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ABSTRACT

Most studies on nanomechanical resonators in the literature are concerned with a single res-
onator. In this work, an array of two nanomechanical resonators is analyzed. A quasi-analytic
approach with averaging method is used to compare the beams responses with and without
electrostatic coupling terms. The results show modal interactions between the two beams due
to the electrostatic coupling. It is shown that the qualitative behavior of the coupled resonators
can be infered from the response curves of the uncoupled resonators. In particular, additional
loops occur due to the algebraic structure of the coupled system. The contribution lies in the
deduction of the beam array responses curve by using multiple uncoupled responses of the
single-beam resonators.
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1 INTRODUCTION

Arrays of MEMS or NEMS present complex dynamical behaviors due to electric, magnetic and
mechanic nonlinear couplings. Lifshitz and Cross [1] studied the responses of n electrical and
mechanical coupled oscillators with parametric resonance in the low nonlinear limit by using a
perturbation method. Gutschmidt and Goettlieb worked on arrays with electrical coupling. They
focused on the n-beam dynamic behaviour in the region of internal one-to-one, parametric and
several internal three-to-one resonances corresponding to low, medium and large DC voltages
[2]. Kacem et al. developped a single beam model to investigate the sensitivity of the resonance
with respect to the electrostatic forcing. Their researches were carried out using averaging
method validated by HBM+ANM [3]. In this paper, an array of n = 2 identical clamped-
clamped beams is also considered but coupled only by an electrostatic force in order to study
the modal interactions between the two beams due to the electrostatic coupling.

2 ARRAY OF TWO NANOMECHANICAL RESONATORS

A 2-moving-beam array is considered, as sketched in Figure 1. The two beams located at the
ends of the array are fixed and serve only as electrostatic actuator. All 4 beams are identical.
l, b, h, I , g are the dimensions of the beams, i.e., length, width, height, moment of inertia, gap
between two adjacent beams. E, ρ be the Young’s modulus and the material density. Each

0 1 2 3micro-beam

Vdc10
Vac10

Vdc32
Vac32

g

O

Vdc21

Vac21

h

W (x,t)s

x

O

Figure 1: Array of two clamped-clamped M/NEMS beams.

beam is an electrostatic actuator for its adjacent beams. Vs,s+1 = Vdcs,s+1 + Vacs,s+1 cos(Ωt) is
the voltage applied between the successive beams s and s+ 1 with Vdc, Vac the continuous and
alternative voltages. The equation of the beam s in bending is as follows [2].
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with s = 1, 2. Let ε0, Cn be the dielectric constant and fringing the coefficient respectively. Ñ
represents the lineic load along the x-axis. The beams 1 and 2 are clamped-clamped.
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3 AVERAGING METHOD

The responses of the beams are more complicated than those of a single beam resonator. A
quasi-analytic solution obtained by the averaging method can be used to explain why the elec-
trostatic coupling generates additional loops onto the responses. First, the beam lateral deflec-
tion is expanded on its fundamental mode only:

w1(x, t) = φ1(x)a11(t), w2(x, t) = φ1(x)a21(t) (2)

First-order Taylor series are then used to simplify the analytic calculation:

1

(1 + ws+1 − ws)2
' 1− 2(ws+1 − ws),

1

(1 + ws − ws−1)2
' 1− 2(ws − ws−1) (3)

Since the resonators of the 2-beam array have the same boundary conditions, their eigenmodes
are identical. Therefore, a Galerkin method is used to eliminate the spatial dependence from
the equation of motion (1). Then using the averaging method and considering the solutions
a11(t), a21(t) in following forms

a11 = A11(t) cos(Ωt) +B11(t) sin(Ωt), (4)
a21 = A21(t) cos(Ωt) +B21(t) sin(Ωt), (5)

yield
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where the coefficients βij , γij , δij depend on the beam characteristics and on the applied volt-
ages. They are not detailed here for the sake of conciseness. In Equations (6)-(9), the coupling
terms (1

2
δ11 + 1

8
δ13)B21 and (1
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δ11 + 1

8
δ13)A21 represent the influence of the second beam on

the first beam and the coupling terms (1
2
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8
δ23)B11, (1

2
δ21 + 3

8
δ23)A11 the influence of the

first beam on the second beam. When Ȧ11 = Ḃ11 = Ȧ21 = Ḃ21 = 0 the steady-state mo-
tions appear. The corresponding nonlinear algebraic system is solved by an adapted numerical
method, the obtained approximated solution is in agreement with a reference solution obtained
by HBM+ANM [3] not shown here.

In order to analyze the influence of the coupling terms, Equations (6)-(9) with and with-
out coupling terms are examined. The response curves with (red curves) and without (blue
curves) coupling terms are plotted in Figure 2. Without these coupling terms Equations (6)-(7)
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Figure 2: Design 1 without added mass, Response by neglecting the coupling terms (blue),
complete response (red). (a): first-beam response, (b): second-beam response.

and (8)-(9) form two independent systems of equations. Therefore, the responses of the two
beams, (blue response curves in Figure 2) are similar to two single-beam responses.

With coupling terms Equations (6)-(9) are dependent and share the same bifurcation
points and stability. When a bifurcation point is present on a response curve, the same bifurca-
tion point will also be present at the same frequency on the other beam response. Therefore, the
limit points originated from the responses without coupling terms will be present on all the other
beam responses with coupling terms. This leads to the appearance of additional limit points on
the response curves. In Figure 2, the limit points B1 and C1 on the first beam response generate
at the same frequencies the loop B2 − C2 on the second-beam response. In the same way, D2

and E2 on the second-beam response produce the loop D1 − E1 on the first-beam response.

4 CONCLUSION

A quasi-analytic analysis with the averaging method of a two-nanomechanical-resonator array
has been carried out. The existence of modal interactions between the two beams due to the
electrostatic coupling has been enlightened. The appearance of additional loops onto response
curves has been explained. The form of the response curves of an electrostatic coupled beam
array can be anticipated using the uncoupled single-beam-resonator responses. This research
represents an increment towards the comprehension and modeling of resonator arrays for appli-
cation in mass sensing.
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