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• Sequential Monte Carlo (SMC), or Particle filtering, is a principled technique which sequentially approximates the full posterior using particles [START_REF] Doucet | Sequential Monte Carlo methods in Practice[END_REF]. It focuses on sequential state-space models: the density of the observations y t conditionally on Markov states x t in X ⊆ R d is given by y t |x t ∼ f Y (y t |x t ), with kernel

x 0 ∼ f X 0 (x 0 ), x t |x t-1 ∼ f X (x t |x t-1 ). (1) 
• The initial motivation of quasi Monte Carlo (QMC) is to use low discrepancy vectors instead of unconstrained random vectors in order to improve the calculation of integrals via Monte Carlo.

• Gerber and Chopin (2015) introduce a sequential quasi Monte Carlo (SQMC) methodology. This assumes the existence of transforms Γ t mapping uniform random variables to the state variables.

Requires that (1) can be rewritten as

x (n) 0 = Γ 0 (u (n) 0 ) ↔ x (n) 0 ∼ f 0 (dx (n) 0 ) x (n) 1:t = Γ t (x (n) 1:t-1 , u (n) t ) ↔ x (n) 1:t |x (n) 1:t-1 ∼ f t (dx (n) 1:t |x (n) 1:t-1 )
where u (n) t ∼ U([0, 1) d ) is to be a quasi random vector of uniforms.

Dirichlet process & SQMC

• Nonparametric mixtures for density estimation: extension of finite mixture models when the number of clusters is unknown. Observations y 1:T follow a DPM model with kernel ψ parameterized by θ ∈ Θ,

y t |G i.i.d. ∼ ψ(y; θ)dG(θ), t ∈ (1 : T ),
where G ∼ DP(α, G 0 ).

• DPM cast as SMC samplers by [START_REF] Liu | Nonparametric hierarchical Bayes via sequential imputation[END_REF]; [START_REF] Fearnhead | Particle filters for mixture models with an unknown number of components[END_REF]; [START_REF] Griffin | Sequential Monte Carlo methods for mixtures with normalized random measures with independent increments priors[END_REF] : observations are spread out into unobserved clusters whose labels, or allocation variables, are latent variables acting as observations states in the context of SMC. Transition is given by the (posterior) generalized Pólya urn scheme p t, j = P(x t = j|x 1:t-1 , y 1:t ).

• Complies with Gerber and Chopin (2015) need for a deterministic transform

Γ t (x (n) 1:t-1 , u (n) t ) = min j ∈ {1, . . . , k (n) t-1 + 1} : j i=1 p (n) t,i > u (n) t
for any particle n, with u (n) t ∼ U([0, 1)).

Goal

• Peculiarity to the DPM setting:

• state-space ≈ (1 : T ) T is discrete and varies

• transition is not Markovian

• Goal: investigate how SQMC fares 

• compare allocation trajectories x (n) 1:T , n = 1, . . . , N in SMC & SQMC • measure
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