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Abstract The (1+(λ, λ)) genetic algorithm (GA) proposed in [Doerr, Doerr,
and Ebel. From black-box complexity to designing new genetic algorithms.
Theoretical Computer Science (2015)] is one of the few examples for which a
super-constant speed-up of the expected optimization time through the use of
crossover could be rigorously demonstrated. It was proven that the expected
optimization time of this algorithm on OneMax is O(max{n log(n)/λ, λn})
for any offspring population size λ ∈ {1, . . . , n} (and the other parameters
suitably dependent on λ) and it was shown experimentally that a self-adjusting
choice of λ leads to a better, most likely linear, runtime.

In this work, we study more precisely how the optimization time depends
on the parameter choices, leading to the following results on how to optimally
choose the population size, the mutation probability, and the crossover bias
both in a static and a dynamic fashion.

For the mutation probability and the crossover bias depending
on λ as in [DDE15], we improve the previous runtime bound to
O(max{n log(n)/λ, nλ log log(λ)/ log(λ)}). This expression is minimized by a
value of λ slightly larger than what the previous result suggested and gives an

expected optimization time of O
(
n
√

log(n) log log log(n)/ log log(n)
)

.

We show that no static choice in the three-dimensional parameter space of
offspring population, mutation probability, and crossover bias gives an asymp-
totically better runtime.

Results presented in this work are based on [12–14].
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We also prove that the self-adjusting parameter choice suggested in
[DDE15] outperforms all static choices and yields the conjectured linear ex-
pected runtime. This is asymptotically optimal among all possible parameter
choices.

Keywords Theory of Randomized Search Heuristics · Runtime Analysis ·
Genetic Algorithms · Parameter Choice · Parameter Control

1 Introduction

The role of crossover in evolutionary computation is still not very well un-
derstood. On the one hand, it is used intensively and successfully in practice.
On the other hand, there is only mildly convincing rigorous theoretical or ex-
perimental support for the usefulness of crossover. For example, attempts to
experimentally support the building block hypothesis in [50] failed. On the
theory side, there is a long series of works [6, 7, 22, 25, 28, 34, 42, 56, 57] pre-
senting examples where crossover gives an improvement. A closer look at the
details, however, often reveals that these work regard highly artificial problems
or need uncommon parameter settings or substantial additional mechanisms to
make crossover really work. Hence despite being positive examples, the over-
all impression that one might get could rather be that crossover is not that
easily employed, or, at least, that our rigorous understanding of its working
principles is not yet satisfactory.

In this work, we build on the latest algorithm where crossover was proven to
be useful, the (1 + (λ, λ)) genetic algorithm (GA) proposed in [15] (see [16] for
the journal version). Unlike most previous works, here crossover has a super-
constant speed-up even for very simple functions like the OneMax function
Om : {0, 1}n → {0, 1, . . . , n}, x 7→

∑n
i=1 xi. Experiments show that the al-

gorithm performs well also on linear functions and royal road functions [16],
on maximum satisfiability instances [36] (in fact, the latter work shows that
the (1 + (λ, λ)) GA outperforms hill climbers for several problems, while for
MaxSat it also outperforms the Linkage Tree Genetic Algorithm) and on other
combinatorial optimization problems [49].

The (1 + (λ, λ)) GA not only shows an improved performance for various
problems, it also uses crossover in a novel way. Instead of trying to combine
particularly fit solution parts, it uses a biased uniform crossover with a parent
individual as repair mechanism. With this repair mechanism, an increased
mutation rate can be employed, leading to a faster exploration of the search
space.

This way of using crossover, not seen before in discrete evolutionary opti-
mization, motivates the quest for a deeper understanding of the (1+(λ, λ)) GA,
its working principles, and the influence of static and dynamic parameter
choices on the expected runtime. In the remainder of this introduction, we
briefly recall the main ideas of the (1 + (λ, λ)) GA and its parameters in Sec-
tion 1.1. Our results are summarized in the subsequent Sections 1.2 (stronger
runtime guarantee for the parameters suggested in [16]), 1.3 (lower bound for
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the full 3-dimensional parameter space), and 1.4 (upper and lower bounds for
a self-adjusting parameter choice). The main part of the paper follows a simi-
lar outline, with the (1 + (λ, λ)) GA made precise in Section 2, some technical
tools prepared in Section 3, and then the results described in Section 1.2 to 1.4
being proven in Sections 4 to 6, respectively.

1.1 The (1 + (λ, λ)) Genetic Algorithm

The (1+(λ, λ)) GA works with a parent population of size one. This population
{x} is initialized with a search point chosen from {0, 1}n uniformly at random.
The (1 + (λ, λ)) GA then proceeds in iterations, each consisting of a mutation
phase, a crossover phase, and a final elitist selection step determining the new
parent population.

In the mutation phase, a step size ` is chosen at random from the binomial
distribution B(n, p), where p denotes the mutation probability. Then indepen-
dently λ offspring are sampled by flipping exactly ` random bits in x. In an
intermediate selection step, one best mutation offspring x′ is selected as mu-
tation winner. In the crossover phase, again λ offspring are created; this time
via a biased uniform crossover between x and x′, taking each entry of x′ with
probability c only and taking the entry of x otherwise. Again, an intermediate
selection chooses one of the best crossover offspring y as crossover winner. In
the final selection step, this y replaces x if its fitness is at least as large as the
fitness of x; i.e., if and only if f(y) ≥ f(x) holds.

The three parameters determining the (1+(λ, λ)) GA are thus the offspring
population size λ, the mutation probability p, and the crossover bias c. Using
intuitive considerations, in [16] it was suggested to generally use p = λ/n and
c = 1/λ.

1.2 An Improved Upper Bound

Our first result is a refined runtime analysis for the problem analyzed in [16],
that is, for all λ ≤ n we regard the expected runtime (expected number of
fitness evaluations until an optimal solution is found) of the (1 + (λ, λ)) GA
on OneMax for p = λ/n and c = 1/λ. While in [16] an upper bound of

O

(
max

{
n log(n)

λ
, λn

})
was shown, we determine in this work the precise order of magnitude and show
in Section 4 an upper bound of order

O

(
max

{
n log(n)

λ
,
nλ log log(λ)

log(λ)

})
for all values of λ ∈ {1, . . . , n}.
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While for the previous bound from [16] a parameter setting of λ =
Θ(
√

log n) is the choice giving the minimal expected runtime, namely
O(n
√

log n), our new result suggests that a slightly larger value of

λ = Θ(
√

log(n) log log(n)/ log log log(n))

is superior, which gives an expected optimization time of

O(n
√

log(n) log log log(n)/ log log(n)).

Our (more general) lower bound of Section 5 will show that both this runtime
and this choice for λ are asymptotically optimal.

We further prove a strong concentration result for the runtime, showing
that deviations above the expectation are unlikely: For all δ > 0, the proba-
bility that the actual runtime exceeds its expected value by a factor of (1 + δ)
is at most O((n/λ2)−δ).

The proofs of these results also give some additional insights into the work-
ing principles of the crossover operator and, more generally, the (1+(λ, λ)) GA.
The improved runtime guarantee is based on the observation that when gen-
erating λ offspring in parallel, some have a fitness that is significantly better
than the expected fitness of a single offspring created by the biased crossover.
We exploit this to show that sufficiently often we gain sufficiently many fitness
levels in one iteration, where we use the common convention to partition the
search space {0, 1}n into the n+1 fitness levels L0, L1, . . . , Ln such that for all
i ∈ [0..n] the fitness level Li contains exactly those strings x with Om(x) = i;
i.e., those strings that have exactly i entries equal to 1. Interestingly, the good
runtimes shown for the (1 + (λ, λ)) GA only stem from better-than-expected
individuals in the crossover phase, but not from such individuals in the muta-
tion phase.

With the few runtime results on crossover-based evolutionary algorithms
(EAs) and, also, still the majority of the runtime results for EAs in gen-
eral being for algorithms having trivial population sizes, we feel that our
work also advances the state of the art in terms of analytical methods.
Our argument that one out of λ offspring can have a significantly better
fitness than the expected fitness of one offspring resembles a similar one
previously made by Jansen, De Jong, and Wegener [41], who used multi-
ple fitness level gains to prove that for the (1 + λ) EA optimizing One-
Max a linear speed-up (compared to λ = 1) exists if and only if λ =
O(log(n) log log(n)/ log log log(n)). An extension of this analysis in [27] gives a
tight runtime bound—of Θ(nλ log log(λ)/ log(λ))—also for the regime where
λ is above the cut-off point Θ(log(n) log log(n)/ log log log(n)). This analysis
also exploits gains of multiple fitness levels by the best of several indepen-
dent offspring. Note that both results are different from ours in two respects,
namely in that they do not show a positive influence of λ on the expected
optimization time (number of fitness evaluations), but only on the number
of iterations, and in that the better-than-expected offspring are generated by
mutation, and not by crossover. A difference in terms of proof methods is that
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the random experiment producing the new generation for the (1 + (λ, λ)) GA
has stochastic dependencies that are not present in the (1 + λ) EA, thus re-
quiring a number of different arguments. For example, we cannot simply re-use
classic results on balls-into-bins experiments, but have to re-prove them taking
into account the dependencies present in our random experiment. To show the
strong concentration result, we prove a Chernoff-type large deviation bound
for sums of geometric random variables having harmonically decreasing ex-
pectations (Lemma 4). Since such random variables occur frequently in the
analysis of randomized search heuristics, we are optimistic that this tool will
find applications in other works.

1.3 Optimal Static Parameter Choices—Tight Bounds for A
Multi-Dimensional Parameter Space

The refined analysis above (together with the matching lower bound given
in [14]) determines the optimal choice of the population size λ when p = λ/n
and c = 1/λ are chosen according to the intuitive arguments given in [16]. It
thus leaves open the possibility that completely different parameter choices
give an even better performance.

For this reason, in Section 5 we rigorously prove a lower bound valid for
the whole three-dimensional parameter space. Our lower bound coincides with
the runtime proven in Section 4. Consequently, the intuitive dependencies of
the parameters p and c suggested in [16] are indeed optimal. Our result and
in particular the partial results that lead to it give a clearer picture on how to
choose the parameters in the (1 + (λ, λ)) GA also for optimization problems
beyond the OneMax function class. We discuss these non-rigorous insights in
Section 5.3.

From the methodological standpoint, our analysis is one of very few the-
oretical works that analyze evolutionary algorithms involving more than one
parameter. We observe that the parameters do not have an independent in-
fluence on the runtime, but that they interact in a difficult to foresee manner.
A similar observation was made in [35], where it is proven for the (1 + λ)
EA that the mutation probability has a decisive influence on the perfor-
mance when the population size λ is asymptotically smaller than the cut-off
point log(n) log log(n)/ log log log(n), whereas it has almost no influence when
λ = ω(log(n) log log(n)/ log log log(n)). Such non-separable parameter influ-
ences, naturally, make the analysis of a multi-dimensional parameter space
more difficult.

A second difficulty we had to overcome is that, while only a few parameter
configurations yield the asymptotically optimal expected runtime, quite a large
set of parameter combinations (including some that are far from the optimal
ones) still lead to an expected runtime that is very close to the optimal one (see
the remark at the end of Section 5.1). While this is good from the application
point of view (missing the optimal parameters is not necessarily devastating),
from the viewpoint of proving our results it means that there is not much room
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for non-sharp estimates. In overcoming these difficulties, we are optimistic that
our work helps future analyses of multi-dimensional parameter spaces.

1.4 Self-Adjusting Parameter Choices

All results described above assume static choices of the parameters λ, p, and
c; that is, these values remain unchanged for the whole run of the algorithm.
It had been proven already in [16] that a better expected runtime, namely
a linear one, can be achieved if we allow the parameters to depend on the
current state of the optimization process. More precisely, it was shown that
for p = λ/n, c = 1/λ, and

λ =
√
n/(n− f(x)) (1)

with f(x) denoting the fitness of the current search point, the resulting ex-
pected optimization time of the (1 + (λ, λ)) GA on OneMax is Θ(n). While
this shows that the best parameter setting changes during the course of the op-
timization process, assuming that an algorithm user is able to guess a relation
like (1) is not very realistic.

However, in [16] also a second, easier to use idea has been suggested: a
discrete version of the well-known one-fifth success rule (see the discussion
in Section 6.2) has experimentally been shown capable of tracking the the-
oretically optimal parameter values in an automated way, thus obtaining an
expected runtime that seems to be linear. We make these observations rigor-
ous in Section 6 and prove (Theorem 9) that the self-adjusting (1+(λ, λ)) GA
suggested in [16] has a linear expected optimization time on OneMax. By the
results of Section 5 this is faster than what any static parameter choice can
achieve. We also prove that this linear expected runtime is optimal among all
possible dynamic parameter settings (Theorem 11).

2 The (1 + (λ, λ)) GA and Its Parameters

The (1 + (λ, λ)) GA, which was originally proposed in [15] (see [16] for the
full journal version), is an evolutionary algorithm using crossover. Its pseudo-
code is given in Algorithm 1. The algorithm is initialized by forming the parent
population with a solution candidate x that is drawn uniformly at random from
{0, 1}n. The (1 + (λ, λ)) GA proceeds in iterations consisting of a mutation,
a crossover, and a selection phase. In an important contrast to many other
genetic algorithms, the mutation phase precedes the crossover phase. This
allows to use crossover as a repair mechanism, as we shall discuss in more
detail below.

In the mutation phase, we create λ offspring from the parent x by applying
to it the mutation operator mut`(·), which flips in x the entries in ` positions
that are selected from [n] := {1, 2, . . . , n} uniformly at random. In other words,
mut`(x) is a bit-string in which for ` random positions i the entry xi ∈ {0, 1} is
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Algorithm 1: The (1 + (λ, λ)) GA, maximizing a given function f :
{0, 1}n → R, with offspring population size λ, mutation probability p,
and crossover bias c. The mutation operator mut` generates an offspring
from one parent by flipping exactly ` random bits (without replacement).
The crossover operator crossc performs a biased uniform crossover, taking
bits independently with probability c from the second argument.

1 Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.);
2 Optimization: for t = 1, 2, 3, . . . do
3 Mutation phase:

4 Sample ` from B(n, p);

5 for i = 1, . . . , λ do x(i) ← mut`(x);

6 Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r.;
7 Crossover phase:

8 for i = 1, . . . , λ do y(i) ← crossc(x, x′);

9 Choose y ∈ {y(1), . . . , y(λ)} with f(y) = max{f(y(1)), . . . , f(y(λ))} u.a.r.;
10 Selection step: if f(y) ≥ f(x) then x← y;

replaced by 1−xi. The step size ` is chosen randomly according to a binomial
distribution B(n, p) with n trials and success probability p. To ensure that all
mutants have the same distance from the parent x, and thus to not bias the
selection by different distances from the parent, the same ` is used for all λ
offspring. The fitness of the λ offspring is computed and the best one of them,
x′, is selected to take part in the crossover phase. If there are several offspring
having maximal fitness, we pick one of them uniformly at random (u.a.r.).

When the parent x is already close to an optimal solution, the offspring
created in the mutation phase are typically all of much worse fitness than x.
However, they may still have discovered some parts of an optimal solution that
is not yet reflected in x. In order to preserve these parts while at the same time
not destroying the good parts of x, the (1+(λ, λ)) GA creates in the crossover
phase λ offspring from x and x′. Each one of these offspring is sampled from a
uniform crossover with bias c to take an entry from x′; that is, each offspring

y(i) := crossc(x, x
′) is created by setting y

(i)
j := x′j with probability c and

taking y
(i)
j := xj otherwise, independently for each position j ∈ [n]. Again

we evaluate the fitness of the λ crossover offspring and select the best one of
them, which we denote by y. If there are several offspring of maximal fitness,
we break ties randomly.1

Finally, in the selection step the parent x is replaced by the winner of the
intermediate selection of the crossover phase y if and only if the fitness of y is
at least as good as the one of x.

1 In [15, Section 4.4] and [16] a slightly different selection rule was suggested for the
crossover phase, namely excluding from the crossover selection individuals identical with
x. This can speed-up traversing large plateaus of equal fitness. For the OneMax function,
naturally, there is no difference, so we present the algorithm in the simpler fashion given
above.
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As common in the runtime analysis community, we do not specify a
termination criterion. The simple reason is that we study as a theoretical
performance measure the expected number of function evaluations that the
(1 + (λ, λ)) GA performs until it evaluates for the first time a search point of
maximal fitness (the so-called optimization time or runtime). This is the com-
mon measure in runtime analysis, cf. Section 3.1 for a discussion. Note that
for algorithms performing more than one fitness evaluation per iteration, such
as the (1 + (λ, λ)) GA, the expected runtime can be much different from the
expected number of iterations (generations). Of course, for an application to a
real problem a termination criterion has to be specified for the (1+(λ, λ)) GA.

2.1 Parameter Choices

The (1 + (λ, λ)) GA comes with a set of parameters, namely the mutation
probability p, the crossover bias c, and the offspring population size λ. If ` ∼
B(n, p), then crossc(x,mut`(x)) has the distribution of an individual created
from x via standard bit mutation with mutation rate pc. Since 1/n is an often
preferred choice for the mutation rate, it was suggested in [16] to choose p and
c in a way that pc = 1/n. Note, however, that due to the two intermediate
selection steps, the final offspring y of one iteration of the (1 + (λ, λ)) GA
has a very different distribution than standard bit mutation with rate pc. For
example, as we will see in Section 4, for all x, apart from those stemming
from o(n) fitness levels, the final offspring y gains a super-constant number of
fitness levels over x.

We parametrize p = k/n so that k denotes the average number of bits
flipped by an application of the mutation operator. With this setting, the
above suggestion translates to choosing c = 1/k. For these settings, a first
runtime analysis for the OneMax test function in [16] gave an upper bound
for the expected runtime of O(( 1

k + 1
λ )n log n + (k + λ)n). From this, the

suggestion to take k = λ was derived, reducing the parameter space to the
single parameter λ. Since only an upper bound for the expected runtime was
used to obtain this suggestion, again this is an intuitive argument, but not a
rigorous one.

For the parameter settings p = λ/n, c = 1/λ, and arbitrary λ we shall per-
form a more precise runtime analysis in Section 4 showing a order of magnitude
for the expected runtime of

O

(
max

{
n log(n)

λ
,
nλ log log(λ)

log(λ)

})
, (2)

which is minimized by the parameter choice

λ = Θ
(√

log(n) log log(n)/ log log log(n)
)
.

In Section 5 we shall prove that the upper bound (2) is tight and that, fur-
thermore, also all other choices of mutation probability, crossover bias, and
offspring population size lead to this or a worse expected runtime.
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For dynamic parameter choices, i.e., for parameter choices that can change
during the optimization process, we recall that [16] showed that a Θ(n) ex-
pected runtime can be obtained by choosing the parameters using a clever
functional dependence of the objective value. It was also shown experimen-
tally that a self-adjusting parameter setting imitating a one-fifth success rule
yields very similar performance. In Section 6 we shall formally prove that,
indeed, the (1 + (λ, λ)) GA together with this update scheme has a linear
expected optimization time on OneMax.

3 Notation and Technical Tools

In this section, besides fixing some very elementary notation, we collect the
main technical tools we shall use. Mostly, these are large deviations bounds
of various types. For the convenience of the reader, we first state the known
ones. We then prove a tail bound for sums of geometric random variables
with expectations bounded from above by the reciprocals of the first positive
integers. We finally recall the well-known additive drift theorem as well as a
multiplicative drift theorem for computing lower bounds.

3.1 Runtime Analysis

Runtime analysis is one of the most successful theoretical tools to understand
the performance of evolutionary algorithms. The runtime or optimization time
of an algorithm (e.g., our (1 + (λ, λ)) GA) on a problem instance (e.g., the
OneMax function) is the number of fitness evaluations that are performed
until an optimal solution is evaluated for the first time. If the algorithm is
randomized (like our (1 + (λ, λ)) GA), this is a random variable T , and we
usually make statements on the expected value E[T ] or give bounds that hold
with some high probability, e.g., 1 − 1/n. When regarding a problem with
more than one instance (e.g., traveling salesman instance on n cities), we take
a worst-case view. This is, we regard the maximum expected runtime over
all instances, or we make statements like that the runtime satisfies a certain
bound for all instances.

In this work, the optimization problem we regard is the classic OneMax
test problem consisting of the single instance Om : {0, 1}n → {0, 1, . . . , n};x 7→∑n
i=1 xi, that is, the optimization goal is to maximize the number of ones in

a bit-string. Despite the simplicity of the OneMax problem, analyzing ran-
domized search heuristics on this function has spurred much of the progress in
the theory of evolutionary computation in the last 20 years, as is documented,
e.g., in the recent textbook [40].

Of course, when regarding the performance on a single test instance, we
should ensure that the algorithm does not exploit the fact that there is only
one instance. A counter-example would be the algorithm that simply evaluates
and outputs x∗ = (1, . . . , 1), giving a perfect runtime of 1. One way of ensuring
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this is that we restrict ourselves to unbiased algorithms (see [48]) which treat
bit-positions and bit-values in a symmetric fashion. Consequently, an unbiased
algorithm for the OneMax problem has the same performance on all problems
with isomorphic fitness landscape, in particular, on all (generalized) OneMax
functions Omz : {0, 1}n → {0, 1, . . . , n};x 7→ eq(x, z) for z ∈ {0, 1}n, where
eq(x, z) denotes the number of bit-positions in which x and z agree. It is easy
to see that the (1 + (λ, λ)) GA is unbiased (for all parameter settings).

3.2 Notation and Two Elementary Facts

We write [a..b] to denote the set {z ∈ Z | a ≤ z ≤ b} of integers between a and
b. We write log(n) to denote the binary logarithm of n and ln(n) to denote the
natural logarithm of n. However, to avoid unnecessary case distinctions when
taking iterated logarithms, we define log(n) := 1 for all n ≤ 2 and ln(n) := 1
for all n ≤ e. For the readers’ convenience, we now collect some tools from
probability theory which we will use regularly.

We occasionally need the expected value of a binomially distributed ran-
dom variable X ∼ B(n, p) conditional on that the variable has at least a
certain value k. An intuitive (but wrong) solution to this question is that this
E[X|X ≥ k] should be around k+ p(n− k), because we know already that at
least k of the n independent trials are successes and the remaining (n−k) trials
still have their independent success probability of p. While this argument is
wrong, an upper bound of this type can be shown by elementary means. Since
we have not seen this made explicit in the EA literature, we shall also give the
short proof.

Lemma 1 Let X be a random variable with binomial distribution with param-
eters n and p ∈ [0, 1]. Let k ∈ [0..n]. Then

E[X | X ≥ k] ≤ k + (n− k)p ≤ k + E[X].

Proof Let X1, . . . , Xn be independent binary random variables with Pr[Xi =
1] = p for all i ∈ [n]. Then X =

∑n
i=1Xi has a binomial distribution with

parameters n and p. Conditioning on X ≥ k, let ` := min{i ∈ [n] |
∑i
j=1Xj =

k}. Then E[X | X ≥ k] =
∑n
i=1 Pr[` = i | X ≥ k]E[X | ` = i]. Note that

` ≥ k by definition. Note also that E[X | ` = i] = k +
∑n
j=i+1Xj with

unconditioned Xj . In particular, E[X | ` = i] = k + (n − i)p. Consequently,
E[X | X ≥ k] =

∑n
i=1 Pr[` = i | X ≥ k]E[X | ` = i] ≤

∑n
i=k Pr[` = i | X ≥

k](k + (n− k)p) = k + (n− k)p. ut

Also, we shall use the following well-known fact, for which a short proof
can be found, for example, in [20, Lemma 1].

Lemma 2 Let X be a non-negative integral random variable. Then E[X] =∑∞
i=1 Pr[X ≥ i].
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3.3 Chernoff Bounds

The following large deviation bounds are well known and can be found, e.g.,
in [11]. They are often called Chernoff bounds despite the fact that it is well
known that many of them have been discovered by Bernstein, Hoeffding, and
others.

Theorem 1 (classic Chernoff bounds) Let X1, . . . , Xn be independent
random variables taking values in [0, 1]. Let X =

∑n
i=1Xi.

(a) Let δ ≥ 0. Then Pr[X ≥ (1 + δ)E[X]] ≤
(

eδ

(1+δ)1+δ

)E[X]

.

(b) Let δ ∈ [0, 1]. Then Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/3).
(c) Let d ≥ 6E[X]. Then Pr[X ≥ d] ≤ 2−d.
(d) Let δ ∈ [0, 1]. Then Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2E[X]/2).
(e) Let X1, . . . , Xn be independent random variables each taking values in some

interval of length at most one. Let X =
∑n
i=1Xi. Let λ ≥ 0. Then Pr[X ≤

E[X]− λ] ≤ exp(−2λ2/n) and Pr[X ≥ E[X] + λ] ≤ exp(−2λ2/n).

Binary random variables X1, . . . , Xn are called negatively correlated, if for
all I ⊆ [n] we have Pr[∀i ∈ I : Xi = 0] ≤

∏
i∈I Pr[Xi = 0] and Pr[∀i ∈ I :

Xi = 1] ≤
∏
i∈I Pr[Xi = 1].

Theorem 2 (Chernoff bound, negative correlation) Let X1, . . . , Xn be
negatively correlated binary random variables. Let a1, . . . , an ∈ [0, 1] and X =∑n
i=1 aiXi. Then X satisfies the Chernoff bounds given in Theorem 1 (b)

and (d).

Chernoff bounds also hold for hypergeometric distributions. Let A be any
set of n elements. Let B be a subset of A having m elements. If Y is a random
subset of A of N elements, chosen uniformly at random from all N -element
subsets of A, then X := |Y ∩ B| has a hypergeometric distribution with pa-
rameters (n,N,m).

Theorem 3 (Chernoff bounds for hypergeometric distributions) If
X has a hypergeometric distribution with parameters (n,N,m), then E[X] =
Nm/n and X satisfies all Chernoff bounds given in Theorem 1.

A different way of applying Chernoff bounds to random variables that are
not fully independent is the following lemma proven in [11].

Lemma 3 (Chernoff bound, lower tail, moderate indepencence) Let
X1, . . . , Xn be arbitrary binary random variables. Let X∗1 , . . . , X

∗
n be binary

random variables that are mutually independent and such that for all i,X∗i
is independent of X1, . . . , Xi−1. Assume that for all i and all x1, . . . , xi−1 ∈
{0, 1},

Pr(Xi = 1|X1 = x1, . . . , Xi−1 = xi−1) ≥ Pr(X∗i = 1).
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Then for all k ≥ 0, we have

Pr

( n∑
i=1

Xi < k

)
≤ Pr

( n∑
i=1

X∗i < k

)
,

and the latter term can be bounded by Chernoff bounds for independent random
variables.

3.4 A Chernoff Bound for Geometric Random Variables

To prove the concentration statement in Theorem 7, we need a tail bound
for the upper tail of a sum of a sequence of independent geometric random
variables having expectations that are upper-bounded by a multiple of the
harmonic series. While generally Chernoff bounds for geometric random vari-
ables are less understood than for bounded random variables, Witt [62] proves
such a bound. Witt’s bound is sufficient for our purposes. For two reasons we
prove the following alternative result below. (i) Our proof is a simple reduc-
tion to the well-understood coupon collector process, and thus much simpler
than Witt’s. (ii) At the same time, our proof gives a stronger bound (for our
setting, Witt’s bound on the failure probability is roughly the fourth root of
ours). Since scenarios as treated here are quite common in runtime analysis
(for example, they appear whenever the fitness level method is employed in
a situation where the probability of a progress is inversely proportional to
the fitness distance from the optimum), we feel that presenting our result is
justified here.

We say that X has a geometric distribution with success probability p if
for each positive integer k we have Pr[X = k] = (1 − p)k−1p. For all n ∈ N,
let Hn :=

∑n
i=1(1/i) denote the nth Harmonic number.

Lemma 4 Let X1, . . . , Xn be independent geometric random variables with
success probabilities pi. Assume that there is a number C ≤ 1 such that pi ≥
Ci/n for all i ∈ [n]. Let X =

∑n
i=1Xi. Then

E[X] ≤ (1/C)nHn ≤ (1/C)n(ln(n) + 1)

and
Pr[X ≥ (1 + δ)(1/C)n ln(n)] ≤ n−δ for all δ > 0.

Proof For i ∈ [n], let X ′i be a geometric random variable with success prob-
ability exactly Ci/n =: p′i. Let the X ′i be independent. Then X ′i dominates
Xi for all i ∈ [n], and consequently, X ′ :=

∑n
i=1X

′
i dominates X. Recall

that a random variable Y ′ dominates a random variable Y if for all r ∈ R,
Pr[Y ≥ r] ≤ Pr[Y ′ ≥ r]. Note that this implies that E[Y ] ≤ E[Y ′] and that
all upper tail bounds for Y ′ immediately apply to Y . Consequently, we can
conveniently focus on X ′ instead of X.

For the statement on the expectation, we recall that the expectation of
a geometric random variable with success probability p is 1/p. Consequently,
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by linearity of expectation, we have E[X ′] =
∑n
i=1E[X ′i] =

∑n
i=1(1/p′i) =

(n/C)
∑n
i=1(1/i) = (n/C)Hn.

For the tail bound, consider the following coupon collector process. There
are n different types of coupons. In each round (independently), with proba-
bility C we obtain a coupon having a type chosen uniformly at random and
with probability 1−C we obtain nothing. We are interested in the number T
of rounds until we have each type of coupon at least once. For i ∈ [n], let Ti
denote the number of rounds needed to get a coupon of a type not yet in our
possession given that we have already n− i different types. In other words, Ti
is the time we need to go from “i types missing” down to “i−1 types missing”.
We observe that Ti has the same distribution as Xi and that T =

∑n
i=1 Ti.

Consequently, T and X are equally distributed.
The advantage of this reformulation is that it allows us a different view on

X ′ ∼ T : The probability that after t rounds of the coupon collector process
we do not have a fixed type is exactly (1 − C/n)t. Using a union bound, we
see that the probability that after t rounds some coupon is missing, is at most
n(1 − C/n)t. For t = (1 + δ)(1/C)n ln(n), this is at most n(1 − C/n)t ≤
n exp(−Ct/n) = n exp(−(1 + δ) ln(n)) = n−δ. ut

Note that in the proof of Lemma 4, once we have defined the coupon
collector process (but not before), we could have also used multiplicative drift.
This would, however, not have given a better bound, nor a shorter proof.

3.5 Drift Analysis

Drift analysis comprises a couple of methods to use information about the ex-
pected progress (e.g., in terms of the fitness distance) to derive results about
the time needed to achieve a goal (e.g., finding an optimal solution). We shall
use several times the following additive drift theorem from [38] (see also The-
orem 2.7 in [52]).

Theorem 4 (additive drift theorem, [38]) Let X0, X1, ... be a sequence of
random variables taking values in a finite set S ⊆ R≥0. Let T := min{t ≥ 0 |
Xt = 0}. Let δ > 0.

(i) If for all t, we have E[Xt −Xt+1|Xt > 0] ≥ δ, then E[T |X0] ≤ X0/δ.
(ii) If for all t, we have E[Xt −Xt+1|Xt > 0] ≤ δ, then E[T |X0] ≥ X0/δ.

In many situation, the progress Xt −Xt+1 is stronger when the process is
far from the target, that is, when Xt is large. A particular, but seemingly very
common special case is that the progress is indeed proportional to Xt. Such
a situation is called multiplicative drift. Drift theorems giving upper bounds
for the hitting time were given in [26] and [21]. Transforming upper bounds
on a multiplicative progress into good lower bounds for hitting times requires
additional assumptions. Witt gives the following very useful theorem (Theorem
2.2 in [61]). While not important for our purposes, we note that a version of
this theorem not requiring the process to move only in one direction (that is,
satisfying Xt ≥ Xt+1 for any t ≥ 0), was proven in [18].
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Theorem 5 (multiplicative drift, lower bound, [61]) Let S ⊂ R be a
finite set of positive numbers with minimum 1. Let X0, X1, . . . be a sequence
of random variables over S such that Xt ≥ Xt+1 for any t ≥ 0. Let smin > 0.
Let T be the random variable that gives the first point in time t ≥ 0 for which
Xt ≤ smin. If there exist positive reals β, δ ≤ 1 such that, for all s > smin and
all t ≥ 0 with Pr[Xt = s] > 0,

(1) E[Xt −Xt+1|Xt = s] ≤ δs,
(2) Pr[Xt −Xt+1 ≥ βs|Xt = s] ≤ βδ/ ln(s),

then for all S0 ∈ S with Pr[X0 = s0] > 0, we have

E[T |X0 = s0] ≥ ln(s0)− ln(smin)

δ
· 1− β

1 + β
.

4 A Tight Upper Bound

As discussed in Section 2.1 the initial analysis of the (1 + (λ, λ)) GA on One-
Max presented in [16] suggested to use as mutation probability p = λ/n and
as crossover bias c = 1/λ. For these settings, the following upper bound for the
expected runtime was proven (Theorem 4 in [16] for λ = k, note that the case
λ = 1 excluded there is trivial for λ = k since in this case, the (1 + (λ, λ)) GA
imitates the (1 + 1) EA).

Theorem 6 ([16]) Let λ ∈ [n], possibly depending on n. The expected opti-
mization time of the (1 + (λ, λ)) GA with mutation probability p = λ/n and
crossover bias c = 1/λ on OneMax is

O

(
max

{
n log n

λ
, λn

})
.

In particular, for λ = Θ(
√

log n), the expected optimization time is of order
at most n

√
log n.

In this section we improve this bound mildly (but to the asymptotically
correct order of magnitude, as we will see in Section 5) and add a tail bound
showing that deviations above our guarantee on the expected runtime are ex-
tremely rare. We note without explicit proof that the following result also holds
for the natural modification of the algorithm in which a best individual among
all mutation and crossover offspring competes with the parent individual in
the main selection step. This is immediately clear from our proofs, since they
only use fitness level and drift arguments.

Theorem 7 Let λ ∈ [n]. The expected optimization time of the (1+(λ, λ)) GA
with mutation probability p = λ/n and crossover bias c = 1/λ on the OneMax
test function is

O

(
max

{
n log(n)

λ
,
nλ log log(λ)

log(λ)

})
. (3)
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For all δ > 0, the probability that the actual runtime exceeds a bound of this
magnitude by a factor of more than (1 + δ) is at most O((n/λ2)−δ).

The bound on the expected runtime is minimized by the parameter choice

λ = Θ
(√

log(n) log log(n)/ log log log(n)
)
. (4)

This yields an expected optimization time of

O
(
n
√

log(n) log log log(n)/ log log(n)
)
.

As mentioned above, we shall see in Section 5 that the bound in Theorem 7
is tight. While the proof in Section 5 provides a general lower bound for the
whole three-dimensional parameter space, a much simpler proof for the tight-
ness of (3) can be found in [14]. We do not repeat this proof here as is it is
subsumed by the results of Section 5. However, we remind the reader that the
tightness of (3) implies that the choice of λ in (4) is asymptotically optimal
whenever p and c follow the dependency on λ suggested in [16].

In addition to showing that the (1 + (λ, λ)) GA is faster than what could
be shown in [16], and providing the asymptotically optimal value for the off-
spring population size λ, our sharp bounds also give more insight into the
working principles of this algorithm. In particular, we shall observe that in its
crossover phase generating λ offspring in parallel often produces at least one
offspring that is significantly better that the expected outcome of a crossover
application. This allows to gain several (including regularly a super-constant
number in the early time of the optimization process) fitness levels in one iter-
ation. This advantage of larger offspring population sizes seems to have been
rarely analyzed rigorously (with the analyses of the (1+λ) EA in [27,41] being
the only exceptions known to us). The more common use of larger offspring
population sizes in the literature seems to be that an offspring population size
of λ reduces the waiting time for a fitness level gain by approximately a fac-
tor of λ (given that this waiting time is large enough). This latter argument,
naturally, does not reduce the (total) expected optimization time (number of
fitness evaluations), but only the parallel one (number of iterations).

We now proceed with proving Theorem 7, that is, that the (1 + (λ, λ)) GA
with standard parameter settings optimizes every OneMax function using

O
(

max
{
n log(n)

λ , nλ log log(λ)
log(λ)

})
fitness evaluations both in expectation and

with probability 1− n−c, where c is an arbitrary positive constant.
The proof of the previous upper bound (Theorem 6) was based on the

fitness level method (first used in [58] in the proof of Theorem 1, more ex-
plicit in [59], see also [52]). In its classic version, this method pessimistically
estimates the expected runtime via the sum of the times needed to leave
each fitness level. It thus does not profit from the fact that a typical run
of the algorithm might not visit every fitness level. By a more careful anal-
ysis of the mutation phase (Lemma 5) and the crossover phase (Lemma 6),
we shall show that this indeed happens. For all values of λ, we obtain that
when starting an iteration with a search point x having fitness distance
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d(x) := n − Om(x) at least n log log(λ)/ log(λ), then the average fitness im-
provement is Ω(log(λ)/ log log(λ)). Consequently, additive drift analysis (The-
orem 4) tells us that only O(n log log(λ)/ log(λ)) iterations are needed to find
a search point with fitness distance at most n log log(λ)/ log(λ). Note that the
fitness range from the typical initial fitness distance of n/2 to a fitness distance
of n log log(λ)/ log(λ) contains Ω(n) fitness levels. Hence the previous analysis
would have given only a bound of O(n) iterations.

There is an intuitive explanation for these numbers based on the balls-into-
bins paradigm. When our current search point x is in distance n/D from the
optimum, then, in the notation of Algorithm 1, already x(1) has an expected
number of at least λ/D “good bits”, i.e., bit positions that are zero in x and
one in x(1). The same is true for x′. Each of these good bits is copied in each of
the y(j) generated in the crossover phase with probability 1/λ. The total num-
ber of copies of good bits in y(1), . . . , y(λ) thus is around λ/D again. Since they
are uniformly spread over the y(j), we are in a situation closely resembling the
balls-into-bins scenario, in which λ/D balls are uniformly thrown into λ bins.
By a result of Raab and Steger [53], we know that when D is at most poly-
logarithmic in λ, then the most-loaded bin will contain Θ(log(λ)/ log log(λ))
balls. For our setting, this means that we expect one of the y(j) to inherit
Ω(log(λ)/ log log(λ)) good bits. Unfortunately, since we do not distribute the
good bits completely independently, we cannot transform this intuitive argu-
ment into a rigorous proof, but need to argue differently.

We start by analyzing the mutation phase. Since we aim at understanding
those iterations where we gain more than a constant number of fitness levels,
we restrict ourselves to the case that λ = ω(1), which eases the calculations.

Lemma 5 Let ε ∈ (0, 1] be a constant. Assume that λ = ω(1). Let x ∈ {0, 1}n.
Let d := d(x) := n−Om(x) and D := n/d. Assume that D = o(λ). Consider
one run of the mutation phase of Algorithm 1. As in the description of the
algorithm, denote by ` the actual mutation strength and by x′ the winner indi-
vidual. Let B′ := {i ∈ [n] | xi = 0∧ x′i = 1} the set of 1-bits that x′ has gained
over x.

Then with probability 1 − o(1), we have both |` − λ| ≤ ελ/2 and |B′| ≥
(1− ε)λ/D.

Proof Since λ = ω(1) and ` follows a binomial distribution with parameters n
and λ/n, a simple application of the Chernoff bound (Theorem 1 (b) and (d))
implies that with probability 1 − o(1) we have |` − λ| ≤ (ε/2)λ. Conditional
on that, we analyze how the first offspring x(1) is generated. Let B1 be the
set of bit positions that are zero in x and one in x(1), that is, B1 := {i ∈
[n] | xi = 0 ∧ x(1)i = 1} (“good bits”). Then E[|B1|] = d(`/n) = `/D. Since
D = o(λ) and ` = Θ(λ), this expectation is ω(1) and a Chernoff bound for
the hypergeometric distribution (Theorems 3 and 1 (d)) shows that we have
Pr[|B1| ≥ (1 − (ε/2))`/D] = 1 − o(1). Since all x(j), j ∈ [λ], have the same
Hamming distance from x, the fittest individual x′ is also the one with the
largest number of good bits. Hence |B′| ≥ |B1| ≥ (1− (ε/2))`/D ≥ (1−ε)λ/D
with probability 1− o(1). ut
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We next analyze a run of the crossover phase. While in the previous lemma
we only exploited that an individual generated in the mutation phase has
roughly as many good bits as expected, we shall now exploit that the best
of the λ individuals generated in the crossover phase is much better than the
average one.

Lemma 6 Let x, x′ ∈ {0, 1}n such that their Hamming distance ` := H(x, x′)
satisfies ` ≤ 2λ − 2. Let D′ be such that B′ := {i ∈ [n] | xi = 0 ∧ x′i = 1}
satisfies |B′| ≥ λ/D′. Consider a run of the crossover phase starting with these
variable values and computing an offspring y ∈ {0, 1}n.

Then with probability at least 1− 1/e, we have

Om(y)−Om(x) ≥ bmin{( 1
2 ln(λ)− 1)/(ln ln(λ) + ln(D′)), λ/D′}c.

Proof Let γ ≤ λ/D′ be a positive integer. Consider the outcome y(j) of a single
crossover operation for some j ∈ [λ] in Algorithm 1. Let Aj be the event that
Om(y(j)) ≥ Om(x) + γ. This event in particular occurs when the crossover
operation selects γ “good bits” (those with index in B′) from x′ and none
of the “bad bits” (those, in which x and x′ differ, but that are not in B′).
Consequently,

Pr[Aj ] ≥
(
|B′|
γ

)
(1/λ)γ(1− 1/λ)`−γ (5)

≥ (|B′|/γ)
γ

(1/λ)γ(1− 1/λ)2(λ−1)

≥ (λ/(D′γ))γ(1/λ)γ(1/e2)

= exp(−2− γ ln γ − γ lnD′).

For γ = bmin{( 1
2 ln(λ)− 1)/(ln ln(λ) + ln(D′)), λ/D′}c we have Pr[Aj ] ≥ 1/λ.

Consequently, the probability that at least one of the Aj holds, is at least
1− (1− 1/λ)λ ≥ 1− 1/e. ut

We note that the argument up to (5) is very similar to the reasoning
in the proof of Theorem 5 in [41], where it is shown that the (1 + λ) EA
optimizing OneMax performs super-constant improvements in the early part
of the optimization process. The choice of our γ, however, is different due to
the different relation of λ and n. Interestingly, in the analysis of the mutation
phase, such arguments do not seem to give significant additional improvement
(recall that there we only used the expected gain from a fixed single offspring).

Above, we showed that in the early part of the optimization process, we
regularly gain more than one fitness level in one iteration. For the remainder,
we re-use the fitness level type argument of [16], which is summarized in the
following lemma.

Lemma 7 (Lemma 7 of [16] for the special case that k = λ) Assume
λ ≥ 2. In the notation of the (1 + (λ, λ)) GA, the probability that one iteration
produces a search point y that is strictly better than the parent x, is at least

pd(x) := C

(
1−

(
n− d(x)

n

)λ2/2)
,
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where C > 0 is an absolute constant.

We are now ready to prove the main result of this section.

Proof (of Theorem 7) We regard the different regimes of the optimization
process separately, since they need very different arguments. If λ = ω(1), then
let d0 := n ln ln(λ)/ ln(λ), else let d0 := n (and there is no first phase).

First phase: From the random starting point to a solution x with
d(x) ≤ d0 := n ln ln(λ)/ ln(λ) in O(n log log(λ)/ log(λ)) iterations. Let T0 be
the maximum (taken over x) expected time needed to go from an initial search
point x with d(x) > d0 to a search point with d-value at most d0. Let D̄ =
ln(λ)/ ln ln(λ). Let x ∈ {0, 1}n be any search point with d(x) > d0 = n/D̄. By
Lemma 5 and 6, we see that with probability at least p = 1− (1/e)− o(1), one
iteration of the main loop of Algorithm 1 produces a solution y with Om(y) ≥
Om(x) + ∆, where ∆ is some number satisfying ∆ = Ω(log(λ)/ log log(λ)).
This seems to call for an application of additive drift (Theorem 4), but in
particular for the derivation of the large deviation claim, the following hand-
made solution seems to be easier (despite several tail bounds for additive drift
existing, see, e.g., [46] and the references therein).

For t = 1, 2, . . . let us define the following binary random variable Xt. If at
the start of iteration t we have d(x) > d0, then Xt = 1 if and only if Om(y) ≥
Om(x) + ∆. If d(x) ≤ d0, let Xt = 1 with probability p independent from all
other random decisions. For all t > 0, we observe that Yt :=

∑t
i=1Xi ≥ n/∆

implies that T0 ≤ t, that is, our (1 + (λ, λ)) GA needed at most t iterations
to find a search point x with d(x) ≤ d0. We have E[Yt] ≥ tp and Pr[Yt ≤
(1/2)E[Yt]] ≤ exp(−E[Yt]/8). In particular, for t = 2n/(∆p), we have E[Yt] ≥
2n/∆ and Pr[Yt ≤ n/∆] ≤ exp(−E[Yt]/8) = exp(−n/(4∆)) = exp(−n1−o(1)).

Second phase: From a solution with d-value at most d0 to one
with d-value at most d1 := bn/(2λ2)c in O(n log log(λ)/ log(λ)) iterations.
Once we have a solution of fitness distance at most d0, we use the fitness level
argument analogous to the proof of Theorem 6. We reformulate the proof
slightly to allow proving a large deviation bound for the optimization time.
By Lemma 7, the remaining number of iterations is dominated by a sum of
geometric random variables Xd0 , . . . , X1 where Pr[Xd = m] = (1 − pd)m−1pd
for all m = 1, 2, . . . and pd = C (1− (n−d(x)n )λ

2/2) is as in Lemma 7.
Note that for d ≥ d1, pd = C ′ for some absolute constant C ′. Hence

the expected number T1 of iterations to reduce the fitness distance to d1 is
at most E[T1] = E[Xd0 + · · · + Xd1−1] ≤ (1/C ′)(d0 − d1) ≤ (1/C ′)d0 =
O(n log log(λ)/ log(λ)) by linearity of expectation. Since each iteration with
d(x) ≥ d1, independent of what happened in the previous iterations, has
a success chance of at least C ′, we observe that the probability to have
fewer than (d0 − d1) successes in 2(1/C ′)(d0 − d1) iterations is at most
exp(−(d0 − d1)/(4C ′)) = exp(−Θ(d0)) = exp(−n1−o(1)). Note that to apply
the (multiplicative) Chernoff bound, here we used the “moderate indepen-
dence” argument of Lemma 3.

Third phase: From a solution with fitness distance at most d1
to an optimal solution in O(n log(n)/λ2) iterations. We continue to use
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the fitness level method as in the previous section of the proof, but note that
for d ≤ d1, we have pd = C(1 − (1 − d/n)λ

2/2) ≥ C(1 − exp(dλ2/(2n))) ≥
Cdλ2/(4n), where we used the estimate e−x ≤ 1− x/2 valid for all x ∈ [0, 1].
We thus see that the remaining time T2 to get to the optimal solution is
dominated by X = Xd1 + · · ·+X1, which is a sum of independent geometric
random variables with harmonic expectations. Hence by Lemma 4, we have

E[T2] ≤ E[X] ≤ 4n(ln(d1)+1)
Cλ2 = O(n log(n)/λ2) and Pr[T2 ≥ (1 + δ) 4n ln(d1)

Cλ2 ] ≤
d−δ1 for any δ > 0.

In total, we see that the number T = T0 + T1 + T2 of iterations until the
optimum is found has an expectation of at most E[T ] = E[T0]+E[T1]+E[T2] =
O(max{n log(n)/λ2, n log log(λ)/ log(λ)}) and the probability that this upper
bound is exceeded by a constant factor of (1 + δ) is only O((n/λ2)−δ).

Since in each iteration the fitness of O(λ) search points is computed, we
proved the claimed upper bound of O(max{n log(n)/λ, nλ log log(λ)/ log(λ)})
for the expected optimization time, and again, exceeding this expectation by
a factor of 1 + δ has a probability of only O((n/λ2)−δ). ut

5 A Lower Bound for the Whole Parameter Space

As described in Section 2.1, a combination of intuitive considerations and
rigorous work made in [16] and Section 4 suggest the parameter choice

λ = λ∗ :=

√
log(n) log log(n)

log log log(n)
,

p∗ = λ∗/n, and c∗ = 1/λ∗ for the optimization of the OneMax function class,
yielding an expected optimization time of

F ∗ =
n log n

λ∗
= n

√
log(n) log log log(n)

log log(n)
.

As discussed right after Theorem 7 it was also proven in [14] that with p and c
functionally depending on λ as above, λ = Θ(λ∗) is the optimal choice and the
only optimal choice (this conclusion also follows from the following result).

In this section, we complete this picture by proving rigorously that no
combination of the parameters p, c, and λ, all possibly depending on n, can lead
to an expected optimization time of asymptotic order strictly better than F ∗.
We also show that not many parameter combinations can give this optimal
expected runtime.

Theorem 8 Let λ∗ :=
√

log(n) log log(n)
log log log(n) and F ∗ = n logn

λ∗ =

n
√

log(n) log log log(n)
log log(n) .

(i) For arbitrary parameters λ ∈ [0..n], p ∈ [0, 1] and c ∈ [0, 1], all being
functions in n, the (1 + (λ, λ)) GA has an expected optimization time of
E[F ] = Ω(F ∗).
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(ii) If some parameter combination (λ, p, c) leads to an expected optimization
time of E[F ] = Θ(F ∗), then
– λ = Θ(λ∗),
– p = Ω(λ∗/n) and p = (1/n) exp(O(

√
log(n) log log log(n)/log log(n) )),

and
– c = Θ(1/pn).

We remark that the same lower bound holds for the natural modification of
the (1 + (λ, λ)) GA in which the best of all mutation and crossover offspring
competes in the final selection step with the parent individual (and not only the
best crossover offspring). The proofs below are written up in a way that this is
easy to check, but to keep the paper readable we do not explicitly formulate all
statements for both versions of the algorithm. Consequently, for the OneMax
function, this modification does not give an asymptotic runtime improvement.
In a practical application, however, there is no reason to not exploit possible
exceptionally good mutation offspring. So here this modification seems very
advisable. Recall that the upper bound proven in the previous section, as
argued there, also holds for the modified algorithm.

To ease the presentation, we shall always parametrize the algorithm pa-
rameters by p = k/n and c = r/k for some k ∈ (0, n] and r ∈ [0, k] which
may also depend on n. In this language, the previously suggested values are
k∗ = λ∗ and r∗ = 1, and the main result of this section is that

(i) no parameter setting gives a better expected optimization time than the
Θ(F ∗) stemming from these parameters, and

(ii) any parameter tuple (λ, k, r) that leads to an asymptotic optimization time
of Θ(F ∗) satisfies
– λ = Θ(λ∗),
– k = Ω(k∗) and k = exp(O(

√
log(n) log log log(n)/log log(n) )), and

– r = Θ(r∗).

A side remark: Another implicit parameter choice done in [16] is to use
the same offspring population size λ for the mutation phase and the crossover
phase. One could well imagine having different numbers λm and λc of off-
spring for both phases. This may make sense in practical applications or when
performing a theoretical analysis that takes care of constant factors. In this
work, where we are only precise up to the asymptotic order of magnitude, the
expected optimization time is of asymptotic order equal to the product of the
number of iterations and max{λm, λc}. Hence, unless one believes that one
can obtain a super-constant factor speed-up by reducing λm or λc, which is
not what our proofs suggest, there is no advantage for us in not taking both
offspring population sizes equal to max{λm, λc}.

5.1 Overview of the Proof

Given the apparent difficulty (see Section 4) of computing the expected run-
time of the (1 + (λ, λ)) GA already for settings k = λ and r = 1 suggested
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in [16], the common approach of determining the optimal parameter settings by
conducting a precise runtime analysis for all parameter combinations (λ, k, r)
seems not very promising. Therefore, we shall rather analyze particular parts
of the optimization process in detail and from these extract necessary con-
ditions for the parameters to allow an expected optimization time of order
O(F ∗). To make it more visible how the different arguments work together,
let us start with a brief overview of the analysis.

Let a tuple (λ, p = k/n, c = r/k) of the parameters be given. We denote by
T the number of iterations (!) that the (1 + (λ, λ)) GA with these parameters
performs until an optimal solution is found for the first time (we have T =
0 if the random initial search point is already optimal). We denote by F
the optimization time of this (1 + (λ, λ)) GA, that is, the number of fitness
evaluations performed until an optimal solution is evaluated. F equals one if
the random initial search point is optimal. Roughly it holds that F ≈ 2λT ,
but see Proposition 3 and the text around it for the details.

We say that a tuple of parameters is optimal if the resulting expected
optimization time is O(F ∗). This is, for the moment, a slight abuse of language,
but as this section will show, these are indeed the parameters that lead to
the asymptotically optimal expected runtime, since (as we will see) no better
expected runtime than Ω(F ∗) can be achieved with any parameter setting.
The proof of Theorem 8 then consists of the following arguments, which can
all be shown independently of the others. Since we aim at an asymptotic result
only, we can freely assume that n is sufficiently large.

– In Lemma 8, we make the elementary observation that E[F ] ≥
min{λ, 2n}/2. Consequently, λ ≤ 2F ∗ in any optimal parameter set.

– In Lemma 9, we show that

E[F ] = min
{
Ω
(
r−1 exp(Θ(r))n log n

)
, exp(Ω(r))n2 log n, exp(Ω(n1/16))

}
when k ≥

√
n and λ = exp(o(n1/16)). Since this runtime is at least

Ω(n log n), together with the previous item (showing that λ cannot be
too large), we obtain that, in an optimal parameter set, k is at most

√
n.

– In Lemma 10, we show that for 0 < k ≤ n/12, we have E[F ] = Ω(n logn
k ).

Hence k = Ω(λ∗) in an optimal parameter setting.
– In Lemma 12, we show that when ω(1) = k ≤

√
n, then

E[F ] = Ω
(
n log nmin

{
exp(Ω(r))

λr , n
3

λ ,
exp(Ω(k))

k

})
.

Since we know already that λ ≤ n3 and k = ω(1) in an optimal pa-
rameter setting, this result implies that an optimal parameter set has
λ = Ω(λ∗ exp(Ω(r))/r).

– In Lemma 13, we show E[F ] = Ω(nλ/k) when k ≤ n/4 (which we know
already). Consequently, in an optimal set of parameters λ cannot be ex-
cessively large, e.g., λ ≤ exp(k/120).
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– In Lemma 14, we show that if k ≤ n/80, λ ≤ exp(k/120), λ = exp(o(n)),
and λ = ω(1)—all of this holds in an optimal parameter setting as shown

above—then E[F ] = Ω(nλ log log(λ)
r log λ ). This result together with Lemma 12

implies that the optimal expected runtime is Θ(F ∗) and that we have
λ = Θ(λ∗) and r = Θ(1) in an optimal parameter setting.

This shows the main claim of this section, namely that F ∗ is asymptot-
ically the best expected runtime one can achieve with a clever choice of all
parameters of the (1 + (λ, λ)) GA. The above also shows that an optimal
parameter set has λ = Θ(λ∗) and r = Θ(1). For the mutation probability,
the above only yields k = Ω(λ∗) and k = O(

√
n). In Lemma 15, we show

that k = exp(O(
√

log(n) log log log(n)/log log(n) )) is a necessary condition
for having a Θ(F ∗) expected runtime.

We do not know if the interval of optimal values for k can be further
reduced. An inspection of the proof of the upper bound presented in Section 4
suggests that, with more effort than there, also slightly larger k-values than
Θ(λ∗) (together with λ = Θ(λ∗) and r = Θ(1)) could lead to the optimal
expected runtime of Θ(F ∗). We do not follow up on this question, because
we do not feel that it justifies the effort of extending the technical proof of
Section 4. It is quite clear that there is no algorithmic advantage of using
a larger than necessary k-value. The main (unfavorable) difference would be
that than an efficient implementation of the mutation operator in expected
time Θ(k) would have an increased complexity.

We face two main difficulties in the proof of Theorem 8. One are the ap-
parent dependencies introduced by the two intermediate selection steps and
the fact that all mutation offspring have the same Hamming distance from the
parent. That the latter creates additional challenges can be easily seen in the
lengthy proof of Lemma 10, which simply tries to use the classic argument
that one needs at least a total number of Θ(n log n) bit-flips to make sure that
each initially incorrect bit was flipped at least once.

The second difficulty is that even parameter combinations that are far from
those leading to the optimal expected runtime can lead to runtimes very close
to the optimal one. An example (given here without proof) is that for say
k =

√
n and λ = λ∗ and r = 1, the optimization process strongly resem-

bles the one of the (1 + λ) EA with λ below the cut-off point. Consequently,
the (1 + (λ, λ)) GA for these parameters has an expected optimization time
of Θ(n log n), which is relatively close to F ∗ despite the uncommonly large
mutation probability.

5.2 Proofs

In this longer subsection, we prove the results outlined above. We frequently
use the following notation. For x ∈ {0, 1}n, we call d(x) := n − Om(x) its
fitness distance. Let x, x′, y ∈ {0, 1}n. Then

g(x, x′) := |{i ∈ [n] | xi = 0 ∧ x′i = 1}|
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is the number of good bits of x′ (with respect to x). Analogously,

b(x, x′) := |{i ∈ [n] | xi = 1 ∧ x′i = 0}|

is the number of bad bits of x′ (with respect to x). Note that, trivially, g(x, x′)+
b(x, x′) = H(x, x′), the Hamming distance of x and x′. Similarly, we define
“the number of good bits of x′ that made it into y” and “the number of bad
bits of x′ that made it into y” by

g(x, x′, y) := |{i ∈ [n] | xi = 0 ∧ x′i = 1 ∧ yi = 1}|,
b(x, x′, y) := |{i ∈ [n] | xi = 1 ∧ x′i = 0 ∧ yi = 0}|,

respectively.

We remind the reader that in the following, we always assume that we
consider a run of the (1 + (λ, λ)) GA with the general parameter setting λ,
p = k/n, and c = r/k, which may all depend on the problem size n. Since we
are interested in an asymptotic result, we may assume that n is sufficiently
large. We use the variables of the algorithm description, e.g., x, x(i), x′, etc.
without further explicit reference to the algorithm (Algorithm 1).

We now prove the ingredients forming the proof of the main result. We
prove these results not only for the minimal parameter range needed in the
proof of the main result, but rather for those ranges where the main arguments
work well. At the same time, we do not aim at the absolutely widest parameter
range and we occasionally do not aim at the sharpest possible bound if this
would significantly increase the proof complexity. We aim at keeping the proofs
of the partial results independent, both to ease reading and to allow an easier
understanding of how the main proof decomposes into the partial results. For
this reason, all of the following lemmas are proven independently apart from
possibly relying on the two elementary Propositions 1 and 3.

The first of these proposition is a technical tool showing that extraordinar-
ily large fitness gains occur rarely. This allows in the following to assume that
the algorithm indeed has, at some point in time, a parent individual x with
roughly a certain fitness.

Proposition 1 Let x be a search point with d := d(x) satisfying d ≤ 0.6n.
Then the probability that one iteration of the (1 + (λ, λ)) GA with arbitrary
parameter settings creates a search point y (as mutation or crossover offspring)
with d(y) ≤ d/2, is λ(λ+ 1) exp(−Ω(d)).

To prove this proposition, we need the elementary fact that standard bit
mutation hardly reduces d(·) by 50% or more.

Proposition 2 Let p ∈ [0, 1], x ∈ {0, 1}n with d := d(x) ≤ 0.6n, and let y
be obtained from flipping each bit of x independently with probability p. Then
Pr[d(y) ≤ 0.5d] = exp(−Ω(d)).
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Proof Let first 0.1n ≤ d ≤ 0.6n. Then E[d(y)] ≥ min{d, 0.4n} regardless of p.
Consequently, Pr[d(y) ≤ d/2] ≤ Pr[d(y) ≤ E[d(y)]− 0.05n] ≤ exp(−Θ(n)) by
the additive Chernoff bound (Theorem 1 (e)).

Let now d ≤ 0.1n. Let g := g(x, y) and b = b(x, y). Trivially, we have
d(y) = d − g + b. Let first p ≤ 1/4. Since g is binomially distributed with
parameters d and p, we have E[g] = dp ≤ d/4 and Pr[g ≥ d/2] ≤ exp(−Ω(d))
by the multiplicative Chernoff bound (Theorem 1 (d)). We thus have Pr[d(y) ≤
d/2] ≤ Pr[g ≥ d/2] ≤ exp(−Ω(d)). Let now p ≥ 1/4. Then E[b] = (n− d)p ≥
0.225n and Pr[b ≤ 0.1n] ≤ exp(−Ω(n)). Since trivially g ≤ d ≤ 0.1n, we have
Pr[d(y) ≤ d/2] ≤ Pr[b ≤ 0.1n] ≤ exp(−Ω(n)). ut

Proof (of Proposition 1) To ease the calculations, we use the following
gedankenexperiment. Imagine that the (1 + (λ, λ)) GA does not select a win-
ning individual x′ at the end of the mutation phase, but instead creates λ
crossover offspring from each of the λ mutation offspring. Clearly, the set of
λ crossover offspring from a true run of the algorithm is contained in this set
of λ2 offspring. Hence it suffices to show that none of the λ2 offspring from
the Gedankenexperiment and none of the λ mutation offspring has a fitness
distance of d/2 or better.

Let ỹ be a crossover offspring of the Gedankenexperiment. Let x̃ be the
mutation offspring that was used in the crossover giving rise to ỹ. Then x̃ is
obtained from x by flipping each bit independently with probability k/n—the
(1 + (λ, λ)) GA creates x̃ algorithmically different, namely by first sampling `
and then flipping ` bits, but the result is that x̃ has the distribution described
above due to the choice of `. Now ỹ is obtained from a biased crossover of x
and x̃. Since each bit of x̃ makes it into ỹ only with probability r/k, we see
that we have ỹi 6= xi with probability (k/n) · (r/k) = r/n independently for
all i ∈ [n]. Consequently, ỹ has the same distribution as if it was generated
from x by standard bit mutation with mutation rate r/n.

Since all mutation and crossover offspring are distributed as if generated
via standard bit mutation (with some mutation rate that does not matter
here), Proposition 2 and a simple union bound over the λ(λ+1) mutation and
crossover offspring shows that with probability at least 1−λ(λ+1) exp(−Ω(d))
none of these has a fitness distance of d/2 or better. ut

The following proposition shows that, apart from exceptional cases, we can
freely switch between the number of iterations T and the number of fitness
evaluations F needed to find an optimum. This is a well-known fact, so we
present its proof merely for reasons of completeness. Recall that the optimiza-
tion time is defined to be the number of fitness evaluations until an optimal
solution is evaluated for the first time. Consequently, if, say, the first muta-
tion offspring by chance is an optimal solution, then the optimization time F
would be 2. The number of iterations T , though, would be 1, so the estimate
F = Ω(λT ) is not valid. The following lemma shows this exceptional case only
occurs for E[T ] < 2, so that usually we can (and will without further notice)
use the argument E[F ] = Ω(λE[T ]).
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Proposition 3 If E[T ] ≥ 2, then E[F ] = Θ(λE[T ]).

Proof By definition of F and T , we have T = d(F − 1)/2λe ≤ (F − 1)/2λ+ 1.
Consequently, F ≥ 2(T−1)λ+1 and E[F ] ≥ E[2(T−1)λ+1] ≥ 2(E[T ]−1)λ ≥
E[T ]λ when E[T ] ≥ 2. Since F ≤ 2λT +1, we also have E[F ] = O(λE[T ]). ut

We now start proving a number of lower bounds for the runtime of the
(1 + (λ, λ)) GA. They do not logically rely on each other. The first result
shows that, unless λ is excessively large, the expected optimization time is at
least Ω(λ). This follows from observing that each of the mutation offspring in
the first iteration is uniformly distributed in the search space, and hence, has
a very small probability of being equal to the optimal solution.

Lemma 8 E[F ] ≥ min{λ, 2n}/2.

Proof The proof builds on the following simple observation: Let x̃ be a muta-
tion offspring generated in the first iteration. Then x̃ is uniformly distributed
in {0, 1}n. Indeed, let x be the random initial search point, which is uni-
formly distributed in {0, 1}n, which is equivalent to saying that each xi in-
dependently is equal to 1 with probability 1/2 (and is equal to 0 otherwise).
Now x̃ is generated from x by flipping each bit independently with prob-
ability k/n. Consequently, the bits of x̃ are independent. We also compute
Pr[x̃i = 1] = Pr[xi = 0](k/n) + Pr[xi = 1](1 − k/n) = 1/2. Hence x̃ is uni-
formly distributed in {0, 1}n.

With this preliminary consideration, the proof of the lemma is very easy.
Let L be a non-negative integer. Let x0, x1, . . . , xL be the initial random search
point and the first L mutation offspring. Note that each of these search points
individually is uniformly distributed in {0, 1}n. Consequently, by a simple
union bound, the probability that one of these search points is the optimum is
at most (L+ 1)2−n. In other words, the number F of fitness evaluations until
an optimal solution is found, satisfies Pr[F ≥ L+ 2] ≥ 1− (L+ 1)2−n for all
0 ≤ L ≤ λ. By Lemma 2, taking K = min{λ+ 1, 2n}, we compute

E[F ] =

∞∑
i=1

Pr[F ≥ i] ≥
K∑
i=1

Pr[F ≥ i] ≥
K∑
i=1

(1− (i− 1)2−n)

= K − K(K − 1)

2
2−n = K(1− 2−n−1(K − 1)) ≥ min{λ, 2n}/2.

ut

We proceed by regarding the case that k is large, say k ≥
√
n. Despite the

fact that this is much larger than all values of k that lead to the optimal ex-
pected runtime, the proof is not very simple. The reason is that even such large
values for k can give a near-optimal expected runtime of O(n log n) for suitable
choices of the other parameters, e.g., small values for λ and r = 1 (we do not
prove this statement). The main intuitive reason for the following lemma to be
true is that for k large and d fairly large, all mutation offspring contain very
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similar numbers of good and bad bits. Consequently, we do not gain anything
from generating many mutation offspring in parallel and selecting the best one
for the crossover phase.

Lemma 9 If k ≥
√
n and λ = exp(o(n1/16)), then

E[F ] = min
{
Ω
(
r−1 exp(Θ(r))n log n

)
, exp(Ω(r))n2 log n, exp(Ω(n1/16))

}
,

which attains its asymptotically optimal value Ω(n log n) for r = Θ(1).

Proof We start by analyzing the progress the (1 + (λ, λ)) GA makes in one
iteration starting with a search point x having fitness distance d := d(x) ∈
[n3/4, n7/8]. More precisely, denote by z an individual with maximal fitness
among all mutation and crossover offspring generated in this iteration and
among the parent x. Needless to say, z can be the parent x, the crossover
winner y, or the mutation winner x′. To use drift analysis, we shall regard the
progress d(x) − d(z). Note that this is 0 if max{Om(x′),Om(y)} ≤ Om(x).
Note also that d(x)− d(z) = Om(z)−Om(x).

Let x̃ be a mutation offspring. Let g̃ = g(x, x̃) be the number of good
bits of x̃. Since g̃ follows a binomial distribution with parameters d and k/n,
we have E[g̃] = dk/n ≥ n1/4 and Pr[g̃ ≥ 2dk/n] ≤ exp(−(dk/n)/3) ≤
exp(−Ω(n1/4)). Hence only with probability at most λ exp(−Ω(n1/4)), there
is a mutation offspring with at least 2dk/n good bits; in this rare case we esti-
mate the progress Om(z)−Om(x) via the trivial bound Om(z)−Om(x) ≤ n.
Similarly, in the exceptional case that ` < k/2, which occurs with probability
at most exp(−Ω(k)) ≤ exp(−Ω(n1/2)), we again estimate Om(z)−Om(x) ≤ n.

Hence let us now analyze the progress in the regular situation that no
mutation offspring has 2dk/n good bits or more (and thus g(x, x′) < 2dk/n)
and that ` ≥ k/2 (and thus x′ has at least b(x, x′) ≥ ` − (2dk/n) ≥ (k/2) −
(2dk/n) = k((1/2)−2n−1/8) ≥ k/4 bad bits). Since b(x, x′) > g(x, x′), we have
z 6= x′, so it remains to analyze the crossover offspring. Consider an offspring
ỹ generated in the crossover phase.

Let us consider first the case that r ≥ n1/16. Then b̃ := b(x, x′, ỹ) satisfies
E[b̃] ≥ (k/4) · (r/k) = r/4. Hence with probability 1 − exp(−Ω(r)) ≥ 1 −
exp(−Ω(n1/16)), the crossover offspring ỹ has taken at least k/8 bad bits
from x′. This is more than the number of good bits x′ has, so regardless of
how many good bits make it into ỹ, we have Om(ỹ) ≤ Om(x). Consequently,
with probability 1 − λ exp(−Ω(n1/16)), no crossover offspring has a fitness
better that x, and hence Om(z) = Om(x). For the remaining probability
λ exp(−Ω(n1/16)), we estimate Om(z)−Om(x) ≤ n. In total, if r ≥ n1/16, we
have E[Om(z)−Om(x)] ≤ nλ exp(−Ω(n1/16)) = λ exp(−Ω(n1/16)).

We now turn to the case that r < n1/16. In this case, g̃ := g(x, x′, ỹ) satisfies
E[g̃] ≤ (2dk/n)·(r/k) = 2dr/n ≤ 2n−1/16. We regard separately the situations
that g̃ = 0, g̃ ∈ [1..47], g̃ ∈ [48..bE[b̃]/2c], and g̃ ≥ E[b̃]/2. Clearly, when
g̃ = 0, we have Om(ỹ) ≤ Om(x). Markov’s inequality shows that good bits
exist only with probability E[g̃] ≤ 2dr/n, hence, Pr[g̃ ∈ [1..47]] ≤ Pr[g̃ ≥ 1] ≤
2dr/n. Conditioning on ỹ having between one and 47 good bits, we trivially
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observe Om(ỹ) − Om(x) ≤ 47. However, for ỹ to have a fitness better than
Om(x), it is necessary (but not sufficient) that at most 46 bad bits are copied
from x′ to ỹ. The probability of this event, which is independent of any event
regarding good bits only, is at most exp(−Ω(E[b̃])) ≤ exp(−Θ(r)), because
the expected number E[b̃] of bad bits copied into ỹ is Θ(r). By Theorem 1 (a),
the probability that 48 or more good bits are copied into ỹ is O(n−3), hence
Pr[g̃ ∈ [48..bE[b̃]/2c]] ≤ Pr[g̃ ≥ 48] = O(n−3). In this situation, for Om(ỹ) to
be larger than Om(x), we need b̃ < g̃ ≤ E[b̃]/2, which happens with probability
exp(−Ω(E[b̃])) ≤ exp(−Ω(r)). Finally, if E[b̃]/2 ≥ 48, then the probability

that g̃ ≥ E[b̃]/2 is at most n−3−Ω(E[b̃]) ≤ n−3−Ω(r) by Theorem 1 (a). Hence

E[max{Om(ỹ)−Om(x), 0}]
≤ Pr[g̃ = 0] · 0 + Pr[g̃ ∈ [1..47]] exp(−Ω(r)) · 47

+ Pr[g̃ ∈ [48..bE[b̃]/2c]] exp(−Ω(r)) · n
+ Pr[g̃ ≥ E[b̃]/2 | E[b̃]/2 ≥ 48] · n
≤ 0 + 2dr

n exp(−Ω(r)) · 47 +O(n−3) exp(−Ω(r)) · n+ n−3−Ω(r) · n
≤ O

(
(drn + n−2) exp(−Ω(r))

)
.

Since y is chosen among the crossover offspring ỹ such that Om(ỹ),
and equivalently, Om(ỹ) − Om(x) is maximal, we have Om(y) − Om(x) ≤∑
ỹ max{Om(ỹ)−Om(x), 0}, where ỹ runs over all λ crossover offspring. Con-

sequently, E[Om(y)−Om(x)] = O(λ(drn + n−2) exp(−Ω(r))).
Taking the two cases regarded separately together, we see that for any r

we have

E[Om(z)−Om(x)] = E[max{0,Om(y)−Om(x)}]

= max
{
O
(
λ(drn + n−2) exp(−Ω(r))

)
, λ exp(−Ω(n1/16))

}
,

when we condition on being in the regular situation. In the general situation,
we have

E[Om(z)−Om(x)]

= λ exp(−Ω(n1/4))n+ (1− λ exp(−Ω(n1/4)))·

max
{
O
(
λ(drn + n−2) exp(−Ω(r))

)
, λ exp(−Ω(n1/16))

}
= max

{
O
(
λ(drn + n−2) exp(−Ω(r))

)
, λ exp(−Ω(n1/16))

}
.

To ease the following multiplicative drift argument, we estimate this bluntly
by

E[Om(z)−Om(x)]

≤ max
{
O(λ(drn + dn−2) exp(−Ω(r))), dλ exp(−Ω(n1/16))

}
= dmax

{
O
(
λmax{r, n−1} exp(−Ω(r))/n

)
, λ exp(−Ω(n1/16))

}
.
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Building on this drift statement, we now use Witt’s lower bound result for
multiplicative drift (Theorem 5). Consider a run of the (1 + (λ, λ)) GA. For
t = 0, 1, . . . , denote by xt the search point x at the beginning of the (t+ 1)st
iteration; except if before the (t+ 1)st iteration an optimal solution has been
evaluated, in which case we let xt be any optimal solution. By Proposition 1,
with probability at least 1−λ(λ+1) exp(−Ω(n7/8)), the (1+(λ, λ)) GA at some
time t0 reaches a search point xt0 with d(xt0) ∈ [0.5n7/8, n7/8]. We show that
in this case, we have an expected optimization time as claimed, which implies
that also the unconditioned expectation is of the same order of magnitude.

For t = 0, 1, . . . define Xt := max{d(xt0+t), 1}. Observe that Xt+1 ≤ Xt for
all t ≥ 0. Let smin := n3/4. Then we have shown above that if Xt = s > smin,
then

E[Xt −Xt+1] ≤ smax
{
K1λmax{r, n−1} exp(−K2r)/n, λ exp(−K3n

1/16)
}

for some absolute constants K1,K2,K3. Note that the drift of the pro-
cess Xt might be smaller than this, because above we took z as the
best individual among parent and all individuals generated in the itera-
tion. The first condition of the drift theorem thus is fulfilled with δ =
max{K1λmax{r, n−1} exp(−K2r)/n, λ exp(−K3n

1/16)}. From Proposition 1
we know that Pr[Xt+1 ≤ s/2] ≤ λ(λ + 1) exp(−Ω(s)) = exp(−Ω(s)). Hence
for n (and thus also s) sufficiently large, also the second condition of the drift
theorem is satisfied (with β = 1/2); also we have E[T ] = Ω(log n) to enable
the argument E[F ] = Ω(λE[T ]) below. We may thus apply the theorem and
derive that the first t such that Xt ≤ smin satisfies

E[t] = Ω

(
ln(X0)− ln(smin)

δ

)
= Ω

(
min

{
exp(Θ(r)n log n)

max{r, 1/n}λ
,

exp(Ω(n1/16))

λ

})
.

Note that this, naturally, is a lower bound on E[T ]. Consequently,

E[F ] = Ω(λE[T ])

= Ω

(
min

{
exp(Ω(r))

r
n log n, exp(Ω(r))n2 log n, exp(Ω(n1/16))

})
.

ut

The following lower bound imitates the classic argument that if in all ap-
plications of the mutation operator not enough bits are flipped, then there will
be a bit that is initially zero and that has never been touched in any muta-
tion operation. The proof is slightly more involved as usual for this type of
argument because our mutation operator uses a hypergeometric distribution.

Lemma 10 Let 0 < k ≤ n/12 and kλ = o(n log n). Let α < 1/4. Let t =
bαn ln(n)/(kλ)c. Then Pr[T ≤ t] = exp(−Ω(min{kt, n1−4α})). In particular,
E[F ] = Ω(n logn

k ). Consequently, an optimal parameter setting satisfies k =

Ω(
√

log(n) log log(n)/ log log log(n)) = Ω(λ∗).
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Proof Using the Chernoff bound of Theorem 1 (d), we see that with probability
1 − exp(−Ω(n)), the initial search point has at least n/3 bits valued zero
(“missing bits”).

Let us consider what happens in the first t = bαn ln(n)/(kλ)c iterations.
Denote by `1, . . . , `t the values of ` chosen by the algorithm in these iterations.
Note that the `i are independent random variables each having a binomial dis-
tribution with parameters n and k/n. Consequently, L :=

∑t
i=1 `i is a sum of

tn independent 0, 1 random variables that are one with probability k/n. Hence
we have E[L] = tk. By the multiplicative Chernoff bound of Theorem 1 (b),
we see that with probability 1− exp(−Ω(tk)), we have L ≤ 2tk.

Again exploiting the binomial distribution of the `i, we derive from The-
orem 1 (c) that Pr[`i ≥ n/2] ≤ 2−n/2; note that here we used that k ≤ n/12
and thus E[`i] = k ≤ n/12. Consequently, with probability 1 − exp(−Ω(n)),
all `i are at most n/2 (union bound).

In the following, we condition on none of these three rare events occurring.
More precisely, we condition on that there are at least n/3 missing bits and we
condition on a particular outcome of the `i that avoids the exceptional events
L > 2tk and `i > n/2 for some i ∈ [t]. The probability that a particular one of
the missing bits is never flipped in the mutation phases of the first t iterations
is

t∏
i=1

(1− `i/n)λ ≥
t∏
i=1

exp(−2`i/n)λ = exp(−2λL/n) ≥ exp(−4kλt/n)

≥ n−4α,

where we have used in the first step that 1− c ≥ e−2c for 0 ≤ c ≤ 1/2.
Denote by M ⊆ [n] the set of missing bits and by Ai the event that bit i

was flipped at least once in some mutation step in the first t iterations. Then
we just showed Pr[Ai] ≤ 1 − n−4α. We want to show that it is very unlikely
that all events Ai are fulfilled.

Unfortunately, the events Ai, i ∈M , are not independent, since already in
a single application of the mutation operator the bits are not treated inde-
pendently, but according to a hypergeometric distribution. We therefore now
show that they satisfy the following negative correlation property:

∀I ⊆M : Pr

[⋂
i∈I

Ai

]
≤
∏
i∈I

Pr[Ai].

We proceed via induction over the cardinality of I. For |I| = 0, 1, there is
nothing to show. Let I ⊆ M such that |I| ≥ 2. Let j ∈ I and I ′ := I \ {j}.
Then

Pr

[ ⋂
i∈I′

Ai

]
= Pr

[ ⋂
i∈I′

Ai

∣∣∣∣Aj]Pr[Aj ] + Pr

[ ⋂
i∈I′

Ai

∣∣∣∣Āj]Pr[Āj ]. (6)

It is clear that Pr[
⋂
i∈I′ Ai | Āj ] is at least as large as Pr[

⋂
i∈I′ Ai]—

conditioning on Āj is equivalent to saying that the random subsets of bits to
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be flipped are not chosen as subsets of [n], but of [n] \ {j}, and this increases
the probability of the event

⋂
i∈I′ Ai. More formally, there is the following

coupling from the unconditioned probability space into the one conditional on
Āj . Whenever in the unconditioned probability space the j-th bit is flipped in
some iteration, we replace this bit-flip by flipping a new bit different from j and
the other bits flipped in this iteration. This is exactly the random experiment
done in the probability space conditional on Āj . Clearly, if the event

⋂
i∈I′ Ai

holds in the unconditioned space, this is not affected by the coupling. Hence
the probability of the event

⋂
i∈I′ Ai is not smaller in the space conditional

on Āj .
Since thus Pr[

⋂
i∈I′ Ai | Āj ] ≥ Pr[

⋂
i∈I′ Ai], we see from equa-

tion (6) that Pr[
⋂
i∈I′ Ai | Aj ] ≤ Pr[

⋂
i∈I′ Ai]. From Pr[

⋂
i∈I′ Ai |

Aj ] = Pr[
⋂
i∈I Ai]/Pr[Aj ] we derive the desired statement Pr[

⋂
i∈I Ai] ≤

Pr[
⋂
i∈I′ Ai] Pr[Aj ]. Applying induction to I ′, we have

Pr

[⋂
i∈I

Ai

]
≤
∏
i∈I′

Pr[Ai] Pr[Aj ] =
∏
i∈I

Pr[Ai].

Using this negative correlation property for the set of all missing bits,
we conclude that the probability Pr[

⋂
i∈M Ai] that all missing bits were

flipped at least once, is Pr[
⋂
i∈M Ai] ≤

∏
i∈M Pr[Ai] ≤ (1 − n−4α)n/3 ≤

exp(−n−4α)n/3 = exp(−n1−4α/3), where we used the estimate (1 + x) ≤ ex

valid for all x ∈ R.
Consequently, with probability at least 1− exp(−Ω(n))− exp(−Ω(kt))−

exp(−Ω(n1−4α)), there is a bit that initially has the value zero and is not
flipped in the first t iterations, implying that the (1 + (λ, λ)) GA needs more
than t iterations to generate the optimum as mutation or crossover offspring.
This high-probability statement immediately implies the claimed bound on the
expected optimization time, using again E[T ] ≥ 2 and E[F ] = Θ(λE[T ]). ut

The proof above contains a fact that might be useful in other applications,
so we formulate it as a separate lemma.

Lemma 11 Let Ω be some set of size n. Let k ∈ N. For all i ∈ [k] let si ≤ n
and Si be a random subset of cardinality si of Ω. Let the Si be stochastically
independent. For ω ∈ Ω let Xω be the indicator random variable for the event
that some Si contains ω. Then the random variables Xω, ω ∈ Ω, are negatively
correlated.

If in the lemma above we take X
(i)
ω as the indicator random variable of the

event ω ∈ Si, then the X
(i)
ω , ω ∈ Ω, are negatively correlated, see, e.g., the text

following Theorem 1.16 in [11]. By definition, X is the point-wise maximum

of the X(i), that is, we have Xω := max{X(i)
ω | i ∈ [k]} for all ω ∈ Ω. It would

be a nice extension the lemma above to show that the point-wise maximum
of arbitrary independent families of negatively correlated random variables is
itself negatively correlated. We do not know if this statement is true.
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We now turn to the case that k is small, say ω(1) ≤ k ≤
√
n, which is

challenging in that here indeed the optimal expected runtime can show up.
Consequently, there is no room for wasteful estimates. We regard the situa-
tion that also d is small, say between n1/8 and n1/4. In this case, the expected
number of good bits in a mutation offspring is O(n−1/4), consequently, with
high probability the best mutation offspring only has at most a constant num-
ber of good bits. The expected number of bad bits in a mutation offspring is
much larger, namely Θ(k) = ω(1). Hence a progress only occurs if crossover
selects at least one of the few good bits and selects fewer bad bits (out of the
many that are present). We use this to carefully compute the drift and then
apply the multiplicative drift theorem.

Lemma 12 If ω(1) = k ≤
√
n, then

E[F ] = Ω
(
n log nmin{ exp(Ω(r))

λr , n
3

λ ,
exp(Ω(k))

k }
)
.

Proof We first analyze the progress made in an iteration starting with a search
point with fitness distance between n1/8 and n1/4 and then use this information
with the lower bound multiplicative drift theorem to obtain the claimed lower
bound for the expected optimization time.

Consider an iteration starting with a search point x with n1/8 ≤ d(x) ≤
n1/4. Let z be a search point among {x, x′, y} with maximal fitness. We aim
at estimating the expected progress E[d(x) − d(z)] = E[Om(z) − Om(x)].
Since ` is binomially distributed, we have ` < k/2 with probability at most
exp(−Ω(k)) by the multiplicative Chernoff bound. Similarly, with probability
at most exp(−Ω(k)), we have ` > 2k. In this case, we have E[`|` > 2k] ≤ 3k+1
by Lemma 1. Hence E[`|` /∈ [k/2, 2k]] = O(k).

Let x̃ be an offspring created in the mutation phase. Let g̃ := g(x, x̃).
Conditioning on the outcome of `, g̃ has a hypergeometric distribution with
parameters n, `, and d. Hence E[g̃] = d`/n. For the mutation winner x′, note

that g′ := g(x, x′) ≤
∑λ
i=1 g(x, x(i)). Hence E[g′] ≤ λd`/n.

For ` /∈ [k/2, 2k], we use the estimate that Om(z) − Om(x) ≤ g′ with
probability one (note that this estimate is fulfilled both for z = x′ and z = y).
Hence we compute

E[Om(z)−Om(x) | ` /∈ [k/2, 2k]]

=
∑

i/∈[k/2,2k]

Pr[` = i | ` /∈ [k/2, 2k]]E[Om(z)−Om(x) | ` = i]

≤
∑

i/∈[k/2,2k]

Pr[` = i | ` /∈ [k/2, 2k]]E[g′ | ` = i]

≤
∑

i/∈[k/2,2k]

Pr[` = i | ` /∈ [k/2, 2k]]λdi/n

= E[` | ` /∈ [k/2, 2k]]λd/n = O(kλd/n).

Hence let us assume (and condition on) that k/2 ≤ ` ≤ 2k. Then
E[g̃] = d`/n ≤ 2n−1/4 and thus Pr[g̃ ≥ 20] ≤ O(n−5) by Theorem 1 (a)
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and Theorem 3. Similarly, E[g′] = λd`/n ≤ 2λdk/n and the probability that
x′ has a good bit at all is Pr[g′ ≥ 1] ≤ E[g′] = 2λdk/n by Markov’s inequality.
If g′ = 0, then Om(x) = Om(z). So let us consider the case that g′ > 0. With-
out conditioning on g′ > 0, we have Pr[g′ ≥ 20] ≤ λPr[g̃ ≥ 20] = O(λn−5).
Hence conditional on g′ > 0, this probability is at most O(λn−5/Pr[g′ ≥ 1]) =
O(λn−5/min{1, 2λdk/n}) = O(max{λn−5, n−4/(dk)}). In this rare event, we
can safely estimate Om(z)−Om(x) ≤ n, so let us turn to the more interesting
case that 1 ≤ g′ < 20. Since H(x, x′) = `, we have b(x, x′) ≥ ` − 19. Conse-
quently, ` = Θ(k) = ω(1) implies that no mutation offspring can be better than
x. Let ỹ be an offspring generated in the crossover phase. Let bc := b(x, x′, ỹ)
denote the number of bad bits of x′ that make it into ỹ. For Om(ỹ) > Om(x)
to hold, we need that bc ≤ 19, but also that at least one good bit makes it
into ỹ, that is, g(x, x′, ỹ) ≥ 1. Since bc follows a binomial distribution with
parameters b(x, x′) and r/k, we have E[bc] = b(x, x′)r/k ≥ (`− 19)r/k. Hence
Pr[bc ≤ 19] ≤ exp(−Ω(r)) by the multiplicative Chernoff bound. The expected
number of good bits making it into ỹ is at most E[g(x, x′, ỹ)] ≤ 19 · (r/k),
hence by Markov’s inequality this is also an upper bound for the probability
that good bits make it into ỹ at all. Putting all this together and taking a
union bound over the λ crossover offspring, we see that (still in the case that
1 ≤ g′ ≤ 19) the probability that some crossover offspring is better than x is
at most λ · (19r/k) ·exp(−Ω(r)); only then we have Om(z) > Om(x), however,
the gain is at most 19. Consequently,

E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ 1 ≤ g′ ≤ 19]

≤ Pr[Om(z) > Om(x) | k/2 ≤ ` ≤ 2k ∧ 1 ≤ g′ ≤ 19] · 19

≤ 19λ(19r/k) exp(−Ω(r))

We thus have

E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k]

= Pr[g′ ≥ 1]E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ g′ ≥ 1]

= (λdk/n)(
Pr[g′ ≤ 19 | g′ ≥ 1]E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ 1 ≤ g′ ≤ 19]

+ Pr[g′ ≥ 20 | g′ ≥ 1]E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ g′ ≥ 20]
)

≤ (λdk/n)
(
1 · 192λr exp(−Ω(r))/k) +O(max{λn−5, n−4/(dk)})n

)
≤ O(λ2dr exp(−Ω(r))n−1 + λ2dkn−5 + λn−4)

= O(dλ2(r exp(−Ω(r))n−1 + n−4)).

Together with the exceptional case that ` /∈ [k/2, 2k], we obtain

E[Om(z)−Om(x)]

= Pr[k/2 ≤ ` ≤ 2k]E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k]

+ Pr[` /∈ [k/2, 2k]]E[Om(z)−Om(x) | ` /∈ [k/2, 2k]]

= O
(
dλ2(r exp(−Ω(r))n−1 + n−4)

)
+ exp(−Ω(k))O(kλd/n)

= O
(
dλ
n

(
λr exp(−Ω(r)) + λn−3 + k exp(−Ω(k))

))
.
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We now use the lower bound multiplicative drift theorem (Theorem 5) to
prove our claim. By Proposition 1, with high probability a run of the (1 +
(λ, λ)) GA once encounters a search point x0 with d(x0) ∈ [0.5n1/4, n1/4]. For
this case, we give a lower bound for the expected optimization time (which
implies asymptotically the same bound for the general case). Denote by xt,
t ≥ 0, the sequence of search points x generated by the (1 + (λ, λ)) GA
in the sequel (except that xt is the optimum solution from the first point
on that the optimum was found). Let smin := n1/8. We just showed that
E[d(xt+1)− d(xt)|d(xt) = s] ≤ sδ holds for all s ∈ [smin, d(x0)], where we set
δ = K λ

n (λr exp(−Ω(r)) + λn−3 + k exp(−Ω(k))) for some absolute constant
K. By Proposition 1 again, we know that

Pr[d(xt)− d(xt+1) ≥ 0.5s | d(xt) = s] ≤ λ(λ+ 1) exp(−s) ≤ 0.5δ/ ln(s). (7)

Consequently, we may apply Theorem 5 to the random process
(max{1, d(xt)})t≥0, and learn that the expected first t such that d(xt) ≤ smin

is

Ω(log(n)/δ) = Ω

(
n log n

λ(λr exp(−Ω(r)) + λn−3 + k exp(−Ω(k)))

)
.

Consequently, E[T ] is at least this number. By (7), we also have E[T ] ≥ 2 and
thus

E[F ] = Ω(λE[T ]) = Ω

(
n log n

λr exp(−Ω(r)) + λn−3 + k exp(−Ω(k))

)
= Ω

(
n log nmin{ exp(Ω(r))

λr , n
3

λ ,
exp(Ω(k))

k }
)
.

ut

The following result exploits the simple fact that if in one iteration a muta-
tion strength of ` was used, then regardless of the population size no progress
of more than ` can be made.

Lemma 13 Let k ≤ n/4. Then E[F ] = Ω(nλk ).

Proof Let x0 be the random initial search point. When xt is defined for some
t ≥ 0, let xt+1 be the value of x after one iteration of the (1 + (λ, λ)) GA
starting with x = xt, unless this iteration generated the optimal solution, in
this case let xt+1 be the optimal solution. Hence the sequence (xt)t describes
a typical run of the (1 + (λ, λ)) GA until the point when an optimal solution
was generated. In particular, T = min{t ≥ 0 | d(xt) = 0}.

We use the simple argument that all offspring generated in one itera-
tion have a Hamming distance of at most ` from the parent. Consequently,
E[d(xt) − d(xt+1)] ≤ E[`] = k, regardless of whether xt+1 is an optimal mu-
tation offspring or the crossover winner. By the additive drift theorem (The-
orem 4), we have E[T |x0] ≥ d(x0)/k. Since the expected distance of a ran-
dom search point from the optimum is n/2, the law of total expectation gives
E[T ] ≥ E[d(x0)]/k = n/2k. This is at least 2, so by Proposition 3, we have
E[F ] = Ω(nλk ). ut
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We now argue that for a wide range of values for the parame-
ters and the fitness distance d, the expected progress per iteration is
at most O(r log λ/ log log λ). This immediately gives a lower bound of
Ω(n log log λ/(r log λ)) via the additive drift theorem.

Lemma 14 Let k ≤ n/80, λ ≤ exp(k/120), λ = exp(o(n)), and λ = ω(1).

Then E[F ] = Ω(nλ log log(λ)
r log λ ).

Proof We shall show that the expected fitness gain in an iteration started with
a search point with fitness distance at most n/10, is O(r log λ/ log log λ). Since
the (1+(λ, λ)) GA by Proposition 1, here we use the assumption λ = exp(o(n)),
with high probability reaches once a search point x with Om(x) ∈ [n/20, n/10],
the claim follows from the additive drift theorem (Theorem 4).

To prove the drift condition, consider one iteration of the (1 + (λ, λ)) GA
started with a parent individual x with d(x) ≤ n/10. Let z be the value of x
after one iteration, or the optimal search point if it was found as a mutation
offspring (hence, as mutation winner). We show that the expected fitness gain
Om(z)−Om(x) is at most O(log λ/ log log λ). For this, we first argue that we
can assume that k/2 ≤ ` ≤ 2k. Indeed, we have

E[Om(z)−Om(x)] = Pr[` < k/2]E[Om(z)−Om(x) | ` < k/2]

+ Pr[k/2 ≤ ` ≤ 2k]E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k]

+ Pr[` > 2k]E[Om(z)−Om(x) | ` > 2k].

By the multiplicative Chernoff bounds of Theorem 1, both Pr[` < k/2] and
Pr[` > 2k] are exp(−Ω(k)). Since all offspring generated in one iteration (in
either mutation and crossover phase) have Hamming distance at most ` from
x, we immediately have E[Om(z)−Om(x) | ` < k/2] < k/2. By Lemma 1, we
also have E[Om(z)−Om(x) | ` > 2k] ≤ E[` | ` > 2k] ≤ 3k + 1. Hence

E[Om(z)−Om(x)] ≤ k exp(−Ω(k)) + E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k]

≤ O(1) + E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k].

Hence we can assume for the remainder that k/2 ≤ ` ≤ 2k. In this case,
we argue as follows. Consider a mutation offspring x̃ and let g̃ := g(x, x̃).
Then E[g̃] = `d(x)/n ≤ `/10. The probability that g̃ ≥ `/5 is at most
exp(−(`/10)/3)) ≤ exp(−k/60) by Theorem 1 (b)2 and Theorem 3. Since
λ ≤ exp(k/120), we see that with probability at least 1 − exp(−k/120), all
mutation offspring have at most `/5 good bits, implying that g′ := g(x, x′)
satisfies g′ ≤ `/5. Note that in the rare case that g′ > `/5, which occurs with

2 To be precise, we use here the fact that the bound of Theorem 1 (b) is also valid if
both occurrences of E[X] are replaced by an upper bound for E[X]. This is a well-known
fact, but seemingly a reference is not so easy to find. Hence the easiest solution is maybe to
derive this fact right from Theorem 1 (b) by extending the sequence X1, . . . , Xn of random
variables by random variables that take a certain value with probability one. By this, we
can artificially increase E[X] without changing the random variable X − E[X]. Hence the
bound obtained from applying the Theorem to the extended sequence applies also to the
original one.
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probability at most exp(−k/120), we still have Om(z)−Om(x) ≤ g′ ≤ ` ≤ 2k
with probability one, that is, this case contributes only another k exp(−Ω(k))
to the drift.

Therefore, let us now also condition on g′ ≤ `/5. Note that this also im-
plies that b′ := b(x, x′) satisfies b′ ≥ (4/5)`, since all mutation offspring have
Hamming distance exactly ` from the parent x. Consequently, all mutation
offspring are worse than x, and z ∈ {x, y}.

We now analyze the result of a crossover phase. Consider a crossover off-
spring y(j) and let gj := g(x, x′, y(j)). Then E[gj ] ≤ g′r/k ≤ (`/5) · (r/k) ≤
(2/5)r. Let ∆ = 2r ln(λ)

ln ln(λ) + s for a non-negative integer s. By Theorem 1 (a),

Pr
[

max
j∈[λ]

gj ≥ ∆
]
≤

λ∑
j=1

Pr[gj ≥ ∆] ≤ λ
(
eE[gj ]

∆

)∆

≤ λ
(
e ln ln(λ)

5 ln(λ)

)2
ln(λ)

ln ln(λ)
+s

≤ 2−s.

Consequently, by Lemma 2,

E
[

max
j
gj

]
=

∞∑
t=1

Pr
[

max
j
gj ≥ t

]
≤ 2r lnλ

ln lnλ
+

∞∑
s=1

2−s ≤ 2r lnλ

ln lnλ
+ 1.

Clearly, the number of surviving good bits is an upper bound on the progress
Om(z)−Om(x). Hence the expected progress of one iteration, conditional on
the assumptions made before, is at most

E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ |G′| ≤ `/5] ≤ 2r lnλ
ln lnλ + 1.

Since the drift is always bounded by ` ≤ 2k, we have in fact

E[Om(z)−Om(x) | k/2 ≤ ` ≤ 2k ∧ |G′| ≤ `/5] ≤ min{2k, 2r lnλln lnλ + 1}.

The unconditional drift thus is

E[Om(z)−Om(x)] ≤ min{2k, 2r lnλln lnλ + 1}+O(k) exp(−Ω(k))

= O(min{2k, 2r lnλln lnλ }).

The additive drift theorem (Theorem 4), keeping in mind that we start
with a search point with distance at least n/20, hence yields E[T ] =
Ω(max{(n/20)/2k, (n/20) ln lnλ

2r lnλ}). This is at least 2, so we conclude E[F ] =

Ω(λE[T ]) ≥ Ω(nλ ln lnλ
2r lnλ ). ut

The above partial results already give that the best possible expected run-
time of the (1 + (λ, λ)) GA among all parameter settings is Θ(F ∗), and any
such parameter set uses λ = Θ(λ∗) and r = Θ(1). We now also narrow down
the range of values for k which may lead to an optimal expected runtime. The
main argument resembles the proof of Lemma 9, namely that a large k lets all
mutation offspring look similar and have many bad bits, so that the mutation
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phase is wasteful and the crossover phase finds it hard to generate better-
than-expected offspring. While the general idea of the proofs of the following
result and Lemma 9 are similar, the details necessarily show some significant
differences. Since we aim at a result for much smaller values of k, including
the case of k smaller than any positive power of n, we need to regard a fitness
regime with d much closer to n and with a much smaller ratio of upper and
lower end. This requires several arguments to be made more precise, but also
to exploit the information that we already have about optimal parameter sets.

Lemma 15 Let λ = Θ(λ∗), k = exp(ω(
√

log(n) log log log(n)/ log log(n) )),
k ≤ n/2, and r = Θ(1). Then the expected runtime of the (1 + (λ, λ)) GA with
these parameters is ω(F ∗).

Proof We first analyze the progress the (1 + (λ, λ)) GA makes in one iter-
ation starting with a search point x having fitness distance d := d(x) ∈
[3 ln ln(n)n/k, n/3] =: [d0, d1]. Let z denote the new parent individual after
one iteration (which is either x or y), or the optimal solution in case one of
the mutation offspring generated in this iteration was optimal. To use a lower
bound drift theorem later, we prove an upper bound for E[d(x)− d(z)].

We first convince ourselves that it is very unlikely that a mutation offspring
is better than x. This will allow us to only regard the situation that z ∈ {x, y}.
For a mutation offspring x̃ to be better than the parent x, more zero-bits
have to flip than one-bits, that is, g̃ := g(x, x̃) > b(x, x̃) =: b̃. By a simple
domination argument, we see that this event is most likely for d(x) = n/3, so
let us assume this for the moment. Then E[g̃] = k/3 and E[b̃] = 2k/3. We have
Pr[g̃ ≥ k/2] = exp(−Ω(k)) and Pr[b̃ ≤ k/2] = exp(−Ω(k)). Consequently,
Pr[Om(x̃) ≥ Om(x)] ≤ exp(−Ω(k)). We thus compute

E[Om(z)−Om(x)]

≤ E
[

max
x̃

max{0,Om(x̃)−Om(x)}
]

+ E[max{0,Om(y)−Om(x)}]

≤ λn exp(−Ω(k)) + E[max{0,Om(y)−Om(x)}]
= O(n−2) + E[max{0,Om(y)−Om(x)}].

We proceed by analyzing the quality of the crossover winner. Let x̃ be a
mutation offspring and x′ be the winning individual of the mutation phase. Let
g̃ = g(x, x̃) and g′ = g(x, x′) be their numbers of good bits. We have E[g̃] =
dk/n and, by our lower bound on d, Pr[g̃ ≥ 2dk/n] ≤ exp(−(dk/n)/3) ≤
1/ ln(n). Consequently,

E[max{0, g̃ − 2dk/n}] ≤ (1/ ln(n))E[g̃ − 2dk/n | g̃ ≥ 2dk/n] = dk/n ln(n)

by Lemma 1. We have

g′ ≤ max
x̃

g(x, x̃) = (2dk/n) + max
x̃

(g(x, x̃)− 2dk/n)

≤ (2dk/n) +
∑
x̃

max{0, g(x, x̃)− 2dk/n}
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and thus E[g′] ≤ 2dk/n +
∑
x̃E[max{0, g(x, x̃) − 2dk/n}] = 2dk/n +

dkλ/n ln(n) = (2 + o(1))dk/n, where all summations and maxima are taken
over all mutation offspring.

Consider an offspring ỹ generated in the crossover phase. Let g̃ỹ :=
g(x, x′, ỹ). Then E[g̃g̃] ≤ E[g′] · (r/k) = O(d/n). Since the crossover winner y
is chosen among the crossover offspring ỹ such that Om(ỹ), and equivalently,
d(x)−d(ỹ), is maximal, we have d(x)−d(y) ≤

∑
ỹ max{d(x)−d(ỹ), 0}, where

ỹ runs over all λ crossover offspring. Consequently, E[d(x) − d(y)] = O(λ dn )

and hence also E[Om(z)−Om(x)] = O(λ dn ).
Building on this drift statement, we now use Witt’s lower bound result

for multiplicative drift (Theorem 5). Consider a run of the (1 + (λ, λ)) GA.
For t = 0, 1, . . . , denote by xt the search point x at the beginning of the
(t + 1)st iteration, except when the algorithm previously had generated the
optimal solution, then let xt be the optimal solution. With probability 1−o(1),
there is a t0 such that n/6 ≤ d(xt0) ≤ n/3. We show that in this case, we
have an expected optimization time as claimed, which implies that also the
unconditioned expectation is of the same order of magnitude.

For t = 0, 1, . . . define Xt = max{d(xt0+t), 1}. Observe that Xt+1 ≤ Xt for
all t ≥ 0. Let smin := d0. Then we have shown above that if Xt = s > smin,
then E[Xt − Xt+1] ≤ Kλs/n for some absolute constant K. Hence the first
condition of the drift theorem is fulfilled with δ = Kλ/n. From Proposition 1
we know that Pr[Xt+1 ≤ s/2] ≤ λ2 exp(−Ω(s)) = exp(−Ω(s)). Hence for
n (and thus also s) sufficiently large, also the second condition of the drift
theorem is satisfied (with β = 1/2). We may thus apply the theorem and
derive that the first t such that Xt ≤ smin satisfies

E[t] = Ω

(
ln(X0/smin)

δ

)
= Ω

(
n log(k/ log log n)

λ

)
= Ω

(
n log(k)

λ

)
.

Note that this, naturally, is a lower bound on E[T ]. Consequently, E[F ] =
Ω(λE[T ]) = Ω(n log k) = ω(F ∗). ut

5.3 General Suggestions for the Use of the (1 + (λ, λ)) GA with Static
Parameters

We have proven above that if some offspring population size λ, some mu-
tation probability p = k/n, and some crossover bias c = r/k lead to
the asymptotically best expected runtime for the (1 + (λ, λ)) GA on One-
Max, then λ = Θ(λ∗) = Θ(

√
log(n) log log(n)/ log log log(n)), k = Ω(λ∗) ∩

exp(ω(
√

log(n) log log log(n)/ log log(n) )), and r = Θ(1).
A closer inspection of the proofs allows (in a semi-rigorous manner) to

extract some hints on the parameter choice also for optimization problems
beyond the OneMax function class. The most clear one is that r = Θ(1),
that is, pc = Θ(1/n), seems to be a good choice. This was argued intuitively
in [16] based on the fact that such a choice results in that crossc(x,mutp(x))



38 Benjamin Doerr, Carola Doerr

has the same distribution as applying standard bit mutation to x with the
standard choice of 1/n for the mutation probability. This intuitive argument
is somewhat imprecise due to the fact that one iteration of the (1+(λ, λ)) GA
contains two intermediate selection phases, so that neither does the winner of
the mutation phase have a standard bit mutation distribution (with rate p),
nor does the winner of the crossover phase have its bits taken independently
from the mutation winner with probability c. Nevertheless, as the proofs of
Lemma 9 and 12 (for a large range of parameter settings) show, in many
situations a super-constant value for r leads with high probability to the event
that the crossover offspring takes much more “bad” bits from the mutation
winner than it takes good bits. Conversely, an r-value of o(1) together with a
not too small value for k lead to a probability of 1 − Θ(r) for the crossover
offspring being equal to the parent x, making it useless.

For the choice of λ, as with all population-based algorithms, it is obvious
that larger values of λ can only be beneficial if the positive effects of the large
population outnumber the higher cost for a single iteration. From Lemma 12
we see that, again for broad ranges of the other parameters, we pay for a too
small λ when making progress is difficult. A small value of λ decreases both the
chance to find some good bits in the mutation phase and the chance that the
good bits are copied into a crossover offspring. This quadratic price for a small
λ is worth the multiplicative increase of the effort of one iteration. A similar
lesson could be deduced from the fitness-dependent or the self-adjusting choice
of λ in [16] and Section 6, which both again suggest a larger value for λ when
being closer to the optimum, which in the OneMax landscape means that it
is harder to find an improvement.

For the choice of the mutation probability p = k/n, the proof of Lemma 15
shows that a large k can lead to the effect that all mutation offspring look
similar. In this case, the mutation phase does not gain from the large k-value,
whereas in the crossover phase the crossover bias of c = r/k makes it difficult
to copy good bits into the final solution.

6 Self-Adjusting Parameter Choices

The linear expected optimization time obtained in [15] is a big success in
the theory of evolutionary algorithms as it proves for the first time a super-
constant speed-up via a fitness-dependent parameter choice. From the practical
point of view, though, the question remains how in an actual application the
user of the (1 + (λ, λ)) GA would guess the fitness-dependent optimal choice
of λ. In this section, we show that this is not needed. A self-adjusting choice
inspired by the classic one-fifth rule can give the same (optimal, as the result
in Section 6.5 shows) linear expected optimization time. To the best of our
knowledge, this is the first result proving a reduced expected optimization time
via parameter self-adjustment for an EA in discrete search spaces.

This section is organized as follows. We first provide some general back-
ground on dynamic parameter settings in Section 6.1. We also summarize
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and extend in that section the classification scheme of Eiben, Hinterding, and
Michalewicz [31] for parameter settings and discuss existing results for dy-
namic parameter choices in discrete optimization, with a focus on adaptive
schemes. The self-adjusting (1 + (λ, λ)) GA and its inspiration from the one-
fifth success rule are presented in Section 6.2. In Section 6.3 we present the
runtime analysis for this algorithm, followed by a discussion of some general
insights obtained through that analysis (Section 6.4). Finally, we discuss in
Section 6.5 that the one-fifth success rule indeed suggests asymptotically op-
timal parameter settings.

6.1 Dynamic Parameter Settings—Overview, Terminology, and Results

It is widely acknowledged that setting the parameters of EAs is one of
the key difficulties in evolutionary optimization. Eiben, Hinterding, and
Michalewicz [31] call this challenge “one of the most important and promis-
ing areas of research in evolutionary computation”. This statement retains its
topicality 15 years after the original publication of [31] as many talks at evolu-
tionary computation conferences certify. We also understand today that even
small changes in the parameters can cause exponential performance gaps of
the regarded algorithms [23,29].

In the early seventies, substantial research efforts have been undertaken
to find good parameter settings for general EAs, see for example [9]. Around
the same time it has been discovered that it may be sub-optimal to use a
fixed set of parameters throughout the whole optimization process. It was
suggested instead to change the parameters of the algorithms by some dynamic
update rules, often using some sort of feedback of the fitness landscape that
the algorithm is facing. For example, it can be beneficial in earlier parts of the
process to invest in exploration of the fitness landscape, while the algorithm
should become more stable and focus on one or few areas of attraction in the
later exploitation phase(s).

Since the literature is unanimous with respect to the terminology for pa-
rameter settings, we have adopted and slightly extended in this work the taxon-
omy of Eiben, Hinterding, and Michalewicz [31]. Figure 1, an adapted version
of Figure 1 in [31], illustrates this classification, which we briefly summarize
below.

The efforts of choosing the right parameters in an evolutionary algorithm
is called parameter setting. The first difference is between static and dynamic
parameter settings. In the former the parameters are set before the actual run
of the algorithm and they are not changed during the optimization process.
In typical applications, a parameter tuning step precedes the application of
the EA. In this phase, suitable parameter choices are sought through initial
experimental investigations, either for all parameters simultaneously, or in an
iterative process.

Optimizing dynamic parameter choices is called parameter control in [31].
Three principals are discussed: deterministic, adaptive, and self-adaptive pa-
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parameter setting

parameter controlparameter tuning

self‐adaptiveadaptivedeterministic

‐ fixed parameter choices
‐ offline optimization

‐ dynamic parameter choices
‐ online optimization

parameters encoded 
in the genome

no feedback from 
optimization process

update rules depend on 
optimization process

self‐adjusting
parameters depend on success 

of previous iterations

functionally‐dependent
parameters are in functional 

dependence of current population

Fig. 1 An extended version of the classification scheme from [31]. We regard in this work
self-adjusting parameter choices.

rameter control. A dynamic parameter choice is called deterministic if it does
not depend on the fitness landscape encountered by the algorithm. That is,
there is no feedback between the fitness values and the dynamic parameters.
As noted in [31] this does not exclude randomized update schemes. A pos-
sibly better wording would therefore be fixed or feedback-free update rules.
Adaptive parameter choices are those dynamic rules where the update rule
depends on the optimization process. Within this class (and this is differ-
ent from the classification scheme proposed in [31]) we distinguish between
functionally-dependent parameter choices (where the parameters depend only
on the current state of the algorithm, i.e., the current population) and self-
adjusting adaptive choices, where the parameters depend on the success of
(all) previous iterations. It is easy to see that the one-fifth success rule con-
sidered in this paper classifies as a self-adjusting parameter setting, while the
fitness-dependent parameter choice considered in Theorem 10 is an example
for a functionally-dependent parameter choice. Finally, self-adaptive parame-
ter choices are encoded themselves in the genome of the search points and are
subject to variation operators. The hope is that the better parameter choices
yield better offspring and are thus more likely to survive the evolutionary
process.

Interestingly, while in continuous domains parameter control mechanisms
can be analyzed also theoretically [3, 37, 39], dynamic parameter choices play
only a marginal role in theoretical investigations of EAs for discrete search
spaces. The few exceptions showing an advantage of adaptive parameter set-
tings in discrete optimization are (1) rank-based mutation rates for a (µ+ 1)
EA on function with a “trap” (guiding the search to local optima which are far
from the global ones) and similarly artificial problem classes regarded in [51],
(2) the fitness-dependent mutation rate for the (1+1) EA on LeadingOnes
analyzed in [5], (3) a fitness-dependent mutation rate for the (1 + λ) EA on
OneMax analyzed in [4], and (4) the fitness-dependent choice of the popula-
tion size in [16] for the (1 + (λ, λ)) GA on OneMax, respectively. All these
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adaption schemes, however, require a very solid understanding of the problem
at hand and are thus likely to be of limited practical relevance. No advan-
tage could be shown for the fitness-dependent mutation rates in an immune
algorithm (IA) regarded in [63] (cf. [64] for an investigation of the expected
runtime of a (µ + 1) version of this IA). Another example from the discrete
EA literature showing an advantage of adaptive parameter settings are reduc-
tions of the parallel runtime (but not the total expected optimization time)
for several test functions when doubling the number of parallel instances in a
parallel EA after each unsuccessful iteration [47].

Some more recent results proving a substantial advantage of self-adjusting
parameter choices (not for the population though) are the analysis of an opti-
mal self-adjusting choice of k-bit mutation for a variant of Randomized Local
Search on OneMax presented in [19], and a provably optimal self-adjusting
choice of the step size in multi-valued versions of OneMax in [17].

Works on dynamic but non-adaptive parameter update schemes include the
deterministic choice of the mutation rate in an (1+1) EA regarded in [43], the
deterministic cooling schedule of the temperature determining the selection
mechanism of Simulated Annealing regarded in [60] for the optimization of
instances of the minimum spanning tree problem, and a self-adaptive choice
of the mutation strength in a non-elitist population considered in [8].

6.2 The Self-Adjusting (1 + (λ, λ)) GA and Its Relationship to the One-Fifth
Success Rule

One of the earliest adaptive update rules suggested in the evolutionary compu-
tation literature is the one-fifth success rule. It was independently discovered
in [10, 54, 55] and today constitutes one of the best known and most widely
applied techniques in parameter control. Several empirical results (cf. [32] and
references therein) suggest that EAs using the one-fifth rule for adaptive pa-
rameter control are quite capable of finding optimal or close to optimal param-
eter settings. Since the parameters are updated without the intervention of the
user, such update mechanisms are a very convenient way to minimize parame-
ter tuning efforts. Furthermore, the one-fifth success rule does not require any
problem-specific knowledge and is thus widely applicable.

Originally, the one-fifth rule was designed to control the step size of evolu-
tion strategies. In intuitive terms, it suggests that if the probability to create
an offspring of better than current-best fitness is greater than 1/5, then the
step size should be increased to hopefully speed-up the exploration, while it
should be decreased if the probability is lower than 1/5 (in order to increase
the chance of a success). Today, this rule has found applications much beyond
the adaptation of the step size. Here in this work we use it for adjusting the
offspring population size of a genetic algorithm. Without going into details,
we note that many other adaptive update rules have been experimented with
in the evolutionary computation literature, cf. [31], [32, Chapter 8], and [44]
for surveys.
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Algorithm 2: The self-adjusting (1 + (λ, λ)) GA with mutation proba-
bility p, crossover bias c, and update strength F .

1 Initialization: Sample x ∈ {0, 1}n uniformly at random (u.a.r.);
2 Initialize λ← 1;
3 Optimization: for t = 1, 2, 3, . . . do
4 Mutation phase:

5 Sample ` from B(n, p);

6 for i = 1, . . . , λ do x(i) ← mut`(x);

7 Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r.;
8 Crossover phase:

9 for i = 1, . . . , λ do y(i) ← crossc(x, x′);

10 Choose y ∈ {y(1), . . . , y(λ)} with f(y) = max{f(y(1)), . . . , f(y(λ))} u.a.r.;
11 Selection and update step:

12 if f(y) > f(x) then x← y; λ← max{λ/F, 1};
13 if f(y) = f(x) then x← y; λ← min{λF 1/4, n};
14 if f(y) < f(x) then λ← min{λF 1/4, n};

In discrete search spaces, naturally, things are very different. However, we
can still come up with a natural variant of the one-fifth success rule. Note that
in the (1+(λ, λ)) GA (with the suggested choices p = λ/n and c = 1/λ for the
mutation rate and the crossover rate, respectively), increasing λ will increase
the success probability of one iteration, however, at the price of an increased
number of function evaluations, that is, higher runtime. Consequently, it makes
sense to increase λ when the empirical success probability is low (to speed up
the process of finding an improvement), but to reduce it when the success
probability is large (to hopefully save computational effort).

The algorithm: Taking the implementation of the one-fifth success rule
considered in [2] and originally proposed in [45] as example, the following
self-adjusting version of the (1 + (λ, λ)) GA has been designed in [16], see
also Algorithm 2. After an iteration that led to an increase of the fitness of x
(“success”), indicating an easy success, we reduce λ by a constant factor F > 1
(of course, not letting λ drop below 1). If an iteration was not successful, we
increase λ by a factor of F 1/4 (since we analyze the algorithm for mutation
probability p = λ/n we do not let λ exceed n). Consequently, after a series of
iterations with an average success rate of 1/5, we end up with the initial value
of λ (unless the lower barrier of 1 was hit).

As a technical remark we note that where an integer is required in Algo-
rithm 2 (e.g., lines 6 and 9) we round λ to its closest integer; i.e., instead of
λ we regard bλc = λ− {λ} if the fractional part {λ} of λ is less than 1/2 and
we regard dλe := bλc+ 1 otherwise.

In a series of experimental evaluations it was shown in [16, Section 4] and
[36] that this self-adjusting (1 + (λ, λ)) GA has a promising performance on a
number of standard optimization problems.
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6.3 Runtime Analysis for the Self-Adjusting Algorithm

We show that the self-adjusting (1 + (λ, λ)) GA (with standard parameters
p = λ/n and c = 1/λ) solves the generalized OneMax problem in linear
time when the self-adjusting speed factor F is not too large. To the best of
our knowledge, this is the first time that in a discrete search environment a
self-adjusting parameter choice is shown to be superior to any static choice.
Indeed the (1 + (λ, λ)) GA is the first proven example in discrete evolution-
ary algorithmics where a non-fitness-dependent parameter choice reduces the
expected optimization time by more than a constant factor. The results that
come closest to this are the mentioned results from [5, 47], which are either
constant factor reductions of the expected runtime (in case of [5]) or reduc-
tions of the parallel expected runtime but not the total number of function
evaluations (in case of [47]).

The proof of our result is rather technical. For this reason, we are only able
to show a linear expected optimization time when F is smaller than a certain
constant F ∗, but we do not make this F ∗ precise. In general, making implicit
constants precise is a difficult task in runtime analysis, and for many much
simpler problems the implicit constants are not known. In the experiments
conducted in [15], see in particular Figure 4 there, all values F ∈ [1, 2] worked
well (recall that in Auger’s implementation [2] F = 1.5 was used). At the
end of this section, we give some indication why F -values larger than 2.25,
however, may lead to an exponential expected optimization time.

Our main result is the following.

Theorem 9 The expected optimization time of the self-adjusting (1 +
(λ, λ)) GA with parameters p = λ/n and c = 1/λ on every generalized One-
Max function is O(n) for any sufficiently small update strength F > 1.

To prove Theorem 9, roughly speaking, we show that the population sizes λ
suggested by the one-fifth success rule are usually not very far from the fitness-
dependent choice λ∗ = d

√
n/(n−Om(x))e analyzed in [16, Theorem 8] (which

is restated below as Theorem 10). To prove Theorem 10, one first shows that
with the fitness-dependent choice of λ, each iteration of Algorithm 1 has a
constant success probability. This shows that the average time spend on each
fitness level is at most constant. A simple fitness-level argument then yields
the claimed O(n) bound.

Theorem 10 (Theorem 8 in [16]) The expected runtime of the (1 +
(λ, λ)) GA with p = λ/n, c = 1/λ, and fitness-dependent choice of λ∗ :=
d
√
n/(n−Om(x))e on every generalized OneMax function Om is linear in n.

Intuitively, if λ happens to be much larger than λ∗, the success probability
of the (1 + (λ, λ)) GA is so large that with reasonably large probability one
of the next iterations is successful and, as a consequence, the value of λ is
then adjusted to its previous value divided by F , thus approaching again λ∗.
This observation has also been made experimentally in [16]. Figure 5 in [16]
shows the close relationship between the self-adjusting population sizes and
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the optimal fitness-dependent ones for a typical run of the (1 + (λ, λ)) GA on
OneMax.

A key argument in the proof of Theorem 9 is the following lemma, which
shows that for large values of λ the success probability of the (1 + (λ, λ)) GA
is indeed reasonably large. This lemma can be seen as a generalization of
Lemma 7.

Lemma 16 Let x ∈ {0, 1}n. Let λ ≥ C0d
√
n/(n−Om(x))e. Let q = q(λ) be

the probability that one iteration of Algorithm 1 (with parameters p = λ/n and
c = 1/λ) starting in x is successful. There exists a constant C such that for
all C0 > C we have q > 1/5.

Proof (of Lemma 16) We use the same notation as in the description of Al-
gorithm 2. For readability purposes we again write λ even if an integer is
required. Let L be the random variable sampled in Line 5 of Algorithm 2; i.e.,
L is the number of bits that are flipped to create the offspring in the mutation
phase. For any fixed ε > 0 and for any λ, the success probability q of increasing
the fitness by at least one is (by the law of total probability) at least

Pr[L ∈ [(1− ε)λ, (1 + ε)λ]]· (8)

min {Pr[Om(y) > Om(x) | L = `] | ` ∈ [(1− ε)λ, (1 + ε)λ]} .

By Lemmas 5 and 6 in [16] it holds for any ` that

Pr[Om(y) > Om(x) | L = `] ≥
(

1−
(

Om(x)
n

)λ`)(
1−

(
1− 1

λ (1− 1
λ )`
)λ)

.

It thus suffices to bound from below

(i) min
{(

1−
(
1− 1

λ (1− 1
λ )`
)λ) | ` ∈ [(1− ε)λ, (1 + ε)λ]

}
,

(ii) min
{

1−
(

Om(x)
n

)λ`
| ` ∈ [(1− ε)λ, (1 + ε)λ]

}
,

(iii) Pr[L ∈ [(1− ε)λ, (1 + ε)λ]].

Bounding (i): For any ` ∈ [(1− ε)λ, (1 + ε)λ] it holds that

(
1− 1

λ (1− 1
λ )`
)λ ≤ (1− 1

λ (1− 1
λ )(1+ε)λ

)λ
≤
(
1− 1

λ (1/4)1+ε
)λ

≤ exp(−(1/4)1+ε) .

For ε < 1/25 we can thus bound expression (i) from below by 0.21.
Bounding (ii): We set d := n−Om(x) and obtain, for ` ∈ [(1− ε)λ, (1 +

ε)λ], (
Om(x)
n

)λ`
≤
(

Om(x)
n

)(1−ε)λ2

≤
(
1− d

n

)(1−ε)C0
2n/d ≤ (1/e)(1−ε)C0

2

.

This expression is at most 1/100 for large enough C0, showing that we can
bound (ii) from below by 0.99.
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Bounding (iii): We apply Chernoff’s bound to bound (iii) from below
by 1− 2 exp(−ε2λ/3). Since λ ≥ 2C0, this term is again larger than 0.99 for a
suitably chosen C0.

Putting everything together we have seen that, for a suitable choice of C0,
the expression in (8) is strictly larger than 0.992 · 0.21 > 1/5. ut

While the proof of Lemma 16 was rather straightforward, the proof of the
main theorem, i.e., Theorem 9, is much more involved.

Proof (of Theorem 9) As in the overview given before Lemma 16 we sloppily
denote in the following by λ∗ our fitness-dependent parameter choice of The-
orem 10; i.e., λ∗ := d

√
n/(n−Om(x))e. Note that the value of λ∗ depends on

the current fitness value but that this is not reflected in the abbreviation. To
increase the readability, we omit again to specify whether λ has to be rounded
up or down.

We partition the optimization process into phases. The first phase starts
with the first fitness evaluation. A phase ends with an iteration at whose
end we have increased the fitness of x and λ ≤ C0λ

∗ holds, for a sufficiently
large constant C0 that we do not compute explicitly. (C0 is determined by
Lemma 16.)

We shall first show that each phase has an expected cost of O(λ∗) fitness
evaluations. From this is it not difficult to conclude the proof by arguments
used in the proof of Theorem 10.

To bound the expected cost of each phase, we distinguish between “short”
phases, in which λ < C0λ

∗ holds throughout, and “long” phases, in which
λ ≥ C0λ

∗ for at least one iteration. We abbreviate the threshold C0λ
∗ by λ̄.

Note that λ̄ as well depends on the current fitness Om(x).
Claim 1: The expected cost of a short phase is O(λ∗).
Proof of claim 1: Let λ̃ be the value of λ at the beginning of the phase

and let t be the number of iterations of the phase. Since λ does not exceed the
threshold λ̄, there is exactly one iteration in which the fitness of x is increased.
That is, the value of λ has first been multiplied t−1 times by F 1/4 until there
was a fitness increase and the λ-value has been shrunk as a consequence of
the fitness increase. The value of λ at the end of the phase is thus λ̃F (t−1)/4−1

and this value is bounded from above by λ̄ (since we are considering a short
phase). Since an iteration with parameter λ requires 2λ fitness evaluations,
the total number of fitness evaluations is thus

t−1∑
i=0

2λ̃F i/4 = 2λ̃
F t/4 − 1

F 1/4 − 1
= O(λ̄) = O(λ∗). (9)

Claim 2: The expected cost of a long phase is O(λ∗).
Proof of claim 2: We split the long phase into an opening phase and a

main phase. The opening phase ends with the last iteration in which λ < λ̄
holds, so that the main phase starts with a λ that is at least as large as λ̄, but
less than λ̄F 1/4.
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Let T denote the number of fitness evaluations during the phase and let
I denote the number of iterations in the main (!) phase. As in the proof of
Claim 1 it will be easy to see that E[T | I = t] = Dλ∗F t/4 for all t and
some fix constant D. The most technical part of this proof is to bound the
probability that the main phase of a long phase requires t iterations; i.e.,
Pr[I = t] given that we are in a long phase. We show that this probability
is at most exp(−ct) for some positive constant c. It is well known that the

geometric series (
∑`
t=1 F

t/4 exp(−ct))`∈Z>0 converges if F 1/4 < exp(c). The
overall expected number of fitness evaluations during a long phase is thus

∞∑
t=1

E[T | I = t] Pr[I = t] ≤ Dλ∗
∞∑
t=1

F t/4 exp(−ct),

which is O(λ∗) as desired.
It remains to prove the following two claims.
Claim 2.1: E[T | I = t] ≤ Dλ∗F t/4 for some large enough constant D.
Claim 2.2: Given that we are in a long phase, we have Pr[I = t] =

exp(−ct) for a positive constant c.
Proof of Claim 2.1: The cost of the opening phase is at most 2λ̃

∑m
i=0 F

i/4,

where λ̃ is the initial value of λ at the beginning of the phase and m is chosen
maximally such that λFm/4 < λ̄. As in (9) one shows that this sum is O(λ∗).
Similarly, since the initial λ of the main phase is at most λ̄F 1/4, the cost of
the main phase is at most

λ̄

t∑
i=1

F i/4 = λ̄(F (t+1)/4 − 1)/(F 1/4 − 1) ≤ D′λ̄F (t+1)/4

for D′ ≥ 1/(F 1/4 − 1).
Proof of Claim 2.2: As mentioned above, the main phase starts with a λ̃

that is at least λ̄ and strictly less than λ̄F 1/4. We are interested in the first
point in time at which λ is less than λ̄. Note that all future values encountered
in this phase are of the type λ̃F r for r being a multiple of 1/4. By regarding
this exponent r, we transform the process into a biased random walk on the
line (1/4)Z. Our starting position is 0. If an iteration is successful, i.e., if the
fitness value of x has increased during the iteration, the process does one step
of length one to the left. It does a step of length 1/4 to the right otherwise
(we thus pessimistically ignore the fact that λ never exceeds n). We bound
the probability that it takes t or more iterations until this random walk has
reached a value of less than 0. At this point in time the current λ is less than
the original λ̄ value that was active at the beginning of the main phase. That
is, when the random walk reaches a position smaller than 0, λ is for certain
less than the then active threshold λ̄ (which, by definition, increases whenever
the fitness value of x does).

If an iteration is successful with probability at least q, the expected progress
of this random walk in one iteration is (1 − q)/4 − q, which is negative since
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by Lemma 16 we have q > 1/5. Hence there exists a constant c > 0 such that
(1− q)/4− q < −c.

To conclude the proof of Claim 2.2, let us define random variables Xi,
1 ≤ i ≤ t, by setting Xi = 1/4 if the fitness does not increase in the ith
iteration of the main phase, and setting Xi = −1 otherwise. We have just
seen that E[Xi] ≤ −c. Given that we are in a long phase, the probability

that the main phase has length at least t equals Pr[∀j < t :
∑j
i=1Xi > 0].

This is at most Pr[
∑t−1
i=1Xi > 0], which is in turn bounded from above by

Pr[
∑t−1
i=1Xi > E[

∑t−1
i=1Xi] + (t − 1)c]. We apply Chernoff’s bound—confer

Theorem 1.11 in [11] for a version that allows for random variables that do
not necessarily take positive values—to see that, as desired, this term is at
most

exp

(
− 2(t− 1)2c2

(t− 1)(5/4)2

)
= exp

(
−32(t− 1)c2/25

)
.

ut

6.4 General Insights from the Runtime Analysis

The analysis above reveals the following facts, which might be helpful in gen-
eral when trying to use a one-fifth success rule or a related self-adjusting rule
in discrete search spaces.

The adjustment rule must fit to the limiting success probability. In
the proof above, it was crucial that the success probability shown in Lemma 16
was a constant larger than 1/5. It is easy to see that if the success probability
was uniformly bounded from above by a constant σ < 1/5, then logF (λ) in
expectation would increase by a positive constant in each iteration. Conse-
quently, λ would show an exponential growth, quickly leading to wastefully
large values. This can partially be overcome by imposing an upper barrier for
λ (we have such a barrier, namely λ ≤ n, to ensure that the mutation prob-
ability p = λ/n is at most 1), however, this would still lead to the algorithm
mostly working with this maximal value of λ instead of a value close to the
ideal λ∗.

In general, there is no reason for not trying success rules with other ratios
1/r than one-fifth, that is, increasing λ by F 1/(r−1) instead of F 1/4 in case
of non-success. In general, a larger value of r will slightly decrease the speed
of adjustment, but is more likely to overcome the problem described in the
previous paragraph. Note that for our problem, when λ = ω(1), the success
probability is uniformly bounded from above by (1 + o(1))e−1/e ≈ 0.31. Con-
sequently, the one-fifth rule avoids the exponential growth of λ, whereas a
one-third rule or a one-half rule (e.g., doubling or halving the parameter as
in [47]) would not.

The constant F matters. Even when the combination of update rule
and success probability avoids an expected exponential growth of λ, things
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can still go wrong when the update strength F is too large. Here is an exam-
ple (where, to ease the presentation, we assume that we have no upper barrier
on λ; with an upper barrier, as above, the problem remains, though possibly
to a smaller extent): Imagine that we start with some value λ0. Above, we saw
that the success probability of an iteration is bounded from above by 0.31.
Consequently, the probability of having exactly m consecutive non-successes
is at least 0.31 · 0.69m. The optimization time of the last iteration alone is
λ0F

m/4. Consequently, the expected effort of finding one improvement is at
least 0.31λ0

∑∞
m=0(0.69F 1/4)m. When 0.69F 1/4 > 1, this series does not con-

verge, i.e., the expected effort for one improvement is infinite. In our case, this
happens (at least) when F > 4.41. Note that this was a rough estimate aimed
at quickly demonstrating that large F -values can be dangerous. Better values
can be achieved with more effort. E.g., the probability that among 6m itera-
tions, we have at most m successes, is more than (0.755 + o(1))m; this can be
seen from approximating the binomial distribution with a normal distribution.
Since this event also increases the initial λ value by Fm/4, the corresponding
series already diverges for F ≥ 3.08. Optimizing the ratio of successes and
non-successes, we see that the probability of having γ successes among 1 + 5γ
trials is more than (0.8167 + o(1))m, showing that any F ≥ 2.25 leads to an
exponential expected optimization time. We do not know to what extent this
argument can be improved. For this reason, we would rather suggest to choose
a small value of F , clearly below 2, and trade in the possibly faster adjust-
ment to the ideal parameter value for a reduced risk of an expected infinite
optimization time.

6.5 A Linear Lower Bound for All Dynamic Parameter Choices

In the previous section we have seen that the expected optimization time of
the self-adjusting (1+(λ, λ)) GA is better than that of the (1+(λ, λ)) GA with
any static population size. We next show that the simple update rule is even
asymptotically best possible among all dynamic parameter choices. That is,
we prove that, regardless of how the parameters are updated in each iteration,
the (1 + (λ, λ)) GA always has an expected runtime on OneMax that is at
least linear in n.

To this aim, we consider the class of (1+(λ, λ)) GA versions with dynamic
parameter choices following the scheme of Algorithm 3. It allows an arbitrary
setting of the parameters depending on the whole history. We show that any
such algorithm has an expected performance for the OneMax problem that
is at least linear in n. Consequently, our self-adjusting (1 + (λ, λ)) GA is
asymptotically optimal among this broad class of algorithms, which includes
all fitness-dependent and all success-based parameter settings.

Theorem 11 For any (1 + (λ, λ)) GA with dynamic parameter choices, that
is, an instance of Algorithm 3, the optimization time F on OneMax satisfies
E[F ] = Ω(n).
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Algorithm 3: A general framework for the (1+(λ, λ)) GA with dynamic
parameter choices, maximizing a given function f : {0, 1}n → R. In
each iteration, offspring population size λ, mutation probability p, and
crossover bias c are chosen depending on the whole history H of the
search process. The subscript H indicates this (arbitrary) dependence on
the history.

1 Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.);
2 Optimization: for t = 1, 2, 3, . . . do
3 Mutation phase:

4 Determine λH ∈ N, pH ∈ [0, 1], and cH ∈ [0, 1] depending on the whole
history H;

5 Sample ` from B(n, pH);

6 for i = 1, . . . , λH do x(i) ← mut`(x);

7 Choose x′ ∈ {x(1), . . . , x(λH)} with f(x′) = max{f(x(1)), . . . , f(x(λH))}
u.a.r.;

8 Crossover phase:

9 for i = 1, . . . , λH do y(i) ← crosscH (x, x′);

10 Choose y ∈ {y(1), . . . , y(λH)} with f(y) = max{f(y(1)), . . . , f(y(λH))} u.a.r.;
11 Selection step: if f(y) ≥ f(x) then x← y;

Compared to our lower bound of Section 5, we claim here a weaker lower
bound for a broader class of algorithms. Fortunately, this allows for a signifi-
cantly easier proof. The main argument is that, independent of the parameters
chosen by the algorithm, an iteration using an offspring population size of λ
and starting with an individual of fitness at least 0.9n increases the fitness by
at most O(λ).

As a side remark, we note that the unrestricted black-box complexity of
OneMax (or, more precisely, the unrestricted black-box complexity of the
class {fz | z ∈ {0, 1}n} of generalized OneMax functions fz : {0, 1}n →
[0..n], x 7→ |{i ∈ [n] | xi = zi}|) is Θ(n/ log n), cf. [1, 30,33]. That is, no black-
box algorithm exists which can find the optimum for any of these functions in
expected time o(n/ log n), while there is a black-box algorithm that needs only
about 2n/ log n function evaluations to determine the unique global optimum
z of the (unknown) function fz. On the other hand, the best known binary
unbiased black-box algorithm for OneMax has linear runtime [24]. Intuitively
speaking, cf. also our discussion in Section 3.1, a binary unbiased black-box
algorithm is one that samples all search points from distributions that depend
only on at most two previously queried ones and only from distributions that
do not discriminate between the bit positions 1, . . . , n nor between the bit val-
ues 0 and 1. The (1+(λ, λ)) GA is such a binary unbiased black-box algorithm.
Whether its O(n) runtime bound is best possible among all binary unbiased
black-box algorithms or whether o(n) binary unbiased black-box algorithms
exits is a big open problem in black-box complexity.

Proof Let us fix a (1 + (λ, λ)) GA with dynamic parameter choices. We first
show that the expected fitness gain in an iteration started with a search point
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with fitness distance at most n/10 is at most O(λH). To prove this statement,
let x ∈ {0, 1}n with d(x) ≤ n/10. Consider an iteration of this (1 + (λ, λ)) GA
started with this search point as parent individual. Let λ, p, and c be the
values of offspring population size, mutation probability, and crossover bias
chosen by the algorithm depending on the previous search history. Denote by
z the search point that forms the new parent individual after this iteration.
Our aim is to show that E[f(z)− f(x)] = O(λ).

Let ` be the mutation strength sampled by the algorithm. We have ` ∼
B(n, p), but we shall not exploit this. Since f(z) − f(x) ≤ ` with probability
one, we can assume that ` ≥ λ as otherwise we trivially have f(z) − f(x) =
O(λ).

We use in the following the notation introduced at the beginning of Sec-
tion 5.2. The multiplicative Chernoff bound (see Theorem 1) and a union
bound show that with probability at most λ exp(−Ω(`)) ≤ ` exp(−Ω(`)), there
is a mutation offspring x̃ with g(x, x̃) ≥ `/5. In this case, we simply estimate
f(z)− f(x) ≤ ` as before.

Otherwise, the mutation winner x′ satisfies g(x, x′) ≤ `/5 and, conse-
quently, b(x, x′) ≥ (4/5)`. Consider a crossover offspring ỹ. Let A be the event
that g′(x, x′, ỹ) ≥ (2/5)c` or b′(x, x′, ỹ) ≤ (2/5)c`. Note that f(ỹ) ≤ f(x)
when A does not hold. By (i) this observation, (ii) the multiplicative Chernoff
bound, (iii) the fact that crossover takes bits independently from x and x′,
and (iv) Lemma 1, we compute

E[max{0, f(ỹ)− f(x)}] = Pr[A] E[max{0, f(ỹ)− f(x)} | A]

≤ exp(−Ω(c`)) E[g′(x, x′, ỹ) | g′(x, x′, ỹ) ≥ (2/5)c`]

≤ exp(−Ω(c`))((2/5)c`+ c`/5),

which is O(1) regardless of the outcome of ` and the dynamic choice of c. For
the crossover winner y, we thus have

E[f(y)− f(x)] ≤
∑
ỹ

E[max{0, f(ỹ)− f(x)}] = O(λ).

Taking the two cases together, we obtain E[f(z)−f(x)] = exp(−Ω(`))`2 +
O(λ) = O(λ) independent of the outcome of `.

Summarizing the above, we have proven that there is a constant C > 0
such that in each iteration starting with a search point with fitness distance
at most n/10 and using an offspring population size of λ, the expected fitness
gain is at most Cλ.

Consider now a run of the dynamic (1 + (λ, λ)) GA. To avoid technicali-
ties, let us assume that the (1 + (λ, λ)) GA after having reached an optimal
parent individual continues to run and does so using λ = 1 in each subse-
quent iteration. Considering such an infinite run, let t1 be the first iteration
after which B := 1

80Cn fitness evaluations have been performed. Denoting by

λt, t ∈ N, the value of λ used in iteration t, we thus have 1 +
∑t1
i=1 2λi ≥ B

and 1 +
∑t1−1
i=1 2λi < B.
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Denote by xt, t ∈ N, the search point forming the parent population after
iteration t. With probability 1 − exp(−Ω(n)), the initial search point x0 has
a fitness between 0.4n and 0.6n. We condition on this event in the following.
We first show that with probability 1/2− o(1), we have d(xt1−1) ≥ n/40. Let
t0 ∈ N be minimal such that d(xt0) ≤ n/10. If t0 > t1 − 1, there is nothing to
show. Hence let us assume that t0 ≤ t1−1. By Proposition 1, with probability
at least 1 − B2 exp(−Ω(n)) we have d(xt0) ≥ n/20. We condition again on
this. By our above argument, we have

E[f(xt1−1)− f(xt0)] ≤ C
t1−1∑
i=t0+1

λi ≤ CB ≤ 1
80n.

By Markov’s inequality, with probability at least 1/2, we have f(xt1−1) −
f(xt0) ≤ 1

40n, implying d(xt1−1) ≥ n/40.
Hence with probability at least 1/2 − o(1), we have d(xt1−1) ≥ n/40. Let

us condition on this. Then all parent individuals up to iteration t1 − 1 have
a fitness distance of at least 1

40n. By Proposition 1, with probability at least
1 − B exp(−Ω(n)), all mutation offspring created up to iteration t1 − 1 have
a fitness distance of at most n/80. Consequently, up to the end of iteration
t1 − 1, no optimal solution has been found and d(xt1−1) ≥ n/40.

If λt1 ≤ n, then again by Proposition 1, the t1-th iteration also with high
probability creates no search point with fitness distance better than n/80.
In this case, the optimization time F satisfies F ≥ B = 1

80Cn. If λt1 ≥ n,
then Proposition 2 shows that the first n mutation offspring all have a fitness
distance of at least n/80 (with high probability). In this case, trivially, E[F ] ≥
n as claimed.

Putting everything together, we see that with probability 1/2 − o(1), we
have F ≥ min{B,n} = Ω(n), which gives the claim. ut

7 Summary

In this work, we have conducted a detailed analysis of the optimization
time of the (1 + (λ, λ)) GA on OneMax. In a first step, we have proven
an improved upper bound for the expected optimization time and a tail
bound for the upper tail of the runtime distribution. We also proved that
this bound is tight. Even more, we showed that no parameter combination
for the (1 + (λ, λ)) GA can lead to an asymptotically better expected run-
time on the OneMax test function class than the one suggested in [16],
where this algorithm was first proposed. We also proved that if some off-
spring population size λ, some mutation probability p = k/n, and some
crossover bias c = r/k leads to the asymptotically best expected run-
time, then λ = Θ(λ∗) = Θ(

√
log(n) log log(n)/ log log log(n)), k = Ω(λ∗) ∩

exp(ω(
√

log(n) log log log(n)/ log log(n) )), and r = Θ(1). These analyses both
show that the (1 + (λ, λ)) GA is faster than what could be proven in [16], and
it suggests a slightly different value for the optimal offspring population size λ,
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again leading to a super-constant factor speed-up over the runtime stemming
from the value giving the best bound in the previous work.

Finally, we have analyzed the (1+(λ, λ)) GA with self-adjusting population
sizes. We have shown that it optimizes any generalized OneMax function
in linear time. This is best possible for any (static or dynamic) parameter
choice and is better by a Ω(

√
log(n) log log log(n)/ log log(n)) factor than any

(1 + (λ, λ)) GA with static population size. Our result thus shows for the
first time that self-adjusting parameter choices can be provably beneficial in
discrete optimization problems.

We hope that our insights make it easier to use the (1 + (λ, λ)) GA, which
both in theoretical and empirical investigations showed a promising perfor-
mance. We are also optimistic that the proof ideas developed in this work make
future analyses of multi-dimensional parameter spaces easier. Furthermore, we
hope that our results inspire more work on the runtime of evolutionary algo-
rithms with self-adjusting parameter choices.
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33. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos
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