Investigating predictive probabilities of Gibbs-type priors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Investigating predictive probabilities of Gibbs-type priors

Résumé

Gibbs-type priors are arguably the most 'natural' generalization of the Dirichlet prior. Among them the two parameter Poisson-Dirichlet prior certainly stands out for the simplicity and intuitiveness of its predictive probabilities. Given an observable sample of size $n$, in this paper we show that the predictive probabilities of any Gibbs-type prior admit a large $n$ approximation, with an error term vanishing as $o(1/n)$, which maintains the same mathematical tractability and interpretability as the predictive probabilities of the two parameter Poisson-Dirichlet prior. We discuss the use of our approximate predictive probabilities in connection with some recent work on Bayesian nonparametric inference for discovery probabilities.
Fichier non déposé

Dates et versions

hal-01667765 , version 1 (19-12-2017)

Identifiants

  • HAL Id : hal-01667765 , version 1

Citer

Julyan Arbel. Investigating predictive probabilities of Gibbs-type priors. Mathematical Methods of Modern Statistics, Jul 2017, Marseille, France. ⟨hal-01667765⟩
126 Consultations
0 Téléchargements

Partager

More