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Abstract

Runge's method is a tool to �gure out integral points on algebraic curves e�ectively in

terms of height. This method has been generalised to varieties of any dimension, unfortunately

its conditions of application are often too restrictive. In this paper, we provide a further

generalisation intended to be more �exible while still e�ective, and exemplify its applicability

by giving �niteness results for integral points on some Siegel modular varieties. As a special

case, we obtain an explicit �niteness result for integral points on the Siegel modular variety

A2(2).

Introduction

One of the major motivations of number theory is the description of rational or integral solutions
of diophantine equations, which from a geometric perspective amounts to understanding the be-
haviour of rational or integral points on algebraic varieties. In dimension one, there are many
techniques and results providing a good overview of the situation such as the famous Faltings'
theorem (for genus ≥ 2 and algebraic points) or Siegel's theorem (for integral points and a func-
tion with at least three poles). Nevertheless, in many cases the quest for e�ectivity (meaning a
bound on the height on these points) is still open, and e�ective methods are quite di�erent from
these two powerful theoretical theorems.

We focus in this paper on a method for integral points on algebraic varieties called Runge's
method, and its generalisations and applications for Siegel modular varieties.

To keep the introduction �uid, we �rst explain the principles behind Runge's method and its
applicatons to Siegel modular varieties, with simpli�ed statements and a minimum of references
and details. Afterwards, we describe precisely the structure of the article, in particular where the
details we omitted �rst are given.

On a smooth algebraic projective curve C over a number �eld K, Runge's method proceeds as
follows. Let φ ∈ K(C) be a nonconstant rational function on C. For any �nite extension L/K,
we denote by ML the set of places of L (and M∞L the archimedean ones). For SL a �nite set of
places of L containing M∞L , we denote the ring of SL-integers of OL by

OL,SL = {x ∈ L |x|v ≤ 1 for all v ∈ML\SL}.
∗Email : samuel.le_fourn@ens-lyon.fr
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Now, let rL be the number of orbits of poles of φ under the action of Gal(L/L). The Runge
condition on a pair (L, SL) is the inequality

|SL| < rL. (0.1)

Then, Bombieri's generalisation ([BG06], paragraph 9.6.5 and Theorem 9.6.6) of Runge's theorem,
the latter being formulated only for L = K = Q and rQ ≥ 2, states that for every pair (L, SL)
satisfying Runge condition and every point P ∈ C(L) such that φ(P ) ∈ OL,SL , there is an absolute
bound B (only depending on C and φ, not on such a pair (L, SL)) such that

h(φ(P )) ≤ B,

where h is the Weil height. In short, as long as the point φ(P ) has few non-integrality places
(the exact condition being (0.1)), there is an absolute bound on the height of φ(P ). There is a
very natural justi�cation (due to Bilu) for Bombieri's theorem: let us �x a pair (L, SL) satisfying
Runge condition and P ∈ C(L) such that φ(P ) ∈ OL,SL . For every place v ∈ ML\SL, as |φ(P )|v
is small, it means that P is v-adically far from all orbits of poles of φ. For v ∈ SL, P can be
v-adically close to one of the orbits but only one of them because they are pairwise disjoint. We
eliminate such an orbit if it exists, and applying the process for every v ∈ SL, Runge's condition
guarantees that there remains at the end of the process one orbit O which is v-far from P for all
places v ∈ ML. This in turn implies �niteness : indeed, choosing by Riemann-Roch an auxiliary
function gO ∈ L(C) whose poles are the points of O, this means that h(gO(P )) is small as P is far
from its poles at every places, hence P belongs to a �nite set by Northcott condition. It is a bit
more technical to obtain a bound on the height h(φ(P )) (and which does not depend on (L, SL))
in the general case) but it is the same idea. This justi�cation also provides a method to bound
in practice the heights of such points (when one knows well enough the auxiliary functions gO),
which is called Runge's method. When applicable, this method has two important assets: it gives
good bounds, and it is uniform in the pairs (L, SL), which for example is not true for Baker's
method.

The goal of this paper was to �nd ways to transpose the ideas for Runge's method on curves
to higher-dimensional varieties, where it is generally very di�cult to obtain �niteness of integral
or rational points, as the extent of our knowledge is much more limited. First, let us recall a
previous generalisation of Bombieri's theorem in higher dimensions obtained by Levin ([Lev08],
Theorem 4). To sum it up in a simpler case, on a projective smooth variety X, the analogues of
poles of φ are e�ective divisors D1, · · · , Dr. We have to �x a smooth integral model X of X on
OK , and denote by D1, · · · ,Dr the Zariski closures of the divisors in this model, of union D, so
our integral points here are the points of (X\D)(OL,SL). There are two major changes in higher
dimension. Firstly, the divisors have to be ample (or at least big) to obtain �niteness results (this
was automatic for dimension 1). Secondly, instead of the condition |SL| < r as for curves, the
higher-dimensional Runge condition is

m|SL| < r, (0.2)

where m is the smallest number such that any (m+ 1) divisors amongst D1, · · · , Dr have empty
common intersection. Levin's theorem states in particular that when the divisors are ample, ⋃

(L,SL)
m|SL|<r

(X\D) (OL,SL)

 is �nite.

The issue with (0.2) is that the maximal number |SL| satisfying this condition is much lowered
because of m, even more as the ample (or big) hypothesis tends to give a lower bound on this m.
When we tried to apply Levin's theorem to some Siegel modular varieties with chosen divisors,
we found that the higher-dimensional Runge condition was too restrictive (remember that SL
contains archimedean places, so |SL| ≥ [K : Q]/2), hence the theorem was not applicable. This
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was the initial motivation for a generalisation of this theorem, called �tubular Runge theorem�,
designed to be more �exible in terms of Runge condition. Let us explain its principle below.

Additionally to X and D1, · · · , Dr, we �x a closed subvariety Y of X which is meant to be �a
subvariety of X where the divisors D1, · · · , Dr intersect a lot more than outside it�. More precisely,
let mY the smallest number such that any (mY + 1) divisors amongst D1, · · · , Dr have common
intersection included in Y . In particular, mY ≤ m, and the goal is to have mY as small as possible
without asking Y to be too large. Now, we �x a �tubular neighbourhood� of Y , which is the datum
of a family V = (Vv)v where v goes through the places v of K, every Vv is a neighbourhood of Y
in v-adic topology, and this family is uniformly not too small in some sense. For example, if Y is
the Zariski closure of Y in X , we can de�ne at a �nite place v the neighbourhood Vv to be the set
of points of X (Kv) reducing in Y modulo v. We say that a point P ∈ X(K) does not belong to
V if P /∈ Vv for every place v of K, and intuitively, this means that P is v-adically far away from
Y for every place v of K. Now, assume our integral points are not in V. It implies that at most
mY divisors amongst D1, · · · , Dr can be v-adically close to them, hence using the same principles
of proof as Levin, this gives the tubular Runge condition

mY |SL| < r. (0.3)

With this additional data, one can now give an idea of our tubular Runge theorem.

Theorem (Simpli�ed version of �tubular Runge� (Theorem 1)).
For X,X , Y,D1, · · · , Dr,mY and a tubular neighbourhood V of Y as in the paragraph above,

let (X\D)(OL,SL)\V be the set of points of (X\D)(OL,SL) which do not belong to V. Then, if
D1, · · · , Dr are ample, for every such tubular neighbourhood, the set ⋃

(L,SL)
mY |SL|<r

(X\D) (OL,SL)\V

 is �nite,

and bounded in terms of some auxiliary height.

This is a very simpli�ed form of the theorem : one can have D1, · · · , Dr de�ned on a scalar
extension of X and big instead of ample, and X normal for example. The general (and more
precise) version is Theorem 1. As the implicit bound on the height is parametered by the tubular
neighbourhood V, it can be seen as a concentration result rather as a �niteness one : essentially,
it states that the points of (X\D)(OL,SL) concentrate near the closed subset Y . As such, we have
compared it to theorems of [CLZ09], notably Autissier Theorem and CLZ Theorem, in section 5
(in particular, our version is made to be e�ective, whereas these results are based on Schmidt's
subspace theorem, hence theoretically ine�ective).

In the second part of our paper, we applied the method for Siegel modular varieties, both as a
proof of principle and because integral points on these varieties are not very well understood, apart
from Shafarevich conjecture proved by Faltings. As we will see below, this is also a case where a
candidate for Y presents itself, thus giving tubular neighbourhoods a natural interpretation.

For n ≥ 2, the variety denoted by A2(n) is the variety over Q(ζn) parametrising triples
(A, λ, αn) with (A, λ) is a principally polarised abelian variety of dimension 2 and αn is a sym-
plectic level n structure on (A, λ). It is a quasi-projective algebraic variety of dimension 3, and
its Satake compacti�cation (which is a projective algebraic variety) is denoted by A2(n)S , the
boundary being ∂A2(n) = A2(n)S\A2(n). The extension of scalars A2(n)C is the quotient of the
half-superior Siegel space H2 by the natural action of the symplectic congruence subgroup Γ2(n)
of Sp4(Z) made up with the matrices congruent to the identity modulo n. Now, we consider some
divisors (n4/2 + 2 of them) de�ned by the vanishing of some modular forms, speci�cally theta
functions. One �nds that they intersect a lot on the boundary ∂A2(n) (m comparable to n4), but
when we �x Y = ∂A2(n), we get mY ≤ (n2 − 3) hence giving the tubular Runge condition

(n2 − 3)|SL| <
n4

2
+ 2.
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Now, the application of our tubular Runge theorem gives for every even n ≥ 2 a �niteness
result for the integral points for these divisors and some tubular neighbourhoods associated to
potentially bad reduction for the �nite places : this is Theorem 3. In the special case n = 2,
as a demonstration of the e�ectiveness of the method, we made this result completely explicit in
Theorem 4. A simpli�ed case of this Theorem is the following result.

Theorem (Theorem 4, simpli�ed case). Let K be either Q or a quadratic imaginary �eld.
Let A be a principally polarised abelian surface de�ned over K as well as all its 2-torsion and

having potentially good reduction at all �nite places of K.
Then, if the semistable reduction of A is a product of elliptic curves at most at 3 �nite places

of K, we have the explicit bound
hF (A) ≤ 1070,

where hF is the stable Faltings height. In particular, there are only �nitely many such abelian
surfaces.

To conclude this introduction, we explain the structure of the paper, emphasizing where the
notions sketched above and proofs are given in detail.
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Section 1 is devoted to the notations used throughout the paper, including heights, MK-
constants and bounded sets (De�nition 1.1). We advise the reader to pay particular attention to
this �rst section as it introduces notations which are ubiquitous in the rest of the paper. Section
2 is where the exact de�nition (De�nition 2.1) and basic properties of tubular neighbourhoods are
given. In section 3, we prove the key result for Runge tubular theorem (Proposition 3.1), essentially
relying on a well-applied Nullstellensatz. For our purposes, in Proposition 3.4, we also translate
scheme-theoretical integrality in terms of auxiliary functions. In section 4, we reprove Bombieri's
theorem for curves (written as Proposition 4.1) with Bilu's idea, as it is not yet published to our
knowledge (although this is exactly the principle behind Runge's method in [BP11] for example).
To �nish with the theoretical part, we prove and discuss our tubular Runge theorem (Theorem 1)
in section 5.

For the applications to Siegel modular varieties, section 6 gathers the necessary notations and
reminders on these varieties (subsection 6.1), their integral models with some discussions on the
di�culties on dealing with them in dimension at least 2 (subsection 6.2) and the important notion
of theta divisors on abelian varieties and their link with classical theta functions (subsection 6.3).
The theta functions are crucial because the divisors we use in our applications of tubular Runge
method are precisely the divisors of zeroes of some of these theta functions.

In section 7, we consider the case of abelian surfaces we are interested in, especially for the
behaviour of theta divisors (subsection 7.1) and state in subsection 7.2 the applications of Runge
tubular theorem for the varieties A2(n)S and the divisors mentioned above (Theorems 2 and 3).

Finally, in section 8, we make explicit Theorem 2 by computations on the ten fourth powers of
even characteristic theta constants. To do this, the places need to be split in three categories. The
�nite places not above 2 are treated by the theory of algebraic theta functions in subsection 8.1,
the archimedean places by estimates of Fourier expansions in subsection 8.2 and the �nite places
above 2 (the hardest case) by the theory of Igusa invariants and with polynomials built from our

4



ten theta constants in subsection 8.3. The �nal estimates are given as Theorem 4 in subsection
8.4, both in terms of a given embedding of A2(2) and in terms of Faltings height.

The main results of this paper have been announced in the recently published note [LF17],
and apart from section 8 and some improvements can be found in the author's thesis manuscript
[LF15] (both in French).
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1 Notations and preliminary notions

The following notations are classical and given below for clarity. They will be used throughout
the paper.

• K is a number �eld.

• MK (resp. M∞K ) is the set of places (resp. archimedean places). We also denote by MK the
set of places of K.

• | · |∞ is the usual absolute value on Q, and | · |p is the place associated to p prime, whose
absolute value is normalised by

|x|p = p− ordp(x),
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where ordp(x) is the unique integer such that x = pordp(x)a/b with p - ab. By convention,
|0|p = 0.

• | · |v is the absolute value on K associated to v ∈MK , normalised to extend | · |v0 when v is
above v0 ∈ MQ, and the local degree is nv = [Kv : Qv0 ], so that for every x ∈ K∗, one has
sthe product formula ∏

v∈MK

|x|nvv = 1.

When v comes from a prime ideal p of OK , we indi�erently write | · |v and | · |p.

• For any place v of K, one de�nes the sup norm on Kn+1 by

‖(x0, · · · , xn)‖v = max
0≤i≤n

|xi|v.

(this will be used for projective coordinates of points of Pn(K)).

• Every set of places S ⊂MK we consider is �nite and contains M∞K . We then de�ne the ring
of S-integers as

OK,S = {x ∈ K | |x|v ≤ 1 for every v ∈MK\S},

in particular OK,M∞K = OK .

• For every P ∈ Pn(K), we denote by

xP = (xP,0, · · · , xP,n) ∈ Kn+1

any possible choice of projective coordinates for P , this choice being of course �xed for
consistency when used in a formula or a proof.

• The logarithmic Weil height of P ∈ Pn(K) is de�ned by

h(P ) =
1

[K : Q]

∑
v∈MK

nv log ‖xP ‖v, (1.1)

does not depend on the choice of xP nor on the number �eld, and satis�es Northcott property.

• For every n ≥ 1 and every i ∈ {0, · · · , n}, the i-th coordinate open subset Ui of Pn is the
a�ne subset de�ned as

Ui = {(x0 : · · · : xn) | xi 6= 0}. (1.2)

The normalisation function ϕi : Ui → An+1 is then de�ned by

ϕi(x0 : · · · : xn) =

(
x0

xi
, · · · , 1, · · · xn

xi

)
. (1.3)

Equivalently, it means that to P ∈ Ui, we associate the choice of xP whose i-th coordinate
is 1.

For most of our results, we need to formalize the notion that some families of sets indexed by
the places v ∈MK are �uniformly bounded�. To this end, we recall some classical de�nitions (see
[BG06], section 2.6).

De�nition 1.1 (MK-constants and MK-bounded sets).

• An MK-constant is a family C = (cv)v∈MK
of real numbers such that cv = 0 except for a

�nite number of places v ∈MK . TheMK-constants make up a cone of RMK , stable by �nite
sum and maximum on each coordinate.
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• Let L/K be a �nite extension. For an MK-constant (cv)v∈MK
, we de�ne (with abuse of

notation) an ML-constant (cw)w∈ML
by cw := cv if w|v. Conversely, if (cw)w∈ML

is an ML-
constant, we de�ne (again with abuse of notation) (cv)v∈MK

by cv := maxw|v cw, and get in
both cases the inequality

1

[L : Q]

∑
w∈ML

nwcw ≤
1

[K : Q]

∑
v∈MK

nvcv. (1.4)

• If U is an a�ne variety over K and E ⊂ U(K) × MK , a regular function f ∈ K[U ] is
MK-bounded on E if there is a MK-constant C = (cv)v∈MK

such that for every (P,w) ∈ E
with w above v in MK ,

log |f(P )|w ≤ cv.

• An MK-bounded subset of U is, by abuse of de�nition, a subset E of U(K)×MK such that
every regular function f ∈ K[U ] is MK-bounded on E.

Remark 1.2. There are fundamental examples to keep in mind when using these de�nitions:
(a) For every x ∈ K∗, the family (log |x|v)v∈MK

is an MK-constant.
(b) In the projective space PnK , for every i ∈ {0, · · · , n}, consider the set

Ei = {(P,w) ∈ Pn(K)×MK | |xP,i|w = ‖xP ‖w}. (1.5)

The regular functions xj/xi (j 6= i) on K[Ui] (notation (1.2)) are trivially MK-bounded (by the
zero MK-constant) on Ei, hence Ei is MK-bounded in Ui. Notice that the Ei cover Pn(K)×MK .
We will also consider this set place by place, by de�ning for every w ∈MK :

Ei,w = {P ∈ Pn(K) | |xP,i|w = ‖xP ‖w}. (1.6)

(c) With notations (1.1), (1.2) and (1.3), for a subset E of Ui(K), if the coordinate functions of
Ui are MK-bounded on E ×MK , the height h ◦ ϕi is straightforwardly bounded on E in terms of
the involved MK-constants. This simple observation will be the basis of our �niteness arguments.

The following lemma is useful to split MK-bounded sets in an a�ne cover.

Lemma 1.3. Let U be an a�ne variety and E an MK-bounded set. If (Uj)j∈J is a �nite a�ne
open cover of U , there exists a cover (Ej)j∈J of E such that every Ej is MK-bounded in Uj.

Proof. This is Lemma 2.2.10 together with Remark 2.6.12 of [BG06].

Let us now recall some notions about integral points on schemes and varieties.
For a �nite extension L of K, a point P ∈ Pn(L) and a nonzero prime ideal P of OL of residue

�eld k(P) = OL/P, the point P extends to a unique morphism SpecOL,P → PnOK , and the image
of its special point is the reduction of P modulo P, denoted by PP ∈ Pn(k(P)). It is explicitly
de�ned as follows : after normalisation of the coordinates xP of P so that they all belong to OL,P
and one of them to O∗L,P, one has

PP = (xP,0 mod P : · · · : xP,n mod P) ∈ Pnk(P). (1.7)

The following (easy) proposition expresses scheme-theoretic reduction in terms of functions
(there will be another in Proposition 3.4). We write it below as it is the inspiratoin behind the
notion of tubular neighbourhood in section 2.

Proposition 1.4. Let S be a �nite set of places of K containing M∞K , and X be a projective
scheme on OK,S, seen as a closed subscheme of PnOK,S .

Let Y be a closed sub-OK,S-scheme of X .
Consider g1, · · · , gs ∈ OK,S [X0, · · · , Xn] homogeneous generators of the ideal of de�nition of

Y in PnOK,S0 . For every nonzero prime P of OL not above S, every point P ∈ X (L), the reduction

PP belongs to Yp(k(P)) (with p = P ∩ OK) if and only if

∀j ∈ {1, · · · , s}, |gj(xP )|P < ‖xP ‖
deg gj
P . (1.8)
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Proof. For every j ∈ {1, · · · , s}, by homogeneity of gj , for a choice xP of coordinates for P
belonging to OL,P with one of them in O∗L,P, the inequality (1.8) amounts to

gj(xP,0, · · · , xP,n) = 0 mod P

. On another hand, the reduction of P modulo P belongs to Yp(k(P)) if and only if its coordinates
satisfy the equations de�ning Yp in Xp, but these are exactly the equations g1, · · · , gs modulo p.
This remark immediately gives the Proposition by (1.7).

2 De�nition and properties of tubular neighbourhoods

The explicit expression (1.8) is the motivation for our de�nition of tubular neighbourhood, at the
core of our results. This de�nition is meant to be used by exclusion : with the same notations as
Proposition 1.4, we want to say that a point P ∈ X(L) is not in some tubular neighbourhood of
Y if it never reduces in Y, whatever the prime ideal P of OL is.

The main interest of this notion is that it provides us with a convenient alternative to this
assumption for the places in S (which are the places where the reduction is not well-de�ned,
including the archimedean places), and also allows us to loosen up this reduction hypothesis in a
nice fashion. Moreover, as the de�nition is function-theoretic, we only need to consider the varieties
over a base �eld, keeping in mind that Proposition 1.4 above makes the link with reduction at
�nite places.

De�nition 2.1 (Tubular neighbourhood).
Let X be a projective variety over K and Y be a closed K-subscheme of X.
We choose an embeddingX ⊂ PnK , a set of homogeneous generators g1, · · · , gs inK[X0, · · · , Xn]

of the homogeneous ideal de�ning Y in Pn and an MK-constant C = (cv)v∈MK
.

The tubular neighbourhood of Y in X associated to C and g1, · · · , gs (the embedding made
implicit) is the family V = (Vw)w∈MK

of subsets of X(K) de�ned as follows.

For every w ∈MK above some v ∈MK , Vw is the set of points P ∈ X(K) such that

∀j ∈ {1, · · · , s}, log |gj(xP )|w < deg(gj) · log ‖xP ‖w + cv. (2.1)

As we said before, this de�nition will be ultimately used by exclusion:

De�nition 2.2.

Let X be a projective variety over K and Y be a closed K-subscheme of X.
For any tubular neighbourhood V = (Vw)w∈MK

of Y , we say that a point P ∈ X(K) does not
belong to V (and we denote it by P /∈ V) if

∀w ∈MK , P /∈ Vw.

Remark 2.3.
(a) Comparing (1.8) and (2.1), it is obvious that for the MK-constant C = 0 and with the

notations of Proposition 1.4, at the �nite places w not above S, the tubular neighbourhood Vw
is exactly the set of points P ∈ X(K) reducing in Y modulo w. Furthermore, instead of dealing
with any homogeneous coordinates, one can if desired manipulate normalised coordinates, which
makes the term deg(gj) log ‖xP ‖v disappear. Actually, we will do it multiple times in the proofs
later, as it amounts to covering Pn

K
by the bounded sets Ei (notation (1.5)) and thus allows to

consider a�ne subvarieties when needed.
(b) In a topology, a set containing a neighbourhood is one as well : here, we will de�ne

everything by being out of a tubular neighbourhood, therefore allowing sets too large would be
too restrictive. One can think about this de�nition as a family of neighbourhoods being one by
one not too large but not too small, and uniformly so in the places.

(c) If Y is an ample divisor of X and V is a tubular neighbourhood of Y , one easily sees that
if P /∈ V then h(ψ(P )) is bounded for some embedding ψ associated to Y , from which we get
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the �niteness of the set of points P of bounded degree outside of V. This illustrates why such an
assumption is only really relevant when Y is of small dimension.

(d) A tubular neighbourhood of Y can also be seen as a family of open subsets de�ned by
bounding strictly a global arithmetic distance function to Y (see [Voj87], paragraph 2.5).

Example 2.4. We have drawn below three di�erent pictures of tubular neighbourhoods at the
usual archimedean norm. One consider P2(R) with coordinates x, y, z, the a�ne open subset Uz
de�ned by z 6= 0, and Ex, Ey, Ez the respective sets such that |x|, |y|, |z| = max(|x|, |y|, |z|). These
di�erent tubular neighbourhoods are drawn in Uz, and the contribution of the di�erent parts Ex,
Ey and Ez is made clear.

(2, 2)
•

(0, 6)•

(6, 0)
•

(6, 6)•

P•

Ey

Ex

Figure 1: Tubular neighbourhood of the point P = (3 : 3 : 1) associated to the inequality
max(|x− 3y, y − 3z|) < 1

2 max(|x|, |y|, |z|).
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•
(−4,−4)

(−4/3,4/3)

(4,4)

•

•

•
(−1,1/2)

• (−1/2,1)

L

Ez

Ey Ey

Ex

Ex

Figure 2: Tubular neighbourhood of the line D : y − x + 2z = 0 associated to the inequality
max(|x− y + 2z|) < 1

2 max(|x|, |y|, |z|).
The boundary of the neighbourhood is made up with segments between the indicated points

H

Ez

Ez
Ex

Ex

Ey Ey

EyEy

Ex

Ex

•
−(
√

2,
√

2)

•
(
√

2,
√

2)

•
(1/2,1)

•
(1,1/2)

•
(−1/2,−1)

•
(−1,−1/2)

Figure 3: Tubular neighbourhood of the hyperbola H : xy − z2 = 0 given by the inequality
|xy − z2| < 1

2 max(|x|, |y|, |z|).
The boundary is made up with arcs of hyperbola between the indicated points.

The notion of tubular neighbourhood does not seem very intrinsic, but as the proposition below
shows, it actually is.

Proposition 2.5 (Characterisation of tubular neighbourhoods). Let X be a projective variety
over K and Y a closed K-subscheme of X.

10



A family V = (Vw)w∈MK
is included in a tubular neighbourhood of Y in X if and only if for

every a�ne open subset U of X, every E ⊂ U(K) ×MK which is MK-bounded in U , and every
regular function f ∈ K[U ] such that f|Y ∩U = 0, there is an MK-constant C such that

∀(P,w) ∈ E, P ∈ Vw ⇒ log |f(P )|w < cv

(intuitively, this means that every function vanishing on Y is �MK-small� on V).

Remark 2.6. One can also give a criterion for containing a tubular neighbourhood (using generators
in K[U ] of the ideal de�ning Y ∩ U). Together, these imply that the tubular neighbourhoods
made up by an embedding of X are essentially the same. Indeed, one can prove that for two
di�erent projective embeddings of X, a tubular neighbourhood as de�ned by the �rst one can be
an intermediary between two tubular neighbourhoods as de�ned by the second embedding.

Proof. First, a family V satisfying this property is included in a tubular neighbourhood. Indeed,
if we choose g1, · · · , gs homogeneous generators of the ideal de�ning Y for some embedding of X
in PnK , for every i ∈ {0, · · · , n}, consider (using notations (1.2), (1.3) and (1.5)) the MK-bounded
set Ei and the regular functions gj ◦ϕi on Ui, 1 ≤ j ≤ s. By hypothesis, (taking the maximum of
all the MK-constants for 0 ≤ i ≤ n, 1 ≤ j ≤ s), there is an MK-constant (cv)v∈MK

such that for
every w ∈MK ,

∀j ∈ {1, · · · , s},∀i ∈ {0, · · · , n},∀P ∈ Ei,w, if P ∈ Vw, log |gj ◦ ϕi(P )|w < cv

because gj ◦ ϕi = 0 on Y ∩ Ui by construction and the ϕi(P ) are normalised coordinates for
P ∈ Ei,w. Hence, V is included in the tubular neighbourhood of Y in X associated to C and the
generators g1, · · · , gs.

It now remains to prove that any tubular neighbourhood of Y satis�es this characterisation,
and we will do so (with the same notations as De�nition 2.1) for the tubular neighbourhood de�ned
by a given embedding X ⊂ PnK , homogeneous equations g1, · · · , gs de�ning Y in PnK and some
MK-constant C0 = (c0,v)v∈MK

(we will use multiple MK-constants, hence the numbering).
Let us �x an a�ne open subset U of X and E an MK-bounded set on U . We can cover U by

principal a�ne open subsets of X, more precisely we can write

U =
⋃
h∈F

Uh

where h runs through a �nite family F of nonzero homogeneous polynomials of K[X0, · · · , Xn]
and

Uh = {P ∈ X |h(P ) 6= 0}.

For every such h, the regular functions on Uh are the s/h
k where s is homogeneous onK[X0, · · · , Xn]

of degree k · deg(h) (as X is a closed subvariety of Pn, the only subtlety is that identical regular
functions on Uh can come from di�erent fractions s/hk but this will not matter in the following).

By Lemma 1.3, there is a cover E = ∪h∈FEh such that every Eh is MK-bounded on Uh. This

implies that for any i ∈ {0, · · · , n}, the functions x
deg(h)
i /h ∈ K[Uf ] are MK-bounded on Eh,

therefore we have an MK-constant C1 such that for all (P,w) ∈ Eh with coordinate x0, · · · , xn,

log ‖xP ‖w ≤ c1,v +
1

deg(h)
log |h(xP )|w. (2.2)

Now, let f be a regular function on K[U ] such that f|Y ∩U = 0. For every h ∈ F , we can write

f|Uh = s/hk for some homogeneous s ∈ K[X0, · · · , Xn], therefore as a homogeneous function on
X, one has h · s = 0 on Y (it already cancels on Y ∩ U , and outside U by multiplication by f).
Hence, we can write

f|Uh =

s∑
j=1

aj,hgj
hkj

11



with the aj,h homogeneous on K[X0, · · · , Xn] of degree kj deg(h) − deg(gj). Now, bounding the
coe�cients of all the aj,h (and the number of monomials in the archimedean case), we get an
MK-constant C2 such that for every P ∈ Pn(K),

log |aj,h(xP )|w ≤ c2,v + deg(aj,h) · log ‖xP ‖w.

Combining this inequality with (1.8) and (2.2), we get that for every h ∈ F , every (P,w) ∈ Eh
and every j ∈ {1, · · · , s} :

if P ∈ Vw, log
∣∣∣aj,hgj
hkj

(P )
∣∣∣
w
< c0,v + c2,v + kjc1,v

which after summation on j ∈ {1, · · · , s} and choice of h such that (P,w) ∈ Eh proves the result.

3 Key results

We will now prove the key result for Runge's method, as a consequence of the Nullstellensatz. We
mainly use the projective case in the rest of the paper but the a�ne case is both necessary for its
proof and enlightening for the method we use.

Proposition 3.1 (Key proposition).
(a) (A�ne version)
Let U be an a�ne variety over K and Y1, · · · , Yr closed subsets of U de�ned over K, of

intersection Y . For every ` ∈ {1, · · · , r}, de�ne g`,1, · · · g`,s` generators of the ideal of de�nition
of Y` in K[U ], and h1, · · · , hs generators of the ideal of de�nition of Y in K[U ]. For every MK-
bounded set E of U and every MK-constant C0, there is an MK-constant C such that for every
(P,w) ∈ E with w above v ∈MK , one has the following dichotomy :

max
1≤`≤r
1≤j≤si

log |g`,j(P )|w ≥ cv or max
1≤j≤s

log |hj(P )|w < c0,v. (3.1)

(b) (Projective version)
Let X be a normal projective variety over K and φ1, · · · , φr ∈ K(X). Let Y be the closed

subset of X de�ned as the intersection of the supports of the (Weil) divisors of poles of the φi. For
every tubular neighbourhood V of Y (De�nition 2.1), there is an MK-constant C depending on V
such that for every w ∈MK (above v ∈MK) and every P ∈ X(K),

min
1≤`≤r

log |φ`(P )|w ≤ cv or P ∈ Vw. (3.2)

This result has an immediate corollary when Y = ∅: Lemma 5 of [Lev08], restated below.

Corollary 3.2 ([Lev08], Lemma 5).
Let X be a normal projective variety over K and φ1, · · · , φr ∈ K(X) having globally no common

pole. Then, there is an MK-constant C such that for every w ∈ MK (above v ∈ MK) and every
P ∈ X(K),

min
1≤`≤r

log |φ`(P |w ≤ cv. (3.3)

Remark 3.3.
(a) As will become clear in the proof, part (b) is actually part (a) applied to a good cover of X

by MK-bounded subsets of a�ne open subsets of X (inspired by the natural example of Remark
1.2 (b)).

(b) Besides the fact that the results must be uniform in the places (hence the MK-constants),
the principle of (a) and (b) is simple. For (a), we would like to say that if a point P is su�ciently
close to Y1, · · · , Yr (i.e. the �rst part of the dichotomy is not satis�ed) it must be close to a point
of intersection of the Yi, hence the generators of the intersection should be small at P (second
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part of the dichotomy). This is not true in the a�ne case, taking for example the hyperbola and
the real axis in A2, in�nitely close but disjoint (hence the necessity of taking a bounded set E
to compactify the situation), but it works in the projective case because the closed sets are then
compact.

(c) Corollary 3.2 is the key for Runge's method in the case of curves in section 4. Notice that
Lemma 5 of [Lev08] assumed X smooth, but the proof is actually exactly the same for X normal.
Moreover, the argument below follows the structure of Levin's proof.

(d) If we replace Y by Y ′ ⊃ Y and V by a tubular neighbourhood V ′ of Y ′, the result remains
true with the same proof, which is not surprising because tubular neighbourhood of Y ′ are larger
than tubular neighbourhoods of Y .

Proof of Proposition 3.1.
(a) By the Nullstellensatz applied on K[U ] to the Y` (1 ≤ ` ≤ r) and Y , by hypothesis, for

some power p ∈ N>0, there are regular functions f`,j,m ∈ K[U ] such that for every m ∈ {1, · · · , s},∑
1≤`≤r
1≤j≤s`

g`,jf`,j,m = hpm.

As E is MK-bounded on U , all the f`,j,m are MK-bounded on E hence there is an auxiliary
MK-constant C1 such that for all P ∈ E,

max
1≤`≤r
1≤j≤s`
1≤m≤s

log |f`,j,m(P )|w ≤ c1,v,

therefore

|hm(P )p|w =

∣∣∣∣∣∣∣∣
∑

1≤`≤r
1≤j≤s`

g`,j(P )f`,j,m(P )

∣∣∣∣∣∣∣∣
w

≤ Nδvec1,v max
1≤`≤r
1≤j≤s`

|g`,j(P )|w

where δv is 1 if v is archimedean and 0 otherwise, and N the total number of generators g`,j . For
�xed w and P , either log |hm(P )|w < c0,v for all m ∈ {1, · · · , s} (second part of dichotomy (3.1)),
or the above inequality applied to some m ∈ {1, · · · , s} gives

p · c0,v ≤ δv log(N) + c1,v + max
1≤`≤r
1≤j≤s`

log |g`,j(P )|w,

which is equivalent to

max
1≤`≤r
1≤j≤s`

log |g`,j(P )|w ≥ δv log(N) + c1,v − p · c0,v,

and taking the MK-constant de�ned by cv := c1,v + δv log(N) − p · c0,v for every v ∈ MK gives
exactly the �rst part of dichotomy (3.1).

(b) We consider X as embedded in some PnK so that V is exactly the tubular neighbourhood
of Y in X associated to an MK-constant C0 and generators g1, · · · , gs for this embedding. We
will use again the notations (1.2), (1.3) and (1.5). In particular we de�ne Xi := X ∩ Ui for every
i ∈ {0, · · · , n}. The following argument is designed to make Y appear as a common zero locus of
regular functions built with the φ`.

For every ` ∈ {1, · · · , r}, let D` be the positive Weil divisor of zeroes of φ` on X. For every
i ∈ {0, · · · , n}, let I`,i be the ideal of K[Xi] made up with the regular functions h on the a�ne
variety Xi such that div(h) ≥ (D`)|Xi , and we choose generators h`,i,1, · · · , h`,i,j`,i of this ideal.
The functions h`,i,j/(φ`)|Xi are then regular on Xi and

∀j ∈ {1, · · · , j`,i}, div

(
h`,i,j

(φ`)|Xi

)
≥ (φ`,i)∞
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(the divisor of poles of φ` on Xi). By construction of I`,i, the minimum (prime Weil divisor by
prime Weil divisor) of the div(h`,i,j) is exactly (D`)|Xi : indeed, for every �nite family of distinct
prime Weil divisors D′1, · · · , D′s, D′′ on Xi, there is a uniformizer h for D′′ of order 0 for each of
the D′k, otherwise the prime ideal associated to D′′ in Xi would be included in the �nite union of
the others. This allows to build for every prime divisor D′ of Xi not in the support of (D`)|Xi a
function h ∈ I`,i of order 0 along D′ (and of the good order for every D′ in the support of (D`)|Xi .
Consequently, the minimum of the divisors of the h`,i,j/(φ`)|Xi , being naturally the minimum of
the divisors of the h/(φ`)|Xi (h ∈ K[Xi]), is exactly (φ`,i)∞.

Thus, by de�nition of Y , for �xed i, the set of commmon zeroes of the regular functions
h`,i,j/(φ`)|Xi (1 ≤ ` ≤ r, 1 ≤ j ≤ j`,i) on Xi is Y ∩ Xi, so they generate a power of the ideal of
de�nition of Y ∩ Xi. We apply part (a) of this Proposition to the h`,i,j/(φ`)|Xi (1 ≤ ` ≤ r, 1 ≤
j ≤ j`,i), the gj ◦ ϕi (1 ≤ j ≤ s) and the MK-constant C0, which gives us an MK-constant C′i and
the following dichotomy on Xi for every (P,w) ∈ Ei :

max
1≤`≤r
1≤j≤si

log

∣∣∣∣h`,i,jφ`
(P )

∣∣∣∣
w

≥ c′i,v or max
1≤j≤s

log |gj ◦ ϕi(P )|w < c0,v.

Now, the h`,i,j are regular on Xi hence MK-bounded on Ei, therefore there is a second MK-
constant C′′i such that for every (P,w) ∈ Ei :

max
1≤`≤r
1≤j≤si

log

∣∣∣∣h`,i,jφ`
(P )

∣∣∣∣
w

≥ c′i,v =⇒ min
1≤`≤r

log |φ`(P )|w ≤ c′′i,v.

Taking C as the maximum of the MK-constants C′′i , 0 ≤ i ≤ n, for every (P,w) ∈ X(K)×MK , we
choose i such that (P,w) ∈ Ei and then we have the dichotomy (3.2) by de�nition of the tubular
neighbourhood Vw.

To �nish this section, we will give the explicit link between integral points on a projective
scheme (relatively to a divisor) and integral points relatively to rational functions on the scheme.
In particular, this catches up with the de�nition of integral points of section 2 of [Lev08].

Proposition 3.4.

Let X be a normal projective scheme over OK,S.
(a) If Y is an e�ective Cartier divisor on X such that YK is an ample (Cartier) divisor of XK ,

there is a projective embedding ψ : XK → PnK and an MK-constant C such that

• The pullback by ψ of the hyperplane of equation x0 = 0 in PnK is YK .

• For any �nite extension L of K and any w ∈ML not above S,

∀P ∈ (X\Y)(OL,w), log ‖xψ(P )‖w ≤ cv + log |xψ(P ),0|w. (3.4)

This amounts to say that if the coordinates by ψ of such a P are normalised so that the �rst
one is 1, all the other ones have w-norm bounded by ecv .

(b) If Y is an e�ective Cartier divisor on X such that YK is a big (Cartier) divisor of XK ,
there is a strict Zariski closed subset ZK of XK , a morphism ψ : XK\YK → PnK which induces a
closed immersion of XK\ZK and an MK-constant C such that:

• The pullback by ψ of the hyperplane of equation x0 = 0 in PnK is contained in YK ∪ ZK .

• For any �nite extension L of K and any w ∈ML not above S, formula (3.4) holds.

Remark 3.5.
(a) This Proposition is formulated to avoid the use of local heights, but the idea is exactly that

under the hypotheses above, the fact that P ∈ (X\Y)(OL,w) implies that the local height at w of
P for the divisor Y is bounded.
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(b) The hypotheses on ampleness (or �bigness�) are only necessary at the generic �ber. If we
considered Y ample on X , it would give us a result with the zeroMK-constant (using an embedding
over OK,S given by Y), and an equivalence, but this is not crucial here. Once again, the auxiliary
functions replace the need for a complete understanding of what happens at the �nite places.

(c) The only di�erence between ample and big cases is hidden in the function ψ : in the
big case, the formula still holds but does not say much for points belonging in ZK because the
morphism ψ is not an embedding there.

Proof of Proposition 3.4.
(a) As YK is ample and e�ective, there is a projective embedding ψ : XK → Pn such that

the support of the divisor YK is exactly the inverse image of the hyperplane x0 = 0 by ψ.
Let us �x such an embedding and consider for every i ∈ {1, · · · , n} the coordinate functions
φi := (xi/x0) ◦ ψ in K(XK), whose poles are contained in YK by construction. Now, we choose a
tubular neighbourhood V of YK de�ned by an embedding of X in some projective PmOK,S (which

can be completely unrelated to ψ), homogeneous generators g1, · · · , gs of the ideal of de�nition of
Y in PmOK,S and the zero MK-constant. By Proposition 3.1 (b) applied to V and φj , we obtain an

MK-constant Cj such that for every �nite extension L of K and every w ∈ML (with the notations
(1.3) and (1.6)),

∀P ∈ X (L), log |φj(P )|w ≤ cj,v or P ∈ Vw.

By construction of V and Proposition 1.4, if w is not above a place of S and P ∈ (X\Y)(OL,w),
we necessarily have log |φj(P )|w ≤ cj,v. Taking the maximum of the MK-constants C1, · · · , Cn, we
obtain the Proposition in the ample case.

(b) The proof for big divisors is the same as part (a), except that we can only extend our
function ψ to XK\ZK for some proper Zariski closed subset ZK such that outside of this set, ψ
is a closed immersion. The coordinate functions φi ∈ K(XK), similarly de�ned, also have poles
contained in YK . Applying the same arguments as in part (a) for points P ∈ X (L), we obtain the
same result.

4 The case of curves revisited

In this section, we reprove the generalisation of an old Runge theorem [Run87] obtained by
Bombieri ([Bom83] p. 305, also rewritten as Theorem 9.6.6 in [BG06]), following an idea ex-
posed by Bilu in an unpublished note and mentioned for the case K = Q by [Sch08] (Chapter 5).
The aim of this section is therefore to give a general understanding of this idea (quite di�erent
from the original proof of Bombieri), as well as explain how it actually gives a method to bound
heights of integral points on curves.

It is also a good start to understand how the intuition behind this result can be generalised to
higher dimension, which will be done in the next section.

Proposition 4.1 (Bombieri, 1983). Let C be a smooth projective algebraic curve de�ned over a
number �eld K and φ ∈ K(C) not constant.

For any �nite extension L/K, let rL be the number of orbits of the natural action of Gal(L/L)
over the poles of φ. For any set of places SL of L containing M∞L , we say that (L, SL) satis�es
the Runge condition if

|SL| < rL. (4.1)

Then, the reunion ⋃
(L,SL)

{P ∈ C(L) |φ(P ) ∈ OL,SL} , (4.2)

where (L, SL) runs through all the pairs satisfying Runge condition, is �nite and can be explicitly
bounded in terms of the height h ◦ φ.
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Example 4.2. As a concrete example, consider the modular curve X0(p) for p prime and the j-
invariant function. This curve is de�ned over Q and j has two rational poles (which are the cusps
of X0(p)), hence rL = 2 for any choice of L, and we need to ensure |M∞L | ≤ |SL| < 2. The only
possibilities satisfying Runge condition are thus imaginary quadratic �elds L with SL = {| · |∞}.

We thus proved in [LF16] that for any imaginary quadratic �eld L and any P ∈ X0(p)(L) such
that j(P ) ∈ OL, one has

log |j(P )| ≤ 2π
√
p+ 6 log(p) + 8.

The method for general modular curves is carried out in [BP11] and gives explicit estimates on
the height for integral points satisfying Runge condition. This article uses the theory of modular
units and implicitly the same proof of Bombieri's result as the one we expose below.

Remark 4.3.
(a) The claim of an explicit bound deserves a clari�cation : it can actually be made explicit

when one knows well enough the auxiliary functions involved in the proof below (which is possible
in many cases, e.g. for modular curves thanks to the modular units). Furthermore, even as the
theoretical proof makes use of MK-constants and results of section 3, they are frequently implicit
in pratical cases.

(b) Despite the convoluted formulation of the proof below and the many auxiliary functions to
obtain the full result, its principle is as descrbibed in the Introduction. It also gives the framework
to apply Runge's method to a given couple (C, φ)

Proof of Proposition 4.1. We �x K ′ a �nite Galois extension of K on which every pole of φ is
de�ned. For any two distinct poles Q,Q′ of φ, we choose by Riemann-Roch theorem a function
gQ,Q′ ∈ K ′(C) whose only pole is Q and vanishing at Q′. For every point P of C(K) which is
not a pole of φ, one has ordP (gQ,Q′) ≥ 0 thus gQ,Q′ belongs to the intersection of the discrete
valuation rings of K(C) containing φ and K ([Har77], proof of Lemma I.6.5), which is exactly the
integral closure of K[φ] in K(C) ([AM94], Corollary 5.22). Hence, the function gQ,Q′ is integral
on K[φ] and up to multiplication by some nonzero integer, we can and will assume it is integral
on OK [φ].

For any �xed �nite extension L of K included in K, we de�ne fQ,Q′,L ∈ L(C) the product of
the conjugates of gQ,Q′ by Gal(L/L). If Q and Q′ belong to distinct orbits of poles for Gal(L/L),
the function fQ,Q′,L has for only poles the orbit of poles of Q by Gal(K/L) and cancels at the
poles of φ in the orbit of Q′ by Gal(K/L) . Notice that we thus built only �nitely many di�erent
functions (even with L running through all �nite extensions of K) because each gQ,Q′ only has
�nitely many conjugates in Gal(K ′/K).

Now, let O1, · · · ,OrL be the orbits of poles of φ and denote for any i ∈ {1, · · · , rL} by fi,L a
product of fQi,Q′j ,L where Qi ∈ Oi and Q′j runs through representatives of the orbits (except Oi).
Again, there is a �nite number of possible choices, and we obtain a function fi,L ∈ L(C) having for
only poles the orbit Oi and vanishing at all the other poles of φ. By our construction of the gQ,Q′

and fi,L, we can and do choose n ∈ N≥1 such that for every i ∈ {1, · · · , rL}, φfni,L has exactly as
poles the points of Oi and is integral over OK [φ]. This implies that for any �nite place w ∈ ML,
if |φ(P )|w ≤ 1 then |fi,L(P )|w ≤ 1, but we also need such a result for archimedean places. To do
this, we apply Corollary 3.2 to fi,L/φ

k and fi,L (for any i) for some k such that fi,L/φ
k does not

have poles at Oi, and take the maximum of the induced MK-constants (De�nition 1.1) for any L
and 1 ≤ i ≤ rL. This gives an MK-constant C0 independant of L such that

∀i ∈ {1, · · · , rL},∀w ∈MK ,∀P ∈ C(K), log min

(∣∣∣∣fi,Lφk (P )

∣∣∣∣
w

, |fi,L(P )|w
)
≤ c0,v (w|v ∈MK).

In particular, the result interesting us in this case is that

∀i ∈ {1, · · · , rL},∀w ∈MK ,∀P ∈ C(K), |φ(P )|w ≤ 1⇒ log |fi,L(P )|w ≤ c0,v, (4.3)

and we can assume c0,v is 0 for any �nite place v by integrality of the fi,L over OK [φ]. As the
sets of poles of the fi,L are mutually disjoint, we reapply Corollary 3.2 for every pair (φfni,L, φf

n
j,L)
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with 1 ≤ i < j ≤ rL, which again by taking the maximum of the induced MK-constants for all
the possible combinations (De�nition 1.1) gives an MK-constant C1 such that for every v ∈ MK

and every (P,w) ∈ C(K)×MK with w|v, the inequality

log |(φ · fni,L)(P )|w ≤ c1,v (4.4)

is true for all indices i except at most one (depending of the choice of P and w).
Let us now suppose that (L, SL) is a pair satisfying Runge condition and P ∈ C(L) with

φ(P ) ∈ OL,SL . By integrality on OK [φ], for every i ∈ {1, · · · , rL}, |fi,L(P )|w ≤ 1 for every place
w ∈ ML\SL. For every place w ∈ SL, there is at most one index i not satisying (4.4) hence by
Runge condition and pigeon-hole principle, there remains one index i (depending on P ) such that

∀w ∈ML, log |φ(P )fni,L(P )|w ≤ c1,v. (4.5)

With (4.3) and (4.5), we have obtained all the auxiliary results we need to �nish the proof. By
the product formula,

0 =
∑
w∈ML

nw log |fi,L(P )|w

=
∑
w∈ML

|φ(P )|w>1

nw log |fi,L(P )|w +
∑

w∈M∞L
|φ(P )|w≤1

nw log |fi,L(P )|w +
∑

w∈ML\M∞L
|φ(P )|w≤1

nw log |fi,L(P )|w.

Here, the �rst sum on the right side will be linked to the height h◦φ and the third sum is negative
by integrality of the fi,L, so we only have to bound the second sum. From (4.3) and (1.4), we
obtain ∑

w∈M∞L
|φ(P )|w≤1

nw log |fi,L(P )|w ≤
∑

w∈M∞L
|φ(P )|w≤1

nwc0,v ≤ [L : K]
∑

v∈M∞K

nvc0,v.

On another side, by (4.5) (and (1.4) again), we have

n ·
∑
w∈ML

|φ(P )|w>1

nw log |fi,L(P )|w =
∑
w∈ML

|φ(P )|w>1

nw log |φfni,L(P )|w −
∑
w∈ML

|φ(P )|w>1

nw log |φ(P )|w

≤

(
[L : K]

∑
v∈MK

nvc1,v

)
− [L : Q]h(φ(P )).

Hence, we obtain

0 ≤ [L : K]
∑
v∈MK

nvc1,v − [L : Q]h(φ(P )) + [L : K]n
∑

v∈M∞K

nvc0,v,

which is equivalent to

h(φ(P )) ≤ 1

[K : Q]

∑
v∈MK

nv(c1,v + nc0,v).

We thus obtained a bound on h(φ(P )) independent on the choice of (L, SL) satisfying the Runge
condition, and together with the bound on the degree

[L : Q] ≤ 2|SL| < 2rL ≤ 2r,

we get the �niteness.
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5 The main result : tubular Runge theorem

We will now present our version of Runge theorem with tubular neighbourhoods, which generalises
Theorem 4 (b) and (c) of [Lev08]. As its complete formulation is quite lengthy, we indicated the
di�erent hypotheses by the letter H and the results by the letter R to simplify the explanation
of all parts afterwards. The key condition for integral points generalising Runge condition of
Proposition 4.1 is indicated by the letters TRC.

We recall that the crucial notion of tubular neighbourhood is explained in De�nitions 2.1
and 2.2, and we advise the reader to look at the simpli�ed version of this theorem stated in the
Introduction to get more insight if necessary.

Theorem 1 (Tubular Runge theorem).
(H0) Let K be a number �eld, S0 a set of places of K containing M∞K and O the integral

closure of OK,S0
in some �nite Galois extension K ′ of K.

(H1) Let X be a normal projective scheme over OK,S0
and D1, · · · , Dr be e�ective Cartier

divisors on XO = X ×OK,S0 O such that DO =
⋃r
i=1Di is the scalar extension to O of some

Cartier divisor D on X , and that Gal(K ′/K) permutes the generic �bers (Di)K′ . For every
extension L/K, we denote by rL the number of orbits of (D1)K′ , · · · , (Dr)K′ for the action of
Gal(K ′L/L).

(H2) Let Y be a closed sub-K-scheme of XK and V be a tubular neighbourhood of Y in XK .
Let mY ∈ N be the minimal number such that the intersection of any (mY + 1) of the divisors
(Di)K′ amongst the r possible ones is included in YK′ .

(TRC) The tubular Runge condition for a pair (L, SL), where L/K is �nite and SL
contains all the places above S0, is

mY |SL| < rL.

Under these hypotheses and notations, the results are the following :
(R1) If (D1)K′ , · · · , (Dr)K′ are ample divisors, the set⋃

(L,SL)

{P ∈ (X\D)(OL,SL) |P /∈ V}, (5.1)

where (L, SL) goes through all the pairs satisfying the tubular Runge condition, is �nite.
(R2) If (D1)K′ , · · · , (Dr)K′ are big divisors, there exists a proper closed subset ZK′ of XK′

such that the set  ⋃
(L,SL)

{P ∈ (X\D)(OL,SL) |P /∈ V}

 \ZK′(K),

where (L, SL) goes through all the pairs satisfying the tubular Runge condition, is �nite.

We separated the comments about Theorem 1 in two remarks below : the �rst one explains
its hypotheses and results, the second compares it with other theorems.

Remark 5.1.
(a) The need for the extensions of scalars to K ′ and O in (H0) and (H1) is the analogue of the

fact that the poles of φ are not necessarily K-rational in the case of curves, hence the assumption
that the (Di)K′ are all conjugates by Gal(K ′/K) and the de�nition of rL given in (H1). It will
induce technical additions of the same �avour as the auxiliary functions fQ,Q′,L in the proof of
Bombieri's theorem (Proposition 4.1).

(b) The motivation for the tubular Runge condition is the following : imitating the principle of
proof for curves (Remark 4.3 (b)), if P ∈ (X\D)(OL,SL), we can say that at the places w ofML\SL,
this point is �w-adically far� from D. Now, the divisors (D1)K′ , · · · , (Dr)K′ can intersect (which
does not happen for distinct points on curves), so for w ∈ SL, this point P can be �w-adically
close� to many divisors at the same time. More precisely, it can be �w-adically close� to at most
m such divisors, where m = m∅, i.e. the largest number such that there are m divisors among
D1, · · · , Dr whose set-theoretic intersection is nonempty. This number is also de�ned in [Lev08]
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but we found that for our applications, it often makes Runge condition too strict. Therefore, we
allow the use of the closed subset Y in (H2), and if we assume that our point P is never too close
to Y (i.e. P /∈ V), this m goes down to mY by de�nition. Thus, we only need to take out mY

divisors by place w in SL, hence the tubular Runge condition mY |SL| < rL. Actually, one can
even mix the Runge conditions, i.e. assume that P is close to Y exactly at s1 places, and close
from one of the divisors (but not Y ) at s2 places : following along the lines of the proof below, we
obtain �niteness given the Runge condition s1m∅ + s2mY < rL.

(c) The last main di�erence with the case of curves is the assumption of ample or big divisors,
respectively in (R1) and (R2). In both cases, such an assumption is necessary twice. First,
we need it to translate by Proposition 3.4 the integrality condition on schemes to an integrality
expression on auxiliary functions (such as in section 2 of [Lev08]) to use the machinery of MK-
constants and the key result (Proposition 3.1). Then, we need it to ensure that after obtaining a
bound on the heights associated to the divisors, it implies �niteness (implicit in Proposition 3.4,
see also Remark 3.5 (a)).

Remark 5.2.
(a) This theorem has some resemblance to Theorem CLZ of [CLZ09] (where our closed subset

Y would be the analogue of the Y in that article), let us point out the di�erences. In Theorem
CLZ, there is no hypothesis of the set of places SL, no additional hypothesis of integrality (ap-
pearing for us under the form of a tubular neighbourhood), and the divisors are assumed to be
normal crossing divisors, which is replaced in our case by the tubular Runge condition. As for
the results themselves, the �niteness formulated by CLZ depends on the set SL (that is, it is not
clear how it would prove such an union of sets such as in our Theorem is �nite). Finally, the
techniques employed are greatly di�erent : Theorem CLZ uses Schmidt's subspace theorem which
is none�ective, whereas our method can be made e�ective if one knows the involved auxiliary
functions. It might be possible (and worthy of interest) to build some bridges between the two
results, and the techniques involved.

(b) Theorem 1 can be seen as a strati�cation of Runge-like results depending on the dimension
of the intersection of the involved divisors : at one extreme, the intersection is empty, and we get
back Theorem 4 (b) and (c) of [Lev08]. At the other extreme, the intersection is a divisor (ample
or big), and the �niteness is automatic by the hypothesis for points not belonging in the tubular
neighbourhood (see Remark 2.3). Of course, this strati�cation is not relevant in the case of curves.
In another perspective, for a �xed closed subset Y , Theorem 1 is more a concentration result of
integral points than a �niteness result, as it means that even if we choose a tubular neighbourhood
V of Y as small as possible around Y , there is only a �nite number of integral points in the set
(5.1), i.e. these integral points (ignoring the hypothese P /∈ V) must concentrate around Y (at
least at one of the places w ∈ML). Speci�c examples will be given in section 7 and 8.

Let us now prove Theorem 1, following the ideas outlined in Remark 5.1.

Proof of Theorem 1.
(R1) Let us �rst build the embeddings we need. For every subextension K ′′ of K ′/K, the ac-

tion of Gal(K ′/K ′′) on the divisors (D1)K′ , · · · , (Dr)K′ has orbits denoted by OK′′,1, · · · , OK′′,rK′′ .
Notice that any mY + 1 such orbits still have their global intersection included in Y : regrouping
the divisors by orbits does not change this fact.

For each such orbit, the sum of its divisors is ample by hypothesis and coming from an e�ective
Cartier divisor on XK′′ , hence one can choose by Proposition 3.4 an appropriate embedding ψK′′,i :
XK′′ → PniK′′ , whose coordinates functions (denoted by φK′′,i,j = (xj/x0) ◦ ψK′′,i(1 ≤ j ≤ ni)) are
small on integral points of (XO\OK′′,i). We will denote by C0 the maximum of the (induced) MK-
constants obtained for by the Proposition 3.4 for all possibleK ′′/K and orbits OK′′,i(1 ≤ i ≤ rK′′).
The important point of this is that for any extension L/K, any v ∈ MK\S0, any place w ∈ ML

above v and any P ∈ (X\D)(OL,w), choosing L′ = K ′ ∩ L, one has

max
1≤i≤rL
1≤j≤ni

log |φL′,i,j(P )|w ≤ c0,v. (5.2)
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This is the �rst step to obtain a bound on the height of one of the ψK′′,i(P ). For �xed P , we
only have to do so for one of the i ∈ {1, · · · , rL} as long as the bound is uniform in the choice of
(L, SL) (and P ), to obtain �niteness as each ψK′′,i is an embedding. To this end, one only needs
to bound the coordinate functions on the places w of ML\SL, which is what we will do now.

For a subextension K ′′ of K ′/K again, by hypothesis (H2) (and especially the de�nition of
mY ), taking any set I of mY + 1 couples (i, j), 1 ≤ i ≤ rK′′ , j ∈ {1, · · · , ni} with mY + 1 di�erent
indices i and considering the rational functions φK′′,i,j , (i, j) ∈ I, whose common poles are included
in Y by hypothesis, we can apply Proposition 3.1 to these functions and the tubular neighbourhood
V = (Vw)w∈MK

. Naming as C1 the maximum of the (induced) obtainedMK-constants (also for all
the possible K ′′), we just proved that for every subextension K ′′ of K ′/K, every place w ∈ MK

(above v ∈MK) and any P ∈ X (K)\Vw, the inequality

max
1≤j≤ni

log |φK′′,i,j(P )|w ≤ c1,v (5.3)

is true except for at most mY di�erent indices i ∈ {1, · · · , rK′′}.
Now, let us consider (L, SL) a pair satisfying tubular Runge conditionmY |SL| < rL and denote

L′ = K ′ ∩L again. For P ∈ (X\D)(OL,SL) not belonging to V, by (5.2), (5.3) and tubular Runge
condition, there remains an index i ∈ {1, · · · , rL} (dependent on P ) such that

∀w ∈ML, max
1≤j≤ni

log |φL′,i,j(P )|w ≤ max(c0,v, c1,v) (w|v ∈MK).

This gives immediately a bound on the height of ψL′,i(P ) independent of the choice of pair (L, SL)
(except the fact that L′ = K ′ ∩L) and this morphism is an embedding, hence the �niteness of the
set of points ⋃

(L,SL)

{P ∈ (X\D)(OL,SL) |P /∈ V},

where (L, SL) goes through all the pairs satisfying tubular Runge condition, because [L : Q] is
also bounded by this condition.

(R2)
The proof is the same as for (R1) except that we have to exclude a closed subset of XK′ for

every big divisor involved, and their reunion will be denoted by ZK′ . The arguments above hold
for every point P /∈ ZK′(K) (both for the expression of integrality by auxiliary functions, and for
the conclusion and �niteness outside of this closed subset), using again Propositions 3.4 and 3.1.

6 Reminders on Siegel modular varieties

In this section, we recall the classical constructions and results for the Siegel modular varieties,
parametrising principally polarised abelian varieties with a level structure. Most of those results
are extracted (or easily deduced) from these general references : Chapter V of [CSA86] for the
basic notions on abelian varieties, [Deb99] for the complex tori, their line bundles, theta functions
and moduli spaces, Chapter II of [Mum87] for the classical complex theta functions and [Mum84]
for their links with theta divisors, and Chapter V of [FC90] for abelian schemes and their moduli
spaces.

Unless speci�ed, all the vectors of Zg,Rg and Cg are assumed to be row vectors.

6.1 Abelian varieties and Siegel modular varieties

De�nition 6.1 (Abelian varieties and polarisation).

• An abelian variety A over a �eld k is a projective algebraic group over k. Each abelian
variety A/k has a dual abelian variety denoted by Â = Pic0(A/k) ([CSA86], section V.9).
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• A principal polarisation is an isomorphism λ : A→ Â such that there exists a line bundle L
on Ak with dimH0(Ak, L) = 1 and λ is the morphism

λ : Ak −→ Âk
x 7−→ T ∗xL⊗ L−1

([CSA86], section V.13).

• Given a pair (A, λ), for every n ≥ 1 prime to char(k), we can de�ne the Weil pairing

A[n]×A[n]→ µn(k),

where A[n] is the n-torsion of A(k) and µn the group of n-th roots of unity in k. It is
alternate and nondegenerate ([CSA86], section V.16).

• Given a pair (A, λ), for n ≥ 1 prime to char(k), a symplectic level n structure on A[n] is a
basis αn of A[n] in which the matrix of the Weil pairing is

J =

(
0 Ig
−Ig 0

)
.

• Two triples (A, λ, αn) and (A′, λ′, α′n) of principally polarised abelian varieties over K with
level n-structures are isomorphic if there is an isomorphism of abelian varieties φ : A→ A′

such that φ∗λ′ = λ and φ∗α′n = αn.

In the case of complex abelian varieties, the previous de�nitions can be made more explicit.

De�nition 6.2 (Complex abelian varieties and symplectic group).
Let g ≥ 1.

• The half-superior Siegel space of order g, denoted by Hg, is the set of matrices

Hg := {τ ∈Mg(C) | tτ = τ and Im τ > 0}, (6.1)

where Im τ > 0 means that this symmetric matrix of Mg(R) is positive de�nite. This space
is an open subset of Mg(C).

• For any τ ∈ Hg, we de�ne

Λτ := Zg + Zgτ and Aτ := Cg/Λτ . (6.2)

Let Lτ be the line bundle on Aτ made up as the quotient of Cg × C by the action of Λτ
de�ned by

∀p, q ∈ Zg, (pτ + q) · (z, t) =
(
z + pτ + q, e−iπpτ

tp−2iπptzt
)
. (6.3)

Then, Lτ is an an ample line bundle on Aτ such that dimH0(Aτ , Lτ ) = 1, hence Aτ is a
complex abelian variety and Lτ induces a principal polarisation denoted by λτ on Aτ (see for
example [Deb99], Theorem VI.1.3). We also denote by πτ : Cg → Aτ the quotient morphism.

• For every n ≥ 1, the Weil pairing wτ,n associated to (Aτ , λτ ) on Aτ [n] is de�ned by

wτ,n : Aτ [n]×Aτ [n] −→ µn(C)
(x, y) 7−→ e2iπnwτ (x,y) ,

where x, y ∈ Cg have images x, y by πτ , and wτ is the R-bilinear form on Cg × Cg (so that
wτ (Λτ × Λτ ) = Z) de�ned by

wτ (x, y) := Re(x) · Im(τ)−1 · t Im(y)− Re(y) · Im(τ)−1 · t Im(x)

(also readily checked by making explicit the construction of the Weil pairing).
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• Let (e1, · · · , eg) be the canonical basis of Cg. The family

(πτ (e1/n), · · · , πτ (eg/n), πτ (e1 · τ/n), · · · , πτ (eg · τ/n)) (6.4)

is a symplectic level n structure on (Aτ , λτ ), denoted by ατ,n.

• Let J =

(
0 1
−1 0

)
∈M2g(Z). For any commutative ring A, the symplectic group of order g

over A, denoted by Sp2g(A), is the subgroup of GL2g(A) de�ned by

Sp2g(A) := {M ∈ GL2g(A) | tMJM = J}, J :=

(
0 Ig
−Ig 0

)
. (6.5)

For every n ≥ 1, the symplectic principal subgroup of degree g and level n, denoted by Γg(n),
is the subgroup of Sp2g(Z) made up by the matrices congruent to I2g modulo n. For every

γ =

(
A B
C D

)
∈ Sp2g(R) and every τ ∈ Hg, we de�ne

jγ(τ) = Cτ +D ∈ GLg(C), and γ · τ = (Aτ +B)(Cτ +D)−1, (6.6)

which de�nes a left action by biholomorphisms of Sp2g(R) on Hg, and (γ, τ) 7→ jγ(τ) is a
left cocycle for this action ([Kli90], Proposition I.1).

• For every g ≥ 2, n ≥ 1 and k ≥ 1, a Siegel modular form of degree g, level n and weight k is
an holomorphic function f on Hg such that

∀γ ∈ Γg(n), f(γ · z) = det(jγ(z))kf(z). (6.7)

The reason for this seemingly partial description of the complex abelian varieties is that the
(Aτ , λτ ) described above actually make up all the principally polarised complex abelian varieties
up to isomorphism. The following results can be found in Chapter VI of [Deb99] except the last
point which is straightforward.

De�nition-Proposition 6.3 (Uniformisation of complex abelian varieties).

• Every principally polarised complex abelian variety of dimension g with symplectic structure
of level n is isomorphic to some triple (Aτ , λτ , ατ,n) where τ ∈ Hg.

• For every n ≥ 1, two triples (Aτ , λτ , ατ,n) and (Aτ ′ , λτ ′ , ατ ′,n) are isomorphic if and only if
there exists γ ∈ Γg(n) such that γ · τ = τ ′, and then such an isomorphism is given by

Aτ −→ Aτ ′

z mod Λτ 7−→ z · jγ(τ)−1 mod Λτ ′
.

• The Siegel modular variety of degree g and level n is the quotient Ag(n)C := Γg(n)\Hg. From
the previous result, it is the moduli space of principally polarised complex abelian varieties
of dimension g with a symplectic level n structure. As a quotient, it also inherits a structure
of normal analytic space (with �nite quotient singularities) of dimension g(g+ 1)/2, because
Γg(n) acts properly discontinuously on Hg.

• For every positive divisor m of n, the natural morphism Ag(n)C → Ag(m)C induced by the
identity of Hg corresponds in terms of moduli to multiplying the symplectic basis ατ,n by
n/m, thus obtaining ατ,m.

• For every g ≥ 1 and n ≥ 1, the quotient of Hg × C by the action of Γg(n) de�ned as

γ · (τ, t) = (γ · τ, t/ det(jγ(z))) (6.8)

is a variety over Hg denoted by L. For a large enough power of k (or if n ≥ 3), L⊗k is a line
bundle over Ag(n)C, hence L is a Q-line bundle over Ag(n)C called line bundle of modular
forms of weight one over Ag(n)C. By de�nition (6.7), for every k ≥ 1, the global sections of
L⊗k are the Siegel modular forms of degree g, level n and weight k.
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Let us now present the compacti�cation of Ag(n)C we will use, that is the Satake compacti�-
cation (for a complete description of it, see section 3 of [Nam80]).

De�nition-Proposition 6.4 (Satake compacti�cation).
Let g ≥ 1 and n ≥ 1. The normal analytic space Ag(n)C admits a compacti�cation called

Satake compacti�cation and denoted by Ag(n)SC, satisfying the following properties.
(a) Ag(n)SC is a compact normal analytic space (of dimension g(g + 1)/2, with �nite quotient

singularities) containing Ag(n)C as an open subset and the boundary ∂Ag(n)C := Ag(n)SC\Ag(n)C
is of codimension g (see [CS57] for details).

(b) As a normal analytic space, Ag(n)SC is a projective algebraic variety. More precisely, for
Mg(n) the graded ring of Siegel modular forms of degree g and level n, Ag(n)SC is canonically
isomorphic to ProjCMg(n) ([Car57], �théorème fondamental�).

In particular, one can obtain naturally Ag(n)SC by �xing for some large enough weight k a
basis of modular forms of Mg(n) of weight k and evaluating them all on Ag(n)C to embed it in a
projective space, so that Ag(n)SC is the closure of the image of the embedding in this projective
space.

(c) The Q-line bundle L of modular forms of weight 1 on Ag(n)C extends naturally to Ag(n)SC
(and is renoted L), to an ample Q-line bundle (this is a direct consequence of (b)).

6.2 Further properties of Siegel modular varieties

As we are interested in the reduction of abelian varieties on number �elds, one needs to have a
good model of Ag(n)C over integer rings, as well as some knowledge of the geometry of Ag(n)C.
The integral models below and their properties are given in Chapter V of [FC90].

De�nition 6.5 (Abelian schemes).
(a) An abelian scheme A→ S is a smooth proper group scheme whose �bers are geometrically

connected. It also has a natural dual abelian scheme Â = Pic0(A/S), and it is principally polarised

if it is endowed with an isomorphism λ : A → Â such that at every geometric point s of S, the
induced isomorphism λs : As → Âs is a principal polarisation of As.

(b) A symplectic structure of level n ≥ 1 on a principally polarised abelian scheme (A, λ) over
a Z[ζn, 1/n]-scheme S is the datum of an isomorphism of group schemes A[n]→ (Z/nZ)2g, which
is symplectic with respect to λ and the canonical pairing on (Z/nZ)2g given by the matrix J (as
in (6.5)).

De�nition-Proposition 6.6 (Algebraic moduli spaces).
For every integers g ≥ 1 and n ≥ 1 :
(a) The Satake compacti�cation Ag(n)SC has an integral model Ag(n)S on Z[ζn, 1/n] which

contains as a dense open subscheme the (coarse, if n ≤ 2) moduli space Ag(n) on Z[ζn, 1/n] of
principally polarised abelian schemes of dimension g with a symplectic structure of level n. This
scheme Ag(n)S is normal, proper and of �nite type on Z[ζn, 1/n] ([FC90], Theorem V.2.5).

(b) For every divisor m of n, we have canonical degeneracy morphisms Ag(n)S → Ag(m)S

extending the morphisms of De�nition 6.3.

Before tackling our own problem, let us give some context on the divisors on Ag(n)SC to give a
taste of the di�culties to overcome.

De�nition 6.7 (Rational Picard group).
For every normal algebraic variety X on a �eld K, the rational Picard group of X is the

Q-vector space
Pic(X)Q := Pic(X)⊗Z Q.

Proposition 6.8 (Rational Picard groups of Siegel modular varieties).
Let g ≥ 2 and n ≥ 1.
(a) Every Weil divisor on Ag(n)C or Ag(n)SC is up to some multiple a Cartier divisor, hence

their rational Picard group is also their Weil class divisor group tensored by Q.
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(b) For g = 3, the Picard rational groups of A3(n)SC and A3(n)C are equal to Q · L for every
n ≥ 1.

(c) For g = 2, one has PicQ(A2(1)SC) = Q · L.

This result has the following immediate corollary, because L is ample on Ag(n)SC for every
g ≥ 2 and every n ≥ 1 (De�nition-Proposition 6.4 (c)).

Corollary 6.9 (Ample and big divisors on Siegel modular varieties).
A Q-divisor on Ag(n)C or Ag(n)SC with g = 3 (or g = 2 and n = 1) is ample if and only if it

is big if and only if it is equivalent to a · L with a > 0.

Remark 6.10. We did not mention the case of modular curves (also di�cult, but treated by di�erent
methods): the point here is that the cases g ≥ 3 are surprisingly much more uniform because then
Pic(Ag(n)SC) = Pic(Ag(1)SC). The reason is that some rigidity appears from g ≥ 3 (essentially by
the general arguments of [Bor81]), whereas for g = 2, the situation seems very complex already
for the small levels (see for example n = 3 in [HW00]).

This is why the ampleness (or bigness) is in general hard to �gure out for given divisors of
A2(n), n > 1. We consider speci�c divisors in the following (namely, divisors of zeroes of theta
functions), whose ampleness will not be hard to prove.

Proof of Proposition 6.8.
(a) This is true for the Ag(n)SC by [ABMMOG14] as they only have �nite quotient singularities,

(this result actually seems to have been generally assumed a long time ago). Now, as ∂Ag(n)SC is
of codimension at least 2, the two varieties Ag(n)SC and Ag(n)C have the same Weil and Cartier
divisors, hence the same rational Picard groups.

(b) This is a consequence of general results of [Bor81] further re�ned in [Wei92] (it can even
be generalised to every g ≥ 3).

(c) This comes from the computations of section III.9 of [Mum83] (for another compacti�-
cation, called toroidal), from which we extract the result for A2(1)C by a classical restriction
theorem ([Har77], Proposition II.6.5) because the boundary for this compacti�cation is irreducible
of codimension 1. The result for A2(1)SC is then the same because the boundary is of codimension
2.

6.3 Theta divisors on abelian varieties and moduli spaces

We will now de�ne the useful notions for our integral points problem.

De�nition 6.11 (Theta divisor on an abelian variety).
Let k be an algebraically closed �eld and A an abelian variety over k.
Let L be an ample symmetric line bundle on A inducing a principal polarisation λ on A. A theta

function associated to (A,L) is a nonzero global section ϑA,L of L. The theta divisor associated
to (A,L), denoted by ΘA,L, is the divisor of zeroes of ϑA,L, well-de�ned and independent of our
choice because dimH0(A,L) = deg(λ)2 = 1.

The theta divisor is in fact determined by the polarisation λ itself, up to a �nite ambiguity we
make clear below.

Proposition 6.12.

Let k be an algebraically closed �eld and A an abelian variety over k.
Two ample symmetric line bundles L and L′ on A inducing a principal polarisation induce the

same one if and only if L′ ∼= T ∗xL for some x ∈ A|2], and then

ΘA,L′ = ΘA,L + x.

Proof. For any line bundle L on A, let us de�ne

λL : A −→ Â = Pic0(A)
x 7−→ T ∗xL⊗ L−1 .
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This is a group morphism and the application L 7→ λL is additive from Pic(A) to Hom(A, Â),
with kernel Pic0(A) ([Mum86], Chapter II, Corollary 4 and what follows, along with section II.8).
Moreover, when L is ample, the morphism λL is the polarisation associated to L, in particular
surjective. Now, for every x ∈ A(k), if L′ ∼= T ∗xL, then L′ ⊗ L−1 belongs to Pic0(A), therefore
λL′ = λL. Conversely, if λL′ = λL, one has L

′⊗L−1 ∈ Pic0(A), hence if L is ample, by surjectivity,
one has x ∈ A(k) such that L′ ∼= T ∗xL. Finally, if L and L′ are symmetric, having [−1]∗L ∼= L and
[−1]∗L′ ∼= L′, we obtain T ∗−xL

∼= T ∗xL but as λL is an isomorphism, this implies [2] · x = 0, hence
x ∈ A[2].

Therefore, for ϑA,L a nonzero section of L, T ∗xϑA,L can be identi�ed to a nonzero section of L,
hence

ΘA,L′ = ΘA,L − x = ΘA,L + x.

When char(k) 6= 2, adding to a principally polarised abelian variety (A, λ) of dimension g
the datum α2 of a symplectic structure of level 2, we can determine an unique ample symmetric
line bundle L with the following process called Igusa correspondence, devised in [Igu67]. To any
ample symmetric Weil divisor D de�ning a principal polarisation, one can associate bijectively
a quadratic form qD from A[2] to {±1} called even, which means that the sum of its values
on A[2] is 2g ([Igu67], Theorem 2 and the previous arguments). On another side, the datum
α2 also determines an even quadratic form qα2

, by associating to a x ∈ A[2] with coordinates
(a, b) ∈ (Z/2Z)2g in the basis α2 of A[2] the value

qα2(x) = (−1)a
tb. (6.9)

We now only have to choose the unique ample symmetric divisor D such that qD = qα2 and the
line bundle L associated to D.

By construction of this correspondence ([Igu67], p. 823), a point x ∈ A[2] of coordinates
(a, b) ∈ (Z/2Z)2g in α2 automatically belongs to ΘA,L (with L associated to (A, λ, α2)) if atb = 1
mod 2. A point of A[2] with coordinates (a, b) such that atb = 0 mod 2 can also belong to ΘA,L

but with even multiplicity.
This allows us to get rid of the ambiguity of choice of an ample symmetric L in the following, as

soon as we have a symplectic level 2 structure (or �ner) ( this result is a reformulation of Theorem
2 of [Igu67]).

De�nition-Proposition 6.13 (Theta divisor canonically associated to a symplectic even level
structure).

Let n ≥ 2 even and k algebraically closed such that char(k) does not divide n.
For (A, λ, αn) a principally polarised abelian variety of dimension g with symplectic structure

of level n (De�nition 6.2), there is up to isomorphism an unique ample symmetric line bundle L
inducing λ and associated by Igusa correspondence to the symplectic basis of A[2] induced by αn.
The theta divisor associated to (A, λ, αn), denoted by ΘA,λ,αn , is then the theta divisor associated
to (A,L), .

The Runge-type theorem we give in section 7 (Theorem 3) focuses on principally polarised
abelian surfaces (A, λ) on a number �eld K whose theta divisor does not contain any n-torsion
point of A (except 2-torsion points, as we will see it is automatic). This will imply (Proposition
7.5) that A is not a product of elliptic curves, but this is not a su�cient condition, as pointed out
for example in [BG00].

We will once again start with the complex case to �gure out how such a condition can be
formulated on the moduli spaces, using complex theta functions ([Mum87], Chapter II).

De�nition-Proposition 6.14 (Complex theta functions).
Let g ≥ 1.
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The holomorphic function Θ on Cg ×Hg is de�ned by the series (convergent on any compact
subset)

Θ(z, τ) =
∑
n∈Zg

eiπnτ
tn+2iπntz. (6.10)

For any a, b ∈ Rg, we also de�ne the holomorphic function Θa,b by

Θa,b(z, τ) =
∑
n∈Zg

eiπ(n+a)τt(n+a)+2iπ(n+a)t(z+b). (6.11)

For a �xed τ ∈ Hg, one de�nes Θτ : z 7→ Θ(z, τ) and similarly for Θa,b,τ . These functions have
the following properties.

(a) For every a, b ∈ Zg,

Θa,b,τ (z) = eiπaτ
ta+2iπat(z+b)Θτ (z + aτ + b). (6.12)

(b) For every p, q ∈ Zg,

Θa,b,τ (z + pτ + q) = e−iπpτ
tp−2iπptz+2iπ(atq−btp)Θa,b,τ (z). (6.13)

(c) Let us denote by ϑ and ϑa,b the normalised theta-constants, which are the holomorphic
functions on Hg de�ned by

ϑ(τ) := Θ(0, τ) and ϑa,b(τ) := e−iπa
tbΘa,b(0, τ). (6.14)

These theta functions satisfy the following modularity property : with the notations of De�ni-
tion 6.2,

∀γ ∈ Γg(2), ϑa,b(γ · τ) = ζ8(γ)eiπ(a,b)tVγ
√
jγ(τ)ϑ(a,b)γ(τ), (6.15)

where ζ8(γ) (a 8-th root of unity) and Vγ ∈ Zg only depend on γ and the determination of the
square root of jγ(τ).

In particular, for every even n ≥ 2, if (na, nb) ∈ Z2g, the function ϑ8n
a,b is a Siegel modular form

of degree g, level n and weight 4n, which only depends on (a, b) mod Z2g.

Proof. The convergence of these series as well as their functional equations (6.12) and (6.13) are
classical and can be found in section II.1 of [Mum87].

The modularity property (6.15) (also classical) is a particular case of the computations of
section II.5 of [Mum87] (we do not need here the general formula for γ ∈ Sp2g(Z)).

Finally, by natural computations of the series de�ning Θa,b, one readily obtains that

ϑa+p,b+q = e2iπ(atq−btp)ϑa,b.

Therefore, if (na, nb) ∈ Z2g, the function ϑna,b only depends on (a, b) mod Z2g. Now, putting the
modularity formula (6.15) to the power 8n, one eliminates the eight root of unity and if γ ∈ Γg(n),
one has (a, b)γ = (a, b) mod Zg hence ϑ8n

a,b is a Siegel modular form of weight 4n for Γg(n).

There is of course an explicit link between the theta functions and the notion of theta divisor,
which we explain now with the notations of De�nition 6.2.

Proposition 6.15 (Theta divisor and theta functions).
Let τ ∈ Hg.
The line bundle Lτ is ample and symmetric on Aτ , and de�nes a principal polarisation on Aτ .

It is also the line bundle canonically associated to the 2-structure ατ,2 and its polarisation by Igusa
correspondence (De�nition-Proposition 6.13).

Furthermore, the global sections of Lτ canonically identify to the multiples of Θτ , hence the
theta divisor associated to (Aτ , λτ , ατ,2) is exactly the divisor of zeroes of Θτ modulo Λτ .

Thus, for every a, b ∈ Rg, the projection of πτ (aτ + b) belongs to ΘAτ ,λτ ,ατ,2 if and only if
ϑa,b(τ) = 0.
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Remark 6.16. The proof below that the Lτ is the line bundle associated to (Aτ , λτ , ατ,2) is a bit
technical, but one has to suspect that Igusa normalised its correspondence by (6.9) exactly to
make it work.

Proof. One can easily see that Lτ is symmetric by writing [−1]∗Lτ as a quotient of Cg × C by
an action of Λτ , then �guring out it is the same as (6.3). Then, by simple connexity, the global
sections of Lτ lift by the quotient morphism Cg × C → Lτ into functions z 7→ (z, f(z)), and
the holomorphic functions f thus obtained are exactly the functions satisfying functional equation
(6.13) for a = b = 0 because of (6.3), hence the same functional equation as Θτ . This identi�cation
is also compatible with the associated divisors, hence ΘAτ ,Lτ is the divisor of zeroes of Θτ modulo
Λτ . For more details on the theta functions and line bundles, see ([Deb99], Chapters IV,V and
section VI.2).

We now have to check that Igusa correspondence indeed associates Lτ to (Aτ , λτ , ατ,2). With
the notations of the construction of this correspondence ([Igu67], pp.822, 823 and 833), one sees
that the meromorphic function ψx on Aτ (depending on Lτ ) associated to x ∈ Aτ [2] has divisor
[2]∗T ∗xΘAτ ,Lτ − [2]∗ΘAτ ,Lτ , hence it is (up to a constant) the meromorphic function induced on
Aτ by

fx(z) =
Θa,b,τ (2z)

Θτ (2z)
where x = aτ + b mod Λτ .

Now, the quadratic form q associated to Lτ is de�ned by the identity

fx(−z) = q(x)fx(z)

for every z ∈ Cg, but Θτ is even hence

fx(−z) = e4iπatbfx(z)

by formula (6.12). Now, the coordinates of x in ατ,2 are exactly (2b, 2a) mod Z2g by de�nition,
hence q = qατ,2 .

Let us �nally make the explicit link between zeroes of theta-constants and theta divisors : using
the argument above, the divisor of zeroes of Θτ modulo Λτ is exactly ΘAτ ,Lτ , hence ΘAτ ,λτ ,ατ,2 by
what we just proved for the Igusa correspondence. This implies that for every z ∈ Cg, Θτ (z) = 0
if and only if πτ (z) belongs to ΘAτ ,λτ ,ατ,2 , and as ϑa,b(τ) is a nonzero multiple of Θ(aτ + b, τ), we
�nally have that ϑa,b(τ) = 0 if and only if πτ (aτ + b) belongs to ΘAτ ,λτ ,ατ,2 .

7 Applications of the main result on a family of Siegel mod-

ular varieties

We now have almost enough de�nitions to state the problem which we will consider for our Runge-
type result (Theorem 3). We consider theta divisors on abelian surfaces, and their torsion points.

7.1 The speci�c situation for theta divisors on abelian surfaces

As an introduction and a preliminary result, let us treat �rst the case of theta divisors on elliptic
curves.

Lemma 7.1 (Theta divisor on an elliptic curve).
Let E be an elliptic curve on an algebraically closed �eld k with char(k) 6= 2 and L an ample

symmetric line bundle de�ning the principal polarisation on E.
The e�ective divisor ΘE,L is a 2-torsion point of E with multiplicity one. More precisely, if

(e1, e2) is the basis of E[2] associated by Igusa correspondence to L (De�nition-Proposition 6.13),

ΘE,L = [e1 + e2]. (7.1)
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Remark 7.2. In the complex case, this can simply be obtained by proving that Θ1/2,1/2,τ is odd
for every τ ∈ H1 hence cancels at 0, and has no other zeroes (by a residue theorem for example),
then using Proposition 6.15.

Proof. By Riemann-Roch theorem on E, the divisor ΘE,L is of degree 1 because h0(E,L) = 1 (and
e�ective). Now, as explained before when discussing Igusa correspondence, for a, b ∈ Z, ae1 + be2

automatically belongs to ΘE,L if ab = 1 mod 2Z, hence ΘE,L = [e1 + e2].

This allows to use to describe the theta divisor of a product of two elliptic curves.

Proposition 7.3 (Theta divisor on a product of two elliptic curves).
Let k be an algebraically closed �eld with char(k) 6= 2.
Let (A,L) with A = E1 ×E2 a product of elliptic curves on k and L an ample symmetric line

bundle on A inducing the product principal polarisation on A. The divisor ΘA,L is then of the
shape

ΘA,L = {x1} × E2 + E1 × {x2}, (7.2)

with xi ∈ Ei[2] for i = 1, 2. In particular, this divisor has a (unique) singular point of multiplicity
two at (x1, x2), and :

(a) There are exactly seven 2-torsion points of A belonging to ΘA,L: the six points given by
the coordinates (a, b) ∈ (Z/2Z)4 such that atb = 1 in a basis giving ΘA,L by Igusa correspondence,
and the seventh point (x1, x2).

(b) For every even n ≥ 2 which is nonzero in k, the number of n-torsion (but not 2-torsion)
points of A belonging to ΘA,L is exactly 2(n2 − 4).

Proof. By construction of (A,L), a global section of (A,L) corresponds to a tensor product of
global sections of E1 and E2 (with their principal polarisations), hence the shape of ΘA,L is a
consequence of Lemma 7.1.

We readily deduce (a) and (b) from this shape, using that the intersection of the two components
of ΘA,L is a 2-torsion point of even multiplicity for the quadratic form hence di�erent from the
six other ones.

To explain the result for abelian surfaces which are not products of elliptic curves, we recall
below a fundamental result.

Proposition 7.4 (Shapes of principally polarised abelian surfaces).
Let k be any �eld.
A principally polarised abelian surface (A, λ) on k is, after a �nite extension of scalars, either

the product of two elliptic curves (with its natural product polarisation), or the jacobian J of an
hyperelliptic curve C of genus 2 (with its canonical principal polarisation). In the second case, for
the Albanese embedding φx : C → J with base-point x and an ample symmetric line bundle L on
K inducing λ, the divisor ΘJ,L is irreducible, and it is actually a translation of φx(C) by some
point of J(k).

Proof. This proposition (together with the dimension 3 case, for the curious reader) is the main
topic of [OU73] (remarkably, its proof starts with the complex case and geometric arguments
before using scheme and descent techniques to extend it to all �elds).

Let us now �x an algebraically closed �eld k with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2, and ι its hyperelliptic involution. This curve has

exactly six Weierstrass points (the �xed points of ι, by de�nition), and we �x one of them, denoted
by ∞. For the Albanese morphism φ∞, the divisor φ∞(C) is stable by [−1] because the divisor
[x] + [ι(x)] − 2[∞] is principal for every x ∈ C. As ΘJ,L is also symmetric and a translation of
φ∞(C), we know that ΘJ,L = T ∗x (φ∞(C)) for some x ∈ J [2].

This tells us that understanding the points of ΘJ,L amounts to understanding how the curve
C behaves when embedded in its jacobian (in particular, how its points add). It is a di�cult
problem to know which torsion points of J belong to the theta divisor (see [BG00] for example),
but we will only need to bound their quantity here, with the following result.
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Proposition 7.5.

Let k an algebraically closed �eld with char(k) 6= 2.
Let C be an hyperelliptic curve of genus 2 on k with jacobian J , and ∞ a �xed Weierstrass

point of C. We denote by C̃ the image of C in J by the associated embedding φ∞ : x 7→ [x]− [∞].

(a) The set C̃ is stable by [−1], and the application

Sym2(C̃) −→ J
{P,Q} 7−→ P +Q

is injective outside the �ber above 0.
(b) There are exactly six 2-torsion points of J belonging to C̃, and they are equivalently the

images of the Weierstrass points and the points of coordinates (a, b) ∈ ((Z/2Z)2)2 such that atb = 1

in a basis giving C̃ by Igusa correspondence.
(c) For any even n ≥ 2 which is nonzero in k, the number of n-torsion points of J belonging

to C̃ is bounded by
√

2n2 + 1
2 .

Remark 7.6. This proposition is not exactly a new result, and its principle can be found (with
slightly di�erent formulations) in Theorem 1.3 of [BG00] or in Lemma 5.1 of [Paz13]. For the
latter, it is presented as a consequence on Abel-Jacobi theorem on C, and we will here give a more
detailed proof, which is also readily valid on any �eld. The problem of counting (or bounding)
torsion points on the theta divisor has interested many people, e.g. [BG00] and very recently
[APM16] in general dimension. Notice that the results above give the expected bound in the case
g = 2, but we do not know how much we can lower the bound

√
2n2 in the case of jacobians.

Proof. As [∞] is a Weierstrass point, the divisor 2[∞] is canonical. Conversely, if a degree two
divisor D satis�es `(D) := dimH0(C,OC(D)) ≥ 2, then it is canonical. Indeed, by Riemann-Roch
theorem, this implies that `(2[∞]−D) ≥ 1 but this divisor is of degree 0, hence it is principal and
D is canonical. Now, let x, y, z, t be four points of C such that φ∞(x) + φ∞(y) = φ∞(z) + φ∞(t)
in J . This implies that [x] + [y] − [z] − [t] is the divisor of some function f , and then either f is
constant (i.e. {x, y} = {z, t}), either `([z] + [t]) ≥ 2 hence [z] + [t] is canonical by the argument

above, and in this case the points P = φ∞(z) and Q = φ∞(t) = 0 of C̃ satisfy P + Q = 0 in J ,
which proves (a).

Now, for n ≥ 2 even, let us denote C̃[n] := C̃ ∩ J [n]. The summing map from C̃[n]2 to J [n]

has a �ber of cardinal |C̃[n]| above 0 and at most 2 above any other point of J [n] by (a), hence
the inequality of degree two

|C̃[n]|2 ≤ |C̃[n]|+ 2(n4 − 1),

from which we directly obtain (c). In the case n = 2, it is enough to see that 2φ∞(x) = 0 if and
only if 2[x] is canonical if and only if x is a Weierstrass divisor, which gives (b).

We can now de�ne the divisors we will consider for our Runge-type theorem, with the following
notation.

Convention

Until the end of this article, the expression �a couple (a, b) ∈ (Z/nZ)4 (resp. Z4,Q4 )� is a
shorthand to designate the row vector with four coe�cients where a ∈ (Z/nZ)2 (resp. Z2, Q2 )
make up the �rst two coe�cients and b the last two coe�cients.

De�nition-Proposition 7.7 (Theta divisors on A2(n)SC).
Let n ∈ N≥2 even.
(a) A couple (a, b) ∈ (Z/nZ)4 is called regular if it is not of the shape ((n/2)a′, (n/2)b′) with

(a′, b′) ∈ ((Z/2Z)2)2 such that a′tb′ = 1 mod 2. There are exactly 6 couples (a, b) not satisfying
this condition, which we call singular.

(b) If (a, b) ∈ (Z/nZ)4 is regular, for every lift (ã, b̃) ∈ Z4 of (a, b), the function ϑ8n
ã/n,̃b/n

is a

nonzero Siegel modular form of degree 2, weight 4n and level n, independent of the choice of lifts.
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The theta divisor associated to (a, b), denoted by (Dn,a,b)C, is the Weil divisor of zeroes of this
Siegel modular form on A2(n)SC.

(c) For (a, b) and (a′, b′) regular couples in (Z/nZ)4, the Weil divisors (Dn,a,b)C and (Dn,a′,b′)C
are equal if and only if (a, b) = ±(a′, b′). Hence, the set of regular couples de�nes exactly n4/2 + 2
pairwise distinct Weil divisors.

Remark 7.8. The singular couples correspond to what are called odd characteristics by Igusa. The
proof below uses Fourier expansions to �gure out which theta functions are nontrivial or propor-
tional, but we conjecture the stronger result that (Dn,a,b)C and (Dn,a′,b′)C are set-theoretically
distinct (i.e. even without counting the multiplicities) unless (a, b) = ±(a′, b′). Such a result seems
natural as the image of a curve into its jacobian should generically not have any other symmetry
than [−1], but we could not obtain it by looking at the simpler case (in A2(n)SC) of the products
of elliptic curves: if (a, b) and (a′, b′) are both multiples of a primitive vector v ∈ (1/n)Z4, it
is tedious but straighforward to see that the theta constants ϑa,b and ϑa′,b′ vanish on the same
products of elliptic curves. Hence, to prove that the reduced divisors of (Dn,a,b)C and (Dn,a′,b′)C
are distinct unless (a, b) = ±(a′, b′), one needs to exhibit a curve C whose jacobian isomorphic to
Aτ contains πτ (aτ + b) but not πτ (a′τ + b′) in its theta divisor.

Notice that this will not be a problem for us later because all our arguments for Runge are set-
theoretic, and Proposition 7.3 and 7.5 are not modi�ed if some of the divisors taken into account
are equal.

Proof of De�nition-Proposition 7.7. (a) By construction, for any even n ≥ 2, the number of sin-
gular couples (a, b) ∈ (Z/nZ)4 is the number of couples (a′, b′) ∈ (Z/2Z)4 such that a′tb′ = 1
mod 2, and we readily see there are exactly six of them, namely

(0101), (1010), (1101), (1110), (1011) and (0111).

For (b) and (c), the modularity of the function comes from De�nition-Proposition 6.14 (c) hence
we only have to prove that it is nonzero when (a, b) is regular. To do this, we will use the Fourier
expansion of this modular form (for more details on Fourier expansions of Siegel modular forms,
see chapter 4 of [Kli90]), and simply prove that it has nonzero coe�cients. This is also how we
will prove the ϑa,b are distinct.

To shorten the notations, given an initial couple (a, b) ∈ (Z/nZ)4, we consider instead (ã/n, b̃/n) ∈
Q4 for some lift (ã, b̃) of (a, b) in Z4) and by abuse of notation we renote it (a, b) for simplicity.
Regularity of the couple translates into the fact that (a, b) is di�erent from six possibles values
modulo Z4, namely(
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2
0

1

2

)
,

(
1

2
0

1

2
0

)
,

(
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2

1

2
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2
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,
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2
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2
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2

1

2

1

2

)
by (a), which we will assume now. We also �x n ∈ N even such that (na, nb) ∈ Z4.

Recall that
ϑa,b(τ) = eiπa

tb
∑
k∈Z2

eiπ(k+a)τt(k+a)+2iπktb (7.3)

by (6.12) and (6.14). Therefore, for any symmetric matrix S ∈ M2(Z) such that S/(2n2) is
half-integral (i.e. with integer coe�cients on the diagonal, and half-integers otherwise), we have

∀τ ∈ H2, ϑa,b(τ + S) = ϑa,b(τ),

because for every k ∈ Z2,
(k + a)St(k + a) ∈ 2Z.

Hence, the function ϑa,b admits a Fourier expansion of the form

ϑa,b(τ) =
∑
T

aT e
2iπTr(Tτ),
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where T runs through all the matrices of S2(Q) such that (2n2)T is half-integral. This Fourier
expansion is unique, because for any τ ∈ H2 and any T , we have

(2n2)aT =

∫
[0,1]4

ϑa,b(τ + x)e−2iπTr(T (τ+x))dx.

In particular, the function ϑa,b is zero if and only if all its Fourier coe�cients aT are zero, hence
we will directly compute those, which are almost directly given by (7.3). For a = (a1, a2) ∈ Q2

and k = (k1, k2) ∈ Z2, let us de�ne

Ta,k =

(
(k1 + a1)2 (k1 + a1)(k2 + a2)

(k1 + a1)(k2 + a2) (k2 + a2)2

)
,

so that
ϑa,b(τ) = eiπa

tb
∑
k∈Z2

e2iπktbeiπTr(Ta,kτ) (7.4)

by construction. It is not yet exactly the Fourier expansion, because we have to gather the Ta,k
giving the same matrix T (and this is where we will use regularity). Clearly,

Ta,k = Ta′,k′ ⇐⇒ (k + a) = ±(k′ + a′).

If 2a /∈ Z2, the function k 7→ Ta,k is injective, so (7.4) is the Fourier expansion of ϑa,b, with clearly
nonzero coe�cients, hence ϑa,b is nonzero.

If 2a = A ∈ Z2, for every k, k′ ∈ Z2, we have (k + a) = ±(k′ + a) if and only if k = k′ or
k + k′ = A, so the Fourier expansion of ϑa,b is

ϑa,b(τ) =
eiπa

tb

2

∑
T

∑
k,k′∈Z2

Tk,a=Tk′,a=T

(e2iπktb + e2iπ(−A−k)tb)eiπTr(Tτ). (7.5)

Therefore, the coe�cients of this Fourier expansion are all zero if and only if, for every k ∈ Z2,

e2iπ(2k+A)tb = −1,

i.e. if and only if b ∈ (1/2)Z and (−1)4atb = −1, and this is exactly singularity of the couple (a, b)
which proves (b).

Now, let (a, b) and (a′, b′) in (1/n)Z4 regular couples (translated in Q4 as above), such that
(na, nb) and (na′, nb′) modulo Z4 have the same associated theta divisor on A2(n)SC. Then, the
function

ϑ8n
a,b

ϑ8n
a′,b′

induces a meromorphic function on A2(n)SC whose divisor is 0 hence a constant function, which
implies that ϑa,b = λϑa′,b′ for some λ ∈ C∗. As these functions depend (up to a constant) only
on (a, b) and (a′, b′) mod Z4, one can assume that all the coe�cients of (a, b) and (a′, b′) belong
to [−1/2, 1/2[, and we assume �rst that a, a′ /∈ (1/2)Z2. Looking at the Fourier expansions (7.4)
gives that for every k ∈ Z2,

eiπa
tb+2iπktb = λeiπa

′tb′+2iπktb′ .

Hence, we have b = b′ mod Z2 which in turns give a = a′ mod Z2 The same argument when a
or a′ belongs to (1/2)Z2 gives by (7.5) the possibilities b = −b′ and a = −a′ mod Z4.

Hence, we proved that if ϑa,b and ϑa′,b′ are proportional, then (a, b) = ±(a′, b′) mod Z4,and
the converse is straightforward.

These divisors have the following properties.
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Proposition 7.9 (Properties of the (Dn,a,b)C).
Let n ∈ N≥2 even.
(a) For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is ample.
(b) For n = 2, the ten divisors (D2,a,b)C are set-theoretically pairwise disjoint outside the

boundary ∂A2(2)C := A2(2)SC\A2(2)C, and their union is exactly the set of moduli of products of
elliptic curves (with any symplectic basis of the 2-torsion).

(c) For (A, λ, αn) a principally polarised complex abelian surface with symplectic structure of
level n :

� If (A, λ) is a product of elliptic curves, the moduli of (A, λ, αn) belongs to exactly n2 − 3
divisors (Dn,a,b)C.

� Otherwise, the point (A, λ, αn) belongs to at most (
√

2/2)n2 + 1/4 divisors (Dn,a,b)C.

Proof.
(a) The divisor (Dn,a,b)C is by de�nition the Weil divisor of zeroes of a Siegel modular form of

order 2, weight 4n and level n, hence of a section of L⊗4n on A2(n)SC. As L is ample on A2(n)SC
(De�nition-Proposition 6.4 (c)), the divisor (Dn,a,b)C is ample.

Now, we know that every complex pair (A, λ) is isomorphic to some (Aτ , λτ ) with τ ∈ H2

(De�nition-Proposition 6.3). If (A, λ) is a product of elliptic curves, the theta divisor of (A, λ, α2)
contains exactly seven 2-torsion points (Proposition 7.3), only one of comes from a regular pair,
i.e. (A, λ, α2) is contained in exactly one of the ten divisors. If (A, λ) is not a product of elliptic
curves, it is a jacobian (Proposition 7.4) and the theta divisor of (A, λ, α2) only contains the six
points coming from singular pairs (Proposition 7.5) i.e. (A, λ, α2) does not belong to any of the
ten divisors, which proves (b).

To prove (c), we use the same propositions for general n, keeping in mind that we only count
as one the divisors coming from opposite values of (a, b) : for products of elliptic curves, this
gives (2n2 − 16)/2 + 7 divisors (the 7 coming from the 2-torsion), and for jacobians, this gives
(
√

2/2)n2 + 1/4 (there are no nontrivial 2-torsion points to consider here).

We will now give the natural divisors extending (Dn,a,b)C on the integral models A2(n)
(De�nition-Proposition 6.6).

De�nition 7.10.

Let n ∈ N≥2 even.
For every regular (a, b) ∈ (Z/nZ)4, the divisor (Dn,a,b)C is the geometric �ber at C of an

e�ective Weil divisor Dn,a,b on A2(n), such that the moduli of a triple (A, λ, αn) (on a �eld k of
characteristic prime to n) belongs to Dn,a,b(k) if and only if the point of A[n](k) of coordinates
(a, b) for αn belongs to the theta divisor ΘA,λ,αn (De�nition-Proposition 6.13).

Proof.
This amounts to giving an algebraic construction of the Dn,a,b satisfying the wanted properties.

The following arguments are extracted from Remark I.5.2 of [FC90]. Let π : A → S an abelian
scheme and L a symmetric invertible sheaf on A, relatively ample on S and inducing a principal
polarisation on A. If s : S → A is a section of A on S, the evaluation at s induces an OS-module
isomorphism between π∗L and s∗L. Now, if s is of n-torsion in A, for e : S → A the zero section,
the sheaf (s∗L)⊗2n is isomorphic to (e∗L)⊗2n, i.e. trivial. We denote by ωA/S the invertible
sheaf on S obtained as the determinant of the sheaf of invariant di�erential forms on A, and the
computations of Theorem I.5.1 and Remark I.5.2 of [FC90] give 8π∗L = −4ωA/S in Pic(A/S).
Consequenltly, the evaluation at s de�nes (after a choice of trivialisation of (e∗L)⊗2n and putting
to the power 8n) a section of ω⊗4n

A/S . Applying this result on the universal abelian scheme (stack if

n ≤ 2) X2(n) on A2(n) , for every (a, b) ∈ (Z/nZ)4, the section de�ned by the point of coordinate
(a, b) for the n-structure on X2(n) induces a global section sa,b of ω⊗4n

X2(n)/A2(n), and we de�ne

Dn,a,b as the Weil divisor of zeroes of this section. It remains to check that it satis�es the good
properties.
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Let (A, λ, αn) be a triple over a �eld k of characteristic prime to n, and L the ample line bundle
associated to it by De�nition-Proposition 6.13. By construction, its moduli belongs to Dn,a,b if
and only if the unique (up to constant) nonzero section vanishes at the point of A[n] of coordinates
(a, b) in αn, hence if and only if this point belongs to ΘA,λ,αn .

Finally, we see that the process described above applied to the universal abelian variety X2(n)C
of A2(n)C (by means of explicit description of the line bundles as quotients) gives (up to invertible
holomorphic functions) the functions ϑ8n

ã/n,̃b/n
, which proves that (Dn,a,b)C is indeed the geometric

�ber of Dn,a,b (it is easier to see that their complex points are the same, by Proposition 7.9 (c)
and the above characterisation applied to the �eld C).

If one does not want to use stacks for n = 2, one can consider for (a, b) ∈ (Z/2Z)4 the divisor
D4,2a,2b which is the pullback of D2,a,b by the degeneracy morphism A2(4)→ A2(2).

7.2 Tubular Runge theorems for abelian surfaces and their theta divi-

sors

We can now prove a family of tubular Runge theorems for to the theta divisors Dn,a,b (for even
n ≥ 2).

We will state the case n = 2 �rst because its moduli interpretation is easier but the proofs are
the same, as we explain below.

In the following results, the boundary of A2(n)SC is de�ned as ∂A2(n)SC := A2(n)SC\A2(n)C.

Theorem 2 (Tubular Runge for products of elliptic curves on A2(2)S).
Let U be an open neighbourhood of ∂A2(2)SC in A2(2)SC for the natural complex topology.
For any such U , we de�ne E(U) the set of moduli P of triples (A, λ, α2) in A2(2)(Q) such that

(choosing L a number �eld of de�nition of the moduli) :

� The abelian surface A has potentially good reduction at every �nite place w ∈ML (tubular
condition for �nite places).

� For any embedding σ : L → C, the image Pσ of P in A2(2)C is outside of U (tubular
condition for archimedean places).

� The number sL of non-integrality places of P , i.e. places w ∈ML such that

� either w is above M∞L or 2,
� or the semistable reduction modulo w of (A, λ) is a product of elliptic curves

satis�es the tubular Runge condition

sL < 10.

Then, for every choice of U , the set E(U) is �nite.

Theorem 3 (Tubular Runge for theta divisors on A2(n)S).
Let n ≥ 4 even.
Let U be an open neighbourhood of ∂A2(n)SC in A2(n)SC for the natural complex topology.
For any such U , we de�ne E(U) the set of moduli P of triples (A, λ, α2) in A2(n)(Q) such that

(choosing L ⊃ Q(ζn) a number �eld of de�nition of the triple) :

� The abelian surface A has potentially good reduction at every place w ∈ M∞L (tubular
condition for �nite places).

� For any embedding σ : L → C, the image Pσ of P in A2(n)C is outside of U (tubular
condition for archimedean places).

� The number sP of non-integrality places of P , i.e. places w ∈ML such that
� either w is above M∞L or a prime factor of n,
� or the theta divisor of the semistable reduction modulo w of (A, λ, αn) contains an
n-torsion point which is not one of the six points coming from odd characteristics,

satis�es the tubular Runge condition

(n2 − 3)sP <
n4

2
+ 2.
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Then, for every choice of U , the set of points E(U) is �nite.

Remark 7.11. We put an emphasis on the conditions given in the theorem to make it easier to iden-
tify how it is an application of our main result, Theorem 1. The tubular conditions (archimedean
and �nite) mean that our points P do not belong to some tubular neighbourhood V of the bound-
ary. We of course chose the boundary as our closed subset to exclude because of its modular
interpretation for �nite places. The places above M∞L or a prime factor of n are automatically of
non-integrality for our divisors because the model A2(n) is not de�ned at these places. Finally,
the second possibility to be a place of non-integrality straightforwardly comes from the moduli
interpretation of the divisors Dn,a,b (De�nition 7.10). All this is detailed in the proof below.

To give an example of how we can obtain an explicit result in practice, we prove in section 8
an explicit (and even theoretically better) version of Theorem 2.

It would be more satisfying (and easier to express) to give a tubular Runge theorem for which
the divisors considered are exactly the irreducible components parametrising the products of el-
liptic curves. Unfortunately, except for n = 2, there is a serious obstruction because those divisors
are not ample, and there are even reasons to suspect they are not big. We have explained in
Remark 6.10 why proving the ampleness for general divisors on A2(n)SC is di�cult.

It would also be morally satisfying to give a better interpretation of the moduli of Dn,a,b for
n > 2, i.e. not in terms of the theta divisor, but maybe of the structure of the abelian surface
if possible (nontrivial endomorphisms ? isogenous to products of elliptic curves ?). As far as the
author knows, the understanding of abelian surfaces admitting some nontrivial torsion points on
their theta divisor is still very limited.

Finally, to give an idea of the margin the tubular Runge condition gives for n > 2 (in terms
of the number of places which are not �taken� by the automatic bad places), we can easily see
that the number of places of Q(ζn) which are archimedean or above a prime factor of n is less
than n/2. Hence, we can �nd examples of extensions L of Q(ζn) of degree n such that some
points de�ned on it still can satisfy tubular Runge condition. This is also where using the full
strength of tubular Runge theorem is crucial: for n = 2, one can compute that some points of the
boundary are contained in 6 di�erent divisors D2,a,b, and for general even n, a similar analysis
gives that the intersection number m∅ is quartic in n, which leaves a lot less margin for the places
of non-integrality (or even none at all).

Proof of Theorems 2 and 3.
As announced, this result is an application of the tubular Runge theorem (Theorem 1) to

A2(n)SQ(ζn) (De�nition-Proposition 6.6) and the divisors Dn,a,b (De�nition 7.10), whose properties
will be used without speci�c mention. We reuse the notations of the hypotheses of Theorem 1 to
explain carefully how it is applied.

(H0) The �eld of de�nition of A2(n)SC is Q(ζn), and the ring over which our model A2(n)S

is built is Z[ζn, 1/n], hence S0 is made up with all the archimedean places and the places above
prime factors of n. There is no need for a �nite extension here as all the Dn,a,b are divisors on
A2(n)S .

(H1) The model A2(n)SC is indeed normal projective, and we know that the Dn,a,b are e�ective
Weil divisors hence Cartier divisors up to multiplication by some constant by Proposition 6.8. For
any �nite extension L of Q(ζn), the number of orbits rL is the number of divisors Dn,a,b (as they
are divisors on the base model), i.e. n4/2 + 2 (Proposition 7.9 (c)).

(H2) The chosen closed subset Y of A2(n)SQ(ζn) is the boundary, namely

∂A2(n)SQ(ζn) = A2(n)SQ(ζn)\A2(n)Q(ζn).

We have to prove that the tubular conditions given above correspond to a tubular neighbourhood.
To do this, let Y be the boundary A2(n)S\A2(n) and g1, · · · , gs homogeneous generators of the
ideal of de�nition of Y after having �xed a projective embedding of A2(n). Let us �nd an MQ(ζn)-
constant such that E(U) is included in the tubular neighbourhood of ∂A2(n)SQ(ζn) in A2(n)SQ(ζn)

associated to C and g1, · · · , gk. For the places w not above M∞L or a prime factor of n, the fact
that P = (A, λ, αn) does not reduce in Y modulo w is exactly equivalent to A having potentially
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good reduction at w hence we can choose cv = 0 for the places v of Q(ζn) not archimedean and
not dividing n. For archimedean places, belonging to U for an embedding σ : L→ C implies that
g1, · · · , gn are small, and we just have to choose cv stricly larger than the maximum of the norms
of the gi(U ∩ Vj) (in the natural a�ne covering (Vj)j of the projective space), independant of the
choice of v ∈M∞Q(ζn). Finally, we have to consider the case of places above a prime factor of n. To
do this, we only have to recall that having potentially good reduction can be given by integrality of
some quotients of the Igusa invariants at �nite places, and these invariants are modular forms on
Γ2(1). We can add those who vanish on the boundary to the homogeneous generators g1, · · · , gn
and consider cv = 0 for these places as well. This is explicitly done in part 8.3 for A2(2).

(TRC) As said before, there are n4/2 + 2 divisors considered, and their generic �bers are
ample by Proposition 7.9. Furthermore, by Propositions 7.3 and 7.5, outside the boundary, at
most (n2 − 3) can have nonempty common intersection, and this exact number is attained only
for products of elliptic curves, (as n2 − 3 = 2(n2 − 4)/2 + 1, separating the regular 2-torsion pairs
and regular non-2-torsion pairs up to ±1).

This gives the tubular Runge condition

(n2 − 3)sL < n4/2 + 2,

which concludes the proof.
For n = 2, the union of the ten D2,a,b is made up with the moduli of products of elliptic curves,

and they are pairwise disjoint outside ∂A2(2) (Proposition 7.9 (b)), hence the simply-expressed
condition sL < 10 in this case.

8 The explicit Runge result for level two

To �nish this paper, we improve and make explicit the �niteness result of Theorem 2, as a proof
of principle of the method.

Before stating Theorem 4, we need some notations. In level two, the auxiliary functions are
deduced from the ten even theta constants of characteristic two, namely the functions Θm/2(τ)
(notation (6.11)), with the quadruples m going through

E = {(0000), (0001), (0010), (0011), (0100), (0110), (1000), (1001), (1100), (1111)} (8.1)

(see subsections 6.3 and 7.1 for details). We recall ([vdG82], Theorem 5.2) that these functions
de�ne an embedding

ψ : A2(2) −→ P9

τ 7−→ (Θ4
m/2(τ))m∈E

(8.2)

which induces an isomorphism between A2(2)SC and the subvariety of P9 (with coordinates indexed
by m ∈ E) de�ned by the linear equations

x1000 − x1100 + x1111 − x1001 = 0 (8.3)

x0000 − x0001 − x0110 − x1100 = 0 (8.4)

x0110 − x0010 + x1111 + x0011 = 0 (8.5)

x0100 − x0000 + x1001 + x0011 = 0 (8.6)

x0100 − x1000 + x0001 − x0010 = 0 (8.7)

(which makes it a subvariety of P4) together with the quartic equation(∑
m∈E

x2
m

)2

− 4
∑
m∈E

x4
m = 0. (8.8)

Remark 8.1. For the attentive reader, the �rst linear equation has sign (+1) in x1111 whereas it is
(−1) in [vdG82], as there seems to be a typographic mistake there : we have realised it during our
computations on Sage in part 8.3 and found the right sign back from Igusa's relations ([Igu64],
Lemma 1 combined with the proof of Theorem 1).
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There is a natural de�nition for a tubular neighbourhood of Y = ∂A2(2): for a �nite place v, as
in Theorem 2, we choose Vv as the set of triples P = (A, λ, α2) where A has potentially bad reduc-
tion modulo v. To complete it with archimedean places, we use the classical fundamental domain
for the action of Sp4(Z) on H2 denoted by F2 (see [Kli90], section I.2 for details). Given some
parameter t ≥

√
3/2, the neighbourhood V (t) of ∂A2(2)SC in A2(2)SC is made up with the points P

whose lift τ in F2 (for the usual quotient morphism H2 → A2(1)C) satis�es Im(τ4) ≥ t, where τ4
is the lower-right coe�cient of τ . We choose V (t) as the archimedean component of the tubular
neighbourhood for every archimedean place. The reader knowledgeable with the construction of
Satake compacti�cation will have already seen such neighbourhoods of the boundary.

Notice that for a point P = (A, λ, α2) ∈ A2(2)(K), the abelian surface A is only de�ned over
a �nite extension L of K, but for prime ideals P1 and P2 of OL above the same prime ideal P of
OK , the reductions of A modulo P1 and P2 are of the same type because P ∈ A2(2)(K). This
justi�es what we mean by �semistable reduction of A modulo P� below.

Theorem 4. Let K be a number �eld and P = (A, λ, α2) ∈ A2(2)(K) where A has potentially
good reduction at every �nite place.

Let sP be the number of prime ideals P of OK such that the semistable reduction of A modulo
P is a product of elliptic curves. We denote by hF the stable Faltings height of A.

(a) If K = Q or an imaginary quadratic �eld and

|sP | < 4

then
h(ψ(P )) ≤ 10.75, hF (A) ≤ 1070.

(b) Let t ≥
√

3/2 be a real number. If for any embedding σ : K → C, the point Pσ ∈ A2(2)C
does not belong to V (t), and

|sP |+ |M∞K | < 10

then
h(ψ(P )) ≤ 4πt+ 6.14, hF (A) ≤ 2πt+ 535 log(2πt+ 9)

The Runge condition for (b) is a straightforward application of our tubular Runge theorem.
For (a), we did not assume anything on the point P at the (unique) archimedean place, which
eliminates six divisors when applying Runge's method here, hence the di�erent Runge condition
here (see Remark 5.1 (b)).

The principle of proof is very simple: we apply Runge's method to bound the height of ψ(P )
when P satis�es the conditions of Theorem 2, and using the link between this height and Faltings
height given in ([Paz12], Corollary 1.3), we know we will obtain a bound of the shape

hF (P ) ≤ f(t)

where f is an explicit function of t, for every point P satisfying the conditions of Theorem 2.
At the places of good reduction not dividing 2, the contribution to the height is easy to compute

thanks to the theory of algebraic theta functions devised in [Mum66] and [Mum67]. The theory
will be sketched in part 8.1, resulting in Proposition 8.2.

For the archimedean places, preexisting estimates due to Streng for Fourier expansions on each
of the ten theta functions allow to make explicit how only one of them can be too small compared
to the others, when we are out of V (t). This is the topic of part 8.2.

For the places above 2, the theory of algebraic theta functions cannot be applied. To bypass
the problem, we use Igusa invariants (which behave in a well-known fashion for reduction in any
characteristic) and prove that the theta functions are algebraic and �almost integral� on the ring
of these Igusa invariants, with explicit coe�cients. Combining these two facts in part 8.3, we will
obtain Proposition 8.5, a less-sharp avatar of Proposition 8.2, but explicit nonetheless.

Finally, we put together these estimates in part 8.4 and obtain the stated bounds on h ◦ψ and
the Faltings height.
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8.1 Algebraic theta functions and the places of potentially good reduc-

tion outside of 2

The goal of this part is the following result.

Proposition 8.2. Let K be a number �eld and P a maximal ideal of OK , of residue �eld k(P)
with characteristic di�erent from 2. Let P = (A, λ, α2) ∈ A2(2)(K). Then, ψ(P ) ∈ P9(K) and :

(a) If the semistable reduction of A modulo P is a product of elliptic curves, the reduction of
ψ(P ) modulo P has exactly one zero coordinate, in other words every coordinate of ψ(P ) has the
same P-adic norm except one which is strictly smaller.

(b) If the semistable reduction of A modulo P is a jacobian of hyperelliptic curve, the reduction
of ψ(P ) modulo P has no zero coordinate, in other words every coordinate of ψ(P ) has the same
P-adic norm.

To link ψ(P ) with the intrinsic behaviour of A, we use the theory of algebraic theta functions,
devised in [Mum66] and [Mum67] (see also [DP02] and [Paz12]). As it is not very useful nor
enlightening to go into detail or repeat known results, we only mention them brie�y here. In the
following, A is an abelian variety of dimension g over a �eld k and L an ample symmetric line
bundle on A inducing a principal polarisation λ. We also �x n ≥ 2 even, assuming that all the
points of 2n-torsion of A are de�ned over k and char(k) does not divide n (in particular, we always
assume char(k) 6= 2). Let us denote formally the Heisenberg group G(n) as the set

G(n) := k∗ × (Z/nZ)g × (Z/nZ)g

equipped with the group law

(α, a, b) · (α′, a′, b′) := (αα′e
2iπ
n atb′ , a+ a′, b+ b′)

(contrary to the convention of [Mum66], p.294, we identi�ed the dual of (Z/nZ)g with itself).
Recall that A[n] is exactly the group of elements of A(k) such that T ∗x (L⊗n) ∼= L⊗n : indeed, it is

the kernel of the morphism λL⊗n = nλ from A to Â (see proof of Proposition 6.12).

Proof. Given the datum of a theta structure on L⊗n, i.e. an isomorphism β : G(L⊗n) ∼= G(n)
which is the identity on k∗ (see [Mum66], p. 289 for the de�nition of G(L⊗n)), one has a natural
action of G(n) on Γ(A,L⊗n) (consequence of Proposition 3 and Theorem 2 of [Mum66]), hence for
n ≥ 4 the following projective embedding of A :

ψβ : A −→ Pn
2g−1
k

x 7−→
(
((1, a, b) · (s⊗n0 ))(x)

)
a,b∈(Z/nZ)g

, (8.9)

where s0 is a nonzero section of Γ(A,L), hence unique up to multiplicative scalar (therefore ψβ
only depends on β). This embedding is not exactly the same as the one de�ned in ([Mum66],
p. 298) (it has more coordinates), but the principle does not change at all. One calls Mumford

coordinates of (A,L) associated to β the projective point ψβ(0) ∈ Pn2g−1

(k).
Now, one has the following commutative diagram whose rows are canonical exact sequences

([Mum66], Corollary of Theorem 1)

0 // k∗

=

��

// G(L⊗n) //

β

��

A[n]

αn

��

// 0

0 // k∗ // G(n) // (Z/nZ)2g // 0,

where αn is a symplectic level n structure on A[n] (De�nition 6.1), called the symplectic level n
structure induced by β. Moreover, for every x ∈ A(k), the coordinates of ψβ(x) are (up to constant
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values for each coordinate, only depending on β) the ϑA,L([n]x+ α−1
n (a, b)) (see De�nition 6.11).

In particular, for any a, b ∈ (Z/nZ)g,

ψβ(0)a,b = 0⇔ α−1
n (a, b) ∈ ΘA,L. (8.10)

Furthermore, for two theta structures β, β′ on [n]∗L inducing αn, one sees that β
′ ◦ β−1 is of the

shape (α, a, b) 7→ (α · f(a, b), a, b), where f has values in n-th roots of unity, hence ψβ and ψβ′

only di�er multiplicatively by n-th roots of unity.
Conversely, given the datum of a symplectic structure α2n on A[2n], there exists an unique

symmetric theta structure on [n]∗L which is compatible with some symmetric theta structure on
[2n]∗L inducing α2n ([Mum66], p.317 and Remark 3 p.319). We call it the theta structure on [n]∗L
induced by α2n. Thus, we just proved that the datum of a symmetric theta structure on [n]∗L is
intermediary between a level 2n symplectic structure and a level n symplectic structure (the exact
congruence group is easily identi�ed as Γg(n, 2n) with the notations of [Igu66]).

Now, for a triple (A,L, α2n) (notations of subsection 6.1), when A is a complex abelian variety,
there exists τ ∈ Hg such that this triple is isomorphic to (Aτ , Lτ , ατ,2n) (De�nition-Proposition
6.3). By de�nition of Lτ as a quotient (6.3), the sections of L

⊗n
τ canonically identify to holomorphic

functions ϑ on Cg such that

∀p, q ∈ Zg,∀z ∈ Cg, ϑ(z + pτ + q) = e−iπnτ
tn−2iπntzϑ(z), (8.11)

and through this identi�cation one sees (after some tedious computations) that the symmetric
theta structure βτ on L⊗nτ induced by ατ,2n acts by

((α, a, b) · ϑ)(z) = α exp

(
iπ

n
ãτ ã+

2iπ

n
ãt(z + b̃)

)
ϑ

(
z +

ã

n
τ +

b̃

n

)
,

where ã, b̃ are lifts of a, b in Zg (the result does not depend on this choice by (8.11)). Therefore,
by ψβ and the theta functions with characteristic (formula (6.12)), the Mumford coordinates of
(A,L, α2n) (with the induced theta structure β on L⊗n) are exactly the projective coordinates(

Θn
ã/n,̃b/n(τ)

(τ)
)
a,b∈ 1

nZ2g/Z2g
∈ Pn

2g−1

(C),

where the choices of lifts ã and b̃ for a and b still do not matter.
In particular, for every τ ∈ H2, the point ψ(τ) can be intrinsically given as the squares of Mum-

ford coordinates for βτ , where the six odd characteristics (whose coordinates vanish everywhere)
are taken out. The result only depends on the isomorphism class of (Aτ , Lτ , ατ,2), as expected.

Finally, as demonstrated in the paragraph 6 of [Mum67] (especially the Theorem p. 83), the
theory of theta structures (and the associated Mumford coordinates) can be extended to abelian
schemes (De�nition 6.5) (still outside characteristics dividing 2n), and the Mumford coordinates
in this context lead to an embedding of the associated moduli space in a projective space as
long as the type of the sheaf is a multiple of 8 (which for us amounts to 8|n). Here, �xing a
principally polarised abelian variety A over a number �eld K and P a prime ideal of OK not
above 2, this theory means thats given a symmetric theta structure on (A,L) for L⊗n where
8|n, if A has good reduction modulo P, this theta structure has a natural reduction to a theta
structure on the reduction (AP, LP) for L⊗nP , and this reduction is compatible with the reduction
of Mumford coordinates modulo P. To link this with the reduction of coordinates of ψ, one just
has to extend the number �eld K of de�nition of A so that all 8-torsion points of A are de�ned
over K (in particular, the reduction of A modulo P is semistable), and consider a symmetric theta
structure on L⊗8. The associated Mumford coordinates then reduce modulo P, but their vanishing
is linked to the belonging of 8-th torsion points to ΘAP,LP

by (8.10). The number of vanishing
coordinates is then entirely determined in Propositions 7.3 and 7.5, which proves Proposition 8.2
(not forgetting the six ever-implicit odd characteristics).
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8.2 Evaluating the theta functions at archimedean places

We denote by H2 the Siegel half-space of degree 2, and by F2 the usual fundamental domain of
this half-space for the action of Sp4(Z) (see [Kli90], section I.2 for details). For τ ∈ H2, we denote
by y4 the imaginary part of the lower-right coe�cient of τ .

Proposition 8.3. For every τ ∈ H2 and a �xed real parameter t ≥
√

3/2, one has :
(a) Amongst the ten even characteristics m of E, at most six of them can satisfy

|Θm/2(τ)| < 0.42 max
m′∈E

|Θm′/2(τ)|.

(b) If the representative of the orbit of τ in the fundamental domain F2 satis�es y4 ≤ t, at
most one of the ten even characteristics m of E can satisfy

|Θm/2(τ)| < 1.22e−πt max
m′∈E

|Θm′/2(τ)|.

Proof. First, we can assume that τ ∈ F2 as the inequalities (a) and (b) are invariant by the action
of Sp4(Z), given the complete transformation formula of these theta functions ([Mum87], section
II.5). Now, using the Fourier expansions of the ten theta constants (mentioned in the proof of
De�nition-Proposition 7.7) and isolating their respective dominant terms (such as in [Kli90], proof
of Proposition IV.2), we obtain explicit estimates. More precisely, Proposition 7.7 of [Str10] states

that, for every τ =

(
τ1 τ2
τ2 τ4

)
∈ B2 (which is a domain containing F2), one has

∣∣Θm/2(τ)− 1
∣∣ < 0.405, m∈{(0000)(0001),(0010),(0011)}.∣∣∣∣Θm/2(τ)

2eiπτ1/2
− 1

∣∣∣∣ < 0.348, m∈{(0100),(0110)}.∣∣∣∣Θm/2(τ)

2eiπτ4/2
− 1

∣∣∣∣ < 0.348, m∈{(1000),(1001)}.∣∣∣∣ Θm/2(τ)

(εm + e2iπτ2)eiπ(τ1+τ4−2τ3)/2
− 1

∣∣∣∣ < 0.438, m∈{(1100),(1111)},

with εm = 1 if m = (1100) and −1 if m = (1111).
Under the assumption that y4 ≤ t (which induces the same bound for Im τ1 and 2 Im τ2), we

obtain
0.595 <

∣∣Θm/2(τ)
∣∣ < 1.405, m∈{(0000)(0001),(0010),(0011)}.

1.304e−πt/2 <
∣∣Θm/2(τ)

∣∣ < 0.692, m∈{(0100),(0110),(1000),(1001)}.
1.05e−πt <

∣∣Θm/2(τ)
∣∣ < 0.855, m=(1100).∣∣Θm/2(τ)
∣∣ < 0.855, m=(1111)

Thus, we get (a) with 0.595/1.405 > 0.42, and (b) with 1.05e−πt/0.855 > 1.22e−πt.

8.3 Computations with Igusa invariants for the case places above 2

In this case, as emphasized before, it is not possible to use Proposition 8.2, as the algebraic theory
of theta functions does not work.

We have substituted it in the following way.

De�nition 8.4 (Auxiliary polynomials).
For every i ∈ {1, · · · , 10}, let Σi be the i-th symmetric polynomial in the ten modular forms

Θ8
m/2, m ∈ E (notation (8.1)). This is a modular form of level 4i for the whole modular group

Sp4(Z).

Indeed, each Θ8
m/2 is a modular form for the congruence subgroup Γ2(2) of weight 4, and they

are permuted by the modular action of Γ2(1) ([Mum87], section II.5). The important point is that
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the Σi are then polynomials in the four Igusa modular forms ψ4, ψ6, χ10 and χ12 ([Igu67], p.848
and 849). We can now explain the principle of this paragraph : these four modular forms are
linked explicitly with the Igusa invariants (for a given jacobian of an hyperelliptic curve C over a
number �eld K), and the semi-stable reduction of the jacobian at some place v|2 is determined
by the integrality (or not) of some quotients of these invariants, hence rational fractions of the
modular forms. Now, with the explicit expressions of the Σi in terms of ψ4, ψ6, χ10 and χ12, we
can bound these Σi by one of the Igusa invariants, and as every Θ8

m/2 is a root of the polynomial

P (X) = X10 − Σ1X
9 + Σ2X

8 − Σ3X
7 + Σ4X

6 − Σ5X
5 + Σ6X

4 − Σ7X
4 + Σ8X

2 − Σ9X + Σ10,

we can infer an explicit bound above on the Θ8
m/2/λ, with a well-chosen normalising factor λ such

that these quotients belong toK. Actually, we will even give an approximative shape of the Newton
polygon of the polynomial λ10P (X/λ), implying that its slopes (except maybe the �rst one) are
bounded above and below, thus giving us a minoration of each of the |Θm/2|v/maxm′∈E |Θm′/2|v,
except maybe for one m. The explicit result is the following.

Proposition 8.5. Let K be a number �eld, (A,L) a principally polarised jacobian of dimension
2 over K and τ ∈ H2 such that (Aτ , Lτ ) ∼= (A,L).

Let P be a prime ideal of K above 2 such that A has potentially good reduction at P, and the
reduced (principally polarised abelian surface) is denoted by (AP, LP). By abuse of notation, we
forget the normalising factor ensuring that the coordinates Θm/2(τ)8 belong to K.

(a) If (AP, LP) is the jacobian of a smooth hyperlliptic curve, all the m ∈ E satisfy∣∣Θm/2(τ)8
∣∣
P

maxm′∈E
∣∣Θm′/2(τ)8

∣∣
P

≥ |2|12
P .

(b) If (AP, LP) is a product of elliptic curves, all the m ∈ E except at most one satisfy∣∣Θm/2(τ)8
∣∣
P

maxm′∈E
∣∣Θm′/2(τ)8

∣∣
P

≥ |2|21
P .

Proof. The most technical part is computing the Σi as polynomials in the four Igusa modular
forms. To do this, we worked with Sage in the formal algebra generated by some sums of Θ4

m/2

with explicit relations (namely, y0, · · · , y4 in the notations of [Igu64], p.396 and 397). Taking away
some timeouts probably due to the computer's hibernate mode, the total computation time on a
portable PC has been about twelve-hours-long (including veri�cation of the results). The detail of
algorithms and construction is available on a Sage worksheet 1 (in Jupyter format). An approach
based on Fourier expansions might be more e�cient, but as there is no clear closed formula for the
involved modular forms, we privileged computations in this formal algebra. For easier reading, we
slightly modi�ed the Igusa modular forms into h4, h6, h10, h12 de�ned as

h4 = 2 · ψ4 =
1

2

∑
m∈E

Θ8
m/2

h6 = 22 · ψ6 =
∑

{m1,m2,m3}⊂E
syzygous

±(Θm1/2Θm2/2Θm3/2)4

h10 = 215 · χ10 = 2
∏
m∈E

Θ2
m/2

h12 = 216 · 3 · χ12 =
1

2

∑
C⊂E

C Göpel

∏
m∈E\C

Θ4
m/2

(8.12)

([Igu67], p.848 for details on these de�nitions, notably syzygous triples and Göpel quadruples).
The third expression is not explicitly a polynomial in y0, · · · , y4, but there is such an expression,

1This worksheet can be downloaded at http://perso.ens-lyon.fr/samuel.le_fourn/contenu/fichiers_

publis/Igusainvariants.ipynb
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given p.397 of [Igu64]. We also used to great bene�t (both for understanding and computations)
the section I.7.1 of [Str10].

Now, the computations on Sage gave us the following formulas (the �rst and last one being
trivial given (8.12), they were not computed by the algorithm)

Σ1 = 2h4 (8.13)

Σ2 =
3

2
h2

4 (8.14)

Σ3 =
29

2 · 33
h3

4 −
1

2 · 33
h2

6 +
1

2 · 3
h12 (8.15)

Σ4 =
43

24 · 33
h4

4 −
1

2 · 33
h4h

2
6 +

23

2 · 3
h4h12 +

2

3
h6h10 (8.16)

Σ5 =
1

22 · 33
h5

4 −
1

23 · 33
h2

4h
2
6 +

25

23 · 3
h2

4h12 −
1

2 · 3
h4h6h10 +

123

22
h2

10 (8.17)

Σ6 =
1

22 · 36
h6

4 −
1

22 · 36
h3

4h
2
6 +

7

2 · 33
h3

4h12 −
1

22 · 3
h2

4h6h10 (8.18)

+
47

2 · 3
h4h

2
10 +

1

24 · 36
h4

6 −
5

23 · 33
h2

6h12 +
43

24 · 3
h2

12

(8.19)

Σ7 =
1

2 · 34
h2

4h12 −
1

2 · 34
h3

4h6h10 +
41

2332
h2

4h
2
10 −

1

22 · 34
h4h

2
6h12 (8.20)

+
11

22 · 32
h4h

2
12 +

1

22 · 34
h3

6h10 −
19

22 · 32
h6h10h12

Σ8 =
1

22 · 33
h3

4h
2
10 +

1

22 · 32
h2

4h
2
12 −

1

2 · 32
h4h6h10h12 +

5

23 · 33
h2

6h
2
10 −

11

23
h2

10h12 (8.21)

Σ9 =
−5

22 · 32
h4h

2
10h12 +

7

22 · 33
h6h

3
10 +

1

33
h3

12 (8.22)

Σ10 =
1

24
h4

10. (8.23)

Remark 8.6. The denominators are always products of powers of 2 and 3. This was predicted by
[Ich09], as all Fourier expansions of Θm/2 (therefore of the Σi) have integral coe�cients. Surpris-
ingly, the result of [Ich09] would actually be false for a Z[1/3]-algebra instead of a Z[1/6]-algebra,
as the expression of Σ3 (converted as a polynomial in ψ4, ψ6, χ12) shows, but this does not provide
a counterexample for a Z[1/2]-algebra.

Now, let C be an hyperelliptic curve of genus 2 on a number �eld K and P a prime ideal of
OK above 2. We will denote by | · | the norm associated to P to lighten the notation. Let A be the
jacobian of C and J2, J4, J6, J8, J10 the homogeneous Igusa invariants of the curve C, de�ned as
in ([Igu60], pp. 621-622) up to a choice of hyperelliptic equation for C. We �x τ ∈ H2 such that
Aτ is isomorphic to A, which will be implicit in the following (i.e. h4 denotes h4(τ) for example).
By ([Igu67], p.848) applied with our normalisation, there is an hyperelliptic equation for C (and
we �x it) such that

J2 =
1

2

h12

h10
(8.24)

J4 =
1

25 · 3

(
h2

12

h2
10

− 2h4

)
(8.25)

J6 =
1

27 · 33

(
h3

12

h3
10

− 6
h4h12

h10
+ 4h6

)
(8.26)

J8 =
1

212 · 33

(
h4

12

h4
10

− 12
h4h

2
12

h2
10

+ 16
h6h12

h10
− 12h2

4

)
(8.27)

J10 =
1

213
h10. (8.28)
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Let us now �gure out the Newton polygons allowing us to bound our theta constants.
(a) If A has potentially good reduction at P, and this reduction is also a jacobian, by Proposi-

tion 3 of [Igu60], the quotients J5
2/J10, J

5
4/J

2
10, J

5
6/J

3
10 and J

5
8/J

4
10 are all integral atP. Translating

it into quotients of modular forms, this gives∣∣∣∣ J5
2

J10

∣∣∣∣ = |2|8
∣∣∣∣h5

12

h6
10

∣∣∣∣ ≤ 1∣∣∣∣ J5
4

J2
10

∣∣∣∣ = |2|3
∣∣∣∣∣ h2

12

h
12/5
10

− 2
h4

h
2/5
10

∣∣∣∣∣
5

≤ 1

∣∣∣∣ J5
6

J3
10

∣∣∣∣ = |2|4
∣∣∣∣∣ h3

12

h
18/5
10

− 6
h4h12

h
8/5
10

+ 4
h6

h
3/5
10

∣∣∣∣∣
5

≤ 1

∣∣∣∣ J5
8

J4
10

∣∣∣∣ = |2|−8

∣∣∣∣∣ h4
12

h
24/5
10

− 12
h4h

2
12

h
14/5
10

+ 16
h6h12

h
9/5
10

− 12
h2

4

h
4/5
10

∣∣∣∣∣
5

≤ 1.

By successive bounds on the three �rst lines, we obtain∣∣∣∣∣ h4

h
2/5
10

∣∣∣∣∣ ≤ |2|−21/5,

∣∣∣∣∣ h6

h
3/5
10

∣∣∣∣∣ ≤ |2|−34/5,

∣∣∣∣∣ h12

h
6/5
10

∣∣∣∣∣ ≤ |2|−8/5.

Using the expressions of the Σi ((8.13) to (8.23)), we compute that for every i ∈ {1, · · · , 10}, one
has

∣∣∣Σi/h2i/5
10

∣∣∣ ≤ |2|λi with the following values of λi :

i 10 9 8 7 6 5 4 3 2 1
λi − 20

5 − 44
5 − 83

5 − 112
5 − 156

5 − 125
5 − 104

5 − 73
5 − 47

5 − 16
5

and for i = 10, it is an equality. Therefore, the highest slope of the Newton polygon is at most
26/5 · vP(2), whereas the lowest one is at least −34/5 · vP(2), which gives part (a) of Proposition
8.5 by the theory of Newton polygons.

(b) If A has potentially good reduction at P and the semistable reduction is a product of
elliptic curves, de�ning

I4 = J3
2 − 25J4 =

h4

2
(8.29)

I12 = −8J3
4 + 9J2J4J6 − 27J2

6 − J2
2J8 =

1

210 · 33
(2h3

4 − h2
6), (8.30)

P48 = 212 · 33h4
10J8 = h4

12 − 12h4h
2
12h

2
10 + 16h6h12h

3
10 − 12h2

4h
4
10 (8.31)

(which as modular forms are of respective weights 4, 12 and 48), by Theorem 1 (parts (V∗) and
(V )) of [Liu93], we obtain in the same fashion that∣∣∣∣∣ h4

P
1/12
48

∣∣∣∣∣ ≤ |2|−13/3,

∣∣∣∣∣ h6

P
1/8
48

∣∣∣∣∣ ≤ |2|−3,

∣∣∣∣∣ h10

P
5/24
48

∣∣∣∣∣ ≤ |2|−4/3. (8.32)

Using the Newton polygon for the polynomial of (8.31) de�ning P48, one deduces quickly that∣∣∣∣∣ h12

P
1/4
48

∣∣∣∣∣ ≤ |2|−7/2. (8.33)

As before, with the explicit expression of the Σi, one obtains that the |Σi/P i/12
48 | are bounded by

|2|λi with the following values of λ :

i 10 9 8 7 6 5 4 3 2 1
λi − 28

3 − 71
6

−53
3

−55
3

−84
3

−71
3

−64
3 −14 −29

3
−10

3

(8.34)
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This implies directly that the highest slope of the Newton polygon is at most 16/3·vP(2). Now, for
the lowest slope, there is no immediate bound and it was expected : in this situation, Σ10 = 2−4h4

10

can be relatively very small compared to P
5/6
48 .

As P48 is in the ideal generated by h10, h12 (in other words, is cuspidal) and dominates all
modular forms h4, h6, h10, h12, one of h10 and h12 has to be relatively large enough compared to
P48 . In practice, we get (with (8.32), (8.33) and (8.31))∣∣∣∣∣ h12

P
1/4
48

∣∣∣∣∣ ≥ 1 or

∣∣∣∣∣ h10

P
5/24
48

∣∣∣∣∣ ≥ |2|13/6.

Now, if h10 is relatively very small (for example,
∣∣∣h10/P

5/24
48

∣∣∣ ≤ |2|19/6
∣∣∣h12/P

1/4
48

∣∣∣), we immediately

get
∣∣∣h12/P

1/4
48

∣∣∣ = 1 and
∣∣∣Σ9/P

3/4
48

∣∣∣ = 1. Computing again with these estimates for h10 and h12, we

obtain that the
∣∣∣Σi/P i/12

48

∣∣∣ are bounded by |2|λi with the following slightly improved values of λ,

i 9 8 7 6 5 4 3 2 1
λi 0 − 32

3 − 51
3

−84
3

−71
3

−64
3 −14 −29

3
−10

3

The value at i = 9 is exact, hence the second lowest slope is then at least − 32
3 · vP(2).

If it is not so small, we have a bound on vP(Σ10/P
6/5
48 ), hence the Newton polygon itself is

bounded (and looks like in the �rst situation). In practice, one �nds that the lowest slope is at
least −47/3 · vP(2), hence all others slopes are at least this value, and this concludes the proof of
Proposition 8.5 (b).

Remark 8.7. In characteristics 6= 2, 3, Theorem 1 of [Liu93] and its precise computations pp. 4 and
5 give the following exact shapes of Newton polygons (notice the di�erent normalisation factors).

vP

Σ10−i/h
2(10−i)/5
10

•
(0, 0)

•
(10, 0)

Figure 4: When the reduction of A is a jacobian

Σ10−i/h
(10−i)/3
12

vP

•

• •

Figure 5: When the reduction of A is a product of elliptic curves

In particular, when A reduces to a jacobian, the theta coordinates all have the same P-adic
norm and when A reduces to a product of elliptic curves, exactly one of them has smaller norm :
in other words, we reproved Proposition 8.2, and the Newton polygons have a very characteristic
shape.

The idea behind the computations above is that in cases (a) and (b) (with other normalisation
factors), the Newton polygons have a shape close to these ones, therefore estimates can be made.
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It would be interesting to see what the exact shape of the Newton polygons is, to maybe obtain
sharper results.

8.4 Wrapping up the estimates and end of the proof

We can now prove the explicit re�ned version of Theorem 2, namely Theorem 4.

Proof of Theorem 4. In case (a), one can avoid the tubular assumption for the (unique) archimedean
place of K: indeed, amongst the ten theta coordinates, there remain 4 which are large enough
with no further assumption. As |sP | < 4, there remains one theta coordinates which is never
too small (at any place). In practice, normalising the projective point ψ(P ) by this coordinate,
one obtains with Propositions 8.3 (a) (archimedean place), 8.2 (�nite places not above 2) and 8.5
(�nite places above 2)

h(ψ(P )) ≤ −4 log(0.42) +
1

[K : Q]

∑
v|2

nv|2|21/2 ≤ 10.75

after approximation.
In case (b), one has to use the tubular neighbourhood implicitly given by the parameter t,

namely Proposition 8.3 (b) for archimedean places, again with Propositions 8.2 and 8.5 for the
�nite places, hence we get

h(ψ(P )) ≤ 4 log(eπt/1.33) +
1

[K : Q]

∑
v|2

nv|2|21/2 ≤ 4πt+ 6.14

after approximation.
Finally, we deduce from there the bounds on the stable Faltings height by Corollary 2.2 of

[Paz12] (with its notations, hΘ(A,L) = h(ψ(P ))/4).

It would be interesting to give an analogous result for Theorem 3, and the estimates for
archimedean and �nite places not above 2 should not give any particular problem. For �nite
places above 2, the method outlined above can only be applied if, taking the symmetric polynomials
Σ1, · · · ,Σf(n) in well-chosen powers Θ

ã/n,b̃/n
(τ) for ã, b̃ ∈ Zg, we can �gure out by other arguments

the largest rank k0 for which Σk0 is cuspidal but not in the ideal generated by h10. Doing so, we
could roughly get back the pictured shape of the Newton polygon when h10 is relatively very small
(because then Σk is relatively very small for k > k0 by construction). Notice that for this process,
one needs some way to theoretically bound the denominators appearing in the expressions of the
Σi in h4, h6, h10, h12, but if this works, the method can again be applied.
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