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With the increasing size of social networks in the real world, community detection approaches should be fast and accurate. The label propagation algorithm is known to be one of the near-linear solutions which is easy to implement. However, it is not stable and it cannot take advantage of the prior information about the network structure which is very common in real applications. In this paper, a new Semi-supervised clustering approach based on an Evidential Label Propagation strategy (SELP) is proposed to incorporate limited domain knowledge into the community detection model. The main advantage of SELP is that it can effectively use limited supervised information to guide the detection process. The prior information about the labels of nodes in the graph, including the labeled nodes and the unlabeled ones, is initially expressed in the form of mass functions. Then the evidential label propagation rule is designed to propagate the labels from the labeled nodes to the unlabeled ones. The communities of each node can be identified after the propagation process becomes stable. The outliers can be identified to be in a special class. Experimental results demonstrate the effectiveness of SELP on both graphs and classical data sets.

Introduction

As described in [START_REF] Fortunato | Community detection in graphs[END_REF], communities (also called clusters or modules) are groups of nodes (vertices) which probably share common properties and/or play similar roles within the graph (or network) 1 . Identifying communities may offer insight on how the network is organized [START_REF] Fortunato | Community detection in networks: A user guide[END_REF], and it is often the precondition for the structural and functional analysis of the networked systems. Community detection for networks has attracted considerable attention crossing many areas from physics, biology, and economics to sociology [START_REF] Fortunato | Community detection in networks: A user guide[END_REF]. It can be seen as the task of clustering on graph data, which consists of a finite set of nodes, together with a set of unordered pairs of these vertices. These pairs are known as edges in the graph.

As the size of real-world networks grows rapidly, the community detection algorithms need to be fast and efficient. The Label Propagation Algorithm (LPA), which was first investigated by Raghavan et al. [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF], has the benefits of nearly-linear running time and easy implementation.

But the original LPA is not stable due to randomness. Different communities may be detected in different runs over the same network. Moreover, by assuming that a node always adopts the label of the majority of its neighbors, LPA ignores any other structural information existing in the neighborhood. In real applications, there is often some prior information about the network structure. For instance, in co-authorship networks, the communities related to some famous scholars are easy to know. In the movie network, the types of some special films may be clear to us. If such kind of prior information could be fused effectively in the unsupervised community detection models, the performance could be improved.

Supervised classification is one of the most popular techniques in machine learning. Generally, the goal of supervised learning is to train a classifier that reliably approximates a classification task based on a set of labeled examples from the problem of interest. The performance of the learned classifier highly depends on the proportion of labeled samples. However, in many practical applications of pattern classification, it is usually difficult to get abundant labeled samples since the task of manual labeling is time consuming and often requires expensive human labor. On the contrary, there are usually a large number of unlabeled samples which are easier to obtain. Consequently, Semi-Supervised Learning (SSL), which aims to effectively combine the unlabeled data with labeled data, has been developed to perform the classification task when there are not enough training data. Some semi-supervised community detection approaches have already be proposed [START_REF] Liu | Semi-supervised community detection using label propagation[END_REF][START_REF] Yang | A unified semi-supervised community detection framework using latent space graph regularization[END_REF][START_REF] Liu | Semi-supervised community detection based on non-negative matrix factorization with node popularity[END_REF].

The supervised information in these models are mainly two types: 1. The labels of some nodes are given in advance; 2. There are some must-link and/or cannot-link pair-wise constrains between some node pairs. In this paper we focus on the former type, i.e., some nodes in the graph are assumed to be labeled in advance. There are some problems when dealing with the information about node labels among the existing semi-supervised community detection methods, such as:

• If there are some outliers in the graph, the performance of the community detection model will become worse.

• If the labeled objects are located in the overlapping region between or among communities, the same label will be propagated to more than one class and, consequently, the accuracy of the detection results will be low.

The theory of belief functions is very effective in dealing with uncertain information, and it has already been applied in many fields, such as data classification [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF][START_REF] Xu | Evidential calibration of binary SVM classifiers[END_REF][START_REF] Lian | Dissimilarity Metric Learning in the Belief Function Framework[END_REF][START_REF] Reineking | Active classification using belief functions and information gain maximization[END_REF][START_REF] Liu | Adaptive imputation of missing values for incomplete pattern classification[END_REF], data clustering [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF][START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF][START_REF] Liu | Credal c-means clustering method based on belief functions[END_REF][START_REF] Zhou | ECMdd: Evidential c-medoids clustering with multiple prototypes[END_REF], complex networks [START_REF] Zhou | Evidential communities for complex networks[END_REF][START_REF] Zhou | Median evidential c-means algorithm and its application to community detection[END_REF][START_REF] Zhou | The belief noisy-or model applied to network reliability analysis[END_REF][START_REF] Nguyen | Two-probabilities focused combination in recommender systems[END_REF], data fusion [START_REF] Tang | A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion[END_REF] and statistical estimation [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF][START_REF] Denoeux | Maximum likelihood estimation from uncertain data in the belief function framework, Knowledge and Data Engineering[END_REF][START_REF] Kanjanatarakul | Prediction of future observations using belief functions: A likelihood-based approach[END_REF]. In this work, we try to address the above problems in semi-supervised community detection models using the theory of belief functions. The Semi-supervised Evidential Label Propagation (SELP) algorithm will be proposed to take advantage of the prior information in the graph. The initial knowledge about node labels is expressed in the form of Bayesian categorical mass functions, while the labels of the unlabeled nodes are represented by vacuous mass functions.

The evidential label propagation rule is designed to propagate the labels from the labeled nodes to the unlabeled ones iteratively. The basic belief assignments about each nodes' classes are obtained after convergence of the algorithm. Experimental results show that SELP can improve the accuracy of the detected communities compared with the unsupervised version. This result confirms that limited supervised information is of great value for the community detection task.

The rest of this paper is organized as follows. In Section 2, some basic knowledge and the rationale of our method are briefly introduced. In Section 3, the proposed SELP algorithm will be presented in detail. In order to show the effectiveness of the proposed community detection approaches, in Section 4 we test the SELP algorithm on different artificial and realworld data sets and compare it with related partitioning methods. Finally, we conclude and present some perspectives in Section 5.

Background

In this section some related preliminary knowledge, including the theory of belief functions and the classical label propagation algorithm, will be presented.

Theory of belief functions

Let Ω = {ω 1 , ω 2 , . . . , ω c } be the finite domain of X, called the discernment frame. The belief functions are defined on the power set 2 Ω . Function m : 2 Ω → [0, 1] is said to be a Basic Belief Assignment (bba) on 2 Ω , if it satisfies:

A⊆Ω m(A) = 1. (1) 
Every A ∈ 2 Ω such that m(A) > 0 is called a focal element. The credibility and plausibility functions can be defined, respectively, as

Bel(A) = B⊆A,B =∅ m(B) ∀A ⊆ Ω, (2) 
P l(A) = B∩A =∅ m(B), ∀A ⊆ Ω. (3) 
Each quantity Bel(A) measures the total support given to A, while P l(A) represents potential amount of support to A. Based on the types of the focal set that contains all the focal elements, we can have some particular forms of mass functions. A categorical mass function is a normalized bba which has a unique focal element A * . This kind of mass functions can be defined as:

m(A) =    1 if A = A * ⊂ Ω, 0 otherwise. (4) 
A vacuous mass function is a particular categorical mass function focused on Ω. It is a special kind of categorical mass functions with a unique focal element Ω. This type of mass functions is defined as follows:

m(A) =    1 if A = Ω, 0 otherwise. ( 5 
)
The vacuous mass function represents the case of total ignorance. A Bayesian mass function is a bba whose all focal elements are elementary hypotheses (i.e., singletons). It can be regarded as a probability distribution over frame Ω. Specially, if a Bayesian mass function is categorical, it represents that there is no uncertainty at all and we are completely sure about the state of the concerned variable.

A belief function can be transformed into a probability function by Smets' method [START_REF] Smets | Decision making in the TBM: the necessity of the pignistic transformation[END_REF],

in which the mass m(A) is equally distributed among the elements of A. This leads to the concept of pignistic probability, BetP , defined by

BetP (ω i ) = ωi∈A⊆Ω m(A) |A|(1 -m(∅)) , (6) 
where | • | denotes the number of elements of the set.

Mass functions can be used to describe the information obtained from different sources.

It requires to take into account the level of reliability of each information source in real applications. When the sources of evidence are not completely reliable, the discounting operation proposed by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] and justified by Smets [START_REF] Smets | Belief Functions: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem[END_REF] can be applied. Denote the reliability degree of mass function m by α ∈ [0, 1], then the discounting operation can be defined as:

m (A) =    α × m(A) ∀A ⊂ Θ, 1 -α + α×m(Θ) if A = Θ. (7) 
If α = 1, the evidence is completely reliable and the bba will remain unchanged. On the contrary, if α = 0, the evidence is completely unreliable. In this case the so-called vacuous belief function, m(Θ) = 1, is obtained. It describes our total ignorance.

How to combine efficiently several bbas coming from distinct sources is a major information fusion problem in the theory belief functions. Many rules have been proposed for such a task. When the information sources are considered as reliable, several distinct bodies of evidence characterized by different bbas can be combined using Dempster-Shafer (DS) rule [START_REF] Shafer | A mathematical theory of evidence[END_REF]. If bbas m j , j = 1, 2, • • • , S describing S distinct items of evidence on Ω, the combined bba of the S mass functions using the DS rule can be obtained by the following equation:

(m 1 ⊕ m 2 ⊕ • • • ⊕ m S ) (X) =                    0 if X = ∅, Y1∩•••∩Y S =X S j=1 m j (Y j ) 1 - Y1∩•••∩Y S =∅ S j=1 m j (Y j ) otherwise. (8) 
A decision can finally be made by assigning object o i to the class ω k with the highest plausibility.

EK-NNclus clustering

Belief functions defined on the power set can well describe the uncertainty in the class structure in the analyzed data set. Many clustering algorithms have been designed using the theory of belief functions [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF][START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF][START_REF] Zhou | ECMdd: Evidential c-medoids clustering with multiple prototypes[END_REF][START_REF] Hariz | Clustering approach using belief function theory[END_REF][START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF]. See Ref. [START_REF] Denoeux | Evidential Clustering: A Review, in: Integrated Uncertainty in Knowledge Modelling and Decision Making: 5th International Symposium, IUKM 2016[END_REF] for a review. Recently, Denoeux et al. [START_REF] Denoeux | EK-NNclus: A clustering procedure based on the evidential K-nearest neighbor rule[END_REF] put forward a new decision-directed clustering algorithm, named EK-NNclus, which uses the evidential K nearest-neighbor (EK-NN) rule [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer theory[END_REF] as the base classifier.

EK-NNclus is a clustering algorithm for relational data, where the dissimilarities between objects should be given in advance. Consider a clustering problem for n objects. The dissimilarity between objects o i and o j is denoted by

d ij , i, j = 1, 2, • • • , n. Matrix D = (d ij ) is symmetric. Let Ω = {ω 1 , • • • , ω c
} be the set of groups. Define class-membership binary variables u ik , which indicates whether object o i belongs to cluster ω k (u ik = 1) or not (u ik = 0).

To initialize the algorithm, the objects can be labeled randomly (or using some prior knowledge if available). As the number of clusters is unknown, we can simply set c = n, i.e. it is assumed that there are as many clusters as objects and each cluster contains exactly one object. The algorithm iteratively reassigns objects to clusters in some random order using the EKNN rule. For each object o i , the knowledge that object o t is at a distance d it from o i is a piece of evidence for the class membership of o i , which can be represented by the following mass function defined on Ω:

   m i t ({ω k }) = u tk α 0 exp{-γd it }, k = 1, 2, • • • , c m i t (Ω) = 1 -α 0 exp{-γd it }, (9) 
where α 0 and γ are some constants. Denoting by N K i the set of the K nearest neighbors of object o i , the K mass functions m i t , t ∈ N K i can be combined by the DS rule:

m i = ⊕ t∈N k i m i t . (10) 
The label of object o i can be determined according to the fused mass function m i . As the focal elements of m i are the singletons and the whole frame Ω, the object can be assigned to the cluster with the highest mass assignment (or plausibility). If the label of at least one object has been changed during the last iteration, then the objects are randomly re-ordered and a new iteration is started. Otherwise, the algorithm stops. After convergence, the cluster membership of each object is described by a mass function assigning a mass to each specific cluster and to the whole set of clusters. One of the advantages of EK-NNclus clustering is that it does not require the number of clusters to be fixed in advance [START_REF] Denoeux | EK-NNclus: A clustering procedure based on the evidential K-nearest neighbor rule[END_REF].

Label propagation

The graph data can be denoted by G(V, E), where V is the set of nodes and E is the set of edges. 

ω j = arg max ω l {|n u : y u = ω l , n u ∈ N v |} . (11) 
When there are multiple maximal labels among the neighbors' labels, the new label is picked randomly from them. By this iterative process densely connected groups of nodes form consensus on one label to form communities, and each node has more neighbors in its own community than in any of other community. Communities are identified as a group of nodes sharing the same label.

Semi-supervised label propagation

The original LPA can only make use of the network topology information, while it completely ignores the background information of the networks. However, in many real-world applications, there may exist some prior information that can be useful in detecting the community structures. Liu et al. [START_REF] Liu | Semi-supervised community detection using label propagation[END_REF] proposed a novel semi-supervised community detection approach based on label propagation (SLP), which can utilize the limited prior information to guide the discovery process of community structure.

Let G(V, E) denote the graph, and A = (a ij ) |V |×|V | be the adjacent matrix, where a ij = 1 if there is an edge between nodes n i and n j , and 0 otherwise. Suppose that a node n v carries a label denoting the community to which it belongs, then n v propagates its label to its neighbors

n v1 , n v2 , • • • , n v |Nv |
, where N v is the set of all the neighbors of node n v and |N v | is the degree of node n v . The node n vi absorbs a fraction of label information from its neighborhood node n v , and retains some label information of its initial state. A few number of nodes can be initialized based on the available prior information and then let the labels propagate through the network.

Suppose there are k communities (ω 1 , ω 2 , • • • , ω k ) and let F denote a set of n×k matrices with non-negative real-value entries. Any matrix

F = [f 1 , f 2 , • • • , f n ] T ∈ F corresponds to a specific partition on V .
Here f i is a column vector with length k, and the i th element in f i denotes the membership of node n i to community ω i . Initially, we set

F 0 = Y , where Y ij = 1
if node n i is labeled as ω j , and Y ij = 0 otherwise. For unlabeled nodes Y j = 0(1 < j < k).

Then the iteration equation can be given as

F t+1 = αW F t + (1 -α)Y, ( 12 
)
where W is the weight matrix with entries

w ij = a ij |N i | . ( 13 
)
After convergence, each node can be assigned to the class with the highest membership value,

i.e., we can label n i ∈ V as

y i = arg max j F ij . (14) 

Semi-supervised evidential label propagation

Inspired from LPA and EK-NNclus [START_REF] Denoeux | EK-NNclus: A clustering procedure based on the evidential K-nearest neighbor rule[END_REF], we propose here the SELP algorithm for graphs with some prior information. The problem of semi-supervised community detection will be first described in a mathematical way, and then the proposed semi-supervised label propagation algorithm will be presented in detail.

Problem restatement and notions

As before, let G(V, E) denote the graph, where V is the set of nodes and E ⊆ V × V is the set of edges. The adjacent matrix of the graph can be denoted by

A = (a ij ) |V |×|V | .
Assume that there are c communities (i.e., clusters, groups) in the graph. The set of labels is denoted by

Ω = {ω 1 , ω 2 , • • • , ω c }. Each node n v ∈ V in the graph is assumed to have a label ω v ∈ Ω.
In addition, in order to make sure the solution is unique, we assume that there must be at least one labeled vertex in each community. The |V | nodes in set V can be divided into two parts:

V L = {n 1 , n 2 , • • • , n l }
for the labeled nodes, and

V U = {n l+1 , n l+2 , • • • , n |V | }
for the unlabeled ones. The nodes in V L are labeled. Denote the label of node

n i (∈ V L ) is y i ∈ Ω.
The main task of the semi-supervised community detection is to propagate the labels from nodes in V L to those in V U , and further determine the labels of those unlabeled vertices.

Dissimilarities between nodes

A basic assumption which has been often adopted in semi-supervised graph-based learning methods is that nearby points are likely to have the same labels, which is known as the smoothness assumption [START_REF] Zhu | Semi-supervised learning with graphs[END_REF]. Pairwise similarity measure is the basis of label propagation.

Similarly, here we assume that the more common neighbors the two nodes share, the larger the probability that they belong to the same community. Thus, in this work, an index considering the number of shared common neighbors is adopted to measure the similarities between nodes.

Definition 1. If there is an edge between node n i and n j , i.e., a ij = 1, we say that n i (n j ) is a neighbor of n j (correspondingly, n i ). Let the set of neighbors of node n i be N i , and the degree

of node n i be |N i |, i = 1, 2, • • • , |V |.
The similarity between nodes n i and n j (n i , n j ∈ V ) can be defined as

s ij =    |Ni∩Nj | |Ni|+|Nj | , if a ij = 1, 0, otherwise. (15) 
Then the dissimilarities associated with the similarity measure can be defined as

d ij = 1 -s ij s ij , ∀ n i , n j ∈ V. (16) 

Evidential label propagation

For the labeled node n j ∈ V L in community ω k , the initial bba can be defined as a

Bayesian categorical mass function:

m j (A) =    1 if A = {ω k }, 0 otherwise. (17) 
For the unlabeled node n x ∈ V U , the vacuous mass assignment can be used to express our ignorance about its community label:

m x (A) =    1 if A = Ω, 0 otherwise. ( 18 
)
To determine the label of node n x , its neighbors can be regarded as distinct information sources. If there are |N x | neighbors for node n x2 , the number of sources is |N x |. Based on the assumption that similar nodes are likely to have the same labels, the reliability of each source depends on the similarities between the neighbors and node n x . Suppose that there is a neighbor n t with label ω j , it can provide us with a bba describing the belief on the community label of node n x as

m x t ({ω j }) = α * m t ({ω j }), m x t (Ω) = m t (Ω) + (1 -α) * m t ({ω j }) , m x t (A) = 0, if A = {ω j }, Ω, ( 19 
)
where α is the discounting parameter such that 0 ≤ α ≤ 1. It should be determined according to the similarity between nodes n x and n t . The more similar the two nodes are, the more reliable the source is. Thus α can be set as a decreasing function of d xt . In this work we suggest to use

α = α 0 exp -γd β xt , (20) 
where parameters α 0 and β can be set to be 1 and 2 respectively as default, and γ can be set to

γ = 1/median d β ij , i = 1, 2, • • • , n, j ∈ N i . (21) 
After the |N x | bbas from its neighbors are calculated using Eq. ( 19), the fused bba of node n x can be got by the use of Dempster's combination rule (see Eq. ( 8)):

m x = m x 1 ⊕ m x 2 ⊕ • • • ⊕ m x |Nx| . (22) 
As all the bbas to combine are in the form of Eq. ( 19), the focal elements of m x are the singletons {ω 1 }, {ω 2 }, • • • , {ω c } and the frame Ω. The label of node n x can be assigned to the focal element with the maximal mass value in m x . The main principle of semi-supervised learning is to take advantage of the unlabeled data. It is an intuitive way to add node n x (previously in set V U but already be labeled now) to set V L to train the classifier. However, if the predicted label of n x is incorrect, this will have very bad effects on the accuracy of the following predictions. Here a parameter η is introduced to control the prediction confidence of the nodes that are to be added in V L . If the maximum of m x is larger than η, it indicates that the belief about the community of node n x is high and the prediction is confident. Then we remove node n x from V U and add it to set V L . On the contrary, if the maximum of m x is not larger than η, it means that we can not make a confident decision about the label of n x based on the current information. Thus the node n x should be remained in set V U . This is the idea of self-training [START_REF] Li | SETRED: Self-training with editing[END_REF], which attempts to iteratively choose to label several examples about which one is the most confident in the unlabeled set. The learner keeps on labeling unlabeled examples and retraining itself on an enlarged labeled training set until all the samples are labeled.

In order to propagate the labels from the labeled nodes to the unlabeled ones in the graph, a classifier should first be trained using the labeled data in V L . For each node n x in V U , we find its direct neighbors and construct bbas through Eq. [START_REF] Zhou | The belief noisy-or model applied to network reliability analysis[END_REF]. Then the fused bba about the community label of node n x is calculated by Eq. ( 22). The subset of the unlabeled nodes, the maximal bba of which is larger than the given threshold η, are selected to augment the labeled data set. The predicted labels of these nodes are set to be the class assigned with the maximal mass. Parameter η can be set to 0.7 by default in practice.

After the above update process, there may still be some nodes in V U . For these nodes, we can find their neighbors that are in V L , and then use Eqs. [START_REF] Zhou | The belief noisy-or model applied to network reliability analysis[END_REF] and [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF] to determine their bbas. The whole algorithm of SELP is summarized in Algorithm 1.

The main idea of SELP is similar to that of EK-NNclus clustering algorithm. Both methods update the labels of objects iteratively based on the neighborhood information. The differences between SELP and EK-NNclus algorithms are as follows:

• SELP is in line with the principle of semi-supervised learning, which can take advantage the limited supervised information; EK-NNclus is a clustering method, which is in the scope of unsupervised learning;

• SELP is specially designed for the community detection task on graphs, while EK-NNclus is for relational data. When using SELP, the dissimilarities between nodes are calculated based on the graph structure;

• In the iterative label propagation process, the updating rule of SELP considers the mass assignments for the neighbors. The dissimilarities between nodes are used to determine the discounting factor.

Algorithm 1 : SELP algorithm Input: Graph G(V, E). The set of labeled nodes V L , and the set of unlabeled nodes V U . Parameters: η: the parameter to control the prediction confidence α 0 , β: the parameter to determine the discounting factor M axIts: the maximal update steps P ercF ul: the percentage of the labeled data Initialization:

(1) Initialize the bba of each node in the network using Eqs. ( 17) and ( 18).

(2) Let it = 0 repeat (1) For each node n x ∈ V U , find the set N x of all its neighbors and construct |N x | bbas using Eq. ( 19).

(2) Calculate the fused bba of node n x by Eq. ( 22).

(3) If the maximum of mass assignment of n x is larger than the threshold η, move node

n x from set V U to set V L . ( 4 
) it = it + 1.
until The percentage of nodes in V L is larger than P ercF ul or the maximal update step is reached. If there are still some nodes in V U , update their bbas based on the information from the neighbors using Eqs. [START_REF] Zhou | The belief noisy-or model applied to network reliability analysis[END_REF] and [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF].

Output: The bba matrix M = {m i }, i = 1, 2, • • • , |V |.

Application on relational data

To apply the SELP algorithm on classical data sets, an appropriate graph should be constructed first to model the analyzed data set. However, in graph-based learning methods, the construction of graph has not been studied extensively [START_REF] Zhu | Semi-supervised learning literature survey[END_REF][START_REF] Wang | Label propagation through linear neighborhoods[END_REF]. In this paper, a commonly used method, the K-Nearest Neighbor Graph (KNNG), is adopted to construct a graph based on the dissimilarities between objects [START_REF] Maier | Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters[END_REF]. Assume that there are |V | objects,

x 1 , x 2 , • • • , x |V | ,
in the data set. The dissimilarities between objects are denoted by

d ij , i, j = 1, 2, • • • , |V |.
The corresponding KNNG, denoted by G(V, E), can be defined based on the dissimilarities as follows. The data points are used as vertices in the constructed undirected graph, i.e., v i = x i . As before, by N j we denote the set of the K nearest neighbors of object x i among

x 1 , x 2 , • • • , x i-1 , x i+1 , • • • , x |V | .
The edges in G can be generated using the following rule: if x i ∈ N j and x j ∈ N i , there is an edge between x i and x j .

Experiment

In order to illustrate the behavior of the proposed SELP algorithm, some experiments on classification tasks will be reported in this section. The semi-supervised community detection algorithm using label propagation (SLP) [START_REF] Liu | Semi-supervised community detection using label propagation[END_REF] and the unsupervised label propagation algorithm were used for comparison. In SELP, parameters α 0 and β were set to 1 and 2, respectively, as default. Parameter γ was determined by Eq. [START_REF] Tang | A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion[END_REF]. Parameter η, which controls the prediction confidence, was set to be 0.7. The maximum iterative step was set to be 1000, and the percentage of labeled nodes for stopping the algorithm, P ercF ul, was set to be 0.9.

For the graph data, the NMI index, which measures the similarity between the planted partitions (ground truth) and the detected communities in the graph was used for comparison.

The NMI of two partitions A and B for a graph with |V | nodes, NMI(A, B), can be calculated by

NMI(A, B) = -2 C A i=1 C B j=1 M ij log M ij |V | M i• M •j C A i=1 M i• log M i• |V | + C B j=1 M •j log M •j |V | , (23) 
where C A and C B denote the numbers of communities in partitions A and B respectively.

The notation M ij stands for the element of matrix (M ) C A ×C B , representing the number of nodes in the i th community of A that appears in the j th community of B. The sum over row i of matrix M is denoted by M i• and that over column j by M •j . The labeled node in community ω 1 was set to node 5, while that in community ω 2 was node 24. After five steps, SELP algorithm stopped. The detailed update process is displayed in Figure 1 vertices are clearly presented. As it can be seen from the table, Nodes 10 and 12 are detected as outliers in all the cases by SELP, and the two communities can be correctly classified most of the time. The performance of SLP is worse than that of SELP when there is only one labeled data in each community. For the nodes which are connected to both communities and located in the overlap, such as nodes 3 and 9, they are misclassified most frequently. If the number of labeled data in each community is increased to 2, the exact community structure can be obtained by both methods. It is indicated that the more the prior information, i.e., labeled vertices, the better the performance of SELP is. The NMI values of the detected communities by SELP and SLP are significantly better than those by LPA. This finding indicates that the semi-supervised community detection methods could take advantage of the limited amount of prior information and consequently improve the accuracy of the detection results. The behavior of SELP is slightly better than that of SLP in terms of both error rates and NMI values.

Graph data

Example 3. In this example, we tested our algorithm on a large real-world network named com-Youtube, in which the ground-truth communities are known [START_REF] Yang | Defining and evaluating network communities based on groundtruth[END_REF]. We selected 5637 nodes from 25 communities, which are in the top 5000 communities with highest quality that are described [START_REF] Yang | Defining and evaluating network communities based on groundtruth[END_REF]. The selected communities contained at least five members. We performed some tests with different number of labeled nodes in each group. The results are displayed in Figure 3. From these figures, we can see that the detection results obtained by SELP and SLP are better than those of LPA, as the former two methods can take the limited supervised information into consideration. SELP performs better than SLP in terms of the average values of the error rate and NMI index.

q q q q q 0.1 0.2 0.3 0.4 1 2 3 4 5

Number of labeled nodes

Error Rate q SELP SLP q q q q q 0.45 Example 4. In this experiment, we used a generated network frequently used for testing community detection approaches, the LFR benchmark [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF], based on the assumption that the distributions of degree and community size are power laws. The experiments reported here included evaluating the performance of the algorithm with various amounts of labeled nodes and different values of parameter µ in the benchmark networks. The original LPA [START_REF] Raghavan | Near linear time algorithm to detect community structures in large-scale networks[END_REF] and the semi-supervised community detection approach SLP [START_REF] Liu | Semi-supervised community detection using label propagation[END_REF] were used for comparison.

In LFR networks, the mixing parameter µ represents the ratio between the external degree of each vertex with respect to its community and the total degree of the node. The larger the value of µ, the more difficult it is to detect the community structure. The values of the parameters in LFR benchmark networks were first set as follows: n = 1000, ξ = 15,

τ 1 = 2, τ 2 = 1, cmin = 20, cmax = 50.
The performances of different methods with various values of µ are shown in Figure 4. As expected, the error rate is very high and the NMI value is low when µ is large. From Figure 4-b, we can see the original LPA could not work at all when µ is larger than 0.5. This result reflects the fact that the community structure is not very clear and consequently difficult to be identified correctly. It can be seen from Figure 4-a that the error rates of SELP are generally smaller than those of SLP. SELP performs better than SLP. The same conclusion can be drawn from the NMI values displayed in Figure 4-b.

q q q q q q q q q 0.00 0.25 0.50 0.75 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mu Error Rate q SELP SLP q q q q q q q q q 0.00 We continue some experiments on LFR benchmarks with fixed parameter µ = 0.6. Different numbers of labeled nodes in each community were adopted for SELP and SLP in the experiment. The results are displayed in Figure 5. As we can see, LPA become completely invalid as the NMI values of the detected community structure is around 0. The performance of SELP and SLP is significantly improved compared with LPA. As shown in Figure 5-b, even when there is only one labeled data in each community, the behavior of SELP is much better than that of LPA. This confirms the fact that the semi-supervised community detection approaches can effectively take advantage of the limited amount of labeled data. From the figure, we can also see that the performance of SELP and SLP becomes better with the increasing number of labeled nodes.

We also test on a large LFR benchmark with the following parameters: n = 5000, ξ = 30, τ 1 = 2, τ 2 = 1, cmin = 500, cmax = 1000. The results are displayed in Figures 6 and7.

As can been seen from Figure 6, SELP is superior to SLP and LPA, especially when µ is q q q q q q q q q q 0.2 0.4 0.6

1 2 3 4 5 6 7 8 9 10
Number of labeled nodes Error Rate q SELP SLP q q q q q q q q q q 0.00 between 0.4 and 0.7. Figure 7 shows the results with different number of labeled nodes in each community. For both SELP and SLP, when there are more labeled nodes, the detection results become better in terms of error rate and NMI index. This is in consistent with our common sense. From Figure 7-b, we can see that LPA does not work at all when µ = 0.6.

But in this case SELP can also provide good results even when there is only one labeled node in each community. q q q q q q q q q 0.0 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mu Error Rate q SELP SLP q q q q q q q q q 0.0 

Classical data sets

This section is to show some perspectives on the application of SELP on some classical data sets. The KNNG method was used to construct graphs based on the Euclidean distance q q q q q q q q q q 0.2 0.4 0.6

1 2 3 4 5 6 7 8 9 10
Number of labeled nodes Error Rate q SELP SLP q q q q q q q q q q 0.0 between objects. We also compared our method with the K-EVCLUS clustering algorithms which is designed for relational data [START_REF] Denoeux | Evidential clustering of large dissimilarity data[END_REF]. The dissimilarity measure adopted in K-EVCLUS was also the Euclidean distance.

Example 5. The performance of SELP will be first tested on a simulated two-dimensional data set which is shown in Figure 8-a. This data set consists of 405 objects which form two non-linearly separable semi-circle shaped clusters. There are five noisy data (marked with stars in the figure) that does not belong to either class. The constructed graph using the KNNG method with K = 9 is displayed in Figure 8-b. We ran SELP algorithm on this graph. Initially we randomly select one sample from each class as the labeled data. The label propagation process is illustrated in Figure 9. As it can be seen from the figure, the algorithm stops after 30 iterations. The two classes as well as the five noisy data are correctly classified finally. Using other semi-supervised learning algorithms such as SLP on the same constructed graph, the two classes are easily detected. However, the noisy data will be partitioned into the two classes randomly. Setting K = 2, the clustering result by K-EVCLUS is shown in Figure 10. As can be seen, the performance of K-EVCLUS is not good. The objects located in the left part of the top moon and those in the right part of the bottom moon are not correctly classified. This can be due to the fact that K-EVCLUS does not make use of the supervised information, as it is an unsupervised clustering method. • Labeled data in ω 1 Labeled data in ω 2 unlabeled data • Labeled data in ω 1 Labeled data in ω 2 Labeled as noisy data unlabeled data The update process and the classification results are illustrated in Figures 12-a-d. From these figures, we can see that SELP could detect the three classes exactly. Five outliers out of six are correctly found. The results by SLP are not shown here, as it can not provide good results due to the outliers in the data sets. We also tried K-EVCLUS by setting K = 3. The result is not satisfactory. Even in the same ring, objects are partitioned into different groups q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q -2.0 -1. by K-EVCLUS. This fact confirms the advantage of limited supervised information, which can be used to improve the performance of the clustering algorithm. These two experiments on classical data sets are just used to show the possibility of the application of SELP on classical data sets. The results indicate that SELP works well especially in detecting outliers. However, how to construct the graph using the dissimilarities between objects needs a further consideration.
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Conclusion

In this paper, the SELP algorithm has been introduced as an enhanced version of LPA.

The approach proposed here can effectively take advantage of the limited amount of supervised information. This advantage is of practical meaning in real applications as there often exists some prior knowledge about the analyzed data sets. The experimental results show that the detection results will be significantly improved with the help of limited amount of supervised data.

At the end of the experimental part, we showed the possibility to apply SELP on classical data sets. This task requires the construction of graph based on the dissimilarities between objects. However, how to construct graphs should be further studied. Another problem, which can be seen from the experiments, is that the detection results are different if the labeled data are different. Thus, which data should be selected as the initial labeled samples should be studied. This question is related to active learning. Active community detection using the principle of label propagation is also an interesting problem that is worth of investigation in future research work.

Example 1 .

 1 Here we test on a widely used benchmark in detecting community structures, "Karate Club", studied by Wayne Zachary. The network consists of 34 nodes and 78 edges representing the friendship among the members of the club (see Figure1-a). During the development, a dispute arose between the club's administrator and instructor, which eventually resulted in the club splitting into two smaller clubs. The first one is an instructor-centered group covering 16 vertices (the circle nodes in the figure), while the second administrator centered group consists of the remaining 18 vertices (the square nodes in the figure).

ω 1

 1 Labeled data in ω 2 Labeled as noisy data unlabeled data e. it = 4 f. it = 5

Figure 1 :

 1 Figure 1: The label propagation process on Karate Club network. The nodes marked with color red are the outliers detected by SELP.

Example 2 .

 2 As a further test of our algorithm, the network we investigate in this experiment is the world of American college football games between Division IA colleges during regular season Fall 2000. The vertices in the network represent 115 teams, while the links denote 613 regular-season games between the two teams they connect. The teams are divided into 12 conferences containing around 8-12 teams each and generally games are more frequent between members from the same conference than between those from different conferences.Let the number of labeled nodes in each community be fixed. Then SELP and SLP algorithms are run 50 times respectively with randomly selected labeled nodes. The average error rates and NMI values (plus and minus one standard deviation) of the 50 experiments are displayed in Figures2-a and 2-b, respectively. As can be seen from the figures, with the increasing number of labeled samples, the performances of both SELP and SLP become better.

Figure 2 :

 2 Figure 2: The results on American football network.

Figure 3 :

 3 Figure 3: The results on Youtube network.

Figure 4 :

 4 Figure 4: The results on LFR network with n = 1000. The number of labeled nodes in each community is 3.

Figure 5 :

 5 Figure 5: The results on LFR network with n = 1000. The parameter of µ is set to be 0.6.

Figure 6 :

 6 Figure 6: The results on LFR network with n = 5000. The number of labeled nodes in each community is 3.

Figure 7 :

 7 Figure7: The results on LFR network with n = 5000. The parameter of µ is set to be 0.6.

Figure 8 :

 8 Figure 8: The two-moon data set.

•

  Labeled data in ω 1 Labeled data in ω 2 unlabeled data a. it = 3 b. it = 11

•

  Labeled data in ω 1 Labeled data in ω 2 Labeled as noisy data unlabeled data c. it = 27 d. it = 30

Figure 9 :

 9 Figure 9: The label propagation process on two-moon data set. The initial labeled samples are marked with big size symbols in the figure.

Example 6 .

 6 The original data set used in the example is shown in Figure11-a, which is a three-ring pattern with 180 × 3 data points. Each circle contains 180 points. There are also eight noisy points located between the circles. Figure11-b depicts the constructed graph using the KNNG method with K = 10.

q 2 Figure 10 :

 210 Figure 10: The clustering result on two-moon data set with K-EVCLUS clustering method.

Figure 11 :

 11 Figure 11: The three-ring data set.

Figure 12 :

 12 Figure12: The label propagation process on three-ring data set. The initial labeled samples are marked with big size symbols in the figure. In the first three figures, the samples marked with black symbols denote the unlabeled data in the current step.

  The number of nodes in graph G(V, E) is denoted by |V |. It is assumed that each node n v (∈ V ) has a label y v ∈ Ω, where Ω = {ω 1 , ω 2 , • • • , ω c } represents the frame of classes.

	Denote by N v the set of neighbors of node n v . The Label Propagation Algorithm (LPA) uses
	the network structure alone to guide its process. It starts from an initial configuration where
	every node has a unique label. Then at every step one node (in asynchronous version) or each
	node (in a synchronous version) updates its current label to the label shared by the maximum
	number of its neighbors. For node n v , its new label can be updated to ω j with

  . It can be seen from the figure that two outliers, nodes 10 and 12 are detected

	by SELP. From the original graph, we can see that node 10 has two neighbors, node 3 and
	node 34. But neither of them shares a common neighbor with node 10. For node 12, it only
	connects to node 1, but has no connection with any other node in the graph. Therefore, it is
	very intuitive that the two nodes are regarded as outliers of the graph.

The detection results on Karate Club network by SELP and SLP algorithms with different labeled nodes are shown in Table

1

. The labeled vertices and its corresponding misclassified

Table 1 :

 1 Community detection results for the Karate Club network.

	Labeled nodes in ω 1 Labeled nodes in ω 2 Misclassified nodes by SELP Detected outliers by SELP Misclassified nodes by SLP
	1	34	None	10, 12	None
	1	32	9	10, 12	9, 10, 27, 31, 34
	2	33	None	10, 12	None
	6	31	3	10, 12	2, 3, 8, 14, 2
	8	31	None	10, 12	10
	8	32	None	10, 12	None
	17	31	3, 4, 8, 14	10, 12 2, 3, 4, 8, 13, 14, 18, 20, 22
	1, 2	33, 34	None	10, 12	None
	1, 2	33, 9	None	10, 12	None
	3, 18	26, 30	None	10, 12	None
	17, 4	31, 9	None	10, 12	None

The number of node n x 's neighbors is determined by the number of nodes sharing the same edge with n x .
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