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Abstract. We propose a general scheme, called Algorithm Scheme, to compute spanning-tree-like
data structures on arbitrary networks. Scheme is self-stabilizing and silent and, despite its generality,
is also efficient. It is written in the locally shared memory model with composite atomicity assuming
the distributed unfair daemon, the weakest scheduling assumption of the model. Its stabilization
time is in O(nmaxCC) rounds, where nmaxCC is the maximum number of processes in a connected
component. We also exhibit polynomial upper bounds on its stabilization time in steps and process
moves holding for large classes of instantiations of Algorithm Scheme. We illustrate the versatility
of our approach by proposing several such instantiations that efficiently solve classical problems.
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1 Introduction

A self-stabilizing algorithm [1] is able to recover a correct behavior in finite time, regardless of the ar-
bitrary initial configuration of the system, and therefore also after a finite number of transient faults,
provided that those faults do not alter the code of the processes. Among the vast self-stabilizing liter-
ature, many works (see [2] for a survey) focus on spanning-tree-like constructions, i.e. constructions of
specific distributed spanning tree- or forest- shaped data structures. Most of these constructions achieve
an additional property called silence [3]: a silent self-stabilizing algorithm converges within finite time to
a configuration from which the values of the communication registers used by the algorithm remain fixed.
Silence is a desirable property. Indeed, as noted in [3], the silent property usually implies more simplicity
in the algorithm design. Moreover, a silent algorithm may utilize less communication operations and
communication bandwidth.

Self-stabilizing spanning-tree-like constructions are widely used as a basic building block of more com-
plex self-stabilizing solutions. Indeed, composition is a natural way to design self-stabilizing algorithms [4]
since it allows to simplify both the design and proofs of self-stabilizing algorithms. Various composition
techniques have been introduced so far, e.g., collateral composition [5], fair composition [6], cross-over
composition [7], and conditional composition [8]; and many self-stabilizing algorithms are actually made
as a composition of a silent spanning-tree-like construction and another algorithm designed for tree/forest
topologies, e.g., [9,10,11]. Notably, the silence property is not mandatory in such designs, however it al-
lows to write simpler proofs [12]. Finally, notice that silent spanning-tree-like constructions have also been
used to build very general results, e.g., the self-stabilizing proof-labeling scheme constructions proposed
in [13].

We consider the locally shared memory model with composite atomicity introduced by Dijkstra [1],
which is the most commonly used model in self-stabilization. In this model, executions proceed in (atomic)
steps and the asynchrony of the system is captured by the notion of daemon. The weakest (i.e., the most
general) daemon is the distributed unfair daemon. Hence, solutions stabilizing under such an assumption
are highly desirable, because they work under any other daemon assumption. Moreover, the stabilization
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time can also be bounded in terms of steps (and moves, i.e., local state updates) when the algorithm
works under an unfair daemon. Otherwise (e.g., under a weakly fair daemon), time complexity may only
be evaluated in terms of rounds, which capture the execution time according to the slowest process. In
contrast, step complexity captures the execution time according to the fastest process. If the average
speed of the different processes are roughly equal, then the execution time is of the order of magnitude
of the round complexity. Otherwise, if the system is truly asynchronous, then the execution time is of
the order of magnitude of the step complexity. The stabilization time in moves captures the amount of
computations an algorithm needs to recover a correct behavior. Notice that the number of moves and
the number of steps are closely related: if an execution e contains x steps, then the number y of moves
in e satisfies x ≤ y ≤ n · x, where n is the number of processes.1 Finally, if an algorithm is self-stabilizing
under a weakly fair daemon, but not under an unfair one, then this means that the stabilization time in
moves cannot be bounded, so there are processes whose moves do not make the system progress in the
convergence. In other words, these processes waste computation power and so energy. Such a situation
should therefore be prevented, making the unfair daemon more desirable than the weakly fair one.

There are many self-stabilizing algorithms proven under the distributed unfair daemon, e.g., [14,15,16,17,18].
However, analyses of the stabilization time in steps (or moves) is rather unusual and this may be an im-
portant issue. Indeed, recently, several self-stabilizing algorithms which work under a distributed unfair
daemon have been shown to have an exponential stabilization time in steps in the worst case. In [14], silent
leader election algorithms from [16,17] are shown to be exponential in steps in the worst case. In [19],
the Breadth-First Search (BFS) algorithm of Huang and Chen [20] is also shown to be exponential in
steps. Finally, in [21] authors show that the silent self-stabilizing algorithm they proposed in [18] is also
exponential in steps.

Contribution. In this paper, we propose a general scheme, called Algorithm Scheme, to compute spanning-
tree-like data structures on bidirectional weighted networks of arbitrary topology (n.b., the topologies
are not necessarily connected). Algorithm Scheme is self-stabilizing and silent. It is written in the locally
shared memory model with composite atomicity, assuming the distributed unfair daemon.

Despite its versatility, Algorithm Scheme is efficient. Indeed, its stabilization time is at most 4nmaxCC
rounds, where nmaxCC is the maximum number of processes in a connected component. Moreover, its
stabilization time in moves is polynomial in the usual cases. Precisely, we exhibit polynomial upper
bounds on its stabilization time in moves that depend on the particular problems we consider.

To illustrate the versatility of our approach, we propose several instantiations of Scheme solving
classical spanning-tree-like problems. Assuming the network is identified (i.e., processes have distinct
IDs), we propose two instantiations of Scheme, for electing a leader in each connected component and
building a spanning tree rooted at each leader. In one version, stabilizing in O(nmaxCC

2 ·n) moves, the trees
are of arbitrary topology, while trees are BFS in the other, which stabilizes in O(nmaxCC

3 · n) moves. The
former move complexity matches the best known step complexity for leader election [14]. Assuming then
an input set of roots, we also propose an instance to compute a spanning forest of arbitrary shaped trees,
with non-rooted components detection.2 This instance stabilizes in O(nmaxCC ·n) moves, which matches the
best known step complexity for spanning tree construction [22] with explicit parent pointers. 3 Finally,
assuming a rooted network, we propose a shortest-path spanning tree and DFS construction, with non-
rooted components detection. The shortest-path spanning tree construction stabilizes inO(nmaxCC

3·n·Wmax)
moves (Wmax is the maximum weight of an edge). Again, this move complexity matches the best known
move complexity for this problem [24]. From these various examples, one can easily derive other silent
self-stabilizing spanning-tree-like constructions.

Related Work. This work is inspired by [24]. That paper also considers the composite atomicity model
with distributed unfair daemon, is efficient both in terms of rounds and moves, tolerates disconnections,

1Actually, in this paper as in most of the literature, bounds on step complexity are established by proving
upper bounds on the number of moves.

2By non-rooted components detection, we mean that every process in a connected component that does not
contain the root should eventually take a special state notifying that it detects the absence of a root.

3Actually, there exists a solution with implicit parent pointer [23] that achieves a better complexity, O(n ·D)
moves, where D is the network diameter. However adding a parent pointer to this algorithm makes this solution
more costly than ours in a large class of networks, as we will explain later.
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but it is restricted to the case of the shortest-path tree with a single root. Generalizing this work to
obtain a generic yet efficient self-stabilizing algorithm requires a fine tuning of the algorithm (presented
in Section 3) and a careful rewriting of the proofs of correctness (presented in the remaining sections).
In particular, almost all the concepts used to prove termination or complexities need to be redefined to
suit the new, more general setting. Consequently their new properties and the corresponding proofs are
mostly novel (although of a similar flavor).

Another closely related work is the one of Cobb and Huang [25]. In that paper, a generic self-stabilizing
algorithm is presented for constructing in a rooted connected network a spanning tree where a given metric
is maximized. Now, since the network is assumed to be rooted (i.e., a leader node is already known), leader
election is not an instance of their generic algorithm. Similarly, since they assume connected networks,
the non-rooted components detection cannot be expressed too. Finally, their algorithm is proven in the
composite atomicity model but only for the restricted centralized weakly-fair daemon.

General schemes for arbitrary connected and identified networks have been proposed to transform
almost any algorithm (specifically, those algorithms that can be self-stabilized) into their corresponding
stabilizing version [26,27,28,29]. Such universal transformers are, by essence, inefficient both in terms of
space and time complexities: their purpose is only to demonstrate the feasibility of the transformation.
In [26] and [27], authors consider self-stabilization in asynchronous message-passing systems and in the
synchronous locally shared memory model, while expressiveness of snap-stabilization is studied in [28,29]
assuming the locally shared memory model with composite atomicity and a distributed unfair daemon.

In [30,31], authors propose a method to design silent self-stabilizing algorithms for a class of fix-point
problems (namely fix-point problems which can be expressed using r-operators). Their solution works in
directed networks using bounded memory per process. In [30], they consider the locally shared memory
model with composite atomicity assuming a distributed unfair daemon, while in [31], they generalize their
approach to asynchronous message-passing systems. In both papers, they establish a stabilization time
in O(D) rounds, where D is the network diameter, that holds for the synchronous case only.

The remainder of the related work only concerns the locally shared memory model with composite
atomicity assuming a distributed unfair daemon.

In [13], authors use the concept of labeling scheme introduced by Korman et al [32] to design silent
self-stabilizing algorithms with bounded memory per process. Using their approach, they show that every
static task has a silent self-stabilizing algorithm which converges within a linear number of rounds in an
arbitrary identified network. No step (nor move) complexity is given.

Efficient and general schemes for snap-stabilizing waves in arbitrary connected and rooted networks
are tackled in [33]. Using this approach, one can obtain snap-stabilizing algorithms that execute each
wave in a polynomial number of rounds and steps.

Few other works consider the design of particular spanning-tree-like constructions and their step com-
plexity. Self-stabilizing algorithms that construct BFS trees in arbitrary connected and rooted networks
are proposed in [34,35]. The algorithm in [34] is not silent and has a stabilization time in O(∆ · n3)
steps (∆ is the maximum degree of the network)). The silent algorithm given in [35] has a stabilization
time O(D2) rounds and O(n6) steps. Silent self-stabilizing algorithms that construct spanning trees of ar-
bitrary topologies in arbitrary connected and rooted networks are given in [22,23]. The solution proposed
in [22] stabilizes in at most 4 · n rounds and 5 · n2 steps, while the algorithm given in [23] stabilizes in
n ·D moves. However, its round complexity is not analyzed and the parent of a process is not computed
explicitly. Furthermore, Cournier [36] showed that the straightforward variant of this algorithm where a
parent pointer variable is added has a stabilization time in Ω(n2 ·D) steps in an infinite class of networks.

Several other papers propose self-stabilizing algorithms stabilizing in both a polynomial number of
rounds and a polynomial number of steps, e.g., [14] (for the leader election in arbitrary identified and
connected networks), and [37,38] (for the DFS token circulation in arbitrary connected and rooted net-
works). The silent leader election algorithm proposed in [14] stabilizes in at most 3 · n + D rounds and
O(n3) steps. DFS token circulations given in [37,38] execute each wave in O(n) rounds and O(n2) steps
using O(n · logn) space per process for the former, and O(n3) rounds and O(n3) steps using O(logn)
space per process for the latter. Note that in [37], processes are additionally assumed to be identified.

Roadmap. In the next section, we present the computational model and basic definitions. In Section 3,
we describe Algorithm Scheme. Its proof of correctness and a complexity analysis in moves are given
in Section 4, whereas an analysis of the stabilization time in rounds is proposed in Section 5. Five
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instantiations of Scheme with their specific complexity analyses are presented in Section 6. Finally, we
make concluding remarks in Section 7.

2 Preliminaries

We consider distributed systems made of n ≥ 1 interconnected processes. Each process can directly
communicate with a subset of other processes, called its neighbors. Communication is assumed to be
bidirectional. Hence, the topology of the system can be represented as a simple undirected graph G =
(V,E), where V is the set of processes and E the set of edges, representing communication links. Every
(undirected) edge {u, v} actually consists of two arcs: (u, v) (i.e., the directed link from u to v) and (v, u)
(i.e., the directed link from v to u). For every process u, we denote by Vu the set of processes (including
u) in the same connected component of G as u. In the following, Vu is simply referred to as the connected
component of u. We denote by nmaxCC the maximum number of processes in a connected component of G.
By definition, nmaxCC ≤ n.

Every process u can distinguish its neighbors using a local labeling of a given datatype Lbl. All labels
of u’s neighbors are stored into the set Γ (u). Moreover, we assume that each process u can identify
its local label αu(v) in the set Γ (v) of each neighbor v. Such labeling is called indirect naming in the
literature [39]. When it is clear from the context, we use, by an abuse of notation, u to designate both the
process u itself, and its local labels (i.e., we simply use u instead of αu(v) for v ∈ Γ (u)). Let δu = |Γ (u)|
be the degree of process u. The maximal degree of G is ∆ = maxu∈V δu.

We use the composite atomicity model of computation [1,6] in which the processes communicate using
a finite number of locally shared registers, called variables. Each process can read its own variables and
those of its neighbors, but can write only to its own variables. The state of a process is defined by the
values of its local variables. A configuration of the system is a vector consisting of the states of each
process.

A distributed algorithm consists of one local program per process. The program of each process consists
of a finite set of rules of the form label : guard→ action. Labels are only used to identify rules in the
reasoning. A guard is a Boolean predicate involving the state of the process and that of its neighbors. The
action part of a rule updates the state of the process. A rule can be executed only if its guard evaluates
to true; in this case, the rule is said to be enabled. A process is said to be enabled if at least one of its
rules is enabled. We denote by Enabled(γ) the subset of processes that are enabled in configuration γ.

When the configuration is γ and Enabled(γ) 6= ∅, a non-empty set X ⊆ Enabled(γ) is selected by the
so-called daemon; then every process of X atomically executes one of its enabled rules, leading to a new
configuration γ′. The transition from γ to γ′ is called a step. We also say that each process of X performs
a move or an action during γ to γ′. The possible steps induce a binary relation over C, denoted by 7→.
An execution is a maximal sequence of configurations e = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all i > 0.
The term “maximal” means that the execution is either infinite, or ends at a terminal configuration in
which no rule is enabled at any process.

Each step from a configuration to another is driven by a daemon. We define a daemon as a predicate
over executions. We say that an execution e is an execution under the daemon S, if S(e) holds. In this paper
we assume that the daemon is distributed and unfair. “Distributed” means that while the configuration
is not terminal, the daemon should select at least one enabled process, maybe more. “Unfair” means that
there is no fairness constraint, i.e., the daemon might never select an enabled process unless it is the only
enabled process. In other words, the distributed unfair daemon corresponds to the predicate true, i.e.,
this is the most general daemon.

In the composite atomicity model, an algorithm is silent if all its possible executions are finite. Hence,
we can define silent self-stabilization as follows.

Definition 1 (Silent Self-Stabilization). Let L be a non-empty subset of configurations, called the set
of legitimate configurations. A distributed system is silent and self-stabilizing under the daemon S for L
if and only if the following two conditions hold:

– all executions under S are finite, and
– all terminal configurations belong to L.
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We use the notion of round [40] to measure the time complexity. The definition of round uses the
concept of neutralization: a process v is neutralized during a step γi 7→ γi+1, if v is enabled in γi but
not in configuration γi+1, and it is not activated in the step γi 7→ γi+1. Then, the rounds are inductively
defined as follows. The first round of an execution e = γ0, γ1, · · · is the minimal prefix e′ = γ0, · · · , γj ,
such that every process that is enabled in γ0 either executes a rule or is neutralized during a step of e′.
Let e′′ be the suffix γj , γj+1, · · · of e. The second round of e is the first round of e′′, and so on.

The stabilization time of a silent self-stabilizing algorithm is the maximum time, in moves, steps or
rounds, over every execution possible under the considered daemon S (starting from any initial configu-
ration) to reach a terminal (legitimate) configuration.

3 Algorithm Scheme
3.1 The problem
We propose a general silent self-stabilizing algorithm, called Scheme (see Algorithm 1 for its formal code),
which aims at converging to a terminal configuration where a specified spanning forest (maybe a single
spanning tree) is (distributedly) defined. To that goal, each process u has two inputs.
canBeRootu: a constant boolean value, which is true if u is allowed to be root of a tree. In this case,

u is called a candidate. In a terminal configuration, every tree root satisfies canBeRoot, but the
converse is not necessarily true. Moreover, for every connected component GC, if there is at least one
candidate u ∈ GC, then at least one process of GC should be a tree root in a terminal configuration.
In contrast, if there is no candidate in a connected component, we require that all processes of the
component converge to a particular terminal state, expressing the local detection of the absence of
candidate.

pnameu: the name of u (a constant). pnameu ∈ IDs, where IDs = N ∪ {⊥} is totally ordered by <
and min<(IDs) = ⊥. The value of pnameu is problem dependent. Actually, we consider here two
particular cases of naming. In one case, ∀v ∈ V, pnamev = ⊥. In the other case, ∀u, v ∈ V, pnameu 6=
⊥ ∧ (u 6= v ⇒ pnameu 6= pnamev), i.e., pnameu is a unique global identifier.
Then, according to the specific problem we consider, we may want to minimize the weight of the

trees using some kind of distance. To that goal, we assume that each edge {u, v} has two weights: ωu(v)
denotes the weight of the arc (u, v) and ωv(u) denotes the weight of the arc (v, u). Both values belong to
the domain DistSet. Let (DistSet,⊕,≺) be an ordered magma, i.e., ⊕ is a closed binary operation on
DistSet and ≺ is a total order on this set. The definition of (DistSet,⊕,≺) is problem dependent and,
if necessary (i.e., if the problem dependent predicate P_nodeImp(.) holds), the weight of the trees will
be minimized using the ordered magma and the distance values that each candidate u may take when it
is the root of a tree. This latter value is given by the (problem dependent) function distRoot(u).

We assume that, for every edge {u, v} of E and for every value d of DistSet, we have d ≺ d⊕ ωu(v)
and d ≺ d ⊕ ωv(u). Besides, for every d1 and d2 in DistSet, and for every integer i ≥ 0, we define
d1⊕ (i · d2) as follows:
– d1⊕ (0 · d2) = d1
– d1⊕ (i · d2) = (d1⊕ ((i− 1) · d2)⊕ d2 if i > 0.

3.2 The variables
In Scheme, each process u maintains the following three variables.
stu ∈ {I, C,EB,EF}: this variable gives the status of the process. I, C, EB, and EF respectively stand

for Isolated, Correct, Error Broadcast, and Error Feedback. The two first status, I and C, are involved
in the normal behavior of the algorithm, while the two last ones, EB and EF , are used during the
correction mechanism. The meaning of EB and EF will be further detailed in Subsection 3.4. In a
terminal configuration, if Vu contains a candidate, then stu = C, otherwise stu = I.

parentu ∈ {⊥} ∪ Lbl: In a terminal configuration, if Vu contains a candidate, then either parentu = ⊥,
i.e., u is a tree root, or parentu belongs to Γ (u), i.e., parentu designates a neighbor of u, referred to
as its parent. Otherwise (Vu does not contain a candidate), the value of parentu is meaningless.

du ∈ DistSet. In a terminal configuration, if Vu contains a candidate, then du is larger than or equal to
the weight of the tree path from u to its tree root, otherwise the value of du is meaningless.



6

3.3 Typical Execution

Consider a configuration where, for every process u, stu = I. All processes that belong to a connected
component containing no candidates are disabled forever. Focus now on a connected component GC
where at least one process is candidate. Then, any process u of status I that is a candidate or a neighbor
of a process of status C is enabled to execute rule RR: it eventually executes RR(u) to initiate a
tree or to join a tree rooted at some candidate, choosing among the different possibilities the one that
minimizes its distance value. Using this rule, it also switches its status to C and sets du to distRoot(u),
or dv ⊕ωu(v) if it chooses a parent v. Executions of rule RR are asynchronously propagated in GC until
all processes of GC have status C. In parallel, rules RU are executed to reduce the weight of the trees,
if necessary: when a process u with status C satisfies P_nodeImp(u), this means that u can reduce du
by selecting another neighbor with status C as parent and this reduction is required by the specification
of the problem to be solved (P_nodeImp(u) is problem dependent). In this case, u chooses the neighbor
which allows to minimize the value of du. In particular, notice that a candidate can lose its tree root
condition using this rule, if it finds a sufficiently good parent in its neighborhood. Hence, eventually the
system reaches a terminal configuration, where a specific spanning forest (maybe a single spanning tree)
is defined (in a distributed manner) in connected components containing at least one candidate, while in
other components all processes are isolated.

3.4 Error Correction

Assume now that the system is in an arbitrary configuration. Inconsistencies between the states of the
processes are detected using predicate P_abnormalRoot. We call abnormal root any process u satisfying
P_abnormalRoot(u). Informally (see Subsection 4.1, page 7, for the formal definition), a process u is an
abnormal root if u is neither a normal root (i.e., ¬P_root(u), see Definition 2), nor isolated (i.e. stu 6= I),
and satisfies one of the following four conditions:

1. its parent pointer does not designate a neighbor,
2. its parent has status I,
3. its distance du is inconsistent with the distance of its parent, or
4. its status is inconsistent with the status of its parent.

Every process u that is neither an abnormal root nor isolated satisfies one of the two following cases.
Either u is a normal root, i.e., P_root(u), or u points to some neighbor (i.e., parentu ∈ Γ (u)) and the
state of u is coherent w.r.t. the state of its parent. In this latter case, u ∈ Children(parentu), i.e., u is a
“real” child of its parent (see Subsection 4.1 for the formal definition). Consider a path P = u0, · · · , uk
such that ∀i, 0 ≤ i < k, ui+1 ∈ Children(ui). P is acyclic. If u0 is either a normal or an abnormal root,
then P is called a branch rooted at u0. Let u be a root (either normal or abnormal). We define the tree
T (u) as the set of all processes that belong to a branch rooted at u. If u is a normal root, then T (u) is
said to be a normal tree, otherwise u is an abnormal root and T (u) is said to be an abnormal tree.

We call normal configuration any configuration without abnormal trees. So, to recover a normal
configuration, it is necessary to remove all abnormal trees. For each abnormal tree T , we have two cases.
If the abnormal root u of T can join another tree T ′ using rule RU(u) (thus without increasing its distance
value), then it does so and T disappears by becoming a subtree of T ′. Otherwise, T is entirely removed
in a top-down manner, starting from its abnormal root u. Now, in that case, we have to prevent the
following situation: u leaves T ; this removal creates some abnormal trees, each of those being rooted at
a previous child of u; and later u joins one of those (created) trees. (This issue is sometimes referred to
as the count-to-infinity problem [41].) Hence, the idea is to freeze T , before removing it. By freezing we
mean assigning each member of the tree to a particular state, here EF , so that (1) no member v of the
tree is allowed to execute RU(v), and (2) no process w can join the tree by executing RR(w) or RU(w).
Once frozen, the tree can be safely deleted from its root to its leaves.

The freezing mechanism (inspired from [42]) is achieved using the status EB and EF , and the rules
REB and REF. If a process is not involved into any freezing operation, then its status is I or C. Otherwise,
it has status EB or EF and no neighbor can select it as its parent. These two latter status are actually
used to perform a “Propagation of Information with Feedback” [43,44] in the abnormal trees. This is
why status EB means “Error Broadcast” and EF means “Error Feedback”. From an abnormal root, the
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status EB is broadcast down in the tree using rule REB. Then, once the EB wave reaches a leaf, the
leaf initiates a convergecast EF -wave using rule REF. Once the EF -wave reaches the abnormal root, the
tree is said to be dead, meaning that all processes in the tree have status EF and, consequently, no other
process can join it. So, the tree can be safely deleted from its abnormal root toward its leaves. There are
two possibilities for the deletion depending on whether or not the process u to be deleted is a candidate
or has a neighbor with status C. If u is a candidate or has a neighbor with status C, the rule RR(u)
is executed: u tries to directly join another “alive” tree, however if becoming a normal root allows it to
further minimize du, it executes beRoot(u) to become a normal root. If u is not a candidate and has no
neighbor with status C, the rule RI(u) is executed: u becomes isolated, and might join another tree later.

Let u be a process belonging to an abnormal tree of which it is not the root. Let v be its parent. From
the previous explanation, it follows that during the correction, (stv, stu) ∈ {(C,C), (EB,C), (EB,EB),
(EB,EF ), (EF,EF )} until v resets by RR(v) or RI(v). Now, due to the arbitrary initialization, the
status of u and v may not be coherent, in this case u is an abnormal root. Precisely, as formally defined
in Algorithm 1, the status of u is incoherent w.r.t the status of its parent v if stu 6= stv and stv 6= EB.

Actually, the freezing mechanism ensures that if a process is the root of an alive abnormal tree, it is
in that situation since the initial configuration (see Lemma 5, page 10). The bounded move complexity
mainly relies on this strong property.

4 Correctness and Move Complexity of Scheme

4.1 Definitions

Before proceeding with the proof of correctness and the move complexity analysis, we define some useful
concepts and give some of their properties.

Root, Child, and Branch.

Definition 2 (Normal and Abnormal Roots). Every process u that satisfies P_root(u) is said to
be a normal root.

Every process u that satisfies P_abnormalRoot(u) is said to be an abnormal root.

Definition 3 (Alive Abnormal Root). A process u is said to be an alive abnormal root (resp. a dead
abnormal root) if u is an abnormal root and has a status different from EF (resp. has status EF ).

Definition 4 (Children). For every process v, Children(v) = {u ∈ Γ (v) | stv 6= I∧stu 6= I∧parentu =
v ∧ du � dv ⊕ ωu(v) ∧ (stu = stv ∨ stv = EB)}.

For every process u ∈ Children(v), u is said to be a child of v. Conversely, v is said to be the parent
of u.

Observation 1 A process u is either a normal root, an isolated process (i.e. stu = I), an abnormal root,
or a child of its parent v (i.e. member of the set Children(parentv)).

Definition 5 (Branch). A branch is a sequence of processes v0, · · · , vk, for some integer k ≥ 0, such
that v0 is a normal or an abnormal root and, for every 0 ≤ i < k, we have vi+1 ∈ Children(vi). The
process vi is said to be at depth i and vi, · · · , vk is called a sub-branch. If v0 is an abnormal root, the
branch is said to be illegal, otherwise, the branch is said to be legal.

Observation 2 A branch depth is at most nmaxCC − 1. A process v having status I does not belong to
any branch. If a process v has status C (resp. EF ), then all processes of a sub-branch starting at v have
status C (resp. EF ).

One of the key properties allowing us to prove that Scheme has a polynomial move complexity is the
following result.
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Algorithm 1: Algorithm Scheme, code for any process u

Inputs
• canBeRootu: a boolean value; it is true if u can be a root
• pnameu: name of u

Variables
• stu ∈ {I, C,EB,EF}: the status of u
• parentu ∈ {⊥} ∪ Lbl
• du: the distance value associated to u

Predicates
• P_root(u) ≡ canBeRootu ∧ stu = C ∧ parentu = ⊥ ∧ du = distRoot(u)
• P_abnormalRoot(u) ≡
¬P_root(u)∧ stu 6= I∧ [parentu /∈ Γ (u)∨ stparentu = I ∨ du ≺ dparentu ⊕ ωu(parentu)∨
(stu 6= stparentu ∧ stparentu 6= EB)]

• P_reset(u) ≡ stu = EF ∧ P_abnormalRoot(u)
• P_updateNode(u) ≡ (∃v ∈ Γ (u) | stv = C ∧ dv ⊕ ωu(v) ≺ du)
• P_updateRoot(u) ≡ canBeRootu ∧ distRoot(u) ≺ du
• P_nodeImp(u) is problem dependent. However,

if P_nodeImp(u), then P_updateNode(u) ∨ P_updateRoot(u);
if P_updateRoot(u), then P_nodeImp(u);
P_nodeImp(u) only depends on the values of stu, du, P_updateRoot(u), and

min(v∈Γ (u) ∧ stv=C)(dv ⊕ ωu(v)).

Macros
• beRoot(u): stu := C; parentu := ⊥; du := distRoot(u);
• computePath(u):

stu := C;
parentu := argmin(v∈Γ (u) ∧ stv=C)(dv ⊕ ωu(v));
du := dparentu ⊕ ωu(parentu);
if P_updateRoot(u) then beRoot(u);

Rules
RU(u): stu = C ∧ P_nodeImp(u) → computePath(u);
REB(u): stu = C ∧ ¬P_nodeImp(u)∧ → stu := EB;

(P_abnormalRoot(u) ∨ stparentu = EB)
REF(u): stu = EB ∧ (∀v ∈ Children(u) | stv = EF ) → stu := EF ;
RI(u): P_reset(u) ∧ ¬canBeRootu ∧ (∀v ∈ Γ (u) | stv 6= C) → stu := I;
RR(u): (P_reset(u) ∨ stu = I)∧ → computePath(u);

[canBeRootu ∨ (∃v ∈ Γ (u) | stv = C)]
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Legitimate Configurations.

Definition 6 (Legitimate State). A process u is said to be in a legitimate state of Scheme if u satisfies
one of the following conditions:

1. P_root(u), and ¬P_nodeImp(u),
2. there is a process satisfying canBeRoot in Vu, stu = C, parentu ∈ Γ (u), du � dparentu⊕ωu(parentu),

and ¬P_nodeImp(u), or
3. there is no process satisfying canBeRoot in Vu and stu = I.

Definition 7 (Legitimate Configuration). A legitimate configuration of Scheme is a configuration
where every process is in a legitimate state.

We will eventually prove that the terminal configurations are exactly the legitimate configurations.
We first prove one of the two inclusions.

Lemma 1. Any legitimate configuration of Scheme is terminal.

Proof. Let γ be a legitimate configuration of Scheme and u be a process.
Assume first that there is no process of Vu that satisfies canBeRoot in γ. Then, by definition of γ,

every process v in Vu satisfies stv = I. Hence, since ¬canBeRootv ∧ stv = I for every process v in Vu, no
rule of Scheme is enabled at any process of Vu in γ.

Assume then that there is a process that satisfies canBeRoot in γ. Then, every process v ∈ Vu satisfies
(1) P_root(v) and ¬P_nodeImp(v), or (2) stv = C, parentv ∈ Γ (v), dv � dparentv ⊕ ωv(parentv), and
¬P_nodeImp(v). This in particular means that stv = C, for every v ∈ Vu. Hence, REF(v), RI(v), and
RR(v) are all disabled at every v ∈ Vu in γ. ¬P_nodeImp(v) implies that RU(v) is disabled at every
v ∈ Vu. Finally, stv = C ∧ [P_root(v)∨ (parentv ∈ Γ (v)∧ dv � dparentv ⊕ωv(parentv))] for every v ∈ Vu
implies ¬P_abnormalRoot(v) ∧ stparentv 6= EB for every v ∈ Vu and so REB(v) is disabled at every
v ∈ Vu in γ. Hence, no rule of Scheme is enabled at any process of Vu in γ. �

4.2 Partial Correctness

The following technical lemmas will help us to prove that any terminal configuration of Scheme is legiti-
mate.

Lemma 2. In any terminal configuration of Scheme, every process has status I or C.

Proof. Assume that there exists some process that has status EB. Consider a process u with status EB
having the largest distance value du. Note that no process v that has status C can be a child of u, other-
wise RU(v) or REB(v) would be enabled. Therefore, process u has only children having the status EF .
Thus REF(u) is enabled, a contradiction.

Assume now that there exists some process that has status EF . Consider a process u with status EF
having the smallest distance value du. As no process has status EB (see the previous case), u is an
abnormal root, and has the status EF . So, either RI(u) or RR(u) is enabled, a contradiction. �

Lemma 3. Let γ be a terminal configuration of Scheme. Let u be a process such that Vu contains at least
one process satisfying canBeRoot in γ. In γ, u satisfies:

– stu = C,
– ¬P_nodeImp(u), and
– P_root(u) or parentu ∈ Γ (u) ∧ du � dparentu ⊕ wu(parentu).

Proof. Let v be a process of Vu such that canBeRootv in γ. We have stv /∈ {EB,EF}, by Lemma 2, and
also stv 6= I, because otherwise RR(v) would be enabled in γ. Therefore stv = C.

Assume then that there exists some process of Vu that has status I in γ. Consider now a process w
of Vu such that w has status I and at least one of its neighbors has status C in γ (such a process exists
because no process has status EB or EF in γ, by Lemma 2, whereas at least one process, e.g., v, of Vu
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has status C). Then, RR(w) is enabled in γ, a contradiction. So, every process of Vu (including u) has
status C in γ.

Since stu = C in γ, ¬P_nodeImp(u) holds in γ (otherwise, RU(u) would be enabled).
In γ, u satisfies ¬P_abnormalRoot(u) because, otherwise, either RU(u) or REB(u) would be enabled,

as stu = C in γ. We can thus conclude by Observation 1 that u satisfies P_root(u) or parentu ∈
Γ (u) ∧ du � dparentu ⊕ wu(parentu) in γ. �

In a connected component containing no candidates, all processes are isolated. Otherwise, the process
u having the smallest distance du (which would exist by Lemma 2) would be an abnormal root and thus
would be enabled. Therefore, by Lemma 3, we obtain the following result.

Theorem 1. Any terminal configuration of Scheme is legitimate.

In the remainder of Section 4, we establish some properties on every execution of Scheme under a
distributed unfair daemon. These properties allow us to show the termination under a distributed unfair
daemon and exhibit an upper bound on the move complexity of any instance of Scheme.

4.3 GC-segments

Let GC be a connected component of G and let γ be a configuration. Let SL(γ,GC) be the set of
processes u ∈ GC such that, in γ, u is an alive abnormal root, or P_updateRoot(u)∧ stu = C holds. We
now prove that this set can never gain a new element.

Lemma 4. Let γ 7→ γ′ be a step where a process u executes the rule RU or RR. Then u is not an alive
abnormal root in γ′.

Proof. If parentu = ⊥ in γ′, then u must have executed beRoot(u) in γ 7→ γ′. So P_root(u) is true in
γ′, which, in turn, implies ¬P_abnormalRoot(u).

Assume now that parentu = v in γ′. Then stv = C in γ (because it is a requirement to execute RU
or RR when beRoot(u) is not executed in γ 7→ γ′). Consequently, the only rules that v may execute
in γ 7→ γ′ are RU or REB. During γ 7→ γ′, v either takes the status EB, decreases its distance value, or
does not change the value of its variables. In any case, u belongs to Children(v) in γ′, which prevents u
from being an alive abnormal root in γ′. �

Lemma 5. No alive abnormal root is created along any execution of Scheme.

Proof. Let γ 7→ γ′ be a step. Let u be a process that is not an alive abnormal root in γ. If the status
of u is EF or I in γ′, then u is not an alive abnormal root in γ′. If u executes RU or RR during this
step, then u is not an alive abnormal root in γ′ either, by Lemma 4. So the only rule that u may execute
is REB in γ 7→ γ′. Furthermore, both in γ and γ′, u has status C or EB.

Assume first that parentu = ⊥ in γ′. Then, parentu = ⊥ already holds in γ. We thus have P_root(u)
in γ because ¬P_abnormalRoot(u) in γ. Consequently, u executes no move in γ 7→ γ′, and u is still a
normal root in γ′.

Assume now that parentu = v in γ′. Whether u executes REB or not, parentu is also v in γ. Also,
¬P_abnormalRoot(u) in γ implies that u ∈ Children(v) and stv ∈ {C,EB} in γ, further implying that
the only rules that v may execute in γ 7→ γ′ are RU or REB. We conclude that, in any case, u still
belongs to Children(v) in γ′, which prevents u from being an alive abnormal root in γ′. �

Lemma 6. If a process u satisfies P_updateRoot(u) ∧ stu = C, then it does so from the beginning of
the execution.

Proof. Let u be a process satisfying P_updateRoot(u) ∧ stu = C. Note that the property does only
depend on the local state on u. Moreover, this state must be the initial state, because any rule fixing stu
to C also sets du to a value not larger than distRootu. This concludes the proof. �

By the two preceding Lemmas, we obtain the following result.

Corollary 1. For every step γ 7→ γ′, SL(γ′, GC) ⊆ SL(γ,GC).
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Based on Corollary 1, we can use the notion of GC-segment defined below to bound the total number
of moves in an execution.

Definition 8 (GC-Segment). Let e = γ0, γ1, · · · be an execution of Scheme. Let GC be a connected
component of G. If there is no step γi 7→ γi+1 in e such that |SL(γi, GC)| > |SL(γi+1, GC)|, then the
first GC-segment of e is e itself and there is no other GC-segment.

Otherwise, let γi 7→ γi+1 be the first step of e such that |SL(γi, GC)| > |SL(γi+1, GC)|. The first
GC-segment of e is the prefix γ0, · · · , γi+1. The second GC-segment of e is the first GC-segment of the
suffix γi+1, γi+2, · · · , and so forth.

By Corollary 1, we have

Observation 3 Let GC be a connected component of G. For every execution e of Scheme, e contains at
most nmaxCC + 1 GC-segments, because |SL(γi, GC)| ≤ nmaxCC by definition.

Let us now prove some properties on the moves made by a process in a GC-segment.

Lemma 7. Let GC be a connected component of G and u be any process of GC. Let seg be a GC-
segment. During seg, if u executes the rule REF, then u does not execute any other rule in the remaining
of seg.

Proof. Let γ1 7→ γ2 be a step of seg in which u executes REF. Let γ3 7→ γ4 be the next step in which u
executes a rule. (If one of these two steps does not exist, then the lemma trivially holds.)

Let v be the root (at depth 0) of any branch in γ1 containing u. By Definition 4, v must have status
EB, and must therefore be an alive abnormal root. This implies that v ∈ SL(γ1, GC). Note that we may
have v = u. On the other hand, in γ3, u is the dead abnormal root of all branches it belongs to since
stu = EF in γ3 and u necessarily executes RI or RR in this step. This implies that v must have executed
the rule REF in the meantime: there is a step γ5 7→ γ6, with γ5 between γ1 (included) and γ3 (excluded)
where v executes REF. Since stv = EF in γ6, we have v /∈ SL(γ6, GC). Therefore, the steps γ1 7→ γ2,
and γ3 7→ γ4 belong to two distinct GC-segments of the execution, by Corollary 1 and Definition 8. �

By Lemma 7,we obtain the following result.

Corollary 2. Let GC be a connected component of G and u be any process of GC. The sequence of rules
executed by u during a GC-segment belongs to the following language:

(RI + ε)(RR + ε)(RU)∗(REB + ε)(REF + ε) .

By Observation 3 and Corollary 2, we obtain the following result.

Theorem 2. If the number of RU executions by any process of GC in any GC-segment is bounded
by nb_UN , then the total number of moves in any execution is bounded by (nb_UN + 4) · (nmaxCC + 1) ·n.

4.4 Causal chains

We now use the notion of causal chain defined below to further analyze the number of moves and steps
in a GC-segment.

Definition 9 (Causal Chain). Let GC be a connected component of G. Let v0 be a process of GC
and seg be any GC-segment. A causal chain of seg rooted at v0 is a non-empty sequence of actions
a1, a2, · · · , ak executed in seg such that the action a1 sets parentv1 to v0 and for all 2 ≤ i ≤ k, the
action ai sets parentvi to vi−1 after the action ai−1 but not later than vi−1’s next action.

Observation 4 Let GC be a connected component of G, v0 be a process of GC, and seg be any GC-
segment. Let a1, a2, · · · , ak be a causal chain of seg rooted at v0. Denote by vi the process that executes
ai, for all i ∈ {1, . . . , k}.

– For all 1 ≤ i ≤ k, ai consists in the execution of computePath(vi) (i.e., vi executes the rule RU
or RR), where vi is a process of GC.
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– Assume a1 is executed in the step γ 7→ γ′ of seg. Denote by ds0 the distance value of process v0 in γ,
called the initiating value of the causal chain. For all 1 ≤ i ≤ k, ai sets dvi to ((ds0 ⊕ wv1(v0)) ⊕
. . .)⊕ wvi(vi−1).

Lemma 8. Let GC be a connected component of G. Let seg be a segment of GC.
– All actions in a causal chain of seg are executed by different processes of GC.
– Moreover, an execution of computePath(v) by some process v never belongs to any causal chain rooted

at v.

Proof. First, by definition, all actions executed in a causal chain of seg are executed by processes in GC.
Then, note that any rule RU executed by a process v makes the value of dv decrease.
Assume now, by contradiction, that there exists a process v such that, in some causal chain a1, a2, · · · , ak

of seg, v is designated as parent in some action ai executed in step γi 7→ γi+1 and executes the action
aj in step γj 7→ γj+1, with j > i. v has status C in γi, and the value of dv is strictly larger in γj+1 than
in γi (Observation 4). So v must execute REF between γi+1 and γj . Consequently, actions ai and aj are
executed in two different segments (Lemma 7), a contradiction.

Therefore, all actions in a causal chain are caused by different processes, and a process never executes
an action in a causal chain it is the root of. �

Maximal Causal chains.
Definition 10 (Maximal causal chain). Let GC be a connected component of G. Let v0 be a process
of GC and let seg be any GC-segment.

A maximal causal chain of seg rooted at v0 is a causal chain a1, a2, · · · , ak executed in seg such that
the causal chain is maximal and, either v0 is a normal root or the action a1 sets parentv1 to v0 not later
than any action by v0 in seg.

The following lemma adds an additional property to Observation 4 for the specific case of maximal
causal chains.

Lemma 9. Given any connected component GC, any GC-segment seg, and any process v ∈ GC, all
maximal causal chains of seg rooted at v have the same initiating value.

Proof. For the purpose of contradiction, assume that there exist such GC, seg and v such that two
maximal causal chains of seg rooted at v have different initiating values d1 and d2. At least one of them,
say d1, must be different from distRootv. This value d1 is necessarily the distance value of v at the
beginning of seg, otherwise v would not be the root of the corresponding maximal causal chain. As a
consequence, we must have d2 = distRootv.

Since d1 is the distance value of v at the beginning of seg, there must exist an action a executing
beRoot(u) in seg. By Corollary 2, the action a is an execution of RU in the case when P_updateRoot(v)∧
stv = C holds. By definition of a GC-segment, the action a is thus executed during the last step of seg
and thus no maximal causal chains of seg (which are never empty by definition) can be rooted at v with
initiating value d2 = distRootv. This contradiction concludes the proof. �

Definition 11 (SIseg,v). Let GC be a connected component of G. Let v be a process of GC and let seg
be a segment of GC.

We define SIseg,v as the set of all the distance values obtained after executing an action belonging to
the maximal causal chains of seg rooted at v.

Lemma 10. Let GC be a connected component of G. Let v0 be a process of GC and let seg be a segment
of GC. The size of the set SIseg,v0 is bounded by nmaxCC!.

Proof. Let us consider a distance value d obtained after executing an action ai belonging to a maximal
causal chain a1, a2, · · · , ak of seg rooted at v0. Denote by vi the process that executes ai, for all i ∈
{1, . . . , k}. By Observation 4, we have d = ((ds0 ⊕ wv1(v0)) ⊕ . . .) ⊕ wvi

(vi−1), with ds0 being the
initiating value common to all maximal causal chains of seg rooted at v0. Differently speaking, the value
d is fully determined by the sequence of processes v1, · · · vi (v0 and seg being fixed). Moreover, note that
all the vj , 0 ≤ j ≤ i are different processes, by Lemma 8. Therefore, |SIseg,v0 | is bounded by nmaxCC!. �
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4.5 Move complexity of Scheme

Lemma 11. Let GC be a connected component of G, u ∈ GC, and seg be a GC-segment. If the size
of SIseg,v is bounded by X for any process v ∈ GC, then the number of RU moves done by u in seg is
bounded by X · (nmaxCC − 1) + 1.

Proof. First, assume that RU(u) is executed in some step γ 7→ γ′ of seg and later in some other
step γ′′ 7→ γ′′′ of seg. By Corollary 2, any sequence of RU(u) executions in seg makes the value of
du decrease. Therefore, all the values of du obtained by the RU executions done by u are different. By
definitions 10 and 11, all these values belong to the set

⋃
v∈GC\{u} SIseg,v ∪{distRoot(u)}, which has size

at most X · (nmaxCC − 1) + 1. �

By Theorem 2 and Lemma 11, we obtain the following result.

Corollary 3. If the size of SIseg,v is bounded by X for any connected component GC, any process v ∈
GC, and any GC-segment seg, then the total number of moves during any execution, is bounded by
(X · (nmaxCC − 1) + 5) · (nmaxCC + 1) · n.

Combined with Lemma 10, this corollary already allows us to prove that Scheme always terminates
and has a bounded move complexity.

Corollary 4. Algorithm Scheme is silent self-stabilizing under the distributed unfair daemon and has a
bounded move (and step) complexity.

Let Wmax = max{wu(v) : u ∈ V ∧ v ∈ Γ (u)}. If all weights are strictly positive integers and ⊕ is the
addition operator, then the size of any SIseg,u is bounded by Wmax(nmaxCC−1) for all connected component
GC, all GC-segment seg and all process u ∈ GC because Sseg,u ⊆ [dsseg,u + 1, dsseg,u + Wmax(ncc − 1)],
where ncc ≤ nmaxCC is the number of processes in GC, and dsseg,u is the common (by Lemma 9) initiating
value of the maximal causal chains of seg rooted at u. Hence, we deduce the following theorem from
Lemma 1, Theorem 1, and Corollary 3.

Theorem 3. Algorithm Scheme is silent self-stabilizing under the distributed unfair daemon and, when
all weights are strictly positive integers and ⊕ is the addition operator, its stabilization time in moves
(and steps) is at most (Wmax · (nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n.

Lemma 12. Let GC be a connected component of G, v ∈ GC, and seg be GC-segment. If all edges have
the same weight, then |SIseg,v| < nmaxCC.

Proof. Assume that all edges have the same weight w. According to Observation 4 and Lemma 8, we have
SIseg,v ⊂ {dsseg,v ⊕ i.w | 1 ≤ i ≤ nmaxCC − 1}, with dsseg,v being the common (by Lemma 9) initiating
value of the maximal causal chains of seg rooted at v. �

By Corollary 3 and Lemma 12, we obtain the following result.

Corollary 5. If all edges have the same weight, then the total number of moves (and steps) during any
execution, is bounded by ((nmaxCC − 1)2 + 4) · (nmaxCC + 1) · n.

5 Round Complexity of Scheme

5.1 Normal Configurations.

We first introduce the notion of normal configurations, which will help us to partition the proof on the
round complexity of Scheme.

Definition 12 (Normal Process). A process u is said to be normal if u satisfies the following two
conditions:

1. stu /∈ {EB,EF},
2. ¬P_abnormalRoot(u).
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Definition 13 (Normal Configuration). Let γ be a configuration of Scheme. γ is said to be normal
if every process is normal in γ; otherwise γ is said to be abnormal.

Observation 5 In a normal configuration of Scheme, only the rules RU or RR may be enabled on any
process.

We first prove that, once a normal configuration is reached, all subsequent configurations will be
normal as well.

Lemma 13. Any step from a normal configuration of Scheme reaches a normal configuration of Scheme.

Proof. Let γ 7→ γ′ be a step such that γ is a normal configuration and let u be a process.
In γ, every process v satisfies stv /∈ {EB,EF} and ¬P_abnormalRoot(v). Hence, both REB(u) and

REF(u) are disabled in γ, and consequently stu /∈ {EB,EF} still holds in γ′.
Moreover, since u is not an alive abnormal root in γ, Lemma 5 implies that u is not an alive abnormal

root in γ′ either. Since stu 6= EF in γ′, we obtain ¬P_abnormalRoot(u) in γ′. �

5.2 From an Arbitrary Configuration to a Normal Configuration

The first lemma below essentially claims that all processes that are in illegal branches progressively switch
to status EB within nmaxCC rounds, in order of increasing depth (Definition 5, page 7).

Lemma 14. Let i ∈ N. From the beginning of round i+1, there does not exist any process both in state C
and at depth less than i in an illegal branch.

Proof. We prove this lemma by induction on i. The base case (i = 0) is vacuum, so we assume that the
lemma holds for some integer i ≥ 0.

From the beginning of round i + 1, no process can ever choose a parent which is at depth smaller
than i in an illegal branch because those processes (if they exist) will never have status C, by induction
hypothesis.

Then, let u be a process of status C in an illegal branch at the beginning of round i + 1. Its depth
is thus at least i. By induction hypothesis, each of its ancestor at depth smaller than i has status EB
and has at least one child not having status EF . Thus, no such ancestors can execute any rule, and
consequently they cannot make the depth of u decreasing to i or smaller. Therefore, no process can take
state C at depth smaller or equal to i in an illegal branch from the beginning of round i+ 1.

Consider any process u with status C at depth i in an illegal branch at the beginning of the round i+1.
By induction hypothesis, u is an abnormal root, or the parent of u is not in state C (i.e., it is in the
state EB). During round i+1, u will execute rule either REB or RU and thus either switch to state EB,
or join another branch at a depth greater than i, or become a normal root turning its branch to be legal.
This concludes the proof of the lemma. �

Corollary 6. After at most nmaxCC rounds, the system is in a configuration from which no process in any
illegal branch has status C forever.

Moreover, once such a configuration is reached, each time a process executes a rule other than REF,
this process is outside any illegal branch forever.

The next lemma essentially claims that once no process in an illegal branch has status C forever,
processes in illegal branches progressively switch to status EF within at most nmaxCC rounds, in order of
decreasing depth.

Lemma 15. Let i ∈ N∗. From the beginning of round nmaxCC +i, any process at depth larger than nmaxCC−i
in an illegal branch has status EF .

Proof. We prove this lemma by induction on i. The base case (i = 1) is vacuum (by Observation 2, page 7),
so we assume that the lemma holds for some integer i ≥ 1. At the beginning of round nmaxCC + i, any
process at depth larger than nmaxCC− i has the status EF (by induction hypothesis). Therefore, processes
with status EB at depth nmaxCC − i in an illegal branch can execute the rule REF at the beginning of
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round nmaxCC + i. These processes will thus all execute within round nmaxCC + i (they cannot be neutralized
as no children can connect to them) and obtain status EF . We conclude the proof by noticing that, from
Corollary 6, once round nmaxCC has terminated, any process in an illegal branch that executes some rule
either gets status EF , or will be outside any illegal branch forever. �

The next lemma essentially claims that after the propagation of status EF in illegal branches, the
maximum length of illegal branches progressively decreases until all illegal branches vanish.

Lemma 16. Let i ∈ N∗. From the beginning of round 2nmaxCC + i, there does not exist any process at
depth larger than nmaxCC − i in an illegal branch.

Proof. We prove this lemma by induction on i. The base case (i = 1) is vacuum (by Observation 2), so
we assume that the lemma holds for some integer i ≥ 1. By induction hypothesis, at the beginning of
round 2nmaxCC + i, no process is at depth larger than nmaxCC − i in an illegal branch. All processes in an
illegal branch have the status EF (by Lemma 15). So, at the beginning of round 2nmaxCC +i, any abnormal
root satisfies the predicate P_reset, and is enabled to execute either RI, or RR. So, all abnormal roots
at the beginning of the round 2nmaxCC + i are no more in an illegal branch at the end of this round: the
maximal depth of the illegal branches has decreased, since by Corollary 6, no process can join an illegal
tree during the round 2nmaxCC + i. �

By Lemmas 14-16, we obtain the following result.

Theorem 4. After at most 3nmaxCC rounds, a normal configuration of Scheme is reached.

5.3 From a Normal Configuration to a Terminal Configuration

From a normal configuration, Algorithm Scheme needs additional rounds to propagate the status C and
the correct distances in the components of the graph containing at least one candidate. First, we observe
the following fact.

Observation 6 In a normal configuration of Scheme, all processes in connected components containing
no process satisfying canBeRoot are in state I and thus are disabled.

Let u be a process having the status C in a normal configuration γ. Along any execution from γ, the
distance of u cannot increase and u keeps the status C.

From the previous observation, we only need to focus on any connected component GC containing at
least one process satisfying canBeRoot.

Let us fix an arbitrary execution ex of Scheme in GC starting from a normal configuration γ. By
Corollary 4 (page 13), a terminal configuration is eventually reached after a finite number of steps along ex.

Lemma 17. Let STGC(i, ex) be the set of processes defines by {u ∈ GC | u performs a move along ex
after the beginning of the round i}.

If |STGC(i, ex)| > 0 then |STGC(i+ 1, ex)| < |STGC(i, ex)|.

Proof. By definition, STGC(i+ 1, ex) ⊆ STGC(i, ex). It is thus sufficient to prove that at least one process
of STGC(i, ex) is enabled at the start of the i-th round and will do its last action during the ith round
of ex.

Let γi be the configuration at the start of round i of ex, and let γf be the terminal configuration of ex.
Let us consider the process u ∈ STGC(i, ex) having the minimum distance du in γf , denoted by dmin(i).
Along ex from γi, any process w′ of STGC(i, ex) satisfies dmin(i) � dw′ or stw′ = I according to the
definition of u and to Observation 6.

Case 1. In γf , parentu = ⊥.
This means that P_root(u) holds in γf . This further implies that, along ex from γi, the last action
of u consists in executing beRoot(u). At that time, u satisfies P_updateRoot(u) ∨ stu = I. In fact,
this must hold already from γi, by Lemma 6, page 10) and Observation 6. To summarize, u performs
only one action along ex from γi, and u is enabled in γi and stays enabled until u does an action.
This action is thus done during the ith round of ex, and u 6∈ STGC(i+ 1, ex), concluding the case.
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Case 2. In γf , parentu = w.
By Observation 6, notice that along ex from γi, the value min(v∈Γ (u) ∧ stv=C)(dv ⊕ ωu(v)) re-
mains constant, and equal to dmin(i). Therefore, once u is disable, it stays disable according to
P_nodeImp(u) properties (Algorithm 1, page 8). So u is enabled in γi and stays enabled un-
til u does an action. Therefore, this action is done during the i-th round of ex. After this action
of u, we have ¬P_updateNode(u) ∧ ¬P_updateRoot(u) ∧ stu = C (so u is disabled forever). Thus
u 6∈ STGC(i+ 1, ex), concluding the case.

�

From the previous lemma, Lemma 13 and Theorem 4, we obtain the following result.

Corollary 7. A terminal legitimate configuration of any instantiation of Scheme is reached in at most 4nmaxCC

rounds from any configuration.

6 Instantiations

In this section, we illustrate the versatility of Algorithm Scheme by proposing several instantiations that
solve various classical problems. Following the general bound (Corollary 7, page 16), all these instances
reach a terminal configuration in at most 4nmaxCC rounds, starting from an arbitrary one.

6.1 Spanning Forest and Non-Rooted Components Detection

Given an input set of processes rootSet, Algorithm Forest is the instantiation of Scheme with the param-
eters given in Algorithm 2. Algorithm Forest computes (in a self-stabilizing manner) a spanning forest in
each connected component of G containing at least one process of rootSet. The forest consists of trees (of
arbitrary topology) rooted at each process of rootSet. Moreover, in any component containing no process
of rootSet, the processes eventually detect the absence of root by taking the status I (Isolated).

Algorithm 2: Parameters for any process u in Algorithm Forest

Inputs
• canBeRootu is true if and only if u ∈ rootSet
• pnameu is ⊥
• ωu(v) = 1 for every v ∈ Γ (u)

Ordered Magma
• DistSet = N
• i1⊕ i2 = i1 + i2
• i1 ≺ i2 ≡ (i1 < i2)
• distRoot(u) = 0

Predicate
• P_nodeImp(u) ≡ P_updateRoot(u)

Correctness of Forest. By Theorem 1, and Corollary 4 (resp. page 10, 13), Algorithm Forest self-stabilizes
to a terminal legitimate configuration that satisfies the following requirements (see Definition 7, page 9).

Observation 7 In a terminal legitimate configuration of Forest, each process u satisfies one of the fol-
lowing conditions:

1. P_root(u), i.e., u is a tree-root and u ∈ rootSet,
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2. there is a process of rootSet in Vu, stu = C, parentu ∈ Γ (u), du ≥ dparentu +1, and ¬P_nodeImp(u),
i.e., u /∈ rootSet belongs to a tree rooted at some process of rootSet and its neighbor parentu is its
parent in the tree,

3. there is no process of rootSet in Vu and stu = I, i.e., u is isolated.

Move Complexity of Forest. Since for every process u, P_nodeImp(u) ≡ P_updateRoot(u), rule RU is
enabled at most once. Hence, the total number of moves (and steps) during any execution is bounded by
5 · (nmaxCC + 1) · n, by Theorem 2 (page 11).

6.2 Leader Election

Assuming the network is identified, Algorithm LEM is the instantiation of Scheme with the parame-
ters given in Algorithm 3. In each connected component, Algorithm LEM elects the process u (i.e.,
P_leader(u) holds) of smallest identifier and builds a tree (of arbitrary topology) rooted at u that spans
the whole connected component.

Algorithm 3: Parameters for any process u in Algorithm LEM

Inputs
• canBeRootu is true for any process
• pnameu is the identifier of u (n.b., pnameu ∈ N)
• ωu(v) = (⊥, 1) for every v ∈ Γ (u)

Ordered Magma
• DistSet = IDs×N; for every d = (a, b) ∈ DistSet, we let d.id = a and d.h = b

• (id1, i1)⊕ (id2, i2) = (id1, i1 + i2).
• (id1, i1) ≺ (id2, i2) ≡ (id1 < id2) ∨ [(id1 = id2) ∧ (i1 < i2)]
• distRoot(u) = (pnameu, 0)

Predicates
• P_nodeImp(u) ≡ ((∃v ∈ Γ (u) | stv = C ∧ dv.id < du.id)) ∨ P_updateRoot(u)
• P_leader(u) ≡ P_root(u)

Correctness of LEM. As canBeRoot is true for all processes, we can deduce, from Theorem 1 (page 10)
and Definition 7 (page 9), that in a terminal configuration, stu = C for every process u. So, from Lemma 1
(page 9), Algorithm LEM self-stabilizes to a terminal legitimate configuration that satisfies the following
requirements.

Observation 8 In a terminal legitimate configuration of LEM, each process u satisfies one of the follow-
ing conditions: (1) P_root(u), or (2) stu = C, parentu ∈ Γ (u), du � dparentu .

Correctness of LEM is proven by the following lemma.

Lemma 18. In a terminal legitimate configuration of Algorithm LEM, each process u satisfies one of the
following conditions:

1. P_root(u) (≡ P_leader(u)) and u is the process of smallest identifier in Vu, or
2. stu = C, parentu ∈ Γ (u), du � dparentu , and du = (pname`,−) where ` is the process of smallest

identifier in Vu.
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Proof. First, from the previous observation, in a terminal configuration stu = C, for every process u. Then,
consider any connected component GC. Assume, by the contradiction, that in a terminal configuration
of LEM, we have two processes u, v ∈ GC such that du.id 6= dv.id. Without the loss of generality, assume
that u and v are neighbors and du.id > dv.id. Then, P_nodeImp(u) holds, and since stu = stv = C,
RU(u) is enabled, a contradiction. Hence, all processes of GC agree on the same leader identifier, and by
definition of P_root(u), at most one process u can satisfy P_root(u), i.e., P_leader(u).

Assume, then, by the contradiction, that no process of GC that satisfies P_root in the terminal
configuration. Let u ∈ GC such that du is minimum in the terminal configuration. By Observation 8,
parentu ∈ Γ (u) and dparentu ≺ du, contradicting the minimality of du. Hence, there is exactly one process
` inGC satisfying P_root(`) (≡ P_leader(`)) in any terminal configuration. Moreover, by Observation 8,
in a terminal configuration, parent variables describe a spanning tree rooted at `.

Finally, assume, by the contradiction, that in a terminal configuration, the leader ` of GC is not the
process of smallest identifier in GC. Let u be the process of smallest identifier in GC. Then, distRoot(u) =
(pnameu, 0) ≺ du = (pname`, x), with x ∈ N, i.e., P_updateRoot(u). Since stu = C, RU(u) is enabled,
a contradiction. �

Move Complexity of LEM. During a GC-segment, a process can only execute RU to improve its ID. Since
there are nmaxCC initial values and nmaxCC real IDs in its connected component, the total number of moves
(and steps) during any execution is bounded by (2nmaxCC + 4) · (nmaxCC + 1) · n (Theorem 2, page 11) i.e.,
O(nmaxCC

2 · n).

6.3 Shortest-Path Tree and Non-Rooted Components Detection

Assuming the existence of a unique root r and (strictly) positive integer weights for each edge, Algorithm
RSP is the instantiation of Scheme with the parameters given in Algorithm 4. Algorithm RSP computes
(in a self-stabilizing manner) a shortest-path tree spanning the connected component of G containing r.
Moreover, in any other component, the processes eventually detect the absence of r by taking the status I
(Isolated).

Recall that the weight of a path is the sum of its edge weights. The weighted distance between the
processes u and v, denoted by d(u, v), is the minimum weight of a path from u to v. A shortest path from
u to v is then a path whose weight is d(u, v). A shortest-path (spanning) tree rooted at r is a tree rooted
at r that spans Vr and such that, for every process u, the unique path from u to r in T is a shortest path
from u to r in Vr.

Algorithm 4: Parameters for any process u in Algorithm RSP

Inputs
• canBeRootu is false for any process except for u = r

• pnameu is ⊥
• ωu(v) = ωv(u) ∈ N∗, for every v ∈ Γ (u)

Ordered Magma
the same as the configuration of Algorithm Forest (Algorithm 2)

Predicate
• P_nodeImp(u) ≡ P_updateNode(u) ∨ P_updateRoot(u)

Correctness of RSP. It is given by the following lemma.

Lemma 19. In a terminal configuration of Algorithm RSP, r is the unique process satisfying P_root.
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Proof. By definition, r is the unique process satisfying canBeRoot. So, only r can satisfy P_root. Assume,
by the contradiction, that ¬P_root(r) holds in a terminal configuration γ of RSP. Then, by Definition 7
(page 9) and Theorem 1 (page 10), str = C and du ≥ dparentu +1 > 0 in γ. So, str = C∧P_updateRoot(u)
holds in γ, i.e., RU(r) is enabled in γ, a contradiction. �

By Lemma 19, Definition 7, and the definition of P_nodeImp(u), we obtain the following result.

Observation 9 In a legitimate configuration of Algorithm RSP, each process u satisfies one of the fol-
lowing three conditions:

1. u = r and P_root(r) holds,
2. u ∈ Vr \ {r}, stu = C, parentu ∈ Γ (u), and du = d(u, r) = dparentu + ωu(parentu), or
3. u /∈ Vr and stu = I.

Move Complexity of RSP. All edges have a positive integer weight, so the total number of moves (and
steps) during any execution is bounded by (Wmax · (nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n (Theorem 3, page
13), i.e., O(nmaxCC

3 · n · Wmax).

6.4 Leader Election and Breadth-First Search Tree

Assuming the network is identified, Algorithm LEM_BFS is the instantiation of Scheme with the param-
eters given in Algorithm 5. In each connected component, Algorithm LEM_BFS elects the process u (i.e.,
P_leader(u) holds) of smallest identifier and builds a breadth-first search (BFS) tree rooted at u that
spans the whole connected component.

Recall that the weight of a path is the sum of its edge weights (in this case, each edge as weight 1).
The weighted distance between the processes u and v, denoted by d(u, v), is the minimum weight of a
path from u to v. A shortest path from u to v is then a path whose weight is d(u, v). When all edges have
weight 1, a BFS spanning tree rooted at u is a shortest-path (spanning) tree rooted at process u that
spans Vu.

Algorithm 5: Parameters for any process u in Algorithm LEM_BFS

Inputs
the same as the configuration of Algorithm LEM (Algorithm 3)

Ordered Magma
the same as the configuration of Algorithm LEM (Algorithm 3)

Predicates
• P_nodeImp(u) ≡ P_updateNode(u) ∨ P_updateRoot(u)
• P_leader(u) ≡ P_root(u)

Correctness of LEM_BFS. Following the same reasoning as for Algorithm LEM and P_nodeImp(u)
definition. Algorithm LEM_BFS self-stabilizes to a terminal legitimate configuration that satisfies the
following requirements.

Observation 10 In a terminal legitimate configuration of Algorithm LEM_BFS, each process u satisfies
one of the following conditions:

1. P_root(u) (≡ P_leader(u)) and u is the process of smallest identifier in Vu, or
2. stu = C, parentu ∈ Γ (u), du = (pname`, d(u, `)) = dparentu ⊕ (⊥, 1), where ` is the process of

smallest identifier in Vu.
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Move Complexity of LEM_BFS. All edges have the same weight, so the total number of moves (and
steps) during any execution is bounded by ((nmaxCC− 1)2 + 5) · (nmaxCC + 1) · n (Corollary 5, page 13), i.e.,
O(nmaxCC

3 · n).

6.5 Depth-First Search Tree and Non-Rooted Components Detection

Assume the existence of a unique root r. Algorithm RDFS is the instantiation of Scheme with the param-
eters given in Algorithm 6. Algorithm RDFS computes (in a self-stabilizing manner) a depth-first search
(DFS) tree spanning the connected component of G containing r. Moreover, in any other component,
processes eventually detect the absence of r by taking the status I (Isolated).

Here, the weight of the arc (u, v) is αu(v), the local label of u in Γ (v). Let P = uk, uk−1, . . . u0 =
r be a (directed) path from process uk to the root r. We define the weight of P as the sequence
0, α1(u0), α2(u1), . . . , αk(uk−1). The lexicographical distance from process u to the root r, denoted by drlex(u),
is the minimum weight of a path from u to r (according to the lexicographical order).

Algorithm 6: Parameters for any process u in Algorithm RDFS

Inputs
• canBeRootu is false for any process except for u = r

• pnameu is ⊥
• ωu(v) = αu(v) ∈ {1 . . . δu} (the local label of u in Γ (v)), for every v ∈ Γ (u)

Ordered Magma
• DistSet = {0, . . . ,∆}∗

• w1⊕ w2 = w1.w2 (the concatenation of w1 and w2)
• � is the lexicographic order
• distRoot(u) = 0

Predicate
• P_nodeImp(u) ≡ P_updateNode(u) ∨ P_updateRoot(u)

Correctness of RDFS.

Observation 11 Let T be a tree rooted at r that spans Vr. Following the result of [45], if for every process
u ∈ Vr, the weight of the path from u to r in T is equal to drlex(u), then T is a (first) DFS spanning tree
of Vr.

Following the same reasoning as for Algorithm RSP, we know that Algorithm RDFS self-stabilizes to
a terminal legitimate configuration that satisfies the following requirements.

Observation 12 In a legitimate configuration of Algorithm RDFS, each process u satisfies one of the
following three conditions:

1. u = r and P_root(r) holds,
2. u 6= r, u ∈ Vr, stu = C, parentu ∈ Γ (u), and du = dlex(u, r) = dparentu .ωu(parentu), or
3. u /∈ Vr and stu = I.

Move Complexity of RDFS. For this instance, we cannot apply Theorem 3 (page 13) to obtain a polynomial
move complexity. However, by Lemma 10 we have a rough estimation of the move complexity, i.e., at
most nmaxCC! moves. We outline that this estimation is coarse-grained, and so can be further refined.
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7 Conclusion

We proposed a general scheme, Algorithm Scheme, to compute spanning-tree-like data structures on arbi-
trary (not necessarily connected) bidirectional networks. Algorithm Scheme is self-stabilizing and silent.
It is written in the locally shared memory model with composite atomicity. We proved its correctness
under the distributed unfair daemon hypothesis, the weakest scheduling assumption of the model. We
also showed that its stabilization time is at most 4nmaxCC rounds, where nmaxCC is the maximum number of
processes in a connected component. We illustrated the versatility of our approach by proposing several
instantiations of Scheme that solve various classical problems. In most of the cases, we exhibited polyno-
mial upper bounds on its stabilization time in steps and process moves for the considered instantiation.
For example, assuming the network is identified, we proposed two instances of Scheme for electing a
leader in each connected component and building a spanning tree rooted at each leader in a polymonial
number of steps (resp. moves). In the first version, the trees are of arbitrary topology, while trees are BFS
in the second. Using our scheme, one can easily derive other instances to obtain shortest-path trees for
example. Assuming now an input set of roots, we also proposed an instance to compute in a polynomial
number of steps (resp. moves) a spanning forest of arbitrary shaped trees, with non-rooted components
detection. Again, one can easily enforce this latter construction to obtain BFS or shortest-path forests.
Finally, assuming a rooted network, we proposed to compute in a polynomial number of steps (resp.
moves) a shortest-path spanning tree construction, with non-rooted components detection. Again, BFS
or arbitrary tree constructions can be easily derived from these latter instances. Notice that, for many
of these latter problems, there was, until now, no solution in the literature where a polynomial step
complexity upper bound was proven.
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