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Abstract.
We consider highly structured truncated differential paths to mount a new rebound
attack on Grøstl-512, a hash functions based on two AES-like permutations, P1024
and Q1024, with non-square input and output registers. We explain how such differ-
ential paths can be computed using a Mixed-Integer Linear Programming approach.
Together with a SuperSBox description, this allows us to build a rebound attack with
a 6-round inbound phase whereas classical rebound attacks have 4-round inbound
phases. This yields the first distinguishing attack on a 11-round version of P1024 and
Q1024 with about 272 computations and a memory complexity of about 256 bytes, to
be compared with the 296 computations required by the corresponding generic attack.
Previous best results on this permutation reached 10 rounds with a computational
complexity of about 2392 operations, to be compared with the 2448 computations
required by the corresponding generic attack.
Keywords: Cryptanalysis · Hash function · Rebound attacks · AES-like · Grøstl

1 Introduction
Hash functions are of first importance in cryptography. Producing fixed size outputs
from inputs of variable length, they are at the heart of many protocols to ensure integrity
or authentication properties in numerous cryptographic applications, from signatures to
encryption schemes. To be considered safe, they have to offer many security guarantees,
among which protection against preimage, second preimage and collision attacks.

The indifferentiability framework, which became very popular among hash functions
designers at the time of the SHA-3 competition, aims at avoiding these attacks. This
security notion enables to instantiate cryptographic protocols proved secure in the random
oracle model by a hash function. Hash functions that iterate a cryptographic permutation
whose internal state is partially modified with the message during an absorbing phase
and then partially extracted to build the output of the hash function during a squeezing
phase are a large class of functions that can be proved secure in this model. However, their
validities rely on the assumed ideal behavior of the permutation.

Distinguishers are algorithms that exhibit a non-randomness behavior of a permutation.
Even when they do not directly weaken permutation-based hash functions, distinguishers
break the security proof of the hash function. They are a first step in a cryptanalysis and
reduce the confidence in these primitives.

Since Rijndael [DR02] has been chosen as the Advanced Encryption Standard, its
“wide-trail strategy” design has inspired lots of symmetric-key primitives, especially since
new processors have integrated the AES round function and key generation as basic
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2 Grøstl Distinguishing Attack

processor operations. Rebound attacks, introduced in [MRST09], was the cryptanalists’
response to the generalization of AES-like permutations used in hash function designs.
It consists in finding a pair of internal register values in the middle of the permutation
whose difference propagations towards the input and output registers follow a truncated
differential path. When there exist efficient algorithms that yield such differences, it shows
a non-random behavior of the permutation, and as such are distinguishers. A critical point
is the choice of the truncated differential path, since the complexity of a rebound attack
depends for a large part of it.

SHA-3 Cryptographic Hash Algorithm Competition organized by the National Institute
of Standards and Technology (NIST) was the ideal playground to extend, develop and apply
these techniques, as many of the candidates are built on top of AES-like permutations.
Techniques as start-from-the-middle, introduced by [MPRS09], or SuperSBox descriptions,
due to Daemen and Rijmen [DR06] and used for instance in [GP10, WFWS10, Gil14],
are useful ideas to mount efficient rebound attacks. Further improvements due to [NP11]
and [SLW+10] have cleared the way for the most recent variants.

Grøstl [GKM+09] is one of these AES inspired primitives. It has been one of the five
finalists of the SHA-3 competition. Even if its mode of operation differs from the sponge
construction [BDPVA08] used in Keccak, the function finally standardized by the the
U.S. National Institute of Standards and Technology, its design still relies on two internal
permutations and it comes with a security proof. Andreeva et al. [AMP10] prove that it is
indifferentiable from a random oracle, up to the birthday bound under the assumed ideal
behavior of the permutations. Two variants of Grøstl have been proposed by its authors,
Grøstl-256 and Grøstl-512.

We focus on Grøstl-512, because its rectangular registers of 8 × 16 bytes make our
attack possible on 11 rounds. In full generality, non square AES-like permutations are
more vulnerable than square ones to rebound attacks, due to their slower diffusion, here
three rounds instead of two rounds to obtain a full active state from a single difference, can
be used to reach more rounds. The last rebound attack on Grøstl-512 in date is a work by
Jean et al. [JNPP14]. It outlines that the rectangular shape of these permutations enables
to extend the regular 9-round path of AES-like permutations to reach 10 rounds, thanks
to a clever guess and determine algorithm. It turns out, that due to the dense differential
pattern at the middle of the differential path, this 9-round path fully constrains the middle
register value. In this paper, we consider instead a new differential path that spans over
only half of the middle registers. In return, we obtain a huge number of register values
that realize this differential path, and we take advantage of their easy characterization to
filter among them these that yield a 11-round differential path.

This distinguisher applies on a reduced version of the two internal permutations, 11
rounds instead of the 14 rounds specified in [GKM+09], and not on Grøstl-512 in its
entirety. It is commonly admitted that such results help to evaluate the resistance of the
Grøstl hash function, but as such, they do not threaten its security.

Although the presented truncated differential path is specific to Grøstl-512, we believe
that the technique that we use to patch up three sets of differential values could be applied
to other AES-like structures. Such a structured truncated differential path may be found
as a solution to a Mixed-Integer Linear Programming problem (MILP). To the best of our
knowledge, only few works make use of a MILP approach to analyze hash function, the
first of which is a work by Bouillaguet et al. about the SHA-3 candidate SIMD [BFL11].

Acknowledgments. We wish to thank Henri Gilbert for comments that greatly improved
the paper. We are also grateful to the referees for their constructive input.
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Our Contributions
We present sparse and highly structured truncated differential paths for the permutations
P1024 andQ1024 of Grøstl-512, obtained with Mixed-Integer Linear Programming techniques.
We recast it as a SuperSBox description to mount a variant of the rebound attack with a
6-round inbound phase. This method allows us to obtain the best known complexities,
reaching 11 rounds with a surprisingly low complexity of 272 computations while previous
results reached 10 rounds with a computational complexity of 2392.

Table 1 summarizes the best known results on the 512-bit version of Grøstl. All these
attacks are rebound ones, which mainly differ from the truncated differential path used.

Table 1: Known rebound attacks on Grøstl-512 internal permutations.

Rounds Time Generic attack Memory Reference
7 2152 2512 256 [SLW+10]
8 2280 2448 264 [JNPP14]
9 2328 2384 264 [JNPP14]
10 2392 2448 264 [JNPP14]
11 272 296 256 This paper (§ 4.2)

Outline of the Document
In Section 2, we present Grøstl-512 by focusing on its underlying permutation P1024,
detailing some properties of its building blocks. In Section 3, we present the structured
truncated differential path that we found. We give a SuperSBox description of it and give
some hints about its satisfiability and how it can be obtained. In Section 4, we present a
distinguisher which finds a pair of inputs whose difference when propagated through the
cryptographic permutation agrees with the truncated differential path. Every technical
detail is then explained.

2 Description of Grøstl-512
Two different versions of Grøstl have been submitted to the SHA-3 hash function com-
petition, Grøstl-256 which outputs 256-bit digests and Grøstl-512 which outputs 512-bit
digests.

They handle messages by dividing them into blocks, using some padding. They update
then iteratively an internal state initialized with some IV by computing a compression
function f on both a block of message and the internal state as illustrated in Figure 1. Its
design follows a wide-pipe construction: the size of the internal state is twice larger than
the size of the output of the hash function. In both versions, the compression function
is built on top of two AES-like permutations, they differ however in a fundamental way:
Grøstl-256 uses a square matrix representation of its internal state whereas Grøstl-512
uses one with a rectangular matrix representation. We focus in this article on Grøstl-512.

2.1 Grøstl-512 Compression Function and Output Transformation
The compression function of Grøstl-512, f1024, is built from two 1024-bit permutations
P1024 and Q1024, as illustrated in Figure 2a, according to the following definition,

f1024(h,m) = P1024(h⊕m)⊕Q1024(m)⊕ h .
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Figure 1: The Grøstl-512 hash function.

We denote by Trunc512 the truncation which returns only the 512 last bits of its input.
The output transformation is simpler than the compression function and, as illustrated in
Figure 2b, is defined by

Ω(x) = Trunc512(P1024(x)⊕ x) .

h

m

P1024

Q1024

f1024(h,m)

(a) The compression function f1024.

P1024 Trunc512x Ω(x)

(b) The output transformation Ω.

Figure 2: Grøstl-512 internal functions.

This compression function has been proved collision and preimage resistant under the
assumption that P1024 and Q1024 are ideal [FSZ09]. Furthermore, the whole Grøstl-512
construction has been proved to be indifferentiable from a random oracle under this latter
assumption and the additional hypotheses that P1024 and Q1024 are independent from each
other [AMP10].

2.2 Grøstl-512 Internal Permutations Round Transformations
The 1024-bit internal states of the AES-like structures P1024 and Q1024 are specified as a
16× 8 matrix of bytes. These permutations then consist in 14 iterations of the following
round permutation,

R := MixBytes ◦ ShiftBytesWide ◦ SubBytes ◦AddRoundConstant ,

where

• AddRoundConstant (ARC) adds a constant depending on the round to the
internal state;

• SubBytes (SB) substitutes each byte in the matrix representation by its image
by the non-linear SBox used in Rijndael. As it applies independently on bytes, we
will refer as SB indifferently to consider this transformation on full states or on
any partial states. To simplify our analysis, we consider an ideal behavior of this
transformation:

∀(δ, δ′) ∈ (F∗28)2, |{X ∈ F28 |SBox(X)⊕ SBox(X ⊕ δ) = δ′}| ∈ {0, 2} . (1)
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Typical examples are almost perfect nonlinear (APN) functions [Dob99]. Another
classical assumption due to the non-linearity of SB will be of great use:

“The image of any set of distinct byte values by SB is uniformly distributed” (2)

i.e. for all Y1 6= Y2 6= · · · 6= Yk ∈ F28 ,

PrX1 6=X2 6=... 6=Xk
{SBox(X1) = Y1, . . . ,SBox(Xk) = Yk} = k !

28 ! .

We assume that SB−1 behaves as its inverse;

• ShiftBytesWide (Sh) cyclically shifts the bytes within a row to the left by a number
of positions in the matrix representation. For P1024, Rows 1 to 8 are respectively
shifted by 0, 1, 2, 3, 4, 5, 6 and 11 positions. For Q1024, Rows 1 to 8 are respectively
shifted by 1, 3, 5, 11, 0, 2, 4 and 6 positions;

• MixBytes (MB) applies to each column independently. We will refer as MB
indifferently to consider this transformation on full states or on a single column.
Bytes are seen as elements of F28 . This transformation is built from a MDS matrix
with coefficients in F28 . This will have a great importance in our analysis, it means
that the image of a column with k > 0 non-zero bytes by MB has non-zero bytes
in at least 9 − k byte positions. The invert matrix of a MDS matrix being MDS,
MB−1 behaves as its inverse.

Remark 1. The last round of AES-like structures traditionally avoids the MB transforma-
tion. To be consistent with rebound attacks literature, we will in this article always consider
full rounds: with the MB transformation. A quick look at the truncated differential path
that we use will however convince the reader that this change does not come into play in
the attack.

3 A Distinguisher for Reduced-Round P1024 with 11 Rounds
We aim here to prove the non-randomness of a reduced version with 11 rounds of the
permutations of Grøstl-512. To achieve this goal, we present a distinguisher, conflicting
with a non-random behavior of these permutations. We focus here, arbitrarily, on the
permutation P1024, but everything can be made similarly for Q1024 (see Appendix A).

Remark 2. As it will be one fundamental measure of complexity in the remaining of this
text, we denote β = 28. To to ease the presentation, we often use Landau asymptotic
approximations O(), applied on powers of β to avoid additional logarithmic terms that
typically arise from sorting operations. By a slight abuse of notation, we overload this
notation for a fixed β, by assuring the reader that we have checked any “O(βn)” to be
smaller than βn+1.

3.1 Limited-Birthday Distinguishers
Gilbert et al. introduced limited-birthday distinguishers [GP10]. The challenge consists
in finding a pair of input values whose difference lies in a predefined subspace and whose
images by the permutation have their difference lying in another predefined subspace.

Problem 1. Limited-birthday(P,Ein, Eout): Given a permutation P and two F2-linear
subspaces Ein and Eout, find a pair of input values (X,X ′) such that X ⊕X ′ ∈ Ein and
P (X)⊕ P (X ′) ∈ Eout.
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They introduced the best known generic algorithm for solving this problem too, the
so-called limited-birthday algorithm. Theorem 1 gives its complexity.

Theorem 1. For a n-bit permutation P , a F2-subspace Ein of dimension di, a F2-subspace
Eout of dimension do and di ≤ do, the computational complexity C of the limited-birthday
algorithm solving Limited-birthday(P,Ein, Eout) satisfies:

log2(C) =
{

(n− do)/2 if n < 2di + do ,
n− di − do otherwise.

The optimality of this algorithm has been proven by Iwamoto et al [IPS13].

The non-random behavior that we exhibit in Section 4 is based upon Problem 1. We
provide an algorithm which solves an instance of this problem with a lower complexity
than the one given by Theorem 1.

Remark 3. Solving instanciations of Problem 1 is not the only existing type of distinguishing
attack. For instance, Lamberger et al. [LMR+09], Jean et al. [JNPP13] and Gilbert [Gil14]
consider some other ones.

3.2 A 11-Round Truncated Differential Path over P1024

Introduced by Knudsen in 1995 [Knu95], truncated differentials consider only whether a
byte position is affected by a non-zero differential value or not, where a differential value
is the difference between two state values. Plenty of hash function cryptanalysis have
been analyzed from this perspective, among which [Pey07, MNPN+09, MPRS09, JF11,
JNPS12, JNPP14]. Figure 3 specifies the truncated differential path at the center of our
attack: Blue cells denote active bytes, where there might be non-zero differences, and
white cells denote non-active bytes where there are zero-differences (see Section 3.3 for an
explanation on how we have obtained this path).

For such a truncated description, all transformations besides MB are deterministic.
MB induces probabilistic truncated transitions: a column value δ which is non-zero on
u chosen byte positions has an image MB(δ) vanishing in v chosen byte positions with
probability β−v as long as the MDS property is satisfied, and 0 otherwise.

Pr
(

MB(δ) vanishes on v chosen byte positions
| δ is non-zero on u chosen byte positions

)
=
{
β−v if u+ (8− v) ≥ 9 ,
0 otherwise. (3)

Coding theory ensures that the same behavior applies to MB−1.

Most rebound attacks rely on truncated differential paths which are diffusing to full
active state in three rounds backward and forward. The sequence of numbers of active
bytes is a classical representation of such truncated differential paths. The sequence of the
differential path used by the 10-round rebound attack of [JNPP14] is

64 R1−−→ 8 R2−−→ 1 R3−−→ 8 R4−−→ 64 R5−−→ 128 R6−−→ 64 R7−−→ 8 R8−−→ 1 R9−−→ 8 R10−−→ 64 .

Our truncated differential path is very different, especially the sequence of numbers of
active bytes outlines how structured our path is (see Figure 3),

104 R1−−→ 53 R2−−→ 34 R3−−→ 34 R4−−→ 34 R5−−→ 34 R6−−→ 34 R7−−→ 34 R8−−→ 34 R9−−→ 53 R10−−→ 104 R11−−→ 128 .

A first analysis consists in evaluating the plausibility of such a truncated differential path:
the probability that there exists a pair of inputs such that their difference when propagated
through the permutation rounds agrees with the patterns of the truncated differential path.
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Figure 3: A 11−round truncated differential path over P1024 of Grøstl-512.
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Starting with β104 differences, there exist β128 (ordered) pairs of internal state values that
have their difference equaling each differential value, i.e. a total number of β232 pairs of
input values. From Equation (3), applied independently on each column, we can estimate
the diffusion probability of the differential path given in Figure 3: β−51 for the propagation
through the Round 1 MB transformation, β−22 for Rounds 2 to 8 and β−3 for Round
9. Rounds 10 to 11 are deterministic. By Assumption (2), β128+104 · β−51+7·(−22)−3 =
β232 · β−208 = β24 = 2192 input pairs shall thus fulfill our 11-round differential path.

From these considerations, we got confident in finding pairs of input values whose
differences when propagated through the successive transformations agree with the patterns
of the truncated differential path of Figure 3. Such a pair solves the problem Limited-
birthday(P1024,∆in,∆out) where ∆in and ∆out are both F2-subspace of differential values
of dimension 104. From Theorem 1, we know that the computational complexity of the
generic attack is β(128−104)/2 = β12 = 296. Our distinguisher is an algorithm that finds
such a pair with a computational complexity lower than β12.

In comparison, we have β64 ·β128 = β192 pairs of inputs that satisfy the input differential
value of the path used in [JNPP14]. Rounds 1 and 7 propagations have then probability
β−56, the MB propagation probability of Rounds 2 and 8 is β−7 and the one of Round
6 is β−64. Since the other rounds have a deterministic behavior we have therefore
β192 · β−190 = β2 = 216 input pairs that fulfill this 10-round truncated differential path.

Note that such an analysis benefits to be made from the middle rounds. Starting at
Round 6 of the path given in Figure 3, we have β34 · β128 = β162 pairs of values of internal
state that have their difference agreeing with Pattern 21. Propagations for Round 6 to
Round 11 through MB or for Round 6 to Round 2 through MB−1 happen both with
probability β−22 · β−22 · β−22 · β−3 = β−69 and we retrieve that β162 · β−2·69 = β24 input
pairs shall fulfill our 11-round differential path.

This analysis derives from rebound attacks. They share an overall strategy, which splits
into two phases. The first step is called inbound phase and consists in finding several pairs
of values in the middle of the truncated differential path such that this path is verified
for as many rounds as possible in the middle of the path. The second step consists in
enumerating these pairs to find one satisfying remaining probabilistic transitions of the
truncated differential path in outward directions and is called outbound phase. Our inbound
phase involves Rounds 3 to 8 and consists in collecting pairs of full state values whose
differences agree with Pattern 8 and when propagated until Round 9 with Pattern 32. Our
outbound phase consists in finding one among these pairs which satisfies the two remaining
non deterministic transitions: through MB in Round 9 and MB−1 in Round 2. Each
holds with probability β−3 and simultaneously with probability β−6 = 1/248.

3.3 Searching Sparse Truncated Differential Paths
Looking for truncated differential paths well-adapted to rebound attacks is closely related
to the problem of finding low-weight differential paths in an AES-like block cipher. Mixed-
Integer Linear Programming (MILP) solvers turn out be very efficient to solve such
problems [MWGP11]. We explain here how the differential paths needed for the inbound
and outbound phases can be found with this approach.

Inbound Rounds

We aim at finding long differential paths that span over a as small as possible number of
columns, in the hope that it yields in return many more register values that verify the path.
More precisely, we look for a small number of non-zero columns in the 6 inner inbound
rounds: 7 columns at each round (it is unfeasible to find a solution for 6 columns). Instead
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of minimizing the number of active S-Boxes in the support of the differential values as in a
block-cipher context, we thus have to minimize the number of active columns.

Precisely, we define 7× 128 decision Boolean variables xi, each seen as one byte of the
7 registers of the permutation P1024 restricted to 6 rounds: the input, the 5 internal and
the output registers. These variables encode truncated differential paths: the variable xi
equal to 0 or 1 depending on whether or not a differential path is active at this byte. As
it is now classical, we can write the action of Sh and MB as 6 × 16 linear inequalities
between the xi’s of the type∑

x∈P
x+

∑
x′∈P′

x′ ≥ 9 t and ∀ v ∈ P ∪ P ′, t ≥ v .

The sets P (resp. P ′) are subsets with 8 variables that span the r-th round register (resp.
the r+ 1-th round register) and the variables t that indicate whether a column is active or
not. We furthermore add 6 inequalities, which state that the sum of the 16 variables t
defined by Round r is at most 7. This done, we ask for minimizing the sum of these 6× 16
variables t.

After few minutes with the gurobi solver [Gur17], we found numerous such paths.
Most of them are trivially linked: any shift by a fixed amount of a differential path yields
an equivalent path. Finally, two iterative paths catch our attention, the one that we use
(see Figure 3) and a second one defined as follows (that does not seem to be better for our
purpose).

Sh MB

Note that in both cases, five columns do not reach the MDS bound and we can easily
derive from them sparser paths (see Remark 5 in Section 4.4).
Remark 4. The number of non-zero columns depends directly on Sh. But more obvious
choices lead to much worse behaviors, for instance shifting by 0, 1, 2, 3, 4, 5, 6 and 7
(instead of 11) positions yields a reproducible differential pattern on only 5 columns.

Outbound Rounds

We take advantage of this MILP approach for searching low-cost outbound differential
characteristic as well. For this task, we define the 128 first variables x0, . . . , x127 as being
equal to the “inbound” differential pattern that we have selected, we also add that after
three rounds the output register must have more than 16 non-active bytes and we trace in
new variables c the number of zero bytes xi in the output in each active column by the
MB transformation. We ask then for minimizing the sum of these variables c, under the
condition than the bytes of a register can not be all equal to one.

The best path that we find is the one of Figure 3. Its output register contains 24
zero bytes, up to a transition probability equal to β−25 = 1/2200: β−22 for Round 1
and β−3 for Round 2. We found another path in this way, but with a slightly smaller
probability transition, β−26, and 17 zero bytes in the output. We give it below for the
sake of completeness.

MB ◦ Sh MB ◦ Sh MB ◦ Sh
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3.4 SuperSBox Description
For truncated differential paths, ARC transformations may be ignored as they have
no impact on truncated differences. Since Sh transformations only move the difference
positions and SB transformations apply independently on bytes, they commute and we
may permute the applications of these transformations.

Following [DR06], we now define the two following transformations.

• A non-linear SuperSBox (SSB) transformation which applies independently on
columns,

SuperSBox := SubBytes ◦MixBytes ◦ SubBytes .

We will refer as SuperSBox (SSB) indifferently to consider this transformation on
full states or on single columns.

• A linear SuperLinear (SL) transformation,

SuperLinear := ShiftBytesWide ◦MixBytes ◦ ShiftBytesWide .

Our 11-round truncated differential path given in Figure 3 may then be rewritten in a
more compact form as in Figure 4.

1

2 3 4 5

6 7 8 9

10 11 12 13

14

SL1 SSB1 SL2

SSB2

SL3 SSB3 SL4

SSB4

SL5 SSB5 Sh

MB

SB

Figure 4: The 11-round truncated differential path with a SuperSBox description.

4 The Distinguisher
4.1 Notations
Byte values are seen as elements in B = F28 . Column values are seen as elements in
C = B8 and for X ∈ C, we denote by Xi the ith coordinate of X which is also the ith
byte of the column. State values are seen indifferently as elements in S ' B128 ' C16 and
for Y ∈ S, we denote by Yi,j the byte value in the ith row and the jth column. For now
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on, all References 1-14 to (grid) patterns are linked to Figure 4. For i ∈ {1, . . . , 14}, Pi
denotes the B-linear subspace of differential values which agree with Pattern i (whose
non-zero byte positions are included in hatched cell positions of Pattern i) and Ii is the set
of column index which have active bytes. We denote by δ|j the restriction of a differential
value δ to the jth column and by extension (Pi)j denotes the linear subspace of C which
agree with the jth column of Pattern i. We call completion of a partial state value V
(typically a column value) a full state value whose restriction to byte positions of V is V .
By extension, we call completion of a pair of partial state values defined on the same byte
positions (V1, V2) a pair of completions of the Vi’s such that their difference in other byte
positions than byte positions of the Vi’s is zero.

4.2 Sketch of the Algorithm
We give an overview of the distinguishing algorithm here. Detailed explanations are
postponed to subsequent sections, exception made for the outbound phase, which is trivial.

Step 1. We construct a basis for ∆1, the 12-dimensional B-vector subspace of elements
δ1 in S whose non-zero byte positions are included in Pattern 4 and whose images by SL2,
δ′1, have their non-zero byte positions included in Pattern 5:

∆1 = {δ1 ∈ P4 | δ′1 = SL2(δ1) ∈ P5} . (4)

We construct a basis for ∆2 = {δ2 ∈ P6 | δ′2 = SL3(δ2) ∈ P7} and a basis for ∆3 = {δ3 ∈
P8 | δ′3 = SL4(δ3) ∈ P9} too. The use of these basis allows us to enumerate elements in
these subspaces with negligible computational and memory complexities. The construction
of these basis requires O(1) computational and memory complexities.

Step 2. We choose an arbitrary δ2 in ∆2. Column by column, for all columns indexed
by I6, we store in lists (Ci)i∈I6 all pairs of column values whose differences are compatible
with δ2 and whose images by SSB−1

2 have differences suitable with Pattern 5. Identically
for all columns indexed by I7, we store in lists (C ′j)j∈I7 all pairs of column values whose
differences are compatible with δ′2 and whose images by SSB3 have differences suitable
with Pattern 8. We compute thus for all i in I6, respectively for all j in I7, the lists Ci,
respectively C ′j , defined by:

Ci = { (X,Y ) ∈ C2 | X ⊕ Y = (δ2)|i, SSB−1
2 (X)⊕ SSB−1

2 (Y ) ∈ (P5)|i } ,
C ′j = { (X,Y ) ∈ C2 | X ⊕ Y = (δ′2)|j , SSB3(X)⊕ SSB3(Y ) ∈ (P8)|j } .

The construction of these lists requires O(β7) computations and memory space.

Step 3. From O(β6) elements δ1 of ∆1, we compute and store β6 pairs of 7-column
values in a list E, built from combinations of elements in the lists (Ci)i∈I6 , such that
any completion induced by this pair of indexed 7-column values has a difference which is
equal to δ2 and has the difference of its images by SL−1

2 ◦SSB−1
2 that lies in ∆1. From a

similar enumeration in ∆3, in a list F , we store β6 pairs of 7-column values built from
combinations of elements in the lists (C ′j)j∈I7 such that any completion induced by these
pairs of indexed 7-column values has a difference which is equal to δ′2 and has the difference
of its images by SSB3 lying in ∆3. This step costs O(β6) computations and the same in
memory.

Step 4. We find (e, e⊕ (δ2)|I6) in E and (f, f ⊕ (δ′2)|I7) in F such that (f, f ⊕ (δ′2)|I7)
admits completions whose images by SL−1

3 do not contradict with (e, e ⊕ (δ2)|I6). An
arbitrary choice in E×F yields such completions only with probability β−12. However, β28

completions are available whenever it does. Such a pair is found in O(β7) computations
and O(β6) in memory.
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Step 5. We determine a pair (s, s⊕ δ′3) of 34-byte values1 whose byte positions are
induced by Pattern 9 and whose difference is suitable with δ′3 induced by (f, f ⊕ (δ′2)I7).
This pair is built in such a way that the image of any completion of these 34-byte values
by SSB4 has its difference in P10 and that there exist β72 completions of (f, f ⊕ (δ′2)|I7)
whose images by SL4 ◦ SSB3 do not contradict with these 34-byte values. This pair of
34-byte values can be found in O(β3) computations.

Step 6. Among the β28 completions found in Step 4 and the β72 completions found in
Step 5, we compute an intersection of β6 completions. Propagated outwards, all these β6

pairs of full state values have their differences following the truncated differential path
from Pattern 4 to Pattern 10. This has O(β9) computational complexity, requires O(β7)
memory space and concludes the inbound phase.

Step 7. By enumerating the β6 pairs of full state values collected in Step 6, we find a
pair which satisfies simultaneously both remaining independent probabilistic transitions:
through MB from Pattern 10 to Pattern 11 and through MB−1 from Pattern 4 to
Pattern 3. This outbound phase requires O(β6) computations.

To summarize, this algorithm constructs a pair of full state values such that when
propagated through 11 rounds of P1024, the successive differences agree with the truncated
differential path of Figure 4. This is done with O(β9) ' 272 < 280 computational complexity
and O(β7) ' 256 < 264 memory complexity. The generic attack on such input and output
patterns requires about β12 = 296 computations (see Section 3.1).

4.3 Step 1: Construction of the Basis of Linear Subspaces ∆i

We explain how to construct a basis of ∆1, the B-vector space defined by Equation (4).
Making explicit the SL2 transformation yields Figure 5.

4 4.2 4.3 5

Sh MB Sh

Figure 5: The truncated differential path verified by elements of the set ∆1.

From the 34 hatched cells of Pattern 4 , we see that P4 is a B-linear subspace of
dimension 34. Recalling that MB applies independently on columns, we first focus on the
transition of the 9th column of Pattern 4.2 through MB (see Figure 6).

MB

Figure 6: Differential through a MixBytes transformation.

Since MB satisfies the MDS property, the following subspace is of dimension 1:

{X ∈ C | X1 = X8 = 0 and (MB(X))3 = . . . = (MB(X))7 = 0 } .

By Gaussian elimination, we find {b9}, a basis of this subspace. The same procedure
yields {b15}, a basis of the subspace of dimension 1 corresponding to Column 15 and

1By a slight abuse of notation, δ′
3 refers here indifferently to differential values that span the whose

state or to the restriction to the active bytes.
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{b10, b
′
10}, . . . , {b14, b

′
14} basis of the subspaces of dimension 2 corresponding respectively

to Columns 10 to 14. We construct then full state values (Yi)i∈I4 and (Y ′i )i∈{10,...,14} as
completions of (bi)i∈I4 and (b′i)i∈{10,...,14} with 0 bytes in the remaining bytes positions.
A basis of ∆1 is then given by{

Sh−1(Y9), Sh−1(Y15), Sh−1(Y10), Sh−1(Y ′10), . . . , Sh−1(Y14), Sh−1(Y ′14)
}
.

Basis for ∆2 and ∆3 are built in a same way.

4.4 Step 2: Pairs of Columns with Input/Output SuperSBox Differ-
ences

Let δ2 be an element of ∆2. The purpose of this step is to compute and store the lists Ci
for all i ∈ I6 and the lists C ′j for all j ∈ I7. Exhaustive search could achieve this goal in
14 · β8 computations but we will show now how to do it faster, in the spirit of [SLW+10].

Let us focus on C8, that stores elements in C2 whose difference equals (δ2)|8 and whose
images by SSB−1

2 have their difference in (P5)|8. To this purpose, Figure 7 introduces two
intermediate patterns by decomposing SSB2 transformation applied on the arbitrarily
chosen 8th column.

5 5.2 5.3 6

SB MB SB

Figure 7: A truncated differential through a SuperSBox operation.

We denote by D1 the set of differential values agreeing with Pattern 5.3 of Figure 7
and having their image by MB−1 transformation agreeing with Pattern 5.2,

D1 = {δ ∈ (P6)|8 |MB−1(δ) ∈ (P5)|8} .

From Equation (3), we have |D1| = β. We now denote by D2 the set

D2 = {δ ∈ C | ∃ X ∈ C s.t. SB−1(X ⊕ (δ2)|8)⊕ SB−1(X) = δ} .

From Equation (1), |D2| = β3 · 2−3 and

δ ∈ D2 ⇒
∣∣{X ∈ C | SB−1(X ⊕ (δ2)|8)⊕ SB−1(X) = δ}

∣∣ = 23 · β5.

By Assumption (2), |D1 ∩D2| = 2−3 · β. The following list has then cardinal β6:

C8 =
⋃

δ∈D1∩D2

{(X,X + (δ2)|8) ∈ C2 | SB−1(X ⊕ (δ2)|8)⊕ SB−1(X) = δ} .

To compute C8, we consider all pairs (X,X ⊕ (δ2)|8) ∈ C2 such that the restriction of
X on the non-active bytes (white cells) is 0. We store, in an intermediate list H, pairs
verifying that the restriction of MB−1(SB−1(X ⊕ (δ2)|8) ⊕ SB−1(X)) to the first and
eighth byte positions is 0. We store then in C8, ordered according to the sorting key
δ(X) = SSB−1

2 (X)⊕ SSB−1
2 (X ⊕ (δ2)|8), all elements in C2 such that their restriction to

the first, second and eight byte positions equals restriction to those byte positions of some
element in H and such that on the remaining byte positions, the difference is 0. For now
on, when considering elements in C8 it could be following the context initial pairs of values
or their images through SSB−1

2 .
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Remaining lists are computed with the same routine, the computational complexity to
construct them correspond to their memory complexity, i.e. the size of the lists: C8, C9,
C10, C11, C12, C13, C14 are respectively of size β6, β7, β6, β5, β4, β3, β3 and C ′6, C ′7, C ′8,
C ′9, C ′10, C ′11, C ′12 are respectively of size β3, β3, β4, β5, β6, β7, β6.

Remark 5. We could have considered another truncated differential path, sparser, which is
strictly included in the path of Figure 3, replacing Pattern 5 with the following Pattern 5′.

5′

We expect this path to be realized by fewer pairs of full state values. The selection of this
pattern reduces the dimension of ∆1 from 12 to 7. It remains large enough to mount the
attack and induces here lists Ci and C ′i of maximum size β6. This step has then O(β6)
computational and memory complexities.

4.5 Step 3: Pairs of Partial States Satisfying ∆1 to δ2 and δ2 to ∆3

We pick2 arbitrary differential values δ1 in ∆1. For each δ1 in ∆1, we compute its image
δ′1 by SL2. For i in I6, we consider all pairs of columns values in Ci computed in Step 2
whose difference through SSB−1

2 equals (δ′1)|i. The computational cost is simply a search
in a sorted list. Whenever a match is found simultaneously for each of these seven columns,
we store in a list E the pairs of 7-column values computed as the concatenations of all
corresponding pairs of columns values in the Ci, whose difference is (δ2)|I6 and whose
images through SSB−1

2 have a difference equal to (δ′1)|I6 . We reproduce this routine until
we get β6 such pairs of 7-column values. This requires to enumerate O(β6) elements in ∆1
(see Remark 6). This done, we get the desired list E with β6 elements.

A list F of β6 pairs of 7-column values whose differences equal δ′2 and whose images by
SSB3 have a difference which equals (δ3)|I7 for some δ3 in ∆3 is built following the same
procedure with the lists C ′j .

Remark 6. By Assumption (1), the map SSB−1
2 has the behavior of an ideal SBox applied

independently on each column. For a fixed δ′1, whenever there exists X in C7 such that

SBB−1
2 (X ⊕ (δ2)|I6)⊕ SBB−1

2 (X) = (δ′1)|I6) ,

which holds with probability 2−7, we have 27 elements X with the same property.
Since C8, . . . , C14 computed in Step 2 store all possible pairs of column values whose

differences equal respectively (δ2)|8, . . . , (δ2)|14 and whose images have a difference lying in
P5, we find from the lists Ci, with a probability of 2−7 for an arbitrary element δ1 in ∆1,
27 pairs of partial state values, on columns indexed by I6, whose differences equal (δ2)|I6

and images by SSB−1
2 have a difference which equals (δ′1)|I6 .

4.6 Step 4: First Patching up
We want to find (e, e ⊕ (δ2)|I6) in E and (f, f ⊕ (δ′2)|I7) in F such that there exists a
completion of (f, f ⊕ (δ′2)|I7) whose image by SL−1

3 does not contradict with (e, e⊕ (δ2)|I6).
We call such a completion a matching completion of (f, f ⊕ (δ′2)|I7) with (e, e⊕ (δ2)|I6).
Since δ′2 = SL3(δ2), we know that any matching completion of f with e is a match-
ing completion of f ⊕ (δ′2)|I7 with e ⊕ (δ2)|I6 . We show now that for an arbitrary

2We make use of the basis computed at Step 1 for the 12-dimensional B-vector subspace ∆1.
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(
(e, e⊕ (δ2)|I6), (f, f ⊕ (δ′2)|I7)

)
in E × F , a matching completion exists only with proba-

bility β−12. We then show how to find such a pair in O(β7) computations and O(β6) in
memory.

Figure 8 introduces two intermediate patterns by decomposing the SL3 transformation.
Pink cells in Pattern 6.3 correspond to byte values fixed by f whereas green cells in
Pattern 6.2 correspond to byte values fixed by e.

6 6.2 6.3 7
Sh MB Sh

Figure 8: Fitting the two pieces, first edition.

MB applies independently on columns, we can therefore analyze local columns transi-
tions. Two types of columns have to be distinguished: In columns 7 to 14, there are too
many of the c constraints (green cells in Pattern 6.2) to be compensated by the d degrees
of freedom (white cells in 6.3). A local matching completion is then possible only with
probability βd−c. In the remaining columns, there are enough of the d degrees of freedom
(white cells in Pattern 6.3) to compensate the c constraints (green cells in Pattern 6.2).
We have βd−c local matching completions for each of these columns.

We do now the exact analysis for the 7th column. Let’s denote by M = {mi,j} the
matrix of MB. Two degrees of freedom are available (byte positions 1 and 8) and three
constraints are imposed by fixed values (byte positions 1, 2 and 8). Here, we want to
determine given values x2, . . . , x7 and y1, y2, y8 whether there exist x1 and x8 verifying
Equation (5) or not,

∀` ∈ {1, 2, 8},
7∑
j=2

m`,jxj +m`,1x1 +m`,8x8 = y` . (5)

Since M is MDS, the minor m1,1 ·m2,8 −m1,8 ·m2,1 is non zero, we can then write

x1 = l1,7(x2, . . . , x7) + g1,7(y1, y2) and x8 = l8,7(x2, . . . , x7) + g8,7(y1, y2) ,

where g1,7, g8,7, l1,7 and l8,7 are linear forms depending only on MB and on the positions
of the fixed bytes. Introducing L7 and R7 two linear forms obtained by substituting x1
and x8 by their expressions, Equation (5) is then equivalent to x1 = l1,7(x2, . . . , x7) + g1,7(y1, y2) ,

x8 = l8,7(x2, . . . , x7) + g8,7(y1, y2) ,
L7(x2, . . . , x7) = R7(y1, y2, y8) .

A match between e and f is then possible on the 7th column if and only if L7(e2,7, ..., e7,7)
equals R7(f2,1, f2,2, f2,8). For the sake of simplicity, we drop the byte positions and shall
rather write L7(e) and R7(f).

We find the two linear forms L13 and R13 by conducting the same analysis for the
13th column. For i ∈ {8, . . . , 12}, we find couple of linear forms Li, L′i and Ri, R′i. We get
indeed two pairs of linear forms since the difference between the number of constraints
and the degree of freedom is not 1 anymore but 2. We reproduce these arguments for the
remaining Columns 1 to 6 and 14 to 16. As there are locally more degrees of freedom
than constraints, each choice of

(
(e, e⊕ (δ2)|I6), (f, f ⊕ (δ′2)|I7)

)
in E × F admits local

matching completions. Finally, we have a matching completion of f with e if and only
if the twelve equations L7(e) = R7(f), L13(e) = R13(f), L8(e) = R8(f), L′8(e) = R′8(f),
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. . ., L12(e) = R12(f), L′12(e) = R′12(f) are simultaneously satisfied. Uniformly distributed
values fulfill this set of equations with probability β−12.

We show now how to find a pair
(
(e, e⊕ (δ2)|I6), (f, f ⊕ (δ′2)|I7)

)
in E × F for which a

matching completion of f with e exists in O(β7) computations: We sort the list F according
to the lexicographic order given by (R7(f), R13(f), R8(f), R′8(f), . . . , R12(f), R′12(f)) in
O(β7) computations and O(β6) in memory. For each element (e, e ⊕ (δ2)|I6) of E, we
compute the value (L7(e), L13(e), L8(e), L′8(e), . . . , L12(e), L′12(e)) and we check if it belongs
to the previous sorted list. This costs O(β6) computations and O(β6) searches in a sorted
list. Since β12 pairs

(
(e, e⊕ (δ2)|I6), (f, f ⊕ (δ′2)|I7)

)
in E × F are available and since a

matching completion of f with e exists with probability β−12, we expect to find a match.
No pair admitting a matching completion should happen, we start again from Step 2
with another δ2. For now on, we suppose that such a pair exists. We find it in O(β7)
computations and O(β6) in memory.

1
1
1
1
1

2
2
2
2
2
2

3
3
3
3
3
3
3

4
4
4
4
4
4
4

5
5
5
5
5
5
5

6
6
6
6
6
6

7
7

7

8
8
8

8

9
9
9
9

9

MB

6.2 6.3

Figure 9: Fixed bytes and lists of elements.

The pair
(
(e, e⊕ (δ2)|I6), (f, f ⊕ (δ′2)|I7)

)
in E × F being now fixed, all byte values in

Columns 7 to 13 of Pattern 6.3 are fixed by this choice (red cells in Figure 9).
We compute now all matching completions of f with e. We construct for each of the

nine remaining columns the lists of column values satisfying the linear constraints imposed
by fixed bytes. The construction of these lists does not differ from what we just did with
the use of linear forms analogous to gi,j and fi,j . We have then, as illustrated by Figure 9,
B1, B2, B3, B4 and B9, lists of β4 elements in the 1st, 2nd, 3rd, 4th and 16th columns,
B5 and B8, lists of β3 elements in the 5th and the 15th columns and B6 and B7, lists of
β elements in the 6th and 14th columns. We get then β28 possible matching completions
as direct product of the lists Bi (we cannot store this product in a unique list, since this
would require outrageous computational and memory complexities).

4.7 Step 5: Second Patching up
At this point of the algorithm, the differential value δ2 has been fixed. We have built E, a
list of β6 pairs of 7-column values indexed by I6 such that their difference is (δ2)|I6 and
the difference of the images of any completion by SL−1

2 ◦ SSB−1
2 is in ∆1. Similarly, we

have built F , a list of β6 pairs of 7-column values indexed by I7 such that their difference
is (δ′2)|I7 and the difference of the images of any completion by SSB3 is in ∆3. We have
found (e, e ⊕ (δ2)|I6) in E and (f, f ⊕ (δ′2)|I7) in F such that there exist β28 matching
completions of f with e, whose images by SL−1

3 do not contradict with e. Columns e and
f are then now fixed. We call δ1 ∈ ∆1 and δ3 in ∆3 the differential values induced by
these choices when propagating (e, e ⊕ (δ2)|I6) backward by SSB−1

2 and (f, f ⊕ (δ′2)|I7)
forward by SSB3. We denote by (f ′, f ′ ⊕ (δ3)|I7) the image of (f, f ⊕ (δ′2)|I7) by SSB3.

Each of these β28 pairs of full state values, when propagated backward and forward,
have their differences agreeing with Figure 4 from Pattern 4 to 9. To fulfill the whole
truncated differential path, three independent probabilistic transitions remain: through
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SSB−1
1 verified with probability β−3, through SSB4 verified with probability β−22 and

through SL5 verified with probability β−3. Enumerating the β28 pairs of full state values,
we expect to find one satisfying simultaneously these three independent probabilistic
transitions. However, to be a distinguisher, our algorithm has to find such a pair in less
than β12 computations.

Independently of the choice of (e, e ⊕ (δ2)|I6) in E and focusing on (f ′, f ′ ⊕ (δ3)|I7)
induced by the choice of (f, f⊕(δ′2)|I7) in F , we show that by fixing new byte values, we may
avoid the probabilistic transition through SSB4. We denote by δ′3 the image SL4(δ3) ∈ P9.
We look for pairs of state values (s, s ⊕ δ′3) such that SSB4(s) ⊕ SSB4(s ⊕ δ′3) = δ4 is
in P10. As we are not interested in the exact value of δ4, we only need to know whether
(MB ◦ SB)(s) ⊕ (MB ◦ SB)(s ⊕ δ′3) is in P10. The 34 bytes of s corresponding to the
positions of active bytes (hatched cells in Pattern 9 of Figure 4) suffice to determine
whether δ4 is in P10.

A column by column study has to be done which is more or less the same as the analysis
made in Step 2. By reconsidering Figure 7, which depicts the behavior of Column 4,
we see that knowing the values of 6 bytes of s|4 is enough to determine the truncated
behavior of their difference. As differential values on this column have to vanish in 5 bytes
position after a MB transformation, we compute and store in a list L1 the β pairs of
6-byte values: whose differences equal (δ′3)|4 restricted to active byte positions and whose
image by SSB4 of any completion with zero difference on the remaining byte positions
have their differences which lie in P10.

We similarly construct the six lists associated with the six remaining columns to get
β pairs of 6-byte values in a list L1 (Column 4), β2 pairs of 7-byte values in a list L2
(Column 5), β2 pairs of 6-byte values in a list L3 (Column 6), β2 pairs of 5-byte values
in a list L4 (Column 7), β2 pairs of 4-byte values in a list L5 (Column 8), β2 pairs of
3-byte values in a list L6 (Column 9) and β pairs of 3-byte values in a list L7 (Column 10).
Corresponding to all possible combinations of pairs of byte values in the lists Li, we get
then β12 pairs of 34-byte values whose differences are suitable with δ′3 and such that the
images by SSB4 of any completion with zero difference in the remaining byte positions lie
in P10.

Now we determine when such choices can be patched up with f . We focus here
deliberately on f without considering e. Patching constraints imposed by the choice of
e and the choice of 34-byte values is considered in Step 6. Figure 10 introduces two
intermediate patterns by decomposing SL4 transformation. On Pattern 9, yellow cells
indexed by a number i correspond to positions where bytes are fixed by a choice of an
element the list Li and so does its shifted version in Pattern 8.3. On Pattern 8, pink cells
correspond to the image of f by SSB3 and so does its shifted version in Pattern 8.2.

8 8.2 8.3 9

Sh MB Sh

Figure 10: Fitting the two pieces, second edition.

We can reproduce the column by column analysis made in Step 4: For Column 5, there
are too many of the 3 constraints (yellow cells in Pattern 8.3) to be compensated by the 2
degrees of freedom (white cells in Pattern 8.2) a local matching completion is possible only
with probability β−1. Columns 6 to 11 behave as Column 5: a local matching completion
is possible only with probability β−1. By Assumption (2), these seven independent events
occurs simultaneously with probability β−12. We expect then to find one among our β12

possible combinations of pairs in the lists Li such that there exists a global matching
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completion which ensures this transition. We could proceed to a naive greedy enumeration,
however, inspired by [JNPP14], we give now a procedure to find these fitting pairs of
34-byte values in O(β3) computations.
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4
3
2
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6
5
4
3
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8.2 8.3

MB

Figure 11: Merging lists, first edition.

We focus on the 5th column of Pattern 8.3. A triplet (l1, l2, l7) in L1 ×L2 ×L7 admits
a local matching completion with 5th column of Pattern 8.2 if and only if it satisfies an
affine equation (5 degrees of freedom and 6 constraints). Enumerating elements (l1, l2)
in L1 × L2, we compute the value it induces for l7 (yellow cell in 8th byte of 5th column
that satisfies the affine equation). By Assumption (2), we have a unique element in L7
verifying this property and we store the triplet (l1, l2, l7) in a list L′1. In O(β3). We collect
then β3 such triplets.

We focus now on the 6th column of Pattern 8.3. A triplet (l1, l2, l3) in L1 × L2 × L3
admits a local matching completion with 6th column of Pattern 8.2 if and only if (l1, l2, l3)
satisfies two affine equations (5 degrees of freedom and 7 constraints). By Gaussian
elimination, we get an affine equation in l1 and l2 and not l3. We use this equation to filter
L′1 to get a list L′′1 with β2 elements suitable with this equation. Enumerating elements
in L′′1 , we compute, using the second equation, the value it induces for l3 (yellow cell in
1st byte of 6th column that satisfies the affine equation). By Assumption (2), for each
triplet (l1, l2, l7) in L′′1 , we search the β elements in L3 verifying this property and store
all suitable quartets (l1, l2, l3, l7) in a list L′2. In O(β3), we collect then β3 such quartets.

Reproducing this routine, filtering then expanding, for Columns 7, 8 and 9, we get a
list of 7-uplet L′3 with β3 elements admitting local matching completions for Columns 5 to
9. This is done with O(β3) computations.

An element of L′3 admits a local matching completion in Column 10 if it satisfies two
affine equations (1 degree of freedom and 3 constraints). We use these equations to filter
L′3 to get a list L′4 of β elements admitting a local matching completion in Columns 10.
An element of L′4 admits a local matching completion in Column 11 if it satisfies an affine
equation (2 degrees of freedom and 3 constraints). We use these equations to filter L′4 to
get a unique 7-uplet admitting local matching completions on all the 5th to 11th columns.

Once a combination of elements in the lists Li admitting local matching completions
on all 5th to 11th columns is found, which requires O(β3) computations, a single local
completion on all these seven columns exists. This means that the corresponding pairs
of values of the 22 remaining bytes of Columns 5 to 11 are thereby fixed (orange cells of
Pattern 8.2 of Figure 11). Since no constraint limits possible completions in the remaining
columns, there are then β72 completions of (f, f⊕(δ′2)|I7) suitable with the choice (s, s⊕δ3).

Remark 7. As we already noticed in Remark 5, we could have considered here also another
truncated differential path, sparser and strictly included in the path of Figure 3, replacing
Pattern 9 with the following pattern.
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9′

To select this pattern reduces the dimension of ∆3 from 12 to 7. It remains large enough
to mount the attack. Such a pattern implies the existence of β7 pairs of 29-byte values
suiting the choice of (f, f ⊕ (δ′2)|I7) with probability β−7. The merging algorithm may
then be done faster, in O(β2) computations.

4.8 Step 6: Third Patching up
Among the β28 matching completions found in Step 4 and the β72 matching completions
found in Step 5, we compute and store the intersection of β6 completions that verify the
22 constraints induced by the map MB. Figure 12 introduces two intermediate patterns
to help clarify how to determine this intersection.

6.3 7.2 7.3 9.2

SB ◦ Sh MB Sh ◦ SB

Figure 12: Fitting the two pieces, third edition.

Merging techniques of [JNPP14] are again our inspiration in the following procedure
which finds in β9 computations the β6 expected pairs of full state values that suits the
truncated differentials path from Pattern 4 to 10 in Figure 4.
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Figure 13: Merging lists, second edition.

Here, let bi be in Bi, we denote by bi,j its component in the jth row. For instance, b8,3
is the component of b8 in byte position in the 13th column and in the 3rd row of Pattern
7.2. As a precomputation, we sort lists B1, B2, B3, B5, B8 and B9 according respectively
to (b1,2, b1,3, b1,4, b1,5), (b2,3, b2,4, b2,5, b2,6), (b3,7), (b5,1), (b8,3) and (b9,4, b9,8). This is done
in O(β5) computations:

B1 =
⋃

b1∈B1

B′1(b1,2, b1,3, b1,4, b1,5) , B3 =
⋃

b3∈B3

B′3(b3,7) , B8 =
⋃

b8∈B8

B′8(b8,3) ,

B2 =
⋃

b2∈B2

B′2(b2,3, b2,4, b2,5, b2,6) , B5 =
⋃

b5∈B5

B′5(b5,1) , B9 =
⋃

b9∈B9

B′9(b9,4, b9,8) .

By Assumption (2), |B′3| = β3, |B′5| = |B′8| = |B′9| = β2 and |B′1| = |B′2| = 1. By Gaussian
elimination, constraints induced by Columns 3, 15 and 16 of Pattern 7.2 (red cells) and
Pattern 7.3 (orange cells) can respectively be written as affine equations l3(b3, b4) =
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r3(b5, b6, b7), l15(b3, b4) = r15(b5, b8, b9) and l16(b3, b4) = r16(b5, b6, b9). where li and ri are
affine expressions.

For each b7 in B7 (β elements), we compute the values of b8,3, b9,4, b1,5, b2,6 and b3,7
induced by the constraints of Column 13. We compute and sort the list B′3(b3,7)×B4 of β7

elements according to (b3, 6, b4,1, b4,7, l3(b3, b4), l15(b3, b4), l16(b3, b4)). By Assumption (2),
B′34 have β elements:

B′3(b3,7)×B4 =
⋃

(b3,b4)∈B′
3(b3,7)×B4

B′34(b3,6, b4,1, b4,7, l3(b3, b4), l15(b3, b4), l16(b3, b4)).

For each b8 in B′8(b8,3) (β2 elements), for each b6 in B6 (β elements), we compute from
(b6, b7, b8) the values of b5,1 and b9,8 induced by constraints of Column 5.

For each b5 in B′5(b5,1) (β2 elements), for each b9 in B′9(b9,4, b9,8) (β2 elements), we
compute the values of b3,6 and b4,7 induced by constraints of Column 14 and the value of
b4,1 induced by constraint of Column 4.

For each (b3, b4) in B′34(b3,6, b4,1, b4,7, l3(b3, b4), l15(b3, b4), l16(b3, b4)) (β elements), we
compute the values of (b1,2, b1,3, b1,4, b1,5) and (b2,3, b2,4, b2,5, b2,6) induced by constraints
of Columns 13 to 16. We find the unique expected value of b1 in B′1(b1,2, b1,3, b1,4, b1,5)
and b2 in B′2(b2,3, b2,4, b2,5, b2,6).

We store in a final list L all 7-uplet satisfying simultaneously the 3 independent
equations induced by constraints of Columns 1 and 2. By Assumption (2), this happens
with probability β−3. After our enumeration of β9 such elements, L has then cardinal β6.

Overall computational complexity is then O(β9), corresponding to the number of
elements we enumerate. Memory complexity is O(β7), corresponding to the cardinal of
the list B′3 ×B4.

5 Conclusion and Perspectives
In this article, we present a new cryptanalysis method for internal permutations of Grøstl-
512. This rebound attack variant takes advantage of a macroscopic description with
SuperSBoxes and SuperLinear transformations to build a highly structured truncated
differential path whose inbound phase involves 6 rounds while, to the best of our knowledge,
all previously known methods controlled a maximum of 5 rounds. We obtain a distinguisher
on 11 rounds with a complexity of about 272 computations, improving upon the previously
best known distinguisher, which attacks 10 rounds with a complexity of about 2392

computations. Even if the security of Grøstl-512 is not threatened, this attack requires a
surprisingly low computational complexity.

We may remark that our attack do not run out all initial degrees of freedom of the
11-round differential path that we consider, since we expect that 2192 input pairs fulfill it.
It is then natural to consider the closely related following 12-round differential path,

104 R1−−→ 53 R2−−→ 34 R3−−→ 34 R4−−→ 34 R5−−→ · · · R8−−→ 34 R9−−→ 34 R10−−→ 53 R11−−→ 104 R12−−→ 128 .

A quick analysis shows that 216 input pairs should fulfill this differential path. Looking
in this direction, we have not been able to design an algorithm which finds one with
a reasonable calculation complexity. But in light of this, it is best to consider that
permutations of this type must have at least 13 rounds to be considered as secure.

More generally, it can be interesting to consider other AES-based permutations in
regard of highly structured truncated differential paths. We might hope that some of the
techniques that we used in this attack are useful to obtain competitive distinguishers for
these permutations too. We left this as an open problem.
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A A 11-Round Truncated Differential Path over Q1024

Our MILP approach yields a similar highly structured truncated differential path for Q1024
which shares with P1024 the same macroscopic description. It is not very surprising as Sh
transformation for Q1024, only change in comparison with P1024, is almost the same. The
sequence of numbers of active bytes is the same as for P1024. Figure 14 specifies in detail
this truncated differential path, at a SuperSBox level.

1

2 3 4 5

6 7 8 9

10 11 12 13

14

SL1 SSB1 SL2

SSB2

SL3 SSB3 SL4

SSB4

SL5 SSB5 Sh

MB

SB

Figure 14: The 11−round truncated differential path over Q1024 with SuperSBoxes.
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