to Ay ({) (up to a multiplicative constant). On the other hand, F'(u.\(£)) converges
pointwisely to F'(f1) (see Proposition 6.13) while being bounded by M. By Lebesgue dominated
convergence theorem,

f F((€)) Ab(€)dé >

which exactly means that F' o pu is subharmonic in the sense of distributions as ¢ is an arbitrary
smooth and positive function. O

Now we can conclude:

Proof of Theorem 6.3 if F is regular. We take u the restriction of & to Q. Thanks to Proposition
6.6, the fact that ji is a minimizer of Dir among H! (., P(D)) is translated into the fact that p is
a solution of the Dirichlet problem with boundary values w;. The subharmonicity and the upper
bound of F' o i are preserved by restriction. To get the minimality of {,(F o 1), we just use (6.6). [

6.4. Simplifications in the continuous case. In this subsection, we assume that F' is continu-
ous. In particular, as P(D) is compact, it implies that F' is bounded. The proof is simpler because
we do not need to add the term A { F o p in the approximate problem. Indeed, strong convergence
in L?(Q2,P(D)) of a sequence p,, to p implies, up to extraction, the convergence a.e. of (F o u,) to
(F o).

We define (2., u. and the functional spaces L?(f.,P(D)), H:(Qe, P(D)) as in the beginning of
Subsection 6.2.

Proof of Theorem 6.3 if F is continuous. For any ¢ > 0, we take p. € L?(Q,P(D)) a minimizer of
Dir. over L2(Q.,P(D)).

We can still apply Proposition 6.8 and conclude that for a.e. £ € Q, p.(£) is a barycenter of the
pe(n) for n € B(&,e). The proof of Jensen’s inequality (Proposition 6.9) works in the same way as F’
is bounded on P(D). Hence, the maximum principle given by Proposition 6.10 is still true as it is
only implied by Proposition 6.9.

To pass to the limit ¢ — 0, we use the fact that (along an appropriate sequence) Dir. I"-converges
to Dir. Hence, up to extraction, p. converges to i which is a minimizer of Dir over L2(Qe, P(D)).
Thanks to Proposition 6.5, the convergence takes place strongly in L?(Q.,P(D)) and a.e. By conti-
nuity of F', we deduce that the conclusion of Proposition 6.13 still holds: F' o u. converges a.e. to
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Fopase — 0. Thus the proof of Proposition 6.14 works exactly in the same way and it is enough
to take for p the restriction of i to . O

7. EXAMPLES

To conclude, we give examples of situations where the computation of harmonic mappings can
be done explicitly. The first one is rather simple: when D is a segment of R the space P(D) has a
structure of Hilbert space, hence the study is considerably simpler and all the machinery developed
above is too heavy. The second one is trickier: we restrict ourselves to a family of elliptically
contoured distributions, which is a geodesically convex subset of finite dimension. Thus we end up
with mappings valued in a finite-dimensional Riemannian manifold, on which we can write explicit
Euler-Lagrange equations.

Before studying these examples, let us say that the case where the measures on 02 are Dirac
masses has already been treated. Indeed, we have already mentioned [9, Theorem 3.1] which
states that if f : 2 — D is harmonic, then the measure p; (defined by s (§) = 65 for all § € ) is
a measured-valued harmonic mapping. This result has been extended in [21, Theorem 3.3] to the
case where space D is a simply connected manifold with negative curvature.

7.1. One dimensional target. In this subsection, we assume that D = I = [0,1] is the unit
interval. The important point is that the space P(I) has a very simple structure: the right object to
characterize an element 1 € P(D) is its inverse distribution function F;E*l] : [0,1] — [0, 1] defined
by

FI7(t) == inf{z € [0,1] : p([0,]) > t}.

It is well known that FF] is increasing, right continuous, and that there is a bijection between
the set of increasing and right continuous mappings [0,1] — [0,1] and P(I). Moreover, for any
wu,v € P(I), one has (see for instance [27, Proposition 2.17])

1
(7.1) W2(,v) - f F () — B () Par.

0
Introduce the Hilbert space H := L?([0, 1]) with its usual norm (denoted by | - |) and the subspace
‘H; of increasing functions: if f € H, then we say that f € H; if f(¢) € [0, 1] for a.e. t € [0, 1] and if for

any 0 < t; <ty <tz <ty <1,onehas

1 t2 1 ta
t)dt < t)dt
el f(t) =t f(t)

Notice that #; is clearly a convex and closed subset of H. Any f € #; has a unique increasing and
right continuous representative. Indeed, take the representative given by the Lebesgue differenti-
ation theorem: except on a subset N which is negligible, it is increasing. Then, on N and on any
point of discontinuity, choose the right limit. Uniqueness is easy as any increasing and right con-
tinuous representative is continuous except at a countable number of points. This discussion can
be summarized in the following proposition.

Proposition 7.1. If we define ¥(u) := FF], then VU is a one-to-one isometry between P(I) and H,;.

Now we need to make the bridge between the space H' (2, P(I)) and the space H'(Q,H). To this
extent, we rely on the characterization by Reshetnyak.
Proposition 7.2. Let p € L?(Q,P(I)). Then u e H' (Q,P(I)) if and only if (¥ o u) € H'(Q,H) and
in this case
Iu =V (Vo p)ln.
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The proof is left to the reader: one can check that the definition of Reshetnyak coincides with the
usual definition of H'(2, H). Thus, we can say the following:

Theorem 7.3. Let p; : 0Q0 — P(I) a given Lipschitz mapping. Then there exists a unique p €
H'(Q,P(I)) solution of the Dirichlet problem with boundary values p;. Moreover, (V o u) is the
solution of the minimization problem

(7.2) min{fgwf(g)@dg . fe HY(QH) and floq = \Ifom}.

Proof. Everything relies on this simple observation: combing Proposition 7.2 and Theorem 3.17
(which gives the expression of g,,), we see that

Dir(u) i= | V(¥ o )

With the help of Proposition 6.6, one can be convinced that to impose BT,, = BT, is the same than
to say that the the trace of (Vo) is (P opu;). Then, one takes f to be the unique harmonic extension
of (¥ o ;) in H'(Q,H): it is the minimizer of (7.2). By the maximum principle, as (¥ o y;) € H; on
0Q, it is clear that f € H'(Q, H;). Thus, we can simply set p := U~! o f. O

7.2. Family of elliptically contoured distributions. We finish by studying the case where the
boundary values belong to a family of elliptically contoured distributions: they are parametrized
by their covariance matrix. It can be seen as a generalization of the case where the measures are
Gaussian. In this subsection, we would like to show that at least one solution of the harmonic prob-
lem is valued in the family of elliptically contoured distributions if it is the case for the boundary
values, and to give a full solution (existence, uniqueness and Euler-Lagrange equation) under the
additional assumption that the covariance matrices of the boundary values are non singular.

We will deal with centered measures (i.e. measures with zero mean) because the contribution
of the mean to the Dirichlet energy can be handled independently. More precisely if i € P(D)
we denote by m(u) := {,zpu(dz) € D its mean and yg the centered measured defined as the push
forward of i by (x — = — m(u)). It is well known [31, Problem 1] that if u, v are two probability
measures then

W22<IM,V) = W22<:u071/0) + |m<:u) - m(l/)|2.
If p e L3(Q, P(D)), we use the formula above on Dir.(u):

m —m °
| (u(f))2€p+2(ﬂ<77))| ]l‘g_n\gadfdn.

Dir. (1) = Dir.(u) + C, |

QxQ
Then, sending ¢ to 0 and using [17, Theorem 8.3.1] to handle the part involving the Dirichlet energy
of the means, one sees that

Dir(s) = Dir (po) + %L V()] (€) .

The term involving m(u) is easy to minimize (because m(u) is a vector-valued function, it boils
down to take the harmonic extension) and it can be done independently from the term involving
Dir(po). In other words, it is not restrictive to work only with centered measures.

Let us go back to the family of elliptically contoured distributions. As we have assumed that D
is compact, we cannot work with non compactly supported measures, in particular with Gaussian
measures. For the rest of the subsection, we fix p € L!(RY) a positive function compactly supported
such that pLp is a probability measure with zero mean and the identity matrix as a covariance
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matrix. Recall that the covariance matrix cov(i) of a measure p € P(R?) is defined as: for any
i,7€{1,2,...,q},

cov(p)ij == qu ziz;p(de).

For technical reasons, we also assume that p is radial and that the Boltzmann entropy of pLp (see
(7.6) below) is finite. Let us denote by S, (R) the set of symmetric ¢ x ¢ matrices and S (R) < S,(R)
the set of symmetric and positive ¢ x ¢ matrices. The space S,(R) is equiped with its canonical
scalar product ¢-,-) defined by (A, B) = Tr(AB). The unique symmetric square root of a matrix
A e S (R) is denoted by A2, Instead of parametrizing measures by their covariance matrix we
will do it by the square root of their covariance matrix, i.e. by their standard deviation: it is more
natural for homogeneity reasons and the formulas are slightly simpler.

Definition 7.4. For any A € S (R) we denote by p € P(RY) the image measure of pLp by the map
reRYI— Ar e R4

The set of all pa for A € S (R) is denoted by P..(R?) and is called a family of elliptically contoured
distributions (with reference measure pLp).

Thanks to the normalization of p, the measure p4 has zero mean and covariance matrix A2. Notice
that if A is invertible then

pa(dx) := det(A)p (A 'z) da.

We would recover the Gaussian case by taking p(z) = (27) =92 exp(—|z|?/2), but this function is not
compactly supported.

The crucial tool to establish that a harmonic extension of a mapping valued in a family of ellip-
tically contoured distributions stays in the same family is the existence of a retraction on the set
Poc(RY). Let us call Po(RY) the set of probability measures on R? with finite second moment.

Definition 7.5. Let R : P2(R?) — Po.(RY?) the application defined by R(u) = pa, where A :=
cov(u)'/? is the symmetric square root of the covariance matrix of yu.

Proposition 7.6. The application R : P2(R7) — Pec(D) leaves Pe.(R?) unchanged and is a contrac-
tion (i.e. is 1-Lipschitz) provided that P2(RY) and Pe.(R?) are endowed with the quadratic Wasser-
stein distance Wh.

Proof. The first part is obvious by the way we normalize p. The second part is a reformulation of
Theorem 2.1 and Theorem 2.4 of [13]. O

Let us prove state and prove here an easy technical lemma which will be crucial in the sequel.

Lemma 7.7. Let p; : 9Q — P(D) a Lipschitz function and p € H' (2, P(D)) such that p|so = ;. Let
M : P(D) — P(D) a 1-Lipschitz mapping. Then M opu € H'(Q,P(D)) with (M ou)|sq = (M o) and

Dir(M o p) < Dir(p).
Proof. As M is a contraction and from the definition of Dir. it is obvious that
Dir.(M o p) < Dir.(p)

holds for any £ > 0. Then it is sufficient to send ¢ to 0. To get the assertion involving the boundary
conditions, one can use for instance Proposition 6.6. O

As we work in the compactly supported case, we add some assumption that D is large enough
in order for the boundary of D to be invisible. More precisely, the following lemma will help us to
handle the finiteness of D.
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Lemma 7.8. Let D c D be a convex compact subset of D. Let p; : 0Q — P(D) be a Lipschitz
mapping. If p € H(Q,P(D)) is a solution of the Dirichlet problem with boundary values p;, then,
seen as an element of H'(Q, P(D)) (extending p by 0 on D\D), p is also a solution of the Dirichlet
problem with boundary values p; (with p; seen as a mapping valued in P(D)).

Proof. 1t relies on a simple observation. Let Py : D — D be the Euclidean projection on D. One has

that v — Pp#v is a 1-Lipschitz function from (P(D), Ws) to (P(D), W2) which leaves the boundary
values p; unchanged. Thus we can apply Lemma 7.7 to see that Py maps any competitor from

H'(Q,P(D)) into a competitor in H'(Q2, P(D)). O

We will say that D < D is compatible with p if it is a compact convex subset of D and for any
1 € P(D), one has R(i:) € P(D). It holds if D is large enough compared to D and the diameter of
the support of p. In the sequel, we will use the notations Pe.(D) := P(D) N Pec(R?) and Pec(D) :=
P(D) N Pec(RY)

Theorem 7.9. Take D — D compatible with p. Let p; : 9Q — Pe.(D) a Lipschitz mapping valued in
the family of elliptically contoured distributions. Then there exists pu € H'(Q, P(D)) a solution of the
Dirichlet problem with boundary values p; such that pu(&) € Pec(D) for a.e. £ € Q.

The assumption that D is compatible with D can be translated in the fact that the supports of the
(&) for € € 02 are small compared to D.

Proof. Let i1 be a solution of the Dirichlet problem with boundary values p;, it exists thanks to
Theorem 4.4 and Theorem 4.3. According to Lemma 7.8, we can choose i such that i € P(D) a.e.
As R is a contraction which leaves the boundary values unchanged, it is clear thanks to Lemma 7.7
that p := R o f1 is a solution of the Dirichlet problem with boundary values p;. By construction, u
is valued in P..(R?) and also in P(D) as D is compatible with p. O

We believe that, conducting a careful analysis, one can prove that all solutions of the Dirichlet
problem with boundary values p; are valued in P (D).

Now, we want to go further and give a more explicit description of the solution valued in the
family of elliptically contoured distributions. To this extent, we rely on the fact that the manifold
S, (R), when endowed with the distance induced by W, through the application A — p4, has a
structure of Riemannian manifold, at least when restricted to the set of non singular matrix.

More precisely, if A and B are in S/ (R) it is known (see for instance [13]) that

W22</7A7PB) =Tr (A2 + B? — Q(AB2A)1/2) '

(When A and B are replaced by their square, the r.h.s. is sometimes called the Bures metric.) Notice
that if A and B commute then WZ(pa, pp) = Tr((A — B)?), which justifies that the right choice is
to parametrize elements of the family of elliptically contoured distributions by the square root of
their covariance matrix. Denote by S; *(R) the set of ¢ x ¢ symmetric definite positive matrices.
If A e S7(R), we can define the linear map L, : S (R) — Sy(R) by L4 := A®Id + Id ® A. More
explicitly for any H € S;(R)
Ls(H)=AH + HA.

The map L 4 is symmetric, and is moreover positive definite as soon as A is positive definite (in this
case in particular it is invertible). If A is diagonal, then L 4 is also diagonal in the canonical basis
for matrices. In particular, if A and B commute, then L4 and Lp also commute. If A € S/ *(R) and
B € S4(R), a lengthy but straightforward computation leads to

(73) lim W22(PA7PA+tB)

50 2 = (B,ga(B))
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where g4 : S;(R) — 54(R) is a linear map defined as

ga = %(LA)2<LA2)71

More explicitly, if A is a diagonal matrix with eigenvalues A1, Ay, ..., A\; and B = (B;j)1<i j<q then

1 ()\z + )\j)2 9
B,ga(B)) == ——5—DB;.
< By 2 1$;j$q AL+ )‘? ’

Notice that g4 always defines a scalar product on the space S,(R). As a consequence, we can
define the Riemannian manifold (S; " (R), g): at each point A € S;*(R) the tangent space, which is
isomorphic to S,(R), is endowed with the scalar product g4. If we do that, as we already know that
Po.(R?) is a geodesic space and thanks to (7.3), we see that the Riemannian distance dy induced
by g satisfies d4(A, B) = Wa(pa, pp) for any A, B € S (R). From this identity we can derive the
following consequence. Take A € H'(Q,(Sf*(R),g)) a matrix-valued function and define pa €
L?(Q,P(D)) by pa (&) = pae) for a.e. £ € Q. Then ps € H'(Q,P(D)) and

.4 Dir(pa) = [ 5 D1uA(E).aae A
a=1

To justify this identity, one can use for instance the formulation with Dir. (Theorem 3.24), replace
the Wasserstein distance W, by the Riemannian distance dy, and use the already known equiva-
lence between Dir and the limit of Dir. when ¢ — 0 for mappings valued in a Riemannian manifold
[17, Theorem 8.3.1].

Notice that the metric tensor g4 diverges as A becomes singular. Thus, it is natural to assume
that the boundary values have non singular covariance matrices. With this assumption we are able
to provide the full solution of the Dirichlet problem.

Theorem 7.10. Take D — D compatible with p. Let p; : 0Q — 730,3([3) a Lipschitz mapping such
that det (cov(p(€))) > 0 for all £ € 0Q and define A;(€) = cov(py(€))Y/? for all € € 9.

Then there exists a unique solution i € H'(Q, P(D)) of the Dirichlet problem with boundary
values p; and ji(§) € Pec(D) for a.e. & € Q. Moreover, if A € H'(,(S;*(R),qg)) is defined by

A(€) := cov(a(£))V? for a.e. € € Q, then the following holds:

(i) essinfeeq det(A(€)) > 0;
(i1) A is a minimizer of

L% D {0aB(&), gB(e) (CaB(£)))dE.
=1
(R),

among all B e H'(Q, (S
(iii) A is a weak solution of

(7.5) i 2o (LaLzh(eah)) + Zi] (LaZz@ ))2 o

g)) which have boundary values A;;

Notice that we are able to prove uniqueness among all mappings valued in the Wasserstein space
and not only those valued in the family of elliptically contoured distributions: it is one of the only
case where we can prove that uniqueness holds for the Dirichlet problem. Remark also that (7.5) is
nothing else than the Euler-Lagrange equation associated to the problem of calculus of variations
(i1). We will not discuss the question of the regularity of A. As A is minimizing a Dirichlet energy
its regularity is expected to be better than H'(2, (S} *(R),g)). On the other hand, as (S *(R),g)

is positively curved we cannot say automatically that A cannot blow up somewhere (except if (2 is
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of dimension 2 where A will be smooth, see [14, Section 4.2]). A more detailed analysis could the
topic for an other study.

The rest of this subsection (and, incidentally, this article) is dedicated to the proof of Theorem
7.10 which is obtained by putting together Propositions 7.11, 7.12 and 7.15. More precisely, the first
step is to show the existence of one solution f of the Dirichlet problem taking values in the family
of elliptically contoured distributions for which the covariance matrices stay non singular inside €2
(Proposition 7.11). Then, using the explicit expression (7.4), it is fairly easy to show that (ii) and
(iii) are satisfied (Proposition 7.12). The hardest part is the question of uniqueness. As explained
in the introduction, we will first show that any solution u of the Dirichlet problem with boundary
values p; must have v as tangent velocity field, where v is the tangent velocity field of . Then, as
v will happen to be smooth enough (linear, hence Lipschitz w.r.t. D), we will use the results about
uniqueness of the (1-dimensional) continuity equation for smooth velocity field (Proposition 7.15).

Let us begin by showing that for at least one solution of the Dirichlet problem the covariance
matrices stay non singular inside 2. As a tool to measure regularity of elliptically contoured distri-
butions, we will use the Boltzmann entropy. We define H : P(D) — [0, +x] by

z)In(p(x))dz if uis absolutely continuous w.r.t. Lp,
- i o | ], P y b

+00 else.

It is known that H is convex along generalized geodesics [4, Theorem 9.4.10] and it is regular
according to Proposition 6.2. Moreover, an explicit computation leads to H(p4) = —In(det A) +
H(pLp) (with the convention In(0) = —oo). Also, using the fact that Gaussian measures are the
ones which minimize H for a covariance matrix, we get that for any n € P(D),

(7.7) H(p) = —% In (det (cov(n))) + C,

where the constant C' is the entropy of a standard normal distribution.

Proposition 7.11. Take D c D compatible with p. Let p; : 0Q — Pe.(D) a Lipschitz mapping such
that det (cov(p(€))) > 0 for all &€ € 0). Then there exists 1 € H' (2, P(D)) a solution of the Dirichlet
problem with boundary values p; such that fi(€) € Pec(D) for a.e. £ € Q and such that

esgseiélf [det (cov(m(€)))] > 0.

Proof. Notice, thanks to the explicit formula for H on P..(R?) and as y; is continuous, that sup,o(Ho
p) < 4. Take p € H'(Q,P(D)) the solution of the Dirichlet problem with boundary values
given by Theorem 6.3 (with FF = H). Set ot := R o u. By the same argument as in Theorem 7.9,
ji € HY(Q, P (D)) is a solution of the Dirichlet problem with boundary values y;. Using first the
estimate (7.7) and then the maximum principle (6.1),

ess sup [— In (det (cov(f(€))))] = esssup [— In (det (cov(4(€))))]
Eed £eN

< —2C + 2esssup H(pu(€))
£eQd

< —2C + 2 sup H(w(§)) < +o0. O
£edfd

Until the end of the subsection, ji € H!(Q, Pe.(D)) will denote the object defined in Proposition 7.11
and for a.e. £ € (), one defines A(¢) = cov(ia(€))/2. Notice that (i) of Theorem 7.10 is proved. Now
let us derive the equation satisfied by A.
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Proposition 7.12. The mapping A € H'(Q, (S;(R),9)) is a weakly harmonic map, more precisely
a minimizer of

1 p
B e (O (5 (R).0) = | 5 3 (uB(E).ami (B
a=1
among all B which have boundary values A,. In particular, A satisfies the Euler-Lagrange equation
(7.5).
Proof. We need to prove that, for any B € H'(Q, (S *(R), g)) with boundary values A; one has

J, 3 2B omq @BV > | 5 Z@A 8400 (@aA(§)))dE = Dir(ps) = Dir(@).
a=1

To prove it, if we take any B € H'(Q, (S/*(R),g)) we can build p := pp and we have, thanks to
(7.4), the identity

Dir(r) = | 5 3(0uB(e) amic) (CB(E))E

A priori, p is valued in P(R?). If we denote by Pp : R? — D the Euclidean projection on D, then

Dir(r) < Dir(Pp#p) < Dir(p),

where the first inequality comes from the optimality of & (notice that Pp+#- leaves the boundary
values unchanged) and the second one from the fact that Pp#- is a contraction (Lemma 7.7).

To get the Euler-Lagrange equation it is actually easier if we take the covariance matrix and not
its square root as the variable. In other words we define C := A%, As A is never singular, this
change of variables is smooth. We have 9,C = L4 (d,A) and in particular

(0aA,ga(0aA)) = (0,C, Lél (0.C)).

If we take D : 2 — S, (R) smooth and compactly supported on (2 and that we consider B := C + tD
as a competitor for small ¢, we reach the conclusion that

< A - 1 ¢ d
212D, L (0aC) + 5 D) +

a=1 a=1

A simple computation leads to

L(_J-i-tD(aO‘C) = L' (0.C) —tLg! [D(Lél(aaé)) + (Lél(aa(_j))D] + o(t?).

Using the properties of the Trace and the symmetry of L-!, we conclude that the Euler-Lagrange
equation reads

P P
Z@aD, L' (2aC)) — Z (D, (L' (0aC))*) = 0.
azl =1
Coming back to C = and 0,C = Lz(d,A), as D is arbitrary we see that we get the weak
formulation of (7.5). O

As far as the regularity issues are concerned, notice that A is uniformly bounded from below
as a symmetric matrix (this is (i) of Theorem 7.10) and also bounded from above as a symmetric
matrix (as pg € P(D) and D is compact), hence the operators L) : S¢(R) — S;(R) are bounded
with a bounded inverse uniformly in ¢ € ). In other words, the metric tensor g A(e) 18 equivalent
to the canonical scalar product uniformly in ¢ € Q. In particular, the regularity i € H'(Q,P(D))
translates in A € H(Q, S,(R)) where S,(R) is endowed with its usual euclidean norm | - |.
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To conclude it remains to prove uniqueness. The first step is to identify the tangent velocity field
to 1 and a (at least formal) solution of the dual problem.

Proposition 7.13. For any a € {1,2,...,p} we define B* := Lz L;(0.A) € L*(Q, S4(R)) and we set

V(& ) = B¢z e RY.
for Ee Qand x € D. Then v € L2 %(Q x D, RP) is the tangent velocity field to fu.

Proof Take ¢ € C}(Q x D, RP) a test function. If we define 1) ¢ H'(Q, R?) by
&= | weando) - | ve RO
D

then we see that ¢ is compactly supported in €2, in particular the integral of V - ¥ over ) vanishes.
It reads
P

jmwﬂ ) (€, A©)x)p(a)de + f S (A (©)2) - (Vi) (€ AE)2)pla)dr = 0.

QxD a=1

By doing for a fixed ¢ € Q the change of variables y = A(¢)z, one can see that (1, wji) satisfies the
continuity equation where w : 2 x D — RP is given by

W&, y) = G A()A) 'y,
Notice that w(¢, -) is not a gradient because 0, A () and A(£) ™! do not necessarily commute. On the
contrary, as the matrices B () for a € {1,2,...,p} are symmetric, v(¢, -) is a gradient.
FixeQandae{l1,2,...,p}. We claim that the velocity field v (¢, -) is the orthogonal projection
in L;Zz(g) (D,R?) of w(¢, -) on the space of gradients (actually, this is exactly how v* was chosen). Not

to overburden the notations, we drop momentarily the dependence on ¢, i.e. A := A(¢), B* := B*(¢)
and 0,A := 0,A(¢) are considered as given matrices. Take f € C'(D) a test function defined on D
and compute:

f V() - (W&, z) = v(&, ) (€, dz) = f (Vf)(Az) - ((0AA™" — B*)Az) p(z)dz
D D

_ fD(v F(@) - (A (2. AA" — B*)Ax) pla)da,

where f(z) := f(Az). On the other hand, as the reader can check, B* is the projection on the set
of symmetric matrices of ,AA~! where the scalar product between two matrices C' and D is given
by Tr(AtC'DA) In particular, the matrix (9,AA~! — B%)A? is skew-symmetric, thus the matrix
A~1(0,AA~! —B?)A is also skew-symmetric. As p is radial, it implies that the function

zeD— (A0, AA™ — BY)Ax) p(z)

is divergence-free. It allows us to conclude that
j V() (W& ) — v (& 2))p(E dr) = fD f@)Vp - [(A7 (0aAA™ —B*)Ax) p(x)] dz = 0,

hence the claim is proved as f is arbitrary.
The claim implies that (fi, vjz) also satisfies the continuity equation: for any v € C1(Q x D, RP),

J VQ%ﬁdu-Fj VDT/J-Vd[LZJ VQ%ﬁdu-Fj VD¢-Wd[L-I-J Vpy - (v—w)dp =0,
QxD QxD QxD QxD QxD

as the last integral vanishes because of the claim.
As v(¢,-) is a gradient (because the B® are symmetric), Corollary 3.21 implies that v is the
tangent velocity field to f. O
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Notice that if we define ¢ : 2 x D — RP by, forany { € Q,x € Dand o € {1,2,...,p},

7 (6,2) = 5B (O

then v = Vpp. More precisely, for a.e. £ € Q, (&, ) (resp. v(,-)) is defined everywhere on D as a
smooth function belonging to C'!'(D, RP?) (resp. C'(D,RP?)). Moreover the Euler-Lagrange equation
(7.5), which can be written

(7.8) i 0aB* + i (B*)? =0,
a=1 a=1

translates at the level of ¢ in
1
Va-p+ §|VD<,5|2 = 0.

Hence, at least formally (because of the lack of smoothness of ¢), the function ¢ is a solution of
the dual problem. We will use ¢ to show that the tangent velocity field of any other solution of
the Dirichlet problem with boundary values p; must coincide with v. About the smoothness of the
objects involved, notice that for any « € {1,2,...,p} one has B® € L?(Q, S,(R)) and, given (7.8), the

function
p
> 0.B°
a=1

belongs to L'(9, 5,(R)).

Proposition 7.14. Let p a solution of the Dirichlet problem with boundary conditions p; and v its
tangent velocity field. Then, for a.e. £ € Q, one has v(&,z) = v(§, x) for u(§)-a.e. x.

Proof If p € C*(Q2 x D, RP) then, as u and ju share the same boundary conditions,

| (Vo et Vop vdu =BT = [ (Yoot Vop 9)di.

QxD QxD

We claim that we can insert ¢ = ¢ even though & is a priori not regular enough. In other words,
given (7.2) and the fact that v = Vpg, we claim that

(7.9) f <—1|V|2 +v. v> dp — f L s12da.
QxD 2 QxD 2

Notice that the r.h.s. is (formally) equal to both BT, (¢) and Dir(f): it is not surprising as ¢ is a
solution of the dual problem.

To prove such an equality we regularize ¢ in the following way. For each a € {1,2,...,p} we apply
to the matrix field B® the standard truncation and convolution procedure (see [12, Theorem 3 of
Section 4.2]) to produce a sequence (B%),cn which belongs to C1(Q, S,(R)) and which converges to
B“ in L%(2, S,(R)). Moreover, as derivatives commute with convolution, we can say that

p p p
i, D) 0By = ), BT = - 3 (B,

a=1

and the limit takes place in L'(€, S,(R)) as we already know that the r.h.s. belongs to such a space.
In particular, up to extraction the convergences hold a.e. on 2. Then we set

F(6.0) = 5B
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for ¢ € Q and = € D. By construction ¢, € C'(Q x D,R) so that

(7.10) J (Va-¢n+ Vpp,-v)du =BTy, (pn) = j (Va - on+ Vpe, - v)dia.

QxD QxD
It remains to show that we can pass to the limit n — +co. Given the convergence a.e. of the B¢ and
of > 0,B%, we can assume that for a.e. £ € Q, the functions Vg - ¢, (§,) and Vpp, (€, ) converge to
respectively —%|\7|2(£ ,+) and v(&,-) in respectively C(D) and C(D, RP?) respectively (notice that we
use the fact that D is bounded). Hence for a.e. £ € ,
(7.11)

1 _

lim (VQ ’ <,Dn<§, x) + VD@”(& x) ’ V(S? ‘T)) N/(f, dx) = JD <_§|V|2<§7 x) + V(S? ‘T) ’ V(Sa 1‘)) IJ’(Sa dx)

n—+00

It remains to integrate this limit over 2. The natural upper bound for the 1.h.s. of (7.11) is obtained
by Cauchy-Schwarz and the boundedness of D: for any n € N,

fD (Ve - onlés ) + Vion(€.2) - v(E, 7)) (e, dx)

<c(a§133< \/j V(. 2) e, da) 2 )

where C depends only on D. The r.h.s. is not bounded uniformly w.r.t. n € N but on the other hand
it converges in L'(Q2) which is enough to say that the L.h.s. is uniformly integrable. Hence, up to
extraction we can integrate (7.11) w.r.t. €2:

1

lim (Va-on+ Vpe, - v)dp = j <——|V|2 +v- v> dp.
n=>+%0 Joxp axp \ 2

Of course, the result still holds if we take (u,v) = (&, v). Thus, passing in the limit in (7.10) we get

(7.9).

Until now we have not used the optimality of u. We notice that the r.h.s. of (7.9) is nothing
else than Dir(1) which coincides with Dir(u) = (. , %|v|2du by optimality of p. From there, an
algebraic manipulation leads to

1
f ~|v —v|*dp = 0,
QxD 2

which easily implies the result: recall that for a.e. £ € 2, the velocity field v is continuous on D. [

Proposition 7.15. Let p a solution of the Dirichlet problem with boundary conditions p;. Then
B = .

Proof. Take p a solution of the Dirichlet problem with boundary conditions u; and define v = pu— .
We extend v on R”\Q by the 0: with such a choice v € L?(R?, M(D)) is a (signed) measure-valued
mapping defined on the whole space R? which vanishes outside a compact set. We also define v as

a function R? x D — RP? by extending it to 0 outside Q x D. If ¢ € C'(R? x D,RP) is any smooth
function then

f (VQ'<P+VD90'V)dV=j (Vo ¢+ Vpyp-
RPxD QxD

<

)dv

=f (VQ‘SD"'VD‘P'V)dH_J (Va- ¢+ Vpy-v)dp
QxD QxD
= BTM[(QD) - BTM[(SO) = 07
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where we have used the fact that both (u, v) and (@, via) satisfy the continuity equation. In other
words, (v, vv) satisfy the continuity equation on the whole space R? x D.

We take an arbitrary direction in R”: we fix @ = 1. As we have seen in the proof of Proposition
3.20, the (generalized) continuity equation implies that for a.e. £ e RP~! = (e, )", the curve t € R
v((t,£)) satisfies the (1-dimensional) continuity equation with a velocity field given by w(t,z) =
v¥((t,€),z). Notice that for a fixed ¢ the velocity field w(¢, -) is Lipschitz and bounded with Lipschitz
constant and upper bound controlled by C ]l(t,g)eg|]§a((t,§))| where C < +oo depends only on D.
Given that B® € L?(Q2), for a.e. £ € RP~! one has that

JR Lt erenB*((£,€))|dt < +o0.

Hence for a.e. £ € RP~! the assumptions of [4, Proposition 8.1.7] are satisfied: the curve t € R —
v((t,€)) is solution of a continuity equation which has at most one solution. As the curve identically
equal to 0 is a solution (recall that v((¢,£)) = 0 for |¢t| large enough), so must be v((-,§)). As this
result holds for a.e. £ € RP7!, it implies that v is identically zero, which is the desired result. 0

APPENDIX A. MEASURABLE SELECTION OF THE arg min

We want to show a result which states that if 7/ : X x Y — R is a function which is measurable
w.r.t. X, then one can find a selection m : X — Y such that F'(z,m(z)) = miny F(z,-) for every
x € X, i.e. such that m(x) € argminy- F(z,-). Recall the following result which can be found in [2,
Theorem 18.19].

Proposition A.1. Let X be a measured space and Y a polish space. Let F : X xY — R a function
such that F(x,-) : Y — R is continuous for every = € X, and F(-,y) : X — R is measurable for every
y € Y. Assume that for every x € X, the function F(x,-) has a minimizer over Y.

Then there exists m : X — Y a measurable function such that for all x € X,

F(z,m(z)) = min F(z,y).

However, in particular for Proposition 6.8, we need a case where F'(z,-) is only l.s.c.. Thus, we
prove some ad hoc result relying on the particular structure of our problem which allows to treat
lower semi-continuity.

Lemma A.2. Let X be a measured space and Y a compact metrizable space. Let F : X xY — R a
function such that F(x,-) : Y — R is continuous for every x € X, and F(-,y) : X — R is measurable
for every ye Y;and let G:Y — R a ls.c. function.

Then the function H : X — R defined by

H(z) == min{F(z,y) + G(y) : yeY}
is measurable.

Proof. Notice that Y is separable as it is compact and metrizable. For any rational number a, the
exists a sequence dense in {y € Y : G(y) < a}. Hence, we can construct a sequence (y,),en such
that for any rational number « there is a subsequence of (y,),en Which is included and dense in
{yeY : Gly) <al

Set H(z) := inf,, F(x,y,) + G(y,) which is measurable and larger than H. Let us prove that it is
equal to H. Indeed, if z € X, by standard arguments of calculus of variations, there exists 3 such
that H(x) = F(z,y) + G(y). For any a > G(y) rational, take a subsequence (y,, )xenw Which belongs
to{yeY : G(y) < a} and which converges to 3. By continuity of F', one has

H(z) < liminf (F(,yn,) + G(yn,)) < F(2,9) + a.
—+00
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As a can be chosen arbitrary close to G(j), we have that H(z) < F(z,7) + G(7) = H(z). O

Proposition A.3. Let X be a measured space and Y a compact metrizable space. Let F : X xY — R
a function such that F(x,-) : Y — R is continuous for every x € X, and F(-,y) : X — R is measurable
forevery yeY;andlet G:Y — R a Ls.c. function.

Then there exists m : X — Y a measurable function such that for any x € X,

F(z,m(x)) + G(m(z)) = min{F(z,y) + G(y) : yeY}.
Proof. As in the previous lemma, define H(z) := min{F(z,y) + G(y) : y € Y}, it is a measurable
function valued in R. Let I" be the mapping going from X and valued in the compact subsets of Y’
defined by I'(z) = argmin, (F(z,-) + G(-)) which means
I(z) :={yeY : F(z,y) + Gly) = H(x)}.
Notice that I'(z) is never empty thanks to standard arguments of calculus of variations. To prove
the existence of a measurable selection of I', we rely on [2, Theorem 18.13]: it is sufficient to show
that I" is measurable, which means that {z € X : T'(z) n Z # (J} is a measurable set of X for any
closed set Z — Y. But one can be convinced that, for a fixed Z < Y closed,
Ix)nZ+ & < H(z)= Hyz(zv),

where Hy(z) := min{F(z,2)+G(z) : z€ Z}. Thanks to Lemma A.2, both H and H; are measurable,
thus the set on which they coincide is measurable, which concludes the proof. d

APPENDIX B. H'/?2 DETERMINATION OF THE SQUARE ROOT

In this appendix we want to prove Lemma 5.4, which states that, with S! the unit circle of the
complex plane C and U its unit disk, there is no function f € H'/2(S!, 8') such that f(¢)? = ¢ for a.e.
¢ € S! (where the multiplication is understood as a complex multiplication). We take for granted
that there is no continuous function f € C(S!,S!) such that f(¢)? = ¢ for all ¢ € S!. Hence, it is
enough to reason by contradiction and to prove that a function f € H'/?(S',S') such that f(¢)% = ¢
for a.e. ¢ € S! admits a continuous representative.

We start with some easy lemma which states that H'/?(S', U) is stable by composition with
Lipschitz function.

Lemma B.1. Let u: S' — R a Lipschitz function and f € H'/?(S',8"). Then (uo f)e H/?>(S',R).

Proof. It is well known (see [23, Chapter 3]) that there exists feH 1(U,U) whose trace on S! is f.
Clearly, the function u o f stays in H!(U, R), hence its trace, which is nothing else than v o f, is in
HY2(S' R). O

Then, let us prove that an H/2? function cannot have a jump.

Proposition B.2. Let f € H'/2([0,1],R) such that f(¢) € {0,1} for a.e. £ € [0,1]. Then there is a
representative of f which is constant.

Proof. We reason by contraposition: we assume that f is not constant, which translates in 0 <
Sé f < 1 and we want to show that f ¢ H'/2([0,1],R). Recall that it is sufficient to prove, given the
definition of the H'/? norm [23, Chapter 3], that
[ Oy
[0,1]x[0,1] 0 —nl?
Take ¢t > 0 large enough. The function
1 [ErtTR/2

£ —
Vi E—t1/2/2

f(n)dn



66 HARMONIC MAPPINGS VALUED IN THE WASSERSTEIN SPACE

is continuous on [t~1/2/2,1 — t~1/2/2] and has a means which belongs to [c,1 — ¢|, where 0 < ¢ < 1 is
independent of ¢ (provided it is large enough) and is related to 0 < Sé f < 1. Hence, there exists &

such that
£t+t71/2/2 c ¢
f(n)dne {—,1——].
Lt—t1/2/2 ) NG Vi

Heuristically, &; is close to a point where f "jumps". In particular, it implies that

1 1 2

2
Loy ® Lo, ({(m 0) € {ét EENA 2—\/%] : f(n) = 1and f(0) = 0}) > =

Asa consequence,

(0 2
E[O,l] @E[OJ] <{(77, ) € |0, 1]2 : % > t}) > %

This estimate leads to

[f(n) = £(6)] Y | f () = £(0)] _
J[O,I]X[O,l] 0 —n? dnd® = L {E[O’l] ®£[0’1] <{(777 o) elo. 1]2 ' 0 —n? g t}>] ar= +OO'D

With these two lemmas, we can easily arrive to our conclusion.

Proof of Lemma 5.4. Let f € H'/?(S',S!) such that f(£)? = ¢ for a.e. ¢ € S'. We want to show
that f is continuous. Take X an arc of circle of S'. If X is small enough, there are two continuous
functions f, and f; (the complex square roots) defined on X such that for all ¢ € X, 22 = ¢ if and only
if z € {fo(£), f1(€)}. Moreover, if X is small, the ranges of f, and f; are far apart, hence we can find
a Lipschitz function v : U — {0,1} such that uo fo = 0and uo f; = 1 on X. Thus, (uo f)(§) € {0,1}
for ¢ € X. The previous lemmas allow us to conclude that the function is in H'/?(X, {0,1}), hence
constant, which means that f is continuous on X. As X is arbitrary, f is continuous on S', which is
a contradiction. O
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