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[1] More than 250 plumes of gas bubbles have been
discovered emanating from the seabed of the West
Spitsbergen continental margin, in a depth range of 150–
400 m, at and above the present upper limit of the gas
hydrate stability zone (GHSZ). Some of the plumes extend
upward to within 50 m of the sea surface. The gas is
predominantly methane. Warming of the northward-flowing
West Spitsbergen current by 1�C over the last thirty years is
likely to have increased the release of methane from the
seabed by reducing the extent of the GHSZ, causing the
liberation of methane from decomposing hydrate. If this
process becomes widespread along Arctic continental
margins, tens of Teragrams of methane per year could be
released into the ocean. Citation: Westbrook, G. K., et al.

(2009), Escape of methane gas from the seabed along the West

Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608,

doi:10.1029/2009GL039191.

1. Introduction

[2] Methane released from gas hydrate in submarine
sediments has been invoked as an agent of past climate
change [Nisbet, 1990, 2002; Thomas et al., 2002; Dickens,
2003; Kennett et al., 2003]. Beneath the seabed, the gas
hydrate stability zone (GHSZ) for a specific gas or gases
and salinity of water [e.g., Sloan and Koh, 2007] is defined
by temperature (dependent on water temperature and geo-
thermal gradient) and pressure (dependent on water depth
plus depth beneath seabed). Dissociation of hydrate in
response to increased temperature or reduced pressure has

the potential to produce a rapid release of methane that has
accumulated as hydrate over a long time from weak or
moderate migration of methane as free gas or in solution.
Comparatively little, however, is known about methane
fluxes from dissociating hydrate in the present-day marine
environment.
[3] In the Arctic, the GHSZ is especially sensitive to

climate change, because the degree of temperature change is
greater than at lower latitudes. A multidisciplinary marine
geological, geophysical, and geochemical expedition was
undertaken with the RRS James Clark Ross between
23 August and 24 September 2008 to investigate the role
of the GHSZ in the release and retention of methane from
geological sources along the West Spitsbergen continental
margin, between 78� and 80�N. Here the depth and
temperature of the water have varied greatly over the past
15 kyr [Forman et al., 2004; Hald et al., 2004], and, at
present, the GHSZ (for pure methane and water with
3.5 wt % NaCl) is expected to taper out at its landward
limit at a depth of about 400 m, where water temperature is
3�C (Figure 1).

2. Observations

[4] More than 250 active plumes of bubbles emanating
from the seabed were discovered in water depths shallower
than 400 m (Figure 1). Some of the plumes extended
upward to within 50 m of the sea surface. The plumes were
detected initially with a Simrad EK60 ‘fishfinder’ sonar,
providing the 3D locations of the bubbles. Rates of
upward movement of the bubbles were estimated to be
0.08–0.25 m/s, from the tilt of the plumes induced by a
0.5–1.0 knot current (0.25–0.5 m/s) and from the rates of
ascent of pulses of bubbles observed when the ship was
stationary above plumes. Several of the most closely studied
plumes exhibited a pulsating behaviour, with periods of
several minutes, and repeated visits to some plumes showed
that they vary in strength over periods of a few days.
[5] Fissures and holes in the seabed, which are shown by

high-resolution multibeam bathymetry and side-scan sonar
images, locally control the positions of some plumes.
Beneath the area of the plumes, seismic reflection sections
show acoustic scattering that is typical of rising trains of gas
bubbles, and down slope, beneath the GHSZ, the presence
of free gas is indicated by negative polarity reflections,
bright spots, attenuation of the high frequency content of the
signal and velocity pull-down.
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[6] Sampling of the plumes was undertaken using
dynamic positioning of the vessel in conjunction with
real-time USBL acoustic location of the rosette sampler
on CTD casts. Analyses of the water samples, using the
standard static headspace - gas chromatography technique
[Kolb and Ettre, 1997], revealed that methane concentra-
tions within the plumes were elevated to up to 20 times
background values (Figure 2). Salinity and temperature
were nearly constant and light transmission was reduced
in the main part of the sampled plumes. In some localities,
we found enhanced methane concentrations in the water
column, even though distinct plumes of bubbles were
absent. This could be indicative of very recent plume
activity or of diffuse escape of gas in solution from the
seabed. The time-variant behaviour of some seeps, and the
apparent presence of diffuse seepage, complicate volumetric
estimates of the rates of gas escape from the sea floor.

3. Origin of Bubble Plumes

[7] The greatest concentration of plumes lies just land-
ward of the edge of the GHSZ. Plumes also occur on the
shelf as far as 15 km from the GHSZ, some of them in water

shallower than 200 m. Even with a seabed temperature of
0�C, the hydrate stability zone does not exist in water depths
shallower than 300 m. So it is probable that many of the
plumes are directly fed by the primary geological methane
source in this area and that gas seeps have existed since the
margin was flooded as glacial ice retreated about 13 ka
[Landvik et al., 2005] and sub-glacial permafrost melted. It
appears that the GHSZ restricts methane outflow from the
seabed by converting methane to hydrate and possibly, in
combination with the seaward dip of the strata, by diverting
up slope the flow of methane that has not entered the
GHSZ, because of the reduction in permeability caused by
the presence of hydrate (Figure 3a). A similar situation
occurs in the Black Sea, west of Crimea [Naudts et al.,
2006]. Methane, however, can also be released from
dissociating hydrate during periods when warming causes
the GHSZ to contract (Figure 3b).
[8] Progressive warming of the northward-flowing West

Spitsbergen current (WSC) of about 1�C over the last
30 years in the area in which the plumes occur is shown
by CTD casts made over the period 1975 to 2008 (Figure 4).
This is consistent with other observations of warming of
the WSC [Schauer et al., 2004, 2008; Walczowski and

Figure 1. (a) Location of survey areawest of Svalbard; IBCAObathymetry [Jakobsson et al., 2008]. ((b) Positions of plumes
acoustically imaged with the EK60 sonar, depicted by ‘‘pins’’, superimposed on perspective view of the bathymetry of part of
the area of plume occurrence. Bathymetry is from EM120 multibeam survey of cruise JR211 gridded at 20-m resolution,
combined with high-resolution survey data from the Norwegian Hydrographic Service for the shallower-than-200-m part of
the map. The 396-m isobath is the expected landward limit of the GHSZ. (c) Part of record from an EK60 acoustic survey from
JR211, showing examples of observed plumes. Amplitude of acoustic response is given by the colour of the ‘‘bubbles’’. All
plumes show a deflection towards the north caused by the West Svalbard Current. The seabed, at around 240-m depth, is
shown by the strong (red) response. The position of CTD cast 10 is indicated by vertical red arrow.
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Piechura, 2007]. The temperature data were taken from the
World Ocean Database [Boyer et al., 2006], Hydrobase2
(http://www.whoi.edu/science/PO/hydrobase) and cruises of
the Alfred Wegener Institute [Schauer et al., 2008]. To
reduce seasonal bias, only data from May to October were
used. A bivariate regression of the average temperature of
the bottom 10 m of each of the CTDs in the depth range
200–700 m against depth and date indicates that the
average rate of warming has been about 0.03�C yr�1. This
general trend is also shown by averaging temperatures for
each CTD in the depth ranges 300–350, 350–400 and
400–450 m, which span the expected depth of the top of the
GHSZ (Figure 4c).
[9] A 1�C rise in temperature will have caused the limit

of the GHSZ to retreat a horizontal distance of about 950 m
down the continental slope of 2� from a depth of 360 m to
396 m, releasing methane from hydrate (see auxiliary
material).1 Farther down the continental slope, hydrate
occupies (on average) about 9% of pore space of half the
hydrate stability zone [Westbrook et al., 2008]. If a similar
proportion of hydrate (assuming 50% porosity) occupied the
GHSZ retreat zone, the average annual loss of methane to
the water would be about 900 kg per metre length of
margin, and hence, the 30-km-long plume-area would lose
about 0.027 Tg yr�1 from dissociating hydrate, in addition
to methane from primary sources.

4. Possible Implications for the Arctic Methane
Budget

[10] Widespread seeps of methane from the seabed
around Spitsbergen [Knies et al., 2004], elevated concen-

trations of methane in the bottom water of the shelf and
uppermost continental slope of SW Spitsbergen [Damm et
al., 2005] and the occurrence of a plume east of Bear Island
[Lammers et al., 1995] indicate seepage of methane into the
ocean over a large area. If the hydrate-to-methane budget of
the plume area can be extended to the 22,300 km2 of seabed
in the depth range of 360–400 m along the northern,
western and southern margins of the Svalbard archipelago
as far as an eastern limit at 40.4�E [Jakobsson et al., 2008],
the potential methane release by hydrate dissociation may
be about 20 Tg yr�1. Hydrate dissociation is potentially
significant for a large proportion of the Arctic continental
slope, because the WSC feeds into the Arctic Ocean.
Increased warming by Atlantic water has been observed in
the Nansen basin [Quadfasel et al., 1991] and propagating
along the Siberian continental margin [Polyakov et al.,
2007]. Increasing temperature will cause the reduction of
the GHSZ and possibly release many tens of Teragrams of
methane per year, depending on how much hydrate is
present.
[11] The release of tens of Teragrams of methane per year

would be a notable fraction of the annual global atmospheric
methane flux of 500–600 Tg yr�1 [Houweling et al., 2006]
and comparable with the 20–40 Tg yr�1 estimated for
methane flux from all geological sources on land [Etiope
et al., 2009], but it is unlikely that more than a very small
fraction of the methane in the observed plumes reaches the
atmosphere directly. The acoustic images of the bubble
plumes show very few that reach the sea surface, and even
for these it is probable that nitrogen and other gases would
have largely replaced methane in the bubbles during their
ascent [cf. McGinnis et al., 2006]. Some methane, however,
will transfer to the atmosphere by equilibration. Methane
concentration measured in surface seawater, 3.7 ± 0.2 nM,
in the area in which plumes were observed was higher than
the concentration of 3.0 nM calculated (using the equation
of Wiesenburg and Guinasso [1979]) for seawater in
equilibrium with ambient air at 1840 ppb, the methane
mixing ratio in contemporaneous air measurements made
on the cruise. Also, given the generally episodic nature of
gas venting from the seabed, one cannot exclude the
possibility of, as yet unobserved, periods of more vigorous
activity, in which methane may be expelled to the atmo-
sphere. Lastly, it should not be overlooked that the addition
of methane to the ocean is itself important, because oxida-
tion of methane in the water column increases ocean acidity
and lowers levels of dissolved oxygen, with consequent
implications for marine biodiversity [Valentine et al., 2001;
Riebesell, 2008].

5. Conclusions

[12] New observations of a large number of gas plumes
on the W Spitsbergen margin significantly extend the
observational context of important gas seeps in the Arctic
region. Their occurrence and activity appear to be controlled
by the GHSZ, which is sensitive to changes in water
temperature. The occurrence of plumes in the zone from
which the GHSZ has retreated over the last 30 years implies
that at least part of the methane feeding the plumes comes
from dissociating hydrate. This has wide significance
for methane release from Arctic continental margins, if

Figure 2. Results from CTD cast 10, which intersects a
bubble plume. See Figure 1 for location. Methane
concentration increases consistently downwards and shows
a strong increase in the lowermost 40 m of the cast to a
value of 42 nM.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL039191.
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increasingly warmer water enters from the Atlantic. Further
exploration of hydrate and monitoring of methane release
are needed to quantify the likely magnitude of future
emissions.

[13] Acknowledgments. This work was funded by the Natural
Environment Research Council as part of its Arctic Initiative for the
International Polar Year 2007–2008. Part of the bathymetric image shown
in Figure 1 comes from data provided by the Norwegian Hydrographic
Service. The captain and crew of RRS James Clark Ross during Cruise
JR211 provided essential support for the acquisition of the data.
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