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Abstract (150) 42 

Human metacognition, or the capacity to introspect on one’s own mental states, has been mostly 43 

characterized through confidence reports in visual tasks. A pressing question is to what extent results 44 

from visual studies generalize to other domains. Answering this question allows determining whether 45 

metacognition operates through shared, supramodal mechanisms, or through idiosyncratic, modality-46 

specific mechanisms. Here, we report three new lines of evidence for decisional and post-decisional 47 

mechanisms arguing for the supramodality of metacognition. First, metacognitive efficiency correlated 48 

between auditory, tactile, visual, and audiovisual tasks. Second, confidence in an audiovisual task was 49 

best modeled using supramodal formats based on integrated representations of auditory and visual 50 

signals. Third, confidence in correct responses involved similar electrophysiological markers for visual 51 

and audiovisual tasks that are associated with motor preparation preceding the perceptual judgment. 52 

We conclude that the supramodality of metacognition relies on supramodal confidence estimates and 53 

decisional signals that are shared across sensory modalities.  54 
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Significance statement (118 words) 55 

Metacognitive monitoring is the capacity to access, report and regulate one’s own mental states. In 56 

perception, this allows rating our confidence in what we have seen, heard or touched. While 57 

metacognitive monitoring can operate on different cognitive domains, we ignore whether it involves a 58 

single supramodal mechanism common to multiple cognitive domains, or modality-specific 59 

mechanisms idiosyncratic to each domain. Here, we bring evidence in favor of the supramodality 60 

hypothesis by showing that participants with high metacognitive performance in one modality are 61 

likely to perform well in other modalities. Based on computational modeling and electrophysiology, we 62 

propose that supramodality can be explained by the existence of supramodal confidence estimates, and 63 

by the influence of decisional cues on confidence estimates.  64 

 65 

  66 
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Introduction (680 words) 67 

Humans have the capacity to access and report the contents of their own mental states including 68 

percepts, emotions, and memories. In neuroscience, the reflexive nature of cognition is now the object 69 

of research under the broad scope of the term metacognition (Koriat, 2006; Fleming et al., 2012). A 70 

widely used method to study metacognition is to have observers do a challenging task (“first-order 71 

task”), followed by a confidence judgment regarding their own task performance (“second-order task”, 72 

Figure 1 left panel). In this operationalization, metacognitive accuracy can be quantified as the 73 

correspondence between subjective confidence judgments and objective task performance. While some 74 

progress has been made regarding the statistical analysis of confidence judgments (Galvin et al., 2003; 75 

Maniscalco and Lau, 2012; Barrett et al., 2013), and more evidence has been gathered regarding the 76 

brain areas involved in metacognitive monitoring (Grimaldi et al., 2015), the core properties and 77 

underlying mechanisms of metacognition remain largely unknown. One of the central questions is 78 

whether, and to what extent, metacognitive monitoring should be considered supramodal: is the 79 

computation of confidence fully independent of the perceptual signal (i.e., supramodality), or does it 80 

also involve signal-specific components? According to the supramodality hypothesis, metacognition 81 

would have a quasi-homuncular status, the monitoring of all perceptual processes being operated 82 

through a single shared mechanism. Instead, modality-specific metacognition would involve a 83 

distributed network of monitoring processes that are specific for each sensory modality. The 84 

involvement of supramodal, prefrontal brain regions during confidence judgments first suggested that 85 

metacognition is partly governed by supramodal rules (Fleming et al., 2010; Yokoyama et al., 2010; 86 

Rahnev et al., 2015). At the behavioural level, this is supported by the fact that metacognitive 87 

performance (Song et al., 2011), and confidence estimates (de Gardelle and Mamassian, 2014; Rahnev 88 

et al., 2015) correlate across subjects between two different visual tasks, as well as between a visual 89 
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and an auditory task (De Gardelle et al., 2016). However, the supramodality of metacognition is 90 

challenged by the report of weak or null correlations between metacognitive performance across 91 

different tasks involving vision, audition, and memory (Ais et al., 2016). Beyond sensory modalities, 92 

metacognitive judgments across cognitive domains were shown to involve  distinct brain regions 93 

notably frontal areas for perception and precuneus for  memory (McCurdy et al., 2013). Supporting this 94 

view, patients with lesions to the anterior prefrontal cortex were shown to have a selective deficit in 95 

metacognition for visual perception, but not memory (Fleming et al., 2014). This anatomo-functional 96 

distinction across cognitive domains is further supported by the fact that meditation training improves 97 

metacognition for memory, but not for vision (Baird et al., 2014). Compared to previous work, the 98 

present study sheds new light on the issue of supramodality by comparing metacognitive monitoring of 99 

stimuli from distinct sensory modalities, but during closely-matched first-order tasks. At the behavioral 100 

level, we first investigated the commonalities and specificities of metacognition across sensory 101 

domains including touch, a sensory modality that has been neglected so far. Namely, we examined 102 

correlations between metacognitive performance during a visual, auditory, and tactile discrimination 103 

task (Experiment 1). Next, extending our paradigm to conditions of audiovisual stimulation, we 104 

quantified for the first time the links between unimodal and multimodal metacognition (Deroy et al., 105 

2016), and assessed through computational modeling how multimodal confidence estimates are built 106 

(Experiment 2). This allowed us to assess if metacognition is supramodal because of a generic format 107 

of confidence. Finally, we investigated the neural mechanisms of unimodal and multimodal 108 

metacognition and repeated Experiment 2 while recording 64-channel electroencephalography (EEG, 109 

Experiment 3). This allowed us to identify neural markers with high temporal resolution, focusing on 110 

those preceding the response in the first-order task (ERPs, alpha suppression) to assess if metacognition 111 

is supramodal because of the presence of decisional cues.  The present data reveal #1 correlations in 112 

metacognitive behavioral efficiencies across different unimodal and bimodal perception, #2 113 
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computational evidence for integrative, supramodal representations during audiovisual confidence 114 

estimates, and #3 the presence of similar neural markers of supramodal metacognition preceding the 115 

first-order task. Altogether, these behavioural, computational, and neural findings provide non-116 

mutually exclusive mechanisms explaining the supramodality of metacognition during human 117 

perception.  118 

 119 

[Figure 1 Here] 120 

Methods 121 

Participants 122 

A total of 50 participants (Experiment 1: 15 including 8 females, mean age = 23.2 years, SD = 8.3 123 

years; Experiment 2: 15 including 5 females, mean age = 21.3 years, SD = 2.6 years; Experiment 3: 20 124 

including 6 females, mean age = 24.6 years, SD = 4.3 years) from the student population at the Swiss 125 

Federal Institute of Technology (EPFL) took part in this study, in exchange for monetary compensation 126 

(20 CHF per hour). All participants were right-handed, had normal hearing and normal or corrected-to-127 

normal vision, and no psychiatric or neurological history. They were naive to the purpose of the study 128 

and gave informed consent, in accordance with institutional guidelines and the Declaration of Helsinki. 129 

The data from two participants were not analyzed (one in Experiment 1 due to a technical issue with 130 

the tactile device, and one from Experiment 2 as the participant could not perform the auditory task). 131 

Stimuli 132 

All stimuli were prepared and presented using the Psychophysics toolbox (Pelli, 1997; Brainard, 1997, 133 

Kleiner et al., 2007; RRID:SCR_002881) in Matlab (Mathworks; RRID:SCR_001622). Auditory 134 

stimuli consisted of either a 1100 Hz sinusoidal (high pitch “beep” sound) or 200 Hz sawtooth function 135 
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(low pitch “buzz” sound), played through headphones in stereo for 250 ms with a sampling rate of 136 

44100 Hz. The loudness of one of the two stimuli was manipulated to control for task performance, 137 

while the other stimulus remained constant. In phase 1, the initial inter-ear intensity difference was 138 

50%, and increased (decreased) by 1% after each incorrect (two correct) answers. The initial difference 139 

and step size were adapted based on individual performance. The initial difference in phase 2 was 140 

based on the results from phase 1, and the step size remained constant. In the auditory condition of 141 

Experiments 2, both sounds were played simultaneously in both ears, and were distinguished by their 142 

timbre. When necessary, a correction of hearing imbalance was performed prior to the experiment to 143 

avoid response biases.  144 

Tactile stimuli were delivered to the palmar side of each wrist by a custom-made vibratory device, 145 

using coin permanent-magnetic motors (9000 rpm maximal rotation speed, 9.8 N bracket deflection 146 

strength, 55 Hz maximal vibration frequency, 22 m/s² acceleration, 30 ms delay after current onset) 147 

controlled by a Leonardo Arduino board through pulse width modulation. Task difficulty was 148 

determined by the difference in current sent to each motor, while one motor always received the same 149 

current. In phase 1, the initial inter-wrist difference was 40%, and increased (decreased) by 2% after 150 

each incorrect (two correct) answers. The initial difference and step size were adapted individually, 151 

based on performance. A correction of tactile imbalance due to a difference of pressure between the 152 

vibrator and the wrist was performed prior to the experiment to avoid response biases. The initial 153 

difference in phase 2 was determined by the final difference from phase 1. The step size for the 154 

stimulus staircase remained constant for both phases.  155 

Visual stimuli consisted in pairs of two 5° x 5° Gabor patches (5 cycles/°, 11° center-to-center 156 

distance). When only one pair of visual stimuli was presented (visual condition of Experiment 1, 157 

audiovisual condition of Experiments 2 and 3), it was vertically centered on the screen. When two pairs 158 
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were presented (visual condition of Experiment 2 and 3), each pair was presented 5.5° above or below 159 

the vertical center of the screen. Visual contrast of one Gabor of the pair was manipulated, while the 160 

other always remained at constant contrast. The staircase procedure started with a difference of contrast 161 

between Gabor patches of 40%, and an increment (decrement) of 2.5% after one incorrect (two correct) 162 

answers.  163 

 164 

 165 

General procedure 166 

All three experiments were divided into two main phases. The first phase aimed at defining the 167 

participant’s threshold during a perceptual task using a 1-up/2-down staircase procedure (Levitt, 1971). 168 

In Experiment 1, participants indicated which of two stimuli presented to the right or left ear (auditory 169 

condition), wrist (tactile condition), or visual field (visual condition) was the most salient. Saliency 170 

corresponded respectively to auditory loudness, tactile force, and visual contrast (see below for details). 171 

In Experiment 2, participants indicated whether the two most salient stimuli among two simultaneous 172 

pairs were presented to the same or different ear (auditory condition), visual field (visual condition), or 173 

whether the side of the most salient auditory stimulus corresponded to the side of the most salient 174 

visual one (audiovisual condition). Stimuli were presented simultaneously for 250 ms. All staircases 175 

included a total of 80 trials and lasted approximately 5 min. All thresholds were defined as the average 176 

stimulus intensity during the last 25 trials of the staircase procedure. All staircases were visually 177 

inspected, and restarted in case no convergence occurred by the end of the 80 trials (i.e., succession of 178 

multiple up/down reversals). The initial stimulation parameters in the audiovisual condition of 179 

Experiments 2 and 3 were determined by a unimodal staircase procedure, applied successively to the 180 

auditory and visual condition.  181 
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In the second phase, participants did the same perceptual task, with an initial stimulus intensity given 182 

by the final value in the staircase conducted in phase 1. As in phase 1, stimuli in phase 2 were 183 

controlled with 1-up/2-down staircase procedure to keep task performance around 71% throughout, 184 

thus accounting for training or fatigue effects. This ensured a constant level of task difficulty, which is 185 

crucial to precisely quantify metacognitive accuracy across conditions, and is a standard approach (e.g., 186 

Fleming et al, 2010, McCurdy et al 2013; Ais et al., 2016). Immediately after providing their response 187 

on the perceptual task, participants reported their confidence on their preceding response on a visual 188 

analog scale using a mouse with their right hand. The left and right end of the scale were labeled “Very 189 

unsure” and “Very sure” respectively, and participants were asked to report their confidence as 190 

precisely as possible, trying to use the whole scale range. A cursor slid over the analog scale 191 

automatically following mouse movements, and participants clicked the left mouse button to indicate 192 

their confidence. Participants could click the right-button instead to indicate when they had made a 193 

trivial mistake (e.g., pressed the wrong button, obvious lapses of attention), which allowed us to 194 

exclude these trials from the analysis. During a training phase of 10 trials, the cursor changed color 195 

after participants clicked to provide their answer to the perceptual task. The cursor turned green 196 

following correct responses, and red following incorrect responses. No feedback was provided after the 197 

training phase. In the audiovisual condition of Experiments 2 and 3, auditory and visual stimuli 198 

intensities were yoked, so that a correct (incorrect) answer on the bimodal stimulus led to an increase 199 

(decrease) in the stimulus intensity in both modalities. Each condition included a total of 400 trials, 200 

divided into 5 blocks. Trials were interspaced with a random interval lasting between 0.5 and 1.5 s 201 

drawn from a uniform distribution. The three conditions (two in Experiment 3) were run successively 202 

in a counterbalanced order. One entire experimental session lasted approximately 3 hours.  203 

Behavioural analysis 204 
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The first 50 trials of each condition were excluded from analysis as they contained large variations of 205 

perceptual signal. Only trials with reaction times below 3 s for the type 1 task and type 2 task were kept 206 

(corresponding to an exclusion of 22.2% of trials in Experiment 1 and 12.6% in Experiment 2). In 207 

Experiment 3, we used a more lenient superior cutoff of 5 s, resulting in 3.7 % excluded trials, as many 208 

trials had to be removed due to artifacts in the EEG signal. Meta-d’ (Maniscalco and Lau, 2012) was 209 

computed with Matlab (Mathworks; RRID:SCR_001622), with confidence binned into 6 quantiles per 210 

participant and per condition. All other behavioural analyses were performed with R (2016; 211 

RRID:SCR_001905), using notably type 3 analyses of variance with Greenhouse-Geisser correction 212 

(afex package: Singmann, Bolker, and Westfall, 2015), and null effect estimates using Bayes factors 213 

with a Cauchy prior of medium width (scale = 0.71; BayesFactor package: Morey, Rouder, and Jamil, 214 

2015). Correlations in metacognitive efficiencies across senses were quantified by R², adjusted for the 215 

number of dependent variables relative to the number of data points. The overlap between confidence 216 

and reaction times probability density functions after correct and incorrect responses was estimated as 217 

the area defined by the x-axis and the lower of the two densities at each point in x (Overlap package: 218 

Meredith and Ridout, 2016). The package ggplot2 (Wickham, 2009; RRID:SCR_014601) was used for 219 

graphical representations.  220 

Preprocessing of EEG data 221 

Continuous EEG was acquired at 1024 Hz with a 64-channels Biosemi ActiveTwo system referenced 222 

to the common mode sense–driven right leg ground (CMS-DRL). Signal preprocessing was performed 223 

using custom Matlab (Mathworks; RRID:SCR_001622) scripts using functions from the EEGLAB (v 224 

13.5.4, Delorme and Makeig, 2004; RRID:SCR_007292), Adjust (Mognon, Jovicich, Bruzzone, and 225 

Buiatti, 2011; RRID:SCR_009526) and Sasica toolboxes (Chaumon, Bishop, and Busch, 2015). The 226 

signal was first down-sampled to 512 Hz and band-pass filtered between 1 and 45 Hz (Hamming 227 
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windowed-sinc finite impulse response filter). Following visual inspection, artifact-contaminated 228 

electrodes were removed for each participant, corresponding to 3.4% of total data. Epoching was 229 

performed at type 1 response onset. For each epoch, the signal from each electrode was centered to 230 

zero and average-referenced. Following visual inspection and rejection of epochs containing artifactual 231 

signal (3.9% of total data, SD = 2.2%), independent component analysis (Makeig, Bell., Jung, and 232 

Sejnowski, 1996) was applied to individual data sets, followed by a semi-automatic detection of 233 

artifactual components based on measures of autocorrelation, correlation with vertical and horizontal 234 

EOG electrodes, focal channel topography, and generic discontinuity (Chaumon et al., 2015). 235 

Automatic detection was validated by visually inspecting the first 15 component scalp map and power 236 

spectra. After artifacts rejection, epochs with amplitude changes of ±100 μV DC-offset were excluded 237 

(2.9 % of epochs, SD = 3.1%), and the artifact-contaminated electrodes were interpolated using 238 

spherical splines (Perrin, Pernier, Bertrand, & Echallier, 1989). 239 

Statistical analyses of EEG data 240 

Following preprocessing, analyses were performed using custom Matlab scripts using functions from 241 

the EEGLAB (Delorme and Makeig, 2004; RRID:SCR_007292) and Fieldtrip toolboxes (Oostenveld et 242 

al., 2011; RRID:SCR_004849). Event-related potentials were centered on zero. Time-frequency 243 

analysis was performed using Morlet wavelets (3 cycles) focusing on the 8-12 Hz band. Voltage 244 

amplitude and alpha power were averaged within 50 ms time windows, and analyzed with linear mixed 245 

effects models (lme4 and lmerTest packages: Bates et al., 2014; Kuznetsova et al., 2014). This method 246 

allowed analyzing single trial data, with no averaging across condition or participants, and no 247 

discretization of confidence ratings (Bagiella, Sloan, & Heitjan, 2000).  Models were performed on 248 

each latency and electrode for individual trials, including raw confidence rating and condition (i.e., 249 

visual vs. audiovisual) as fixed effects, and random intercepts for subjects. Random slopes could not be 250 
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included in the models as they induced convergence failures (i.e., we used parsimonious instead of 251 

maximal models, see Bates et al., 2015). Significance of fixed effects was estimated using 252 

Satterthwaite’s approximation for degrees of freedom of F statistics. Statistical significance for ERPs 253 

and alpha power within the region of interest was assessed after correction for false-discovery rate. 254 

Topographic analyses were exploratory, and significance was considered for p < 0.001 without 255 

correcting for multiple comparisons.  256 

 257 

Signal-detection theory (SDT) models of behavior  258 

The models assume that on each trial two internal signals are generated, {X1, X2} and then combined 259 

into a bivariate normal. Since X1 and X2 are independent, the covariance matrix is diagonal. The 260 

marginal distributions of the bivariate normal corresponded to one of the stimuli pairs in each 261 

condition. Each pair can be described as R (or L) if the strongest stimulus in the pair is the right (or left) 262 

one. The bivariate distribution was parametrically defined with an arbitrary mean with |μ| = (1,1) (μ = 1 263 

in cases of R stimuli and μ = -1 in cases of L stimuli) and two standard deviations σ1, σ2. Thus, the four 264 

probability densities can be expressed as a function of the internal signal strength X and its distribution 265 

parameters μ and .   266 

 

 

For each set of four stimuli presented in every trial of experiment 2, congruent pairs correspond to 267 

either LL or RR stimuli, whereas incongruent correspond to LR or RL stimuli.  268 

 269 
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Decision rule - type-1 task 270 

In the model, the type-1 congruency decision depends on the log-likelihood ratio: 271 

    272 

Applying Bayes’ rule and given that X1, X2 are independent:  273 

 

And assuming equal priors P(R) = P(L): 274 

 

If d > 0 the response given is “congruent”, whereas if d < 0 the response is “incongruent”. The values 275 

of (X1, X2) corresponding to d = 0, where the congruent and incongruent stimuli are equally likely, 276 

should satisfy the relation: 277 

   278 

The solution to this relation should then satisfy: 279 

 

And, trivially for an ideal observer, possible solutions for the type-1 decision are given by: 280 

  281 

Therefore, the internal response space (X1, X2) is divided in four quadrants such that an ideal observer 282 

will respond “congruent” if X1 and X2 are both greater than zero or both lower than zero. If X1 and X2 283 

have different signs, the response will be incongruent. 284 

 285 

Confidence judgment - type 2 task 286 
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All models assume that confidence in each trial is proportional to the likelihood of having given a 287 

correct answer:  288 

  289 

If a response is “congruent”, a participant’s confidence in that response is then:   290 

 

The values of confidence in this case correspond to the top-right and bottom-left quadrants in the 2-291 

dimensional SDT model. The two remaining quadrants correspond to trials where the response was 292 

“incongruent” and are symmetrical to the former, relative to the decision axes.  293 

Again applying Bayes’ rule, and assuming that confidence in the unimodal condition is calculated on 294 

the basis of the joint distribution and hence P(X1, X2|RR) = P(X1|R)  P(X2|R), it follows that: 295 

 

Assuming equal priors P(L) = P(R) and given that P(X1) = P(X1|R) + P(X1|L) and P(X2) = P(X2|R) + 296 

P(X2|L) the expression above can be rewritten as: 297 

 

Assuming bivariate normal distributions of the internal signals (as detailed above) and after 298 

simplification it can be shown that: 299 
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 300 

Modeling strategy 301 

The modeling included two phases. In the first phase, we obtained the parameter values that best 302 

explained the unimodal data. In the second phase, behavioural data in the bimodal condition were 303 

predicted by combining the parameter values obtained in phase 1 according to different models. The 304 

predictions of these models were compared using Bayes Information Criterion (BIC) and relative BIC 305 

weights (see below).  306 

 307 

Phase 1 - fits to the unimodal conditions 308 

The behavioral data for each participant were summarized in 8 different categories: those trials in 309 

which confidence was higher/lower than the median confidence value for each participant, for 310 

correct/incorrect type 1 response, for congruent/incongruent stimuli (i.e., 2 confidence bins x 2 311 

accuracies x 2 conditions). We summarize these data in the vector containing the number of trials for 312 

each category nobs. In the context of SDT, two parameters are enough to fully determine the expected 313 

probability densities pexp of these 8 response types: the internal noise (σ) and confidence criterion (c). 314 

We defined the best fitting model parameters as those that maximized the likelihood of the observed 315 

data. More specifically, we randomly sampled the parameter space using a simulated annealing 316 

procedure (using the custom function anneal, that implements the method presented by Kirkpatrick et 317 

al (1983)) and used maximum likelihood to obtain two parameter values. The best fit (the point of 318 

maximum likelihood) was defined as the set of values for pexp that minimized the negative log-319 

likelihood nL of the data: 320 
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Where P is the multinomial distribution with parameters nobs = (n1,, …, n8), N = (n1, …, n8) and Pexp = 321 

(P1, … P8), with the superindices corresponding to each of the 8 possible categories: 322 

 

In the unimodal conditions, σ1 and σ2 correspond to each of the stimuli pairs of the same modality and 323 

were therefore constrained to be equal. The parameter c determined the type-2 criterion above which a 324 

decision was associated with high confidence ratings. 325 

 326 

The model relied on three assumptions: first, it assumed equal priors for all possible stimuli. Second, 327 

type-1 decisions were assumed to be unbiased and optimal. Third, as noted above, confidence was 328 

defined as proportional to the likelihood of having given a correct answer, given the type-1 decision 329 

and the internal signal for each stimuli pair. We argue that the second assumption of equality for σ1 and 330 

σ2 is a reasonable one in the unimodal visual case, where the two stimuli pairs differed only on their 331 

vertical position (but did not differ in their distance from the vertical midline). This assumption 332 

however is less clearly valid in the unimodal auditory condition, where the two pairs of stimuli were 333 

different (a sinewave ‘beep’ vs. a sawtooth ‘buzz’). To estimate the model fits in the unimodal 334 

condition, R2 values for the correlation between observed and modeled response rates pooled for all 335 

participants were obtained. Notably, the model was flexible enough to fit the different behavioral 336 

patterns of most participants, and the model fits obtained for the unimodal auditory condition were 337 

comparable to those in the unimodal visual condition (see Results).  338 

 339 
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Phase 2 - predictions of the bimodal condition 340 

Once the σ and c parameters were estimated from the unimodal data for each participant, they were 341 

then combined under different models to estimate the predictions of the data in the audiovisual 342 

condition. Note that with this procedure, and unlike the fits to the unimodal conditions, the data used to 343 

estimate the model parameters were different from those on which the model fits were compared. In the 344 

bimodal condition, and in contrast to the unimodal ones, σ1 and σ2 corresponded to the internal noise 345 

for the visual and auditory signal respectively, and were allowed to vary independently. Here X1, X2 are 346 

the internal responses generated by each pair of stimuli of the visual and auditory modality respectively. 347 

Because confidence was binned into ‘High’ and ‘Low’ based on individual median splits, the criterion 348 

value was a critical factor determining model fits. Models were grouped into three families to compare 349 

them systematically. The family of integrative models echoes the single-modality model and represents 350 

the highest degree of integration: here, confidence is computed on the basis of the joint distribution of 351 

the auditory and visual modalities (Figure 4a). Within this family, the average model considers one 352 

value of σ for each modality and takes a criterion resulting from the mean of the two modalities 353 

estimated. The derivation and expression of confidence in the integrative models is equal to that of the 354 

unimodal model, described in detail above.  355 

The family of comparative models (Figure 4b) assumes that confidence can only be computed 356 

separately for each modality and combined into a single summary measure in a second step. Within this 357 

family, the minimum-confidence model takes the minimum of the two independent confidence 358 

estimates as a summary statistic. Following a very similar derivation as for the integrative models, here 359 

confidence can be expressed as: 360 

  361 
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Finally, the family of single-modality models (Figure 4c), assumes that confidence varies with the 362 

internal signal strength of a single modality and therefore supposes no integration of information at the 363 

second-order level. Within this family, the maximum efficiency model computes confidence on the 364 

basis of the modality with the best metacognitive efficiency alone.  365 

   366 

where modality 1 had the best metacognitive efficiency for this participant. 367 

 368 

Model fits 369 

Single-modality models were assessed by calculating the percentage of variance explained for the data 370 

from the unimodal conditions. First, the nlme package in R (Pinheiro and Bates, 2010) was used to 371 

estimate the predictive power of the models while allowing for random intercepts for each participant. 372 

Then, goodness-of-fit was estimated with R2 using the piecewiseSEM package (Lefcheck, 2016). 373 

Bayesian information criterion (BIC) values were then calculated to compare the different models 374 

while accounting for differences in their number of parameters. BIC weights for the model fits to the 375 

bimodal condition were estimated following Burnham and Anderson (2002) and as in Solovey et al. 376 

(2015). By definition, the BIC weight for model i can be expressed as: 377 

 

where BICk is the BIC for model k and BICmin is the lowest BIC corresponding to the best model out of 378 

those considered. 379 

 380 
Results 381 



 

19 

Experiment 1 382 

We first aimed at comparing metacognitive performance across the visual, auditory, and tactile 383 

modalities. Participants were presented with a pair of simultaneous stimuli at a right and left location, 384 

and asked to indicate which of the two stimuli had the highest intensity (Figure 1, right panel). In this 385 

way, the first-order task consisted in a 2-alternative forced choice on visual, auditory, or tactile 386 

intensity (i.e., respectively contrast, loudness, or force). After each choice, participants reported their 387 

confidence on their previous response (second-order task) (Figure 1, left panel). The main goal of this 388 

experiment was to test the hypothesis that metacognitive efficiency would correlate positively between 389 

sensory modalities, suggesting a common underlying mechanism. We first report general results of 390 

type-1 and type-2 performances and then turn to the central question of correlations between sensory 391 

modalities.  392 

We aimed to equate first-order performance in the three modalities using a 1-up/2-down staircase 393 

procedure (Levitt, 1971). Although this approach prevented large inter-individual variations, some 394 

small but significant differences in d’ (i.e., first-order sensitivity) across modalities subsisted, as 395 

revealed by a one-way ANOVA [F(1.92,26.90) = 8.76, p < 0.001, ηp² = 0.38] (Figure 2a). First-order 396 

sensitivity was lower in the auditory condition [mean d’ = 1.20 ± 0.05 (95% CI)] as compared to the 397 

tactile [mean d’ = 1.37 ± 0.07, p = 0.002] and visual conditions [mean d’ = 1.33 ± 0.07, p = 0.004] 398 

(Figure 2a). No effect of condition on response criterion was found [F(1.96,27.47) = 0.30, p = 0.74, ηp² 399 

= 0.02]. The difference in first-order sensitivity is likely due to the difficulty of setting perceptual 400 

thresholds with adaptive staircase procedures. Importantly however, it did not prevent us from 401 

comparing metacognitive performance across senses, as the metrics of metacognitive performance we 402 

used are independent of first-order sensitivity. As reported previously (Ais et al., 2016), average 403 

confidence ratings correlated between the auditory and visual conditions [adjusted R² = 0.26, p = 0.03], 404 
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between the tactile and visual conditions [adjusted R² = 0.55, p = 0.001], and between the auditory and 405 

tactile conditions [adjusted R² = 0.51, p = 0.002]. Metacognitive sensitivity was estimated with meta-d’, 406 

a response-bias free measure of how well confidence estimates track performance on the first-order 407 

task (Maniscalco and Lau, 2012). A one-way ANOVA on meta-d’ revealed a main effect of condition 408 

[F(1.93,25.60) = 5.92, p = 0.009, ηp² = 0.30] (Figure 2b). To further explore this main effect and rule 409 

out the possibility that it stemmed from differences at the first-order level, we normalized 410 

metacognitive sensitivity by first-order sensitivity (i.e., meta-d’/d’), to obtain a pure index of 411 

metacognitive performance called metacognitive efficiency. Only a trend for a main effect of condition 412 

was found [F(1.76,24.61) = 3.16, p = 0.07, ηp² = 0.18] (Figure 2c), revealing higher metacognitive 413 

efficiency in the visual [mean ratio = 0.78 ± 0.13] vs. auditory domain [mean meta-d’/d’ ratio = 0.61 ± 414 

0.15; paired t-test: p = 0.049]. The difference in metacognitive efficiency between the visual and the 415 

tactile conditions [mean ratio = 0.70 ± 0.10] did not reach significance [paired t-test: p = 0.16, Bayes 416 

Factor = 0.65].  417 

We then turned to our main experimental question. We found positive correlations between 418 

metacognitive efficiency in the visual and tactile conditions [adjusted R² = 0.21, p = 0.047] (Figure 2e), 419 

and in the auditory and tactile conditions [adjusted R² = 0.24, p = 0.038] (Figure 2f). (The data were 420 

inconclusive regarding the correlation between the visual and auditory condition [adjusted R² = 0.07, p 421 

= 0.17, Bayes Factor = 0.86] (Figure 2d). These results reveal shared variance between auditory, tactile, 422 

and visual metacognition, in line with the supramodality hypothesis. Moreover, the absence of any 423 

correlation between first-order sensitivity and metacognitive efficiency in any of the conditions [all 424 

adjusted R² < 0; all p-values > 0.19], rules out the possibility that such supramodality during the 425 

second-order task was confounded with first-order performance. Finally, no effect of condition on type 426 
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1 reaction times [F(1.78,24.96) = 0.28, p = 0.73, η p 2 = 0.02] or type 2 reaction times [F(1.77,24.84) = 427 

1.77, p = 0.39, η p 2 = 0.06] was found. 428 

 429 

[Figure 2 Here] 430 

Experiment 2 431 

Experiment 1 revealed correlational evidence for the supramodality of perceptual metacognition across 432 

three modalities. A previous study (McCurdy et al., 2013), however, dissociated brain activity related 433 

to metacognitive accuracy in vision versus memory, despite clear correlations at the behavioural level. 434 

Thus, correlations between modalities are compelling, but not sufficient to support the supramodality 435 

hypothesis. We therefore put the evidence of experiment 1 to a stricter test in Experiment 2, by 436 

comparing metacognitive efficiency for unimodal vs. bimodal, audiovisual stimuli. We reasoned that if 437 

metacognitive monitoring operates independently from the nature of sensory signals from which 438 

confidence is inferred, confidence estimates should be as accurate when made on unimodal or bimodal 439 

signals. In contrast, if metacognition operated separately in each sensory modality, one would expect 440 

that metacognitive efficiency for bimodal stimuli would only be as high as the minimal metacognitive 441 

efficiency for unimodal stimuli. Beyond these comparisons, the supramodality hypothesis also implies 442 

the existence of correlations between unimodal and bimodal metacognitive efficiencies. Participants 443 

performed three different perceptual tasks, all consisting in a congruency judgment between two pairs 444 

of stimuli (Figure 1, right panel). In the unimodal visual condition, participants indicated whether the 445 

Gabor patches with the strongest contrast within each pair were situated on the same or different side of 446 

the screen. In the unimodal auditory condition, they indicated whether the loudest sounds of each pair 447 

were played in the same ear or in two different ears. In the bimodal audiovisual condition, participants 448 

indicated whether the side corresponding to the most contrasted Gabor patch of the visual pair 449 



 

22 

corresponded with the side of the loudest sound of the auditory pair. Importantly, congruency 450 

judgments required that participants responded on the basis of the two presented modalities. The 451 

staircase procedure minimized variations in first-order sensitivity, such that sensitivity in the auditory 452 

[mean d’ = 1.31 ± 0.12], audiovisual [mean d’ = 1.38 ± 0.12], and visual conditions [mean d’ = 1.25 ± 453 

0.11] were similar (Figure 3a, F(1.75,22.80) = 2.12, p = 0.15, ηp² = 0.14). No evidence of multisensory 454 

integration was found at the first-order level, as the perceptual thresholds determined by the staircase 455 

procedure were not lower in the bimodal vs. unimodal condition [p = 0.17]. This is likely due to the 456 

task at hand involving a congruency judgment. As in Experiment 1, no effect of condition on response 457 

criterion was found [F(1.87,24.27) = 2.12, p = 0.14, ηp² = 0.14]. No effect of condition on average 458 

confidence was found [F(1.76,24.64) = 0.91, p = 0.40, ηp² = 0.06], and average confidence ratings 459 

correlated between the auditory and audiovisual conditions [adjusted R² = 0.56, p = 0.001], between the 460 

visual and audiovisual conditions [adjusted R² = 0.38, p = 0.01], and a trend was found between the 461 

auditory and visual conditions [adjusted R² = 0.12, p = 0.11]. A significant main effect of condition on 462 

type 1 reaction times [F(1.66,21.53) = 18.05, p < 0.001, ηp² = 0.58] revealed faster responses in the 463 

visual [1.30 s ± 0.10 s] compared to the auditory [1.47 s ± 0.13 s] and audiovisual task [1.68 s ± 0.11 s]. 464 

No difference was found for type 2 reaction times [F(1.82,23.62) = 1.69, p = 0.21, ηp² = 0.11]. A main 465 

effect of condition for both metacognitive sensitivity [meta-d’: F(1.98,25.79) = 4.67, p = 0.02, ηp² = 466 

0.26], and metacognitive efficiency [ratio meta-d’/d’: F(1.95,25.40) = 6.63, p = 0.005, ηp² = 0.34] 467 

(Figure 3b and 3c, respectively). Pairwise comparisons revealed higher metacognitive efficiency in the 468 

visual [mean ratio = 0.94 ± 0.19] vs. auditory [mean meta-d’/d’ ratio = 0.65 ± 0.17; paired t-test: p = 469 

0.005] and audiovisual domains [mean meta-d’/d’ ratio = 0.70 ± 0.15; paired t-test: p = 0.02]. As 470 

auditory and audiovisual metacognitive efficiencies were not different [p = 0.5, Bayes Factor = 0.38], 471 

the differences in metacognitive efficiency are likely to stem from differences between auditory and 472 

visual metacognition, as found in Experiment 1. Thus, the fact that metacognitive efficiency is similar 473 
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in the audiovisual and auditory tasks implies that the resolution of confidence estimates in the bimodal 474 

condition is as good as that in the more difficult unimodal condition (in this case, auditory), despite it 475 

requiring the analysis of two sources of information.  476 

Crucially, we found correlations between metacognitive efficiency in the auditory and visual conditions 477 

[adjusted R² = 0.24, p = 0.043] (Figure 3d); more importantly, we also found correlations between 478 

metacognitive efficiency in the auditory and audiovisual conditions [adjusted R² = 0.23, p = 0.046] 479 

(Figure 3e) and a trend between metacognitive efficiency in the visual and audiovisual conditions 480 

[adjusted R² = 0.15, p = 0.097] (Figure 3f). This contrasted with no correlations between first-order 481 

sensitivity and metacognitive efficiency in any of the conditions [all R² < 0.06; all p > 0.19] except in 482 

the visual condition, where high d’ was predictive of low meta-d’/d’ values [R² = 0.39, p = 0.01]. The 483 

absence of such correlations in most conditions makes it unlikely that relations in metacognitive 484 

efficiency were driven by similarities in terms of first-order performance. In addition to the equivalence 485 

between the resolution of unimodal and bimodal confidence estimates, the correlations in 486 

metacognitive efficiency between unimodal and bimodal conditions suggest that metacognitive 487 

monitoring for unimodal vs. bimodal signals involves shared mechanisms (i.e. supramodality).  488 

[Figure 3 Here] 489 

Computational models of confidence estimates for bimodal signals 490 

Using the data from experiment 2, we next sought to reveal potential mechanisms underlying the 491 

computation of confidence in the bimodal condition. For this, we first modeled the proportion of trials 492 

corresponding to high vs. low confidence in correct vs. incorrect type 1 responses, in the unimodal 493 

auditory and unimodal visual conditions separately. Each condition was represented by a 2-dimensional 494 

signal detection theory (SDT) model with standard assumptions and only 2 free parameters per 495 

participant, namely internal noise σ and confidence criterion c (see Figure 4 and Methods). This simple 496 
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model accounted for more than half the total variance in participants’ proportion of responses both in 497 

the unimodal visual [R² = 0.68] and unimodal auditory conditions [R² = 0.57]. We then combined the 498 

fitted parameter values under different rules to estimate and compare their fits to the audiovisual data. 499 

All models assume that the visual and auditory stimuli did not interact, which is supported by the fact 500 

that perceptual thresholds determined by the staircase procedure were not lower in the bimodal vs. 501 

unimodal conditions (see SI). Note that with this procedure, and unlike the fits to the unimodal 502 

conditions, the data used to estimate the model parameters were different from those on which the 503 

model fits were compared. We evaluated different models systematically by grouping them into three 504 

families, varying in degree of supramodality. We present here the best model from each family (figure 505 

4), and all computed models in SI. The integrative model echoes the unimodal models and represents 506 

the highest degree of integration: here, confidence is computed on the basis of the joint distribution of 507 

the auditory and visual modalities. The comparative model assumes that confidence is computed 508 

separately for each modality and in a second step combined into a single summary measure (in 509 

particular, the minimum of the two estimates, see Methods for other measures). The single-modality 510 

model assumes that confidence varies with the internal signal strength of a single modality and 511 

therefore supposes no integration of information at the second-order level. We compared these different 512 

models by calculating their respective BIC weights (BICw: Burnham and Anderson, 2002; Solovey et 513 

al., 2015), which quantify the relative evidence in favor of a model in relation to all other models 514 

considered.  515 

By examining individual BICw in a ternary plot (Figure 4d), we found that the best model for most 516 

participants was either the integrative or the comparative model, whereas the BICw for the single-517 

domain model was equal to 0. Yet, we note that the single-modality model is also plausible, as it does 518 

predict the responses of four participants better than any of the other two models. The reason why our 519 
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models could not clearly distinguish between the integrative model and the comparative model may be 520 

due to the fact that differences in intensity between the left and right stimuli of the auditory and visual 521 

pairs were yoked: the staircase procedure we used controlled both pairs simultaneously, increasing 522 

(decreasing) the difference between the left and right stimuli in both modalities after an incorrect (two 523 

correct) response. As a result, we sampled values from a single diagonal in the space of stimulus 524 

intensities, which limits the modeling results. In future studies, non-yoked stimuli pairs could be used 525 

—albeit at the cost of a longer experimental session— to explore wider sections of the landscape of 526 

confidence as a function of internal signal to better test the likelihood of the models studied here.  527 

Taken together these computational results suggest that most participants computed confidence in the 528 

bimodal task by using information from the two modalities under a supramodal format that is 529 

independent of the sensory modality, in agreement with the first mechanism for supramodal 530 

metacognition we introduced. We conclude that the confidence reports for audiovisual signals arise 531 

either from the joint distribution of the auditory and visual signals (integrative model), or are computed 532 

separately for distinct modalities, and then combined into a single supramodal summary statistic 533 

(comparative model). These two models indicate that metacognition may be supramodal because 534 

monitoring operates on supramodal confidence estimates, computed with an identical format or neural 535 

code across different tasks or sensory modalities. We later refer to this as the first mechanism for 536 

supramodal metacognition. In addition, metacognition may be supramodal in case a non-perceptual 537 

signal drives the computation of confidence estimates (mechanism 2). Among them, likely candidates 538 

are decisional cues such as reaction times during the first-order task, as they are present no matter the 539 

sensory modality at play, and are thought to play an important role for confidence estimates (Yeung 540 

and Summerfield, 2012). We next sought to assess if metacognition was supramodal due to the 541 

influence of decisional cues that are shared between sensory modalities (mechanism 2). 542 
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 543 

[Figure 4 Here] 544 

 545 

Our modeling results suggest that confidence estimates are encoded in a supramodal format, 546 

compatible with the supramodality hypothesis for metacognition. Notably however, apparent 547 

supramodality in metacognition could arise in case non-perceptual signals are taken as inputs for the 548 

computation of confidence. In models implying a decisional locus for metacognition (Yeung and 549 

Summerfield, 2012), stimulus-independent cues such as reaction times during the first-order task take 550 

part in the computation of confidence estimates. This is empirically supported by a recent study 551 

showing that confidence in correct responses is decreased in case response-specific representations 552 

encoded in the premotor cortex are disrupted by transcranial magnetic stimulation (Fleming et al., 553 

2015). In the present study, decisional parameters were shared across sensory modalities, since 554 

participants used a keyboard with their left hand to perform the first-order task for all tasks. To extend 555 

our modeling results and assess whether supramodality in metacognition also involves a decisional 556 

locus (mechanism 2 discussed above), we examined how participants used their reaction times to infer 557 

confidence in different conditions. Specifically, we quantified the overlap of first-order reaction times 558 

distributions corresponding to correct vs. incorrect responses, as a summary statistic representing how 559 

reaction times differ between correct and incorrect trials. We measured how reaction time overlap 560 

correlated with the overlap of confidence ratings after correct vs. incorrect first-order responses, which 561 

is a summary statistic analogous to ROC-based methods typically used to quantify metacognitive 562 

sensitivity with discrete confidence scales (Fleming and Lau, 2014). If confidence involves a 563 

decisional-locus, one would expect a correlation between confidence overlap and reaction time overlap, 564 

so that participants with the smallest confidence overlap (i.e., highest metacognitive sensitivity) are the 565 

ones with the smallest reaction times overlap (i.e., distinct reaction times in correct vs. incorrect 566 
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responses). Interestingly in Experiment 1, the correlation strength mirrored the difference in 567 

metacognitive efficiency we found between sensory modalities: higher correlations were found in the 568 

visual domain (adjusted R² = 0.54, p = 0.002; average metacognitive efficiency = 0.78 ± 0.13), 569 

compared to the tactile (adjusted R² = 0.26, p = 0.03; average metacognitive efficiency = 0.70 ± 0.10) 570 

and auditory domains (adjusted R² = -0.06, p = 0.70; average metacognitive efficiency = 0.61 ± 0.15). 571 

This suggests that decisional parameters such as reaction times in correct vs. incorrect trials may 572 

inform metacognitive monitoring, and may be used differently depending on the sensory modality with 573 

a bigger role in visual than in tactile and auditory tasks. These results are in line with second-order 574 

models of confidence estimation (Fleming & Daw 2017), and support empirical results showing better 575 

metacognitive performance when confidence is reported after vs. before the first-order task (Siedlecka 576 

et al., 2016), or better metacognitive performance for informative vs. non-informative action during the 577 

first-order task (Kvam et al., 2015). Importantly, although such correlations between reaction time 578 

overlap and confidence overlap would be expected in experiments containing a mixture of very easy 579 

and very difficult trials, the correlations in the visual and tactile modalities reported above persisted 580 

even after the variance of perceptual evidence was taken into account using multiple regressions. This 581 

result rules out the possibility that these correlations are explained by variance in task difficulty. This 582 

pattern of results was not found in Experiment 2 (i.e. no correlation between reaction times and 583 

confidence overlaps; all R² < 0.16, all p > 0.1), but replicated in Experiment 3 as further detailed below.  584 

 585 

Experiment 3  586 

The aim of experiment 3 was three-fold. First and foremost, we sought for the first time to document 587 

the potential common and distinct neural mechanisms underlying unimodal and bimodal metacognition. 588 

Following the link between reaction times and metacognitive efficiency uncovered in Experiment 1, we 589 
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expected to find supramodal neural markers of metacognition preceding the first-order task, as 590 

quantified by the amplitude of event-related potentials (ERPs) as well as in alpha suppression over the 591 

sensorimotor cortex prior to key press (Pfurtscheller and Lopes Da Silva, 1999). Second, we aimed at 592 

replicating the behavioural results from Experiment 2, especially the correlation between visual and 593 

audiovisual metacognitive efficiency. Third, we aimed at estimating the correlations between 594 

confidence and reaction times overlap on a new group of participants. Therefore, we tested participants 595 

on these two conditions only.  596 

Behavioural data 597 

The staircase procedure minimized variations in first-order sensitivity [t(17) = 0.3, p = 0.76, d = 0.07], 598 

such that sensitivity in the audiovisual [mean d’ = 1.15 ± 0.07] and visual conditions [mean d’ = 1.17 ± 599 

0.05] were similar. Contrary to what was found in Experiments 1 and 2, response criterion varied 600 

across conditions [t(17) = 4.33, p < 0.001, d = 0.63], with a tendency to respond “congruent” more 601 

pronounced in the audiovisual [mean criterion = 0.27 ± 0.12] vs. visual condition [mean criterion = -602 

0.02 ± 0.15]. This effect was unexpected but did not preclude from running subsequent analyses 603 

dealing with metacognitive sensitivity. We found no effect of condition on average confidence [t(17) = 604 

0.56, p = 0.14, d = 0.08]. Average confidence ratings correlated between the visual and audiovisual 605 

conditions [adjusted R2 = 0.65, p < 0.001]. No difference in metacognitive sensitivity was found 606 

between conditions [t(17) = 0.78, p = 0.44, d = 0.09] or efficiency [t(17) = 0.78, p = 0.44, d = 0.08]. 607 

Crucially, we replicated our main results from Experiment 2, as we found a positive significant 608 

correlation between relative metacognitive accuracy in the audiovisual and visual conditions [adjusted 609 

R² = 0.47, p < 0.001], and no correlation between first-order sensitivity and metacognitive efficiency in 610 

either condition [both R² < 0.01; both p-values > 0.3] (Figure 5). Regarding the decisional locus of 611 

metacognition, Experiment 3 confirmed the results of Experiment 1: reaction time and confidence 612 
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overlaps correlated more in the visual condition (adjusted R ² = 0.41, p = 0.003), than in the audiovisual 613 

condition (adjusted R² = -0.05, p = 0.70), suggesting that decisional parameters such as reaction times 614 

may inform metacognitive monitoring, although differently between the visual and audiovisual 615 

conditions. Altogether, these behavioral results from three experiments with different subject samples 616 

confirm the existence of shared variance in metacognitive efficiency between unimodal and bimodal 617 

conditions, and do not support major group differences between them. Further, they support the role of 618 

decisional factors such as reaction times estimates, as predicted when considering a decisional locus for 619 

metacognition.  620 

[Figure 5 Here] 621 

EEG data 622 

Next, we explored the neural bases of visual and audiovisual metacognition, focusing on the decisional 623 

locus of confidence by measuring ERPs locked to the type 1 response. This response-locked analysis 624 

took into account the differences in type 1 reaction times between the visual and audiovisual tasks (562 625 

ms shorter in the visual condition on average: t(17) = 6.30, p < 0.001). Since we showed that decisional 626 

parameters such as reaction times inform metacognitive monitoring, this analysis was carried out on a 627 

set of scalp electrodes over the right sensorimotor cortex that included the left hand representation with 628 

which participants performed the first-order task (see Boldt and Yeung, 2015 for findings showing that 629 

parietal scalp regions also correlate with confidence prior to response). Incorrect type 1 responses were 630 

not analyzed as the lower-bound of the confidence scale we used corresponded to a “pure guess”, and 631 

therefore did not allow disentangling detected vs. undetected errors. For each trial, we extracted the 632 

ERP amplitude time-locked to the onset of correct type 1 responses, averaged within 50 ms time 633 

windows. For each time window and each electrode, we assessed how ERP amplitude changed as a 634 

function of confidence using linear mixed models with condition as a fixed effect (visual vs. 635 
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audiovisual) and random intercepts for subjects (see Methods for details). This analysis allowed us to 636 

assess where and when ERP amplitudes associated with the type-1 response was predictive of 637 

confidence ratings given during the type-2 response. Main effects correspond to similar modulations of 638 

ERP amplitudes by confidence in the visual and audiovisual condition (i.e., supramodality hypothesis), 639 

while interaction effects correspond to different amplitude modulations in the visual vs. audiovisual 640 

conditions. A first main effect of confidence was found early before the type 1 response, underlying a 641 

negative relationship between ERP amplitude and confidence (-600 to -550 ms; p < 0.05, FDR-642 

corrected, see figure 6a, left panel, showing the grand average between the visual and audiovisual 643 

condition). A second main effect of confidence peaked at -300 ms (-400 to -100 ms; p < 0.05, FDR-644 

corrected), so that trials with high confidence reached maximal amplitude 300 ms before key press. 645 

These two effects are characterized by an inversion of polarity from an early-negative to a late-positive 646 

relationship, which has been linked to selective response activation processes (i.e., lateralized readiness 647 

potentials, see Eimer and Coles (2003) for review, and Buján et al. (2009) for previous results in 648 

metamemory). Thus, the present data show that sensorimotor ERP also contribute to metacognition as 649 

they showed a relationship with confidence both in the audiovisual and visual conditions. Of note, 650 

confidence modulated the amplitude and not the onset latency of the ERP, which suggests that the 651 

timing of response selection itself does not depend on confidence. We complemented this ROI analysis 652 

by exploring the relation between confidence and ERP amplitude for all recorded electrodes (figure 6a, 653 

right panel). This revealed that the later effect 300 ms before key press was centered on centro-parietal 654 

regions (i.e., including our region of interest; p < 0.001) as well as more frontal electrodes, potentially 655 

in line with several fMRI studies reporting the role of the prefrontal cortex for metacognition (Fleming 656 

et al., 2010; Yokoyama et al., 2010; McCurdy et al., 2013, see Grimaldi et al., 2015 for a review). The 657 

linear mixed model analysis also revealed significant interactions, indicating that the modulation of 658 

ERP amplitude as a function of confidence was significantly stronger in the visual condition, with 659 
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again one early (-750 to -600 ms) and late component (-350 to – 150 ms; Figure 6b, left panel). 660 

Topographical analysis of these interactions implicated frontal and parieto-occipital electrodes. These 661 

results at the neural level are consistent with our behavioural data, since we found that reaction times 662 

have more influence on the computation of confidence in the visual compared to the audiovisual 663 

condition.  664 

[Figure 6 Here]  665 
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Complementary to ERP amplitude, we also analyzed oscillatory alpha power (i.e, pre-movement 666 

related desynchronization) as a signature of motor preparation (Pfurtscheller and Lopes Da Silva, 1999). 667 

Results of the linear mixed model analysis revealed a sustained main effect of confidence starting 300 668 

ms before key press and continuing until 200 ms after the type 1 response (p < 0.05 FDR-corrected), 669 

showing a negative relationship between confidence and alpha power (i.e., alpha suppression, figure 7a, 670 

left panel). Note that, opposite to what we found in the amplitude domain, the main effect of 671 

confidence on alpha power was found even after a first-order response was provided. Likewise, the 672 

topographical analysis revealed a different anatomical localization than the effect we found in the 673 

amplitude domain, with more posterior, parieto-occipital electrodes involved. This suggests that alpha 674 

suppression prior to type 1 response varies as a function of confidence non-differentially in both the 675 

audiovisual and visual conditions. The linear mixed model analysis also revealed a main effect of 676 

condition, with higher alpha power in the visual vs. audiovisual condition (figure 7b, left panel). This 677 

could be related to the fact that the audiovisual task was judged more demanding by participants, as 678 

reflected by their longer type 1 reaction times. Finally, significant interactions between confidence and 679 

condition were found, with topographical locations predominantly within frontal electrodes. Taken 680 

together, the main effects of confidence on voltage amplitude and alpha power reveal some of the 681 

markers validating the supramodality hypothesis at a decisional locus. These are likely to be part of a 682 

bigger set of neural mechanisms, operating at a decisional, but also post-decisional locus that was not 683 

explored here (Pleskac et al., 2010). The existence of significant interactions reveals that some domain-684 

specific mechanisms are also at play during metacognition, which accounts for the unexplained 685 

variance when correlating metacognitive efficiencies across modalities at the behavioral level.  686 

[Figure 7 Here] 687 

  688 
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Discussion (1591 words) 689 

Is perceptual metacognition supramodal, with a common mechanism for distinct sensory modalities, or 690 

is it modality-specific, with idiosyncratic mechanisms for each sensory modality? As of today, this 691 

issue remains unsettled because the vast majority of experiments on metacognitive perception only 692 

involved the visual modality (but see Ais et al., 2016; De Gardelle et al., 2016). In vision, Song and 693 

colleagues (2011) found that about half of the variance in metacognitive sensitivity during a contrast 694 

discrimination task was explained by metacognitive sensitivity in an orientation discrimination task, 695 

suggesting some level of generality within vision. Likewise, roughly a quarter of the variance in 696 

metacognitive sensitivity during a contrast discrimination task was explained by metacognitive 697 

sensitivity during a memory task involving words presented visually (McCurdy et al., 2013). Here, we 698 

extend these studies by assessing the generality of metacognition across three sensory modalities as 699 

well as conjunctions of two sensory modalities. In Experiment 1 we tested participants in three 700 

different conditions, which respectively required discriminating the side on which visual, auditory or 701 

tactile stimuli were most salient. We found positive correlations between metacognitive efficiency 702 

across sensory modalities, and ruled out the possibility that these correlations stemmed from 703 

differences in first-order performances (Maniscalco and Lau, 2012). These results extend previous 704 

reports (Ais et al., 2016; De Gardelle et al., 2016) showing similarities between auditory and visual 705 

metacognition to auditory, tactile, and visual laterality discrimination tasks, and therefore support the 706 

existence of a common mechanism underlying metacognitive judgments in three distinct sensory 707 

modalities. 708 

In Experiment 2, we further extended these results to a different task and also generalized them to 709 

bimodal stimuli (Deroy et al., 2016). First, using a first-order task that required congruency rather than 710 

laterality judgments, we found again that metacognitive efficiency for auditory stimuli correlated with 711 
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metacognitive efficiency for visual stimuli. Second, we designed a new condition in which participants 712 

had to perform congruency judgments on bimodal, audiovisual, signals, which required the information 713 

from both modalities to be taken into account. Three further observations from these conditions support 714 

the notion of supramodality in perceptual metacognition. First, we observed that metacognitive 715 

efficiency in the audiovisual condition was indistinguishable from that in the unimodal auditory 716 

condition, suggesting that the computation of joint confidence is not only possible but can also occur at 717 

no behavioral additional cost. These results confirm and extend those of Experiment 1 in a different 718 

task and with different participants, and further suggest that performing confidence estimates during a 719 

bimodal task was not more difficult than doing so during the hardest unimodal task (in this case, 720 

auditory), despite it requiring the computation of confidence across two perceptual domains. We take 721 

this as evidence in support of supramodality in perceptual metacognition. Second, we found a positive 722 

and significant correlation in metacognitive efficiency between the auditory and audiovisual conditions, 723 

and a trend between the visual and audiovisual conditions, later replicated in Experiment 3. As in 724 

Experiment 1, these results cannot be explained by confounding correlations with first-order 725 

performance. We take this as another indication that common mechanisms underlie confidence 726 

computations for perceptual tasks on unimodal and bimodal stimuli. While the reported correlations 727 

involved a rather low number of participants and were arguably sensitive to outliers (McCurdy et al., 728 

2013), we note that they were replicated several times, under different conditions and tasks in different 729 

groups of participants, which is likely in less than 1% of cases under the null hypothesis (binomial test). 730 

In addition, qualitatively similar correlations were obtained when metacognitive performance was 731 

quantified by the area under the type 2 receiving operative curve, and by the slope of a logistic 732 

regression between type-1 accuracy and confidence.  733 
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The next piece of evidence we brought in favor of supramodal metacognition goes beyond correlational 734 

evidence, and provides new insights regarding the mechanisms involved in confidence estimates when 735 

the signal extends across two sensory modalities. Using a modeling approach, we found that data in the 736 

audiovisual condition could be predicted by models that computed confidence with a supramodal 737 

format, either based on the joint information from a bimodal audiovisual (integrative model) 738 

representation, or on the comparison between unimodal visual and auditory representations 739 

(comparative model). Although these two models have distinct properties, they both involve 740 

supramodal confidence estimates with identical neural codes across different sensory modalities. Thus, 741 

although we could not distinguish which of the two models was most representative of behavioral data 742 

at the group level, they both bring evidence in favor of the first mechanism we introduced, according to 743 

which metacognition is supramodal because monitoring operates on supramodal confidence estimates. 744 

Finally, we assessed in Experiment 3 whether supramodal metacognition could arise due to the second 745 

mechanism we introduced, according to which supramodality is driven by the influence of non-746 

perceptual, decisional signals during the computation of confidence estimates. For this purpose, we 747 

replicated correlations in metacognitive efficiency between the visual and audiovisual conditions, while 748 

examining the neural mechanisms of visual and audiovisual metacognition preceding the perceptual 749 

judgment (i.e., at a decisional level). In a response-locked analysis with confidence and condition as 750 

within-subject factors, we found that confidence preceding the type 1 response was reflected in ERP 751 

amplitude and alpha power (main effect), within a region of interest that included the parietal and 752 

sensorimotor cortex corresponding to the hand used for the type 1 task, as well as more frontal sites. 753 

Before discussing the main effects of confidence, we note that the analysis also revealed interactions 754 

between confidence and condition, revealing that idiosyncratic mechanisms are also at play during the 755 

metacognitive monitoring of visual vs. audiovisual signals, and that modulations of ERP and alpha 756 
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power as a function of confidence were overall greater in the visual vs. audiovisual condition. 757 

Regarding the main effects, we found an inversion ERP polarity over left sensorimotor regions, 758 

suggesting a link between confidence and selective response activation, so that trials with high 759 

confidence in a correct response were associated with stronger motor preparation (Eimer and Coles, 760 

2003; Buján et al., 2009). Regarding oscillatory power, we found relative alpha desynchronization in 761 

occipito-parietal regions, which has been shown to reflect the level of cortical activity, and is held to 762 

correlate with processing enhancement (Pfurtscheller, 1992). At the cognitive level, alpha suppression 763 

is thought to instantiate attentional gating, so that distracting information is suppressed (Pfurtscheller 764 

and Lopes Da Silva, 1999; Foxe and Snyder, 2011; Klimesch, 2012). Indeed, higher alpha power has 765 

been shown in cortical areas responsible for processing potentially distracting information, both in the 766 

visual and audiovisual modalities (Foxe et al., 1998). More recently, pre-stimulus alpha power over 767 

sensorimotor areas was found to be negatively correlated with confidence (Baumgarten et al., 2016; 768 

Samaha et al., 2016), or attentional ratings during tactile discrimination (Whitmarsh et al., 2016). 769 

Although these effects are usually observed prior to the onset of an anticipated stimulus, we observed 770 

them prior to the type 1 response, suggesting that low confidence in correct responses could be due to 771 

the effect of inattention to common properties of first-order task execution such as motor preparation or 772 

reaction time (stimulus locked-analyses that are not reported here revealed no effect of confidence prior 773 

to stimulus onset). This is compatible with a recent study showing that transcranial magnetic 774 

stimulation over the premotor cortex before or after a visual first-order task disrupts subsequent 775 

confidence judgments (Fleming et al., 2015).  776 

The finding of lower alpha power with confidence in correct responses is compatible with the 777 

observation that participants with more distinct reaction times between correct and incorrect responses 778 

had better metacognitive efficiency, as revealed by the correlation between confidence and reaction 779 
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times overlaps following correct vs. incorrect responses. Thus, attention to motor task execution may 780 

feed into the computation of confidence estimates, in a way that is independent of the sensory modality 781 

involved, thereby providing a potential decisional mechanism for supramodal metacognition. In 782 

experiment 1, we also found that confidence and reaction times overlap were more correlated in the 783 

visual condition compared to the tactile, auditory, or audiovisual conditions. Based on these results, we 784 

speculate that decisional parameters in link with processes related to movement preparation inform 785 

metacognitive monitoring. Our EEG results and the correlations between reaction time and confidence 786 

overlaps suggest that decisional parameters may have a stronger weight in the visual than in the other 787 

modalities, which could explain the relative superiority of visual metacognition over other senses. We 788 

argue that this decisional mechanism in metacognition is compatible with the supramodality hypothesis, 789 

in addition to the supramodal computation of confidence supported by our behavioral and modeling 790 

results. Of note, our analysis focusing on the alpha band to uncover the role of decisional cues on 791 

confidence estimates is not exhaustive, and other frequencies might contribute to confidence estimates 792 

equally between sensory domains (e.g., theta band, see Wokke et al., 2017).  793 

Altogether, our results highlight two non-mutually exclusive mechanisms for the finding of correlated 794 

metacognitive efficiencies across auditory, tactile, visual and audiovisual domains. First, our modeling 795 

work showed that confidence estimates during an audiovisual congruency task have a supramodal 796 

format, following computations on the joint distribution or on the comparisons of the auditory and 797 

visual signals. Thus, metacognition may be supramodal because of supramodal formats of confidence 798 

estimates. Second, our electrophysiological results revealed that increased confidence in a visual or 799 

audiovisual task coincided with the amplitude of ERP and decreased alpha power prior to type 1 800 

response, suggesting that decisional cues may be a determinant of metacognitive monitoring. Thus, 801 

metacognition may be supramodal not only because confidence estimates are supramodal by nature, but 802 



 

38 

also because they may be informed by decisional and movement preparatory signals that are shared 803 

across modalities.  804 

  805 
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Legends 936 
 937 
Figure 1: Experimental procedure. Participants had to perform a perceptual task on a stimulus (first-order task), and then 938 
indicate their confidence in their response by placing a cursor on a visual analog scale (second-order task). The types of 939 
stimuli and first-order task varied across conditions and experiments, as represented schematically on the right panel. In 940 
Experiment 1, a pair of two images, sounds, or tactile vibrations was presented on each trial. The stimuli of each pair were 941 
lateralized and differed in intensity (here high intensity is depicted in red, low intensity in pink). The first-order task was to 942 
indicate whether the most intense stimulus was located on the right (as depicted here) or left side. In Experiment 2, either 943 
two pairs of two images (unimodal visual condition), two sounds (unimodal auditory condition), or one pair of two images 944 
with one pair of two sounds (bimodal audiovisual condition) were presented on each trial. The first-order task was to 945 
indicate whether the most intense stimulus of each pair were both on the same side (congruent trial), or each on a different 946 
side (incongruent trial, as depicted here). Experiment 3 was a replication of Experiment 2 including EEG recordings, 947 
focusing on the unimodal visual condition and the bimodal audiovisual condition. The order of conditions within each 948 
experiment was counterbalanced across participants.  949 

Figure 2: Upper row: Violin plots representing first-order sensitivity (a: d’), metacognitive sensitivity (b: meta-d’), and 950 
metacognitive efficiency (c: meta-d’/d’) in the auditory (A, in red), tactile (T, in green), and visual modalities (V, in blue). 951 
Full dots represent individual data points. Empty circles represent average estimates. Error bars represent the standard 952 
deviation. The results show that independently of first-order performance, metacognitive efficiency is higher in vision 953 
compared to audition. Lower row: correlations between individual metacognitive efficiencies in the visual and auditory 954 
conditions (2d), visual and tactile conditions (2e), and tactile and auditory conditions (2f). The results show that 955 
metacognitive efficiency correlates across sensory modalities, providing evidence in favor of the supramodality hypothesis. 956 
*** p < 0.001, ** p < 0.01, . p < 0.1.  957 

Figure 3: Upper row: Violin plots representing first-order sensitivity (3a: d’), metacognitive sensitivity (3b: meta-d’), and 958 
metacognitive efficiency (3c: meta-d’/d’) in the auditory (A, in red), audiovisual (AV, in green), and visual modalities (V, in 959 
blue). Full dots represent individual data points. Empty circles represent average estimates. Error bars represent the standard 960 
deviation. The results show that independently of first-order performance, metacognitive efficiency is better for visual 961 
stimuli vs. auditory or audiovisual stimuli, but not poorer for audiovisual vs. auditory stimuli. Lower row: correlations 962 
between individual metacognitive efficiencies in the visual and auditory conditions (3d), audiovisual and auditory 963 
conditions (3e), and audiovisual and visual conditions (3f). The results show that metacognitive efficiency correlates 964 
between unimodal and bimodal perceptual tasks, in favor of the supramodality hypothesis. ** p < 0.01, * p < 0.05.  965 

Figure 4: Top row: Parameters estimation in the unimodal visual and unimodal auditory conditions. In the middle panel, 966 
circles represent the partially overlapping bivariate internal signal distributions for each of the stimulus combinations, 967 
represented at a fixed density contour. The top right quadrant corresponds to congruent stimuli, where the stimuli in each 968 
pair were stronger on the right side. The colours represent the predicted confidence, normalized to the interval [0,1] for 969 
every combination of internal signal strength for each stimulus pair (X1, X2). Parameters for internal noise (σ) and criterion 970 
(c) were defined for each participant based on the fitting of response rates (“congruent”/”incongruent” and “sure”/”unsure” 971 
based on a median split of confidence ratings) in the unimodal visual (left panel) and auditory (right panel) conditions. The 972 
thick black and gray lines correspond respectively to observed responses in congruent and incongruent trials for a 973 
representative participant. The red lines represent the response rates predicted by the model with fitted parameters. Middle 974 
row: Model predictions. Modeling of bimodal data based on the combination of cA, cV and σA, σV according to integrative 975 
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(A, in blue), comparative (B, in red), and single-modality rules (C, in green). Note that for models A and B, confidence 976 
increases with increasing internal signal level in both modalities, whereas in the single-modality model C, confidence 977 
depends on the signal strength of only one modality. Lower row: Model comparison for the audiovisual condition. Left 978 
panel: fit of response rates in the audiovisual condition for a representative participant according to model A (blue), B (red) 979 
and C (green). Right panel: Individual BIC weights for the three model fits. The arrows show how to read the plot from an 980 
arbitrary data point in the diagram, indicated with a red triangle. Consider that the sum of the BICw for all models A, B and 981 
C amounts to 1 for each participant. To estimate the relative BICw of each model for any given participant, take the lines 982 
parallel to the vertex labeled 1 for that model. The intersection between the line parallel to the vertex and the triangle edge 983 
corresponding to the model indicates the BICw. 984 
Figure 5: Violin plots representing first-order sensitivity (5a: d’), metacognitive sensitivity (5b: meta-d’), and 985 
metacognitive efficiency (5c: meta-d’/d’) in the audiovisual (AV, in green), and visual conditions (V, in blue). Full dots 986 
represent individual data points. Empty circles represent average estimates. Error bars represent the standard deviation. The 987 
results show no difference between visual and audiovisual metacognitive efficiency. 5d: correlation between individual 988 
metacognitive efficiencies in the audiovisual and visual conditions (5d). 989 
Figure 6. Voltage amplitude time-locked to correct type 1 responses as a function of confidence. a. Left panel: time 990 
course of the main effect of confidence within a pre-defined ROI. Although raw confidence ratings were used for the 991 
statistical analysis, they are depicted here as binned into four quartiles, from quartile 1 corresponding to trials with the 25% 992 
lowest confidence ratings (light pink), to quartile 4 corresponding to trials with the 25% highest confidence ratings (dark 993 
red).  The size of each circle along the amplitude line is proportional to the corresponding F-value from mixed model 994 
analyses within 50 ms windows. Right panel: same analysis as shown in (a) on the whole scalp. The plot represents the 995 
time-course of the summed F-value over 64 electrodes for the main effect of confidence. The topography where a maximum 996 
F-value is reached (*) is shown next to each plot. b. Left panel: time course of the interaction between confidence and 997 
condition following a linear mixed model analysis within the same ROI as in (a). Although raw confidence ratings were 998 
used for the statistical analysis, the plot represents the difference in voltage amplitude between trials in the 4th vs. 1st 999 
confidence quartile. Right panel: same analysis as shown in (b) on the whole scalp, with corresponding topography. In all 1000 
plots, grey bars correspond to significant main effects (a) or interactions (b), with p < 0.05 FDR-corrected. Significant 1001 
effects on topographies are highlighted with black stars (p < 0.001, uncorrected).  1002 

Figure 7. Alpha power time-locked to correct type 1 responses as a function of confidence. a. Left panel: time course 1003 
of the main effect of confidence within a pre-defined ROI. Although raw confidence ratings were used for the statistical 1004 
analysis, they are depicted here as binned into four quartiles, from quartile 1 corresponding to trials with the 25% lowest 1005 
confidence ratings (light pink), to quartile 4 corresponding to trials with the 25% highest confidence ratings (dark red).  The 1006 
size of each circle along the alpha power line is proportional to the corresponding F-value from mixed model analyses 1007 
within 50 ms windows. Right panel: same analysis as shown in (a) on the whole scalp. The plot represents the time-course 1008 
of the summed F-value over 64 electrodes for the main effect of confidence. The topography where a maximum F-value is 1009 
reached (*) is shown next to each plot. b. Left panel: time course of the interaction between confidence and condition 1010 
following a linear mixed model analysis within the same ROI as in (a). Although raw confidence ratings were used for the 1011 
statistical analysis, the plot represents the difference in voltage amplitude between trials in the 4th vs. 1st confidence 1012 
quartile. Right panel: same analysis as shown in (b) on the whole scalp, with corresponding topography. In all plots, grey 1013 
bars correspond to significant main effects (a) or interactions (b), with p < 0.05 FDR-corrected. Significant effects on 1014 
topographies are highlighted with black stars (p < 0.001, uncorrected).  1015 
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